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ABSTRACT. In 1979, Lusztig proposed a cohomological construction of supercuspidal repre-
sentations of reductive p-adic groups, analogous to Deligne—Lusztig theory for finite reductive
groups. In this paper we establish a new instance of Lusztig’s program. Precisely, let X be the
Deligne-Lusztig (ind-pro-)scheme associated to a division algebra D over a non-Archimedean
local field K of positive characteristic. We study the D*-representations He(X) by establishing
a Deligne—Lusztig theory for families of finite unipotent groups that arise as subquotients of
D*. There is a natural correspondence between quasi-characters of the (multiplicative group
of the) unramified degree-n extension of K and representations of D> given by 6 — He(X)[6].
For a broad class of characters 6, we show that the representation H,(X)[f] is irreducible and
concentrated in a single degree. After explicitly constructing a Weil representation from 6
using y-data, we show that the resulting correspondence matches the bijection given by local
Langlands and therefore gives a geometric realization of the Jacquet—Langlands transfer between
representations of division algebras.
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1. INTRODUCTION

Deligne—-Lusztig theory [DL76] gives a geometric description of the irreducible representations
of finite groups of Lie type. In [L.79], Lusztig suggests an analogue of Deligne-Lusztig theory for
p-adic groups (. For a maximal unramified torus 7' C G, he introduces a certain set which has
a natural action of T' x G. Conjecturally, this set has an algebro-geometric structure and one
should be able to define ¢-adic homology groups functorial for the T' x G action. By [L79] and
[B12], when G is a division algebra, one can realize Lusztig’s set X as an (ind-pro-)scheme and
define corresponding f-adic homology groups H;(X,Q,). One therefore obtains a correspondence
0 — H;(X,Q,)[f] between characters of T and representations of G. In this paper, we study this
correspondence and, after describing a Weil representation associated to 6, give a description
from the perspective of the local Langlands and Jacquet—Langlands correspondences.

Let K be a non-Archimedean local field of positive characteristic with ring of integers Og and
residue field F; = O/ for a fixed uniformizer 7, and let L O K be the unramified extension of
degree n with ring of integers Oyr. The level of a smooth character 8: L™ — @Z is the smallest
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integer h such that 6 is trivial on Uﬁ, where U} := Of and Uﬁ =1+ 7"0p, for h > 1. We
say that 6 is primitive if for all 1 # v € Gal(L/K), the smooth characters § and /67 have
the same level. Equivalently, the restriction of 6 to Uf_l/ UP has trivial Gal(Fn /F,)-stabilizer.
There is a canonical choice of Langlands—Shelstad y-datum associated to the maximal torus
L* — GLg(L) = GL,(K), and using this, one can associate a smooth irreducible n-dimensional
Wi -representation oy to a primitive character : L* — @Z . The representation oy corresponds
via local Langlands to an irreducible supercuspidal representation 7y of GL,,(K), which in turn
corresponds via Jacquet—Langlands to an irreducible representation pg of D* where D is a
division algebra of dimension n? over K.

Main Theorem. Let 6: L* — @Z be a primitive character of level h. Then

— po ifi=rg:=mn-1)(h-1),
H(X,Tlb] = ===y
0  otherwise.
Pictorially,
0 0 X
l \L x-datum
o9 Gk (n)
Deligne—Lusztig construction l \L Local Langlands
Yyl .AK (n)
I \L Jacquet-Langlands
Hy(X, Q0] = po Axn)
where

X := {primitive characters L™ — @gx }

Gk (n) := {smooth irreducible dimension-n representations of the Weil group Wy}
A (n) := {supercuspidal irreducible representations of GL, (K)}
A’k (n) := {smooth irreducible representations of D*}

1.1. What is known. The only progress on Deligne-Lusztig constructions X is in the context
of division algebras. For two relatively prime integers k,n > 1, let Dy, denote the division
algebra over K of invariant k/n. (Note that the Brauer group of K is Q/Z, so Dy, = Dy,
if k = k" modulo n.) In the next two sections, we will pick an embedding L < D, /n and set
G = D:/n, T=1L*.

Let G' and T"! denote the norm-1 elements of G and 7', and let X' be the associated Deligne—
Lusztig construction. In [L.79], Lusztig proves that when k = 1, the virtual G'-representations
S (=1)PH; (X1, Qy)[0] are (up to a sign) irreducible and mutually nonisomorphic. We remark
that his argument can be modified to prove the same conclusion for > (—1)"H;(X, Q,)[6)].

Our paper focuses on the much subtler issue of describing the individual homology groups
H;(X,Q,)[f] and their vanishing behavior. Analogous to the behavior of classical Deligne-Lusztig
varieties, one expects H;(X,Q,)[f] to vanish outside a single degree, at least for “sufficiently
generic” characters #. Additionally, one hopes to get a description of the irreducible representa-
tions arising from these homology groups.

Hoet &L — @EX be the rectifying character determined by {(7) = —1 and £|,x = 1. Viewing 0-¢ as a
L

character of Wy, via local class field theory, the representation oy is isomorphic to Indzvvf 0-¢).
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There exists a unipotent group scheme U, over F,, such that U,"!(Fgn) is isomorphic to

a subquotient of G. The study of H;(X,Q,)[f] reduces to the study of certain subschemes
X, C U}Z’g endowed with a left action by Ui /UP and a right action by U}Z’IZ(]Fqn). When k =1,
these definitions were established in [BW16] for h < 2 and in [B12] for h > 2. We remark that
U;” P (Fqn) is isomorphic to a subquotient of G even if K has characteristic zero, but this fails
when h > 2 (see Remark 2.2). The definitions of X, Xj,, and U} can be generalized to arbitrary
k, and we do so in this paper.

In [BW16, Sections 4-6], Boyarchenko and Weinstein study the representations H:(X2, Q)
when k£ = 1 (see Theorem 4.7 of op. cit.). This comprises one of the main ingredients in studying
the cohomology of the Lubin-Tate tower. In [BW13], they specialize this result to the primitive
case to give an explicit and partially geometric description of local Langlands correspondences.
Roughly speaking, the Weil representation in classical constructions is replaced by the cohomology
of X5. In [B12], Boyarchenko uses the representations HE(Xs,Q,) to prove that for any smooth
character 6: T — Q, of level < 2, the representation H;(X,Q,)[f] vanishes outside a single
degree and gives a description of this representation (see Theorem 5.3 of op. cit.). Moreover, he
shows that if  is primitive, then H;(X,Q,)[f] is irreducible in the nonvanishing degree.

In contrast to the Lubin—Tate setting, we need to understand the cohomology of X}, for all A
to understand high-depth representations arising in Deligne-Lusztig constructions. Outside of
the case for k =1, n =3, and h = 3 (see [B12, Theorem 5.20]), this was completely open.

In [C16], we study X} for arbitrary h, assuming n = 2 and 6 is primitive. We prove that
the representation H;(X,Q,)[0] is irreducible and nonvanishing in a single degree. In addition
we prove a character formula in the form of a branching rule for representations of the finite
unipotent group U, i’g(ﬂ?qz), a subquotient of the quaternion algebra. Using this, we are able to
give an explicit description of the representation H;(X,Q,)[6].

In this paper, we generalize this work to arbitrary n and arbitrary k. We take a more conceptual
approach that allows us to bypass many of the computations needed in [C16]. As a corollary,
we obtain a geometric realization of the Jacquet—Langlands transfer between representations of
division algebras.

Remark 1.1. In the special case that n = 2, the Deligne-Lusztig constructions we study in this
paper and its prequel [C16] are cut out by equations that resemble the equations defining certain
covers of affine Deligne—Lusztig varieties. This was observed by Ivanov in [[15, Section 3.6]. ¢

1.2. Outline of this paper. Let h,k,n > 1 be integers with (k,n) = 1. In Section 2, we
introduce the unipotent group scheme U }7 ! together with a certain subgroup scheme H C U }7 e
both of which are defined over Fyn. These group schemes have the property that H(Fgn) = U i / Uf
and U, ,? " (Fgn) is isomorphic to an analogous finite subquotient of Dkx/n (see Remark 2.2). We
then define a certain Fyn-scheme X C U, }7;7,127 whose relation to the Deligne-Lusztig construction

X is as follows: X can be identified with a set X endowed with an ind-pro-scheme structure
v oy (m)
£
meZ h

where each X }(lm) is isomorphic to the disjoint union of ¢" —1 copies of X}, (F,). This decomposition

naturally realizes X as an increasing union of F,-(pro-)schemes. Roughly speaking, the action of
T x G on X has two behaviors: there is an action on each X }(Lm)’ and there is an action permuting
these pieces. In order to understand the (T x G)-representations arising from H;(X,Qy), one
must understand these two actions. The former is captured by the action of H(Fgn) x U, (Fgn)

on Xp; the latter was studied by Boyarchenko [B12, Proposition 5.19].
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Let T denote the set of primitive characters of H(Fy»). Let G denote the set of irreducible
representations of U, ;’f(lﬁ‘qn) whose central character has trivial Gal(L/K)-stabilizer. In Section
4, we give a correspondence x — py from 7 to G. This construction matches that of [C74].

In Section 5 we study the geometry of X}, using a combinatorial notion known as juggling
sequences. We prove in Theorem 5.4 and Corollary 5.5 that the varieties X} are smooth affine
varieties of dimension (n — 1)(h — 1) defined by the vanishing of polynomials whose monomials
are indexed by juggling sequences. By studying the combinatorics of these objects, we are able
to prove structural lemmas crucial to the analysis of H(X},, Q).

Section 6 is concerned with combining the general algebro-geometric results of Section 3, the
representation-theoretic results of Section 4, and the combinatorial results of Section 5. The
main result of this section is Theorem 6.4, but the heart of its proof is in Proposition 6.1, where
we calculate certain cohomology groups by inducing on linear fibrations. In Theorem 6.4, we
prove that the correspondence x — p, is bijective and that every representation p € G appears
in H!(X}p,,Q,) with multiplicity one. In addition, we prove a character formula (Proposition
6.2) for the representations H(Xp, Q,)[x] using the Deligne-Lusztig fixed point formula [DL76,
Theorem 3.2].

Section 7 is devoted to understanding two connections. The first, explained in Section 7.1, is
to unravel the relationship between the results of Section 6 and the representations of division
algebras arising from Deligne—Lusztig constructions X. The second, explained in Section 7.2,
is to describe H;(X,Qy)[f] from the perspective of the local Langlands and Jacquet-Langlands
correspondences. We use Theorem 6.4, the trace formula established in Proposition 6.2, and a
criterion of Henniart described in [BW13, Proposition 1.5(b)].

Theorem (7.12, 7.13). Let : L* — @Z be a primitive character of level h and let py be
the D]:/n-representatz’on corresponding to 0 under the local Langlands and Jacquet—Langlands

correspondences. Then

0  otherwise.

(X, Q)] = {,09 ifi=(n—1)(h-1),

Moreover, if X and X' are the Deligne—Lusztig constructions associated to Dy, and Dy, then
the Jacquet-Langlands transfer of H,_1)yn—1)(X, Q)[0)] is isomorphic to H(n_l)(h_l)(X’j@g)[é’].

Using the techniques developed in this paper, we have evidence to support that for nonprimitive
characters 6: L* — @KX of level h with restriction y: U i — @; , the cohomology groups
H!(Xp,Qy)[x] are irreducible and concentrated in a single non-middle degree. This implies that
the homology groups H;(X,Q,)[f] are also concentrated in a single degree, though it it not
expected that these representations are irreducible in general. We plan to investigate this in a
future paper.

Acknowledgements. I am deeply grateful to Mitya Boyarchenko for introducing me to this
area of research. I'd also like to thank Stephen DeBacker, Tasho Kaletha, Jake Levinson, David
Speyer, Kam-Fai Tam, and Jared Weinstein for helpful conversations. Finally, I'd like to thank
the referees for numerous helpful comments on both the exposition and the mathematics. This
work was partially supported by NSF grants DMS-0943832 and DMS-1160720.

2. DEFINITIONS

Fix a non-Archimedean local field K with residue field F, and fix a uniformizer 7. Fix an
integer n > 1 and let L be the unramified degree-n extension of K. For any integer k > 1 with
(k,n) =1, we denote by D := Dy, the rank-n division algebra of Hasse invariant k/n over K.
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Fix an integer [ such that [k = 1 modulo n. Then we may write D = L(II)/(II" — ), where
I-a = ¢!(a)- and p € Gal(L/K) is the arithmetic g-Frobenius, and this specifies an embedding
L — D. The ring of integers (i.e. the unique maximal order) of D is Op = O (II) /(1" — 7),
where Oy, is the ring of integers of L. We write U} := OF and U}, := OF, and for h € Z~, we
write Uf =1 +P£’ and Ug =1 —i—Pg, where P, ;=7 -0, and Pp :=11- Op.

From now until Section 7, we assume that K has positive characteristic. In Section 2.1, we
construct a ring scheme Ry, j 4 over Fp, with the property that Ry, i q(Fgn) is a quotient of Op.
We then focus our attention on a unipotent group scheme U ;Ll,g - R;kn q with the property that

Ul (Fgn) = U})/Ug(h_l)ﬂ. In Section 2.2, we define a Fyn-subscheme X; C U} endowed with
commuting actions of H(Fgn) and U} (Fqn). These actions are described in Section 2.3.

2.1. The unipotent group scheme U,"/.

Definition 2.1. If A is an [F,-algebra, let A(7) be the twisted polynomial ring with the commu-
tation relation 7 - a = a? - 7, and define

Ripng(A) = Alr)/(r""=DH),

The functor A — Ry, i nq(A) defines a ring scheme representable by An(h—1)+1

over [F,. We write
Rhikng(A) = {ao +a17 + -+ + a1y " 1 q; € A},
and consider the following subgroup schemes of R, , . =

n(h—1) )
Upi(a) = {1+ > e Rikma(4)},

et
H(4) = {1+ X anit" € Ui}

The g-Frobenius ¢ induces a morphism Ry x4 by acting on the coefficients of 7. Note that
H(F,») is commutative since Fgn = (F,)¥", but H is not a commutative group scheme.

Remark 2.2. Note that R, (Fgn) 2Tz x Uy (Fgn) and we have natural isomorphisms
N h—1)+1 , N h—1)+1 ~
Riihma(Far) = OpJUR " Upi(F) 2 UB/UR O, H(E) = ULJUL. (2)

These are induced by the ring isomorphism

n(h—1)+1 n(h—1) ) n(h—1) ) n—1 .
RienqgEqn) = Op/ P ; S oarte Y alll =Y ATV, (2.2)
i=0 i=0 3=0

where we write
Ap:=ap+apm+--+ an(h—l)'ﬂh_17
Aj ::aj+an+j7r+"'+an(h—2)+jﬂ-h_2’ 1§]§n—1

Note that we crucially used that L = Fgn[r]. We remark that h < 2, the morphism in (2.2)
defines an isomorphism of multiplicative monoids even when K has characteristic 0, and therefore
the isomorphisms in (2.1) hold regardless of the characteristic of K.

The center Z (U,? A(Fqn)) of U ZLL A(Fqn) is a subgroup of H(F4») and can be described explicitly:

Z(U,Z’]g(Fqn)) ={1+Y anut™ € HFm) : ap(h—1) € Fgn and ap; € Fyfor 1 <i <h -2} ¢

Definition 2.3. We say that a character x: H(Fyn) = Ui/U}j - @Z is primitive if its restriction
to UM~ /UP = Fn has trivial Gal(Fgn /F,)-stabilizer.
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2.2. The varieties Xj,.

Definition 2.4. For any Fj-algebra A, let Mj,(A) denote the ring of all n x n matrices (b;;)7;_;
with b; € A[r]/(7"), b; € A[x]/(z"1) for i < j, and b;; € wA[x]/(7") for i > j. The
determinant can be viewed as a multiplicative map det: My (A) — A[x]/(z").

For any integer m, let [m] denote the unique integer with 1 < [m] < n such that m = [m)
modulo n. Let A be any Fj,-algebra. The g-Frobenius morphism ¢ on A induces a ring
endomorphism on A[r]/(7™) given by 2?51 a;m Z?;Bl ¢(a;)" for any positive integer m.
Consider the injective morphism of sets

thk: Rikng(A) = Mp(A)

given by defining ¢y, 1, (3 a;7") to be

AO Al A2 .. An—l
mol (Ap_1) l1(Ao) pll(Ar) T pll(An_2)
TPl (An_a)  wePl(An1)  oP(A) Pl Ap) (2.3)
mpl=DI(A)  7pl(=DI(4,) . mpl=DI(A, 1) (=Dl Ay)
where we write
Ag=ag+apm+ -+ an(h,l)whfl,
Aj=a;+ npym+ - apoym %, j=1,...,n—1 (2.4)

Although ¢, ;, does not preserve the ring structure, it does satisfy a weak multiplicative property
that we explicate in Section 2.3.

In Section 7.1, we describe how to extend the results of [B12, Sections 4.2, 4.3] to division
algebras of arbitrary invariant. In particular, we show that the Deligne-Lusztig construction X
described in [L79] can be identified with a certain set X which can be realized as the F,-points
of an ind-pro-scheme

X = hén)?}gm)
h

)

me

Z
where each X }(lm) is a finite-type Fj,-scheme and X }(Lm) = }(lo) for all m € Z. By Lemma 7.3, for
any IF,-algebra A,

)N(,(lo) (A) = {un (X ait’) s a; € A, det(tp k(X ait?)) is fixed by ¢} =: X;©A).
Definition 2.5. For any IF,-algebra A, define
Xn(A) = Up(A) N 1 (X0 (4)).
Remark 2.6. Observe that X }’L(O) is a disjoint union of ¢"* — 1 copies of Xj,. %
2.3. Group actions. We first prove the following lemma.

Lemma 2.7. Let A be an Fyn-algebra. The map 1, has the following weak multiplicativity
property:

thk(xy) = thk(2)h i (Y) for all x € UZ’,Z(A) and all y € U}Z’,Z(Fqn). (2.5)

Moreover, fory € U L(Fqn), the determinant of vy x(y) is fized by .
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Proof. Observe from Equation (2.3) that

k(3 i) = tp g (Ao) + thp(A1)w + -+ + tp (A1) L, (2.6)
where we write w = (2 1"0—1 ) and
L +ap ™+ 4 an(h_l)T”(hfl) if 7 =0,
aj + Qpy "+ an(h_2)+j7"(h_2) if 3 > 0.

Note that > a;78 = Ag + Ay7 + -+ A,_17"" L. For any a € H(A), we have
@ - uhi(a) = diag(e(a), ..., ol V(a),a) - w,

2 k(‘pm (CL)) = dlag( g (a)7 SRR @[(n_l)l] ((Z), (pn(a))’
and therefore we see that if a € H(Fy»), then

@ - (@) = i p(@(a)) - .
This proves Equation (2.5). Using Equation (2.6) together with the observation that under the
isomorphism H(Fyn) = U} /U, we have det(ty4(a)) = Nmy, g (a) for a € H(F4n). The second
assertion of the lemma follows. 0

It follows from Lemma 2.7 that after base-changing to Fy», the variety X} is stable under
right-multiplication by U}/ (Fgn). For this reason, from now on, we consider X}, as a variety over
F,». We denote by z - g the action of g € UZf(Fqn) on r € Xp.

The conjugation action of ¢ € Fj. on U/ (A) stabilizes Xj,(A). This extends the right
U}Zf(lﬁ‘qn)—action on Xj, to an action of the semidirect product Fy x U,Z’,?(]Fqn) = R;,k,n,q(Fqn)'

We now describe a left action of H(F4n) on Xj;. We can identify H(Fgn) with the set
thk(H(Fgn)). Note that by the weak multiplicativity property, the map ¢ is a group homomor-
phism on H(FFgn), and since ¢, i, is injective, we have H(Fyn) = ¢, 1, (H (Fgn)) as groups. Explicitly,
this isomorphism is given by

51 ' ] 3 n .
=1

Observe that we may remove the brackets in the exponent since ¢™(Ap) = Ap. From Equation
(2.6), it is clear that the left-multiplication action of ¢p, 1, (H (Fgn)) on M}, (A) stabilizes ¢y, (X3 (A)),
and we therefore obtain an action? of g € H(Fyn) = Ulju f on x € Xy, which we denote by g * z.
The actions of H(Fy») and Rif,k,n,q(Fqn) commute.

3. GENERAL PRINCIPLES: SOME ALGEBRAIC GEOMETRY

In this section, we prove some general algebro-geometric results that will allow us to compute
certain cohomology groups via an inductive argument. We generalize the techniques of [B12]
from G, to the group scheme H C U, ,?,3 defined in Section 2.1.

We begin by recalling some results of [B12, Section 2.2]. Let G be an algebraic group over
[Fgn, suppose that Y C G is a (locally closed) subvariety defined over Fyn, and set X = L;nl (Y),
where Lgn: G — G is the Lang map g — Fryn(g)g~!. Let Gy C G be any connected subgroup

defined over Fyn and let n: Go(Fyn) — @, be a homomorphism. Write V= IndG(() F, Z)(n)
2Warning: This is not the same as the action induced by left-multiplication of H(Fyn) C H(A) on Uy (A).
For example, if £ = ty,k(T0,...,Tn—1) € Xn(F,) and xo ¢ Fyn, then for g := 1+ an 7'" € H(Fgn

) has the property
that g x © = tp k(o + anzom, . ..) but left-multiplication gives g -z = tp x(zo + anxo ‘m,..) € Upi Fy).
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Consider the right-multiplication action of G¢(Fs») on G and form the quotient @ :=
G/(Go(Fg4n)). The Lang map Lgn: G — G is invariant under right multiplication by Go(Fg») and
thus it factors through a morphism «: ¢ — G. On the other hand, the quotient map G — @ is
a right Go(Fgn)-torsor, so the character 1 yields a Q,-local system &, of rank 1 on Q.

Lemma 3.1 ([B12, Lemma 2.1]). There is a natural Frgn -equivariant vector-space isomorphism
Homer,) (Vo Ho(X, Q) = Hi(o N (Y),Eyla-13y)  for all i > 0.

As in [B12], we now make two further assumptions under which the right-hand side of the
isomorphism in Lemma 3.1 can be described much more explicitly. This will allow us to calculate
certain cohomology groups via an inductive argument. These two assumptions are:

1. The quotient morphism G — G /Gy admits a section s: G/Gy — G.
2. There is an algebraic group morphism f: Gy — H defined over Fy» such that n = x o f
for a character x: H(Fgn) — Q,.
Let £, be the local system on H defined by x via the Lang map Lg»: H — H. The following
lemma is proved in [B12].

Lemma 3.2 ([B12, Lemma 2.2]). There is an isomorphism y: (G/Go) x Go — Q such that
v*Ey = (f opry)*Ly and a0y = 8, where pry: (G/Go) x Go — Gy is the second projection and
B: (G/Go) x Gy — G is given by B(x, h) = s(Frgn(z)) - h-s(z)~L.

Combining Lemmas 3.1 and 3.2, we obtain the following proposition.

Proposition 3.3 ([B12, Proposition 2.3]). Assume that we are given the following data:

an algebraic group G with a connected subgroup Go C G defined over Fyn ;

a section s: G/Gy — G of the quotient morphism G — G/Gq;

an algebraic group homomorphism f: Gog — H;

a character x: H(F ) — @Z ;

a locally closed subvariety Y C G.

Set X = L;nl(Y), where Lgn is the Lang map g — Frgn(g)g™" on G. Then for each i > 0, we
have a Fryn-compatible vector space isomorphism

G(Fgn i Y ~ 71/ a— *
Homg p,n) (Indcé(ﬁqz)(XO f), Ho(X, Qz)) =~ H{(B7HY), P*Ly).

Here, L, is the local system on H corresponding to x, the morphism B: (G/Gy) x Go — G is
given by B(z,h) = s(Frgn(z)) - h-s(z)™1, and the morphism P: 371(Y) — H is the composition
BLY) < (G/Go) x Go 25 Gy 5 H.

Our goal now is to prove the following crucial proposition. This is the proposition that gives
us an inductive technique for calculating the cohomology groups appearing in Section 6.

Proposition 3.4. Let q be a power of p and let n € N. Let So be a scheme of finite type over
Fgn, put S = So x G, and suppose that a morphism P: S — H has the form

P(a,y) = g(f (@)™ y*" — f(@)"y"") - Pa(a)
where
J1,--+,74 are non-negative integers,
J1— J2 = jz — ja and jo — ja is not divisible by n,
f: 82 = Gq, Py: So — H are two morphisms defined over Fyn, and
g: G, — H is the morphism z +— 1 + zr™(h=1),
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Let S3 C Sy be the subscheme defined by f =0 and let P3 = Pa|g,: S3 — H. If x: H(Fgn) — @Z
is primitive, then for all i € 7,

H{(S, P*Ly) 2= Hi™*(S5, Ps L) (1)

as vector spaces equipped with an action of Frgn, where the Tate twist (—1) means that the action
of Frygn on Hi=2(S3, P L) is multiplied by q".

Proof. Let pr: S = Sy x G, — S92 be the first projection, let ¢: S35 — S be the inclusion map,
and let : S — H be the morphism (x,y) — g(no(z,y)), where n9: S — G, is the morphism
(z,y) — f(x)T 99 — f(x)?®y?"*. We then have the following commutative diagram, where (x)
is a Cartesian square

5 70 Ga
2 L
S3x Gy —— Sox Gy —— H (=)
pr (*) pr HxH -3 H
L Py /(1»—)
V(f) ——= S5 Sa H

The sheaf £, is a multiplicative local system on H, and hence
P*L, = (' Ly) @ pr(P5 L),
Thus, by the projection formula,
Rpr|(P*Ly) = P3Ly® Rpry(n*Ly)  in DY(S2, Q).
We now claim that
Rpry(n*Ly) = u(@)[-2](=1)  in DY(S2,Qy),

where Q, denotes the constant local system of rank 1 on Sy. It is clear that once we have
established this, the desired conclusion follows. We therefore spend the rest of the proof proving
this.

The restriction of 1 to pr=1(S3) C S, is constant, so the restriction of the pullback 7*L, to
pr—1(S3) is a constant local system of rank 1. Thus, by proper base change with respect to the
Cartesian square (), we have the following isomorphisms in D2(S2, Q,):

VRpry(n*Ly) = Rpr(¥n*Ly) = Rpry(Qy) = Q[-2](—1).

To complete the proof, we need to show that R pr (n*L,) vanishes outside S3 C Ss. Let 1 denote
the restriction of x to g(Gq)(Fgn) = Go(Fgn) and let £y, denote the corresponding Artin—Schreier
sheaf on G,. Since n = g oy,

1Ly = 1oLy
We now calculate the stalk of Rpr (n3Ly) for any x € Sa(F,) \ S3(F,). By proper base change,
R pry(15Ly)e = Hi(Ga, £7Ly),

where f,: G, — G, is given by y — f (:c)qj1 th —f (:zs)qj3 yqj4. Fix an auxiliary nontrivial additive
character v¢g: F, — @Z , and for any z € Fp, define

L, :=m_Ly,, where m,: G, — G, is the map = — zz,
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where Ly, is the Artin—Schreier sheaf on G, corresponding to 9. Then there exists a unique
z € Fyn such that Ly = L., and since ¢ has nontrivial Gal(Fg» /IF;)-stabilizer by assumption, so
must z. By [B12, Corollary 6.5], we have f7Ly = L+, where

fa(z) = f(x)qh/qj2 S f(x)qj3/qj4zl/‘1j4 _ f(m)qum (qujg _ qum)‘

But 27 72 — 27 ™ # 0 since by assumption z # 0 and j3 — js is not divisible by n. Thus f7 L, is
a nontrivial local system on G, and by [B10, Lemma 9.4], H:(G,, fiLy) =0 for alli > 0. O

Proposition 3.5. Let j1,...,74, f, 9,95, P2, 52,53, P3 be as in Proposition 3.4 and suppose that
P: S =Sy xA' = H has the form

P(x,y) = g(f(2)"y"" = @)y +ale,y)” - alw,y)) - Pa(x)
for some morphism o: S — G, defined over Fon. If x: H(Fgn) — @Z is primitive, then for all i,
HtZZ(Sa P*‘CX) = H(Z:_2(S3a Pgﬁx)(—l)

as vector spaces equipped with an action of Frgn, where the Tate twist (—1) means that the action
of Frgn on H™2(S3, P} L) is multiplied by q".

Proof. Let P'(z,y) = g(f ()7 y?* — f(z)7°y?*)- Py(x). Then P*L, and (P")*L, are isomorphic
since the pullback of L, |yg,) by the map 1 + (=1 s 1 4 20" 77(h=1) g trivial. Then by
Proposition 3.4, the desired conclusion holds. O

The following proposition is extremely useful in the context of applying the inductive argument
described by the above propositions. We will use it in several of the technical lemmas in Section
5 and in the proof of the main proposition and theorem of Section 6.

Proposition 3.6. Suppose that S < R is a finite map of polynomial rings over k = F,. Assume
that Frac R is finite Galois over Frac S with Galois group G a p-group. Then:

(a) R is stable under G and R = S.
(b) As multiplicative monoids, (R~ {0})/k*)% = (S~ {0})/k*.
(c) If (f) C R is an ideal such that (of) = (f) for all o € G, then f € S.

Proof. First observe that since S and R are polynomial rings, they are normal and therefore
integrally closed. Since S < R is a finite map, R is the integral closure of S in Frac R. Thus R
is G-stable. It is clear that S ¢ R® and that RC is integral over S. But since S is integrally
closed, we necessarily have S = R®. This proves (a).

To see (b), consider the short exact sequence

1 — k™ — Frac R* — FracR*/k* — 1
and take G-invariants to get a long exact sequence
1 — k* — FracS™ — (FracRX/k:X)G — HY G, k*) — -

Since G acts trivially on kX, we have H!(G,k*) = Hom(G, k*), which is trivial since G is a
p-group. Thus (Frac R* /k*)¢ = Frac $* /k* and ((R~ {0})/EX) = (S ~ {0})/k*.

Now we prove (c). If f =0, then we are done, so for the rest of the proof we may assume
f # 0. Necessarily o f = f up to a unit in R, and thus their images in the quotient (R~ {0})/k*
are equal. Thus the image of f is in ((R~ {0})/kX)¢ = (S~ {0})/k*, and so f € S. O
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4. REPRESENTATIONS OF U, (Fyn)

Let T denote the set of all primitive characters of H(F,») and let G be the set of irreducible
representations of U, (Fgn) whose central character has trivial Gal(L/K)-stabilizer.

In this section, we show that G can be parametrized by 7 and explicitly describe such a
parametrization. There are two main cases of behavior, depending on the parameters n and h.

Definition 4.1. Given a pair of positive integers (n, h), we say that:
e (n,h)isin Case 1 if (n —1)(h — 1) is even.
e (n,h)isin Case 2 if (n —1)(h — 1) is odd.
Consider the subset of Z given by
A’::{m:1gz’gh—1}u{¢:nm,@m«z(h—n}. (4.1)

and define a subgroup scheme H' of U;Z 7 by setting

H'(A) = {1 + Y aitt € U;:}Z(A)} for any Fyn-algebra A.
i€ A ’

We now specialize to the setting where A = Fyn. If (n,h) is in Case 1, set HT (Fyn) := H'(Fyn),

and if (n, h) is in Case 2, define

HY (Fgn) = {1 + (1) + ZA a;7" € Uyl (Fgn) : angn-1)/2 € Fq"“} '
e A’

Notice that

[H+(]Fq") : H/(Fq”)] =

{1 if (n,h) is in Case 1, (4.2)

¢"/? if (n,h) is in Case 2,
Upi Fgn) : HY (Fgn)] = ¢ D0=D/2, (4.3)
One can think of H'(Fyn) and H'(F4n) as enlargements of H(F,n) by the “deeper half” of

n,

U, ,:L " (Fgn). We will also need the analogous enlargements of Z(U h’lg(}Fqn))l

n(h—1) ) h—1 )
H)(Fpn) = {1 + Z:l a;7" € H'(Fgn) : 1 + z:l an; 7" € Z(Uﬁf(lﬁ‘qn))} ,
i= i=
n(h—1) ) h—1 . n
Hf(Fgn) =<1+ Z:l ;7" € Ht (Fgn) : 1+ Zl ani T € Z(Up il (Fqn)) ¢ -
1= 1=

These subgroups of U,"!(F4n) fit into the picture

H(Fpn) —— H'(Fpn) < H(Fyn)
I T i)
Z(U;:,’Ig(Fq”)) — Hy(Fgn) — Hy (Fqn)

For x € T, define an extension x* of x to H’ (Fqn) by setting

v <1+ > aﬂ'i> =x |1+ art ).
iEA! nli

Fix any extension X of x* to H*(F ). Note that in Case 1, necessarily ¥ = x*. In Case 2, there

are ¢"/? choices of X.
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Lemma 4.2. If p € G has central character w and w has trivial Gal(L/K)-stabilizer, then the
restriction of p to H)(Fgn) contains the character

wh: Hy(F ) — Q) 1+ Y art—w|l1+Y a7 .
i€ A’ nli

Furthermore, the restriction of p to HJ(IF'qn) contains every extension of wt to HS_(Fqn).

Proof. First let 1 be the restriction of w to {14 ar™"=1V :q € Fyn} = Fyn and observe that the
assumption on the stabilizer of w implies that ¢ has trivial Gal(F, /F,)-stabilizer.

We will first show that if the restriction of p to H}(F,n) contains w®, then the restriction of p
to Hy (Fyn) contains every extension of w to Hy (F,n). This assertion is trivial if we are in Case
1 since H{(Fgn) = Hy (Fyn), so let us assume we are in Case 2.

Let v :=n(h—1)/2. Let @ be any extension of w¥ to Hy (F,n). To prove that p|H0+ (F, ) CONtains
w, it is enough to prove that the orbit of w under U ,? 2 (Fgn)-conjugacy contains every extension
of w* to Hy (Fyn). Indeed, for any b € Fyn, consider the element g := 1+ br” € Uy (Fgn). Then
writing h =1+ at” + Y,c 4 a;7" € Hy (Fgn), we have

@(ghg™") = Q((l +bm)(1 +at” + 3 a;im)(1 — btV + bql”JrlTn(hfl)))

i€ A’
= (7.)(1 +at’ 4+ (baqlu - abqw)T"(h_l) + > ai7i>
ie A/
= @(1 +at’ 4+ > aiﬂ) .q/;(baqlu B abql”).

ic A’
Note that for any m not divisible by n, since 1 has trivial Gal(F,» /F,)-stabilizer,

#{wb: Fpn — @Z such that b € Fqn} =q", where ¥y (a) 1= w(baqnim — aqu). (4.4)

n—m

Indeed, if b # 0 and ¥ (ba?" " —ab?™) =1 for all a € Fyn, then it follows that 1(z) = ¥(z9") for
all € Fyn, which contradicts the assumption on the Gal(Fy» /F,)-stabilizer of ¢). By assumption,
a€Fneandlv= n/2 modulo n. Since every character of Fn/2 extends to a character of Fgn,
then by (4.4) in the special case m = n/2, it follows that

#{¢b: F,.2 — Q; such that b € Fqn} — "2, where ¥(a) == v(a(b — b7"%)).
Thus the orbit of w under U, ,:” (Fn)-conjugacy contains every extension of w¥ to Hy (Fgn).
It now remains to show that the restriction of p to Hj(F,n) contains w®. Define
I'={i:nh-1)/2<i<n(h—1),nti}
r1 := max([), ric=max(I ~ {ri,...,mi-1}), for 2 < i < #I.
We prove the lemma by extending w to each step of the chain
Z(Upi(Fgn)) CG1 C G2 C -+ C Gy = Hy(Fyn),

where

Gy = {1 F a4 Y ap i € H(’)(Iﬁ‘qn)}, for 1 < do < #1.

1’L|i i>dg
Consider the following extension of w to Gy:

wr: Gq —)@[X, 1+Y a;i + ap, 71 »—)w(l—{—Zan’).
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For any b € Eqn, consider the element g, := 1 4 br(h=1-—"1 ¢ U,Z’,?(]Fqn). Then for any
g:=14+> a;7" +at™ € Gy,

wH(g1997") = (1 + a4 (bad T pe™ )w(ml’)

=w(1+Yar) ¢(bat™™ —ab?™).
(12 0r) o )

Since ¢ has trivial Gal(Fg» /F,)-stabilizer and Ir; is not divisible by n, it follows from Equation
(4.4) that the orbit of w; under the conjugation action of U, (F4n) contains every extension of
w to G1, and so the restriction of p to G; must contain w1.7 Applying the above argument to
each Gy, inductively proves that the restriction of p to H)(Fsn) contains wf. O

Theorem 4.3. For any x € T, the representation

U™ (Fon) ,
Px = IndH}f;k(Fqi) (X)

is irreducible with dimension ¢""~V"=1/2 Moreover, G = {py : x € T}.

Proof. The dimension follows from Equation (4.3). To prove irreducibility, we use Mackey’s
criterion. First note that it is clear that H'(F,n) centralizes x* and H*(Fy) centralizes . We
must show that these are exactly the centralizers of these characters.

Let ¢ be an integer such that n{¢ and ¢ < n(h —1)/2. Then for any a,b € Fgn,

(b (1 4+ ar" B0 (1 4 br) )
= X((U+ b1+ a1 = brt )7
=% (1 + a0 4 (pat” — ab‘I”"(h’”’“)r"(h—l))
= 5(’(1 + aT”(hfl)fi) . ¢(baqli - abq_“). (4.5)

If i <n(h —1)/2, then since li is not divisible by n and v has trivial Gal(Fy» /F,)-stabilizer, it
follows from (4.5) that if b # 0, then 1+ br® does not centralize . Now assume we are in Case 2
and that i =n(h —1)/2. If b € Fgn \NFn/2 and a € F /2, then (4.5) simplifies to

(1 +ar') - w(a(b b)) = X(1 -+ ar) - b (alb— b)),

Every character of I /2 has exactly ¢"/? extensions to Fyn, and since v has trivial Gal(Fg» /F,)-

stabilizer, it follows that ¢ (a(b — bqn/2)) = 1for all a € Fn/2 if and only if b € F /2. Hence
1 4 br? does not centralize ¥ and this completes the proof. O

5. JUGGLING SEQUENCES AND THE VARIETIES X},

We give a description of X}, in terms of juggling sequences that will be crucial in understanding
the cohomology groups H%(X},Q,). In this section, we also include some technical lemmas that
will be used in the proof of Theorem 6.4. As usual, for any integer m, let [m] be the unique
integer with 1 < [m] < n such that m = [m] modulo n.
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5.1. Juggling sequences. We recall the combinatorial notion of a juggling sequence [BEGW].

Definition 5.1. A juggling sequence of period n is a sequence (j1, . .., j,) of nonnegative integers
satisfying the following condition:

The integers i + j; are all distinct modulo n.
n
For a juggling sequence j = (ji,...,Jn), define |j| :== > ji.
i=1

The following lemmas are straightforward.

Lemma 5.2 (Properties of juggling sequences). Let j = (j1,...,jn) be a juggling sequence.
(a) There exists a unique permutation oj € Sy, such that
(Jis--dn) = (0;(1) = 1,...,04(n) —n) mod n.
(b) Let ¢ = (12---n) € S, and define ¢ - j := (jeq1),--->Jen))- Then ocj = cloje. In
particular, the map j — sgno; is invariant under the action of the subgroup (c¢) C Sp.
Lemma 5.3. Let m > 1 be an integer, let j be a juggling sequence of period n with |j| = mn,
and let e; € Z™ denote the n-tuple with a 1 in the ith coordinate and 0’s elsewhere.

(a) If j has a coordinate labelled mn, then j = (mn) - ey up to the action of {(c).
(b) Let r < mn be a positive integer with n{r. If j consists of coordinates labelled only by 0,
7, and mn —r, then j =r-e1+ (mn —71) - e41 up to the action of (c).

5.2. The varieties X},. We coordinatize U} = A™"~1) in the following way. Let

A:={0,1,...,n(h—1)}. (5.1)
Then every element of U ;LL ’IZ is of the form )’ x;7%, where we set xo 1= 1.
' icA

Lemma 5.4. The scheme Xp, C U,"! is defined by the vanishing of the polynomials

) [ g2 [(n=1)1] n
Imn ‘= Z(_l)SgH(UJ):B?l $?2 e x;l,n_l (':U;In — x]n)? 1 S m S h — 1’
J
where xo := 1 and the sum ranges over juggling sequences j = (j1,...,Jn) € A" with |j| =

Proof. Let A = 1, ,(> xi7%) (see Equation (2.3)) and let A, ; denote the (r,s)th entry of A.
Then if we set x; = 0 for i ¢ A,
gltr+k=1)1-1

i
ni+s—r .

Ar,s =
iE€EZ
For 1 <m < h —1, let ¢, denote the coefficient of 7™ in

det A = Z (—1)%ne ﬁ Ar,o(r)'
r=1

O'GSn
Then
(r+k 11—
_ g
Cm = Z S e Z H mr+a(r —r
€Sy [i|=m r=1
where i = (i1,...,i,) € Z%. Then setting jr := ni, + o(r) — r defines a juggling sequence

n n
l7] = er :Zm}—l—a(r) —7r=mn.
r=1 r=1
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It is clear that every juggling sequence j € A" arises in this way, and we therefore have
. [ [(n=1)1]
Cm = Z(_l)sgnaj$jlm?2 x?ﬂ ! ,
J
where the sum ranges over juggling sequences j € A" with |j| = mn.
Recall that X}, is defined by the equations c¢f,—¢;, for 1 <m < h—1. Let ¢ = (12---n) € S,, and
let j be any juggling sequence with |j| = mn. By Lemma 5.2, ¢*- j is a juggling sequence such that

|c-j| = mn and sgn(o.x. ;) = sgn(o). Moreover, j' := (ji,...,j) == " j = (1) dps2]s - - )
has the property that

1 gl21 [(n=1)1] n gl g2 [(n=1)1]
gt a® q_ 4" 4" a* _q
(@hg, @gy ooy, ) =T E T T

Thus we may arrange the monomials in ¢}, — ¢, so that we obtain:

. gl gl21 [(n=1)1] n

q — __1\s8noj .9 q .4 q _ .
Cm Cm - Z( 1) ijl ij mjn,1 (x]n x]n)‘ D
J
Corollary 5.5. X}, is smooth integral affine scheme of pure dimension (n — 1)(h — 1) over ).
Proof. By Lemma 5.4, we know that
Xp, = Spec (]Fp[x(]a T1,... 71:71(}1—1)]/(9079717 g2ns - - - ag(h—l)n)) )

where gg := 1 —xg and g,; for 1 <4 < h—1is as in the lemma. Let J = j—i be the corresponding
Jacobian matrix and consider the h x h square submatrix

M = <8gm> .
Ot 0<r,s<h—1

9o _{—1 if s =0,

Obviously

O%ps 0 otherwise.

Since we are working in characteristic p, for any 1 <r < h — 1, we have

OGnr s W 20 ((n—1)1]
- _ _1)sen(oj) a0 g
6:(:,- Z( 1) le :sz mjnq )

J
where the sum ranges over juggling sequences j = (j1, ..., jn) € A" such that |j| = nr and j, = i.
It follows that if h — 1> s > r > 1, then

OGnr . -1 ifs=r,
Orns |0 if s >7r.

This implies that M is lower-triangular with —1 along the diagonal and hence is invertible at
every point in Xp,. It follows then that X}, has dimension n(h —1)+1—-h=(n—-1)(h—1). O

5.3. Technical lemmas. This section contains technical lemmas that will be used in the proof
of Theorem 6.4. We recommend the reader to return to this section during or after Section 6.

Recall the definitions of A and A’ from Equations (5.1) and (4.1). The first two lemmas are
straightforward computations.

Lemma 5.6. For any elements

s(z):= Y a7t and  y:=1+ Y y7!
IEANA ie A/
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in Uyl (Fy), we have s(z) -y = Y a;7" where

icA
y
i + > xjyiq_jj ifie ANA,
j=i (mod n)
_ 1<j<i
a; = g o ,
Yi + Z LilYi—j ZfZ c A
JjEAA
1<j5<1
Lemma 5.7. Suppose 1 + > x;7" = Lgn (14 Y ,c 4 viT") € H'(Fy). Then
e A’

x; = y?” —¥i + 0,

where ; is some polynomial in y; for j <.
Lemma 5.8. Let s(z):= Y. x;7' € UL and for any integer m with 1 <m < h—1, let gmn

1EANA! ’
be as in Lemma 5.4. Suppose that for any y,y' € H' with Lgn(y) = Lgn (Y'),

gmn(s(x) y) =0 <= gma(s(z) y')=0.
IfLyn(y) =1+ > e x; 7, then gmn(s(x) - y) is a polynomial in x; for i € A with i < mn.
This is a corollary of Proposition 3.6.

Proof. For i € A, let x; be the polynomials determined by Lgn (1 + Z/ yit!) =1+ Z, x;7%. For
i€ AN A, define y; := x;. Consider the rings A e
R=F,lyi:i€ A DS =Fyz;:i€ A
and their fraction fields
E=FracR=F,(y;:i € A) D F =FracS =Fy(z; : i € A).
It is clear that S < R is a finite map of polynomial rings.

We now show that E/F is a Galois extension of degree ¢"#A'. For every ( =1+ D Grtoe
H'(Fg4n), the assignment

vi = Y for i € A, where y¢ =1+ Z yirt
ic A/

defines an automorphism of E fixing F. Indeed, Ly (y¢) = Fryn(yC) - (y¢)™! = Lyn(y) since
¢ € H'(Fpn) = H'(F,)™ . On the other hand, [E : F] = ¢"#4 since by Lemma 5.7, each y; for
i € A’ satisfies a separable degree-¢™ polynomial. It follows that # Aut(E/F) > |H'(Fgn)| =
¢"#A = [F : F], and so E/F is Galois.

We are now in a position to apply Proposition 3.6. Fix 1 < m < h—1. For each 0 € Gal(E/F),

o (gmn(5(z) - y)) = gmn(s(z) - ¢/),  for some y' € H' with Lgn () = Lgn (y).

Hence by assumption, we know that for each o € Gal(E/F),

gmn(s(x) - y) =0 <= o(gmn(s(z) y)) =0.
By the Nullstellensatz, this implies that the ideal generated by gmn(s(z) - y) in R is equal to
the ideal generated by o (gmn(s(x) - y)) for all ¢ € Gal(E/F'). Thus by Proposition 3.6, we have
that in fact g, (s(x) - y) € S. Finally, since gmn(s(x) - y) € R is a polynomial in x; and y; for
i < mn by Lemma 5.4, it follows by Lemma 5.7 that gm,(s(x) -y) € S is a polynomial in x; for
1 < mn. U

To prove Proposition 6.1, we will need a more precise result than Lemma 5.8.
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Lemma 5.9. Let s(z),y € U L(F,) be as in Lemma 5.6 and let a = (ag, ay, . . ., ayg,—1)) where
s(z) -y = > ait’. Let Lyn(y) == 1+ Y. ;7" and assume that for any y,y' € H'(F,) with
icA i€ A’

Ly (y) = Lgn (y'), we have gmn(s(x) - y) = 0 if and only if gmn(s(x) -y') = 0.
(a) For any 1 <m < h — 1, the polynomial gmn(a) is a polynomial in x; for 1 <i < mn and
Imn (@) = Ty + (polynomial in x; for i < mn).
(b) Let I :=={i:n(h—1)/2<i<n(h—1),nti} and define
r1 = max(I), ric=max(I ~ {ri,...,mi—1}), for 2 < i < #I.
Pick a positive integer dy < #1 and set

l(n(hfl)f'rdo)fn ql(n(hfl)f'rdo)f?n

n—[lrg.]
ta,(z) == +x ‘0

+ o+ x4
If 2, = x(h_1yp—y, = 0 for 1 < i < dp — 1, then the contribution of Ty, tO Ih—1)n(a)
occurs in the expression

qn qnf[lrdo] q[”‘do]

Lpa(h=1)—rgy L7, = (1) —rgy Trag T (@n(h—1)=ray tdo (Trg )T = Tn(h—1)—ry, tdo (Trg, )-

Proof. We first prove (a). By Lemma 5.4, gmn(a) is a polynomial in a; for ¢ < mn, and by
Lemma 5.6, Y,y only appears in a; for ¢ > mn. Therefore by Lemma 5.3(a), the contribution of
Ymn 10 gmn(a) must come from the juggling sequence (0,...,0, mn), and hence we have
Gmn (@) = y%  — 4 + (polynomial in z;, y; for i < mn)
= Tmn + (polynomial in z;, y; for i < mn) (by Lemma 5.7)

= Zymn + (polynomial in z; for i < mn) (by Lemma 5.8).

We now prove (b). By Lemma 5.6 and the vanishing assumption, y, do only appears in a;

for i = rq, and ¢ = (h — 1)n. Furthermore, any juggling sequence j = (j1,. .., jn) Wherein y, "
contributes to g(j,_1), nontrivially must have the following criteria:
o jn#0

e For 1 <i <dy— 1, the numbers r; and (h — 1)n — r; do not appear in j.
It therefore follows from Lemma 5.3 that the only terms in g(;_1), involving y, 4, OCCur exactly
in the summands corresponding to the juggling sequences

(h—1)n-e, — 1e€S5,,
Tdy " €n—rrgy + (h=1)n—rqy) - €n — (n—Tgy,n) € Sp,
(h=1)n —ray) - €5y +7dy " €n — (Tdy,m) € Sh.

By Lemma 5.4, this exactly corresponds to the following summands in g, _1),(a):

n ln=rq )] [174,) n
_ _ 4 07 g _ _ 9 9 qt _
(a(hq)n a(h—1)n) Arg, (a(hfl)nfrdo a(h—l)n—mo) A(h—1)n—rq, (a% ry, )-

Thus by Lemma 5.6, we see that the only terms involving .. 4, OCCUr in the expression

I(n(h—1)— I(n(h—1)—
(@ y (0T n v (n(h=1)=rq,)
n(h=1)=ray Yrq, n(h=1)=ray Irq,
n—lirg)) / n [174,] .
_ 1 SR _ _ 40 qr
Yrq, (xn(h—l)—rdo xn(h—l)—mo) T (h—1)—rg, (yrdo yrd0>- (5.2)

By Lemma 5.7, ,, = y?jo — Yrgy T O 4o~ DBy Lemma 5.8, the terms in 9, i will contribute
elsewhere to a polynomial that can be written in terms of z; for i € A with i < r4,. (The
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condition ¢ < rg, can be seen from the proof of Lemma 5.8, proceeds by showing that y; is a
polynomial in z; for j <4.) Thus the contribution of z,, in (5.2) simplifies to

an ql((hfl)nfrdo)Jrn B q7l7[lrd01
n(h—1)—rq, yrdo Td
ql(n(h71)77'd0> q7l7[17‘d0] q[lrdo] o
_ l’n(h—l)—rdo (yrdo - yrdo ) - xn(h—l)—rdo (yrdo - yT'd())

n n—[lrg,] lirg,]
_ " q q" q (O g
= T 1) gy o (Trag) T+ Ty gy T T (h1)=ray tdo (Trag) = Ty (1) -y Trag

where the last equality holds modulo terms without z,, . ]
q y do

6. THE REPRESENTATIONS H?(X})[x]

In this section, we prove the irreducibility of H:(X},Q,)[x] and its vanishing outside a single
degree. The key proposition, which we prove in Section 6.1, is:

Proposition 6.1. For any x € T,
dim Homgma g, ) (P HA( X1, Q) = 6; (1) (h—1)

where p,, € G is the representation described in Theorem 4.3. Moreover, Fryn acts on the
cohomology group Hc(n_l)(h_l)(Xh,@g)[x] via multiplication by (—g™)—1(h=1),

Recall that Fgn x Uy (Fgn) 2 Ry, (Fgn) and that F. acts on Xj, by conjugation. For any

z € IFan and any g,h € H(Fyn), let (2, h, g) denote the map X;, — X, given by x + z(h*x-g)z~1.
We prove the following proposition in Section 6.2.

Proposition 6.2. If ( € F. has trivial Gal(Fn /F,)-stabilizer, then for any g € H(F,n),
q q q q

Te((¢, 1, 9)" H DD (X5, Q) [x]) = (1) D Dx(g).

From the multiplicity-one statement of Proposition 6.1, the nonvanishing statement of Propo-
sition 6.2, and a counting argument coming from Theorem 4.3, one obtains the following two
results, which we prove simultaneously in Section 6.3.

Proposition 6.3. The parametrization
T—9, X F Py
described in Theorem 4.3 is a bijection.
Theorem 6.4. For any x € T, the U}y (Fgn)-representation Hi{(Xp, Qp)[x] is irreducible when
i = (n—1)(h—1) and vanishes otherwise. Moreover, for x,x' € T, we have Hénfl)(hil)(Xh,@g)[X] =
HE VD (00, Qo)) if and only if x = X'-
6.1. Proof of Proposition 6.1. Note that from Section 4, the representation

U (Fgn)
W, = IndH',’(%qnq) (xH)

is irreducible and isomorphic to p, in Case 1, and is a direct sum of ¢
Thus the statement of the proposition is equivalent to:

"2 copies of py in Case 2.

. ; — Oi (n—1)(h— if (n, h) is in Case 1
dim Homgn. W Hi(X,. Q) = 4 Q61 : ,
1m OmUh,lg(]Fq”) ( X c( h Qf)) {qn/Q . 6i,(n—1)(h—1) if (n7 h) is in Case 2.
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We use Proposition 3.3 to reduce the computation of the space HomU}r:,g(Fqn) (WX, Hi(X h,@g))

to a computation of the cohomology of a certain scheme S with coefficients in a certain con-
structible Q-sheaf .%. Then, to compute H.(S,.#), we inductively apply Proposition 3.4. This
will allow us to reduce the computation to a computation involving a 0-dimensional scheme in
Case 1 and a 1-dimensional scheme in Case 2. We will treat these cases simultaneously until the
final step.

Step 0. We first establish some notation. Note the resemblance to the notation in Lemma 5.9.
o Let

I'={i:nh-1)/2<i<n(h—1),nti}
J={i:1<i<n(h-1)/2,nti}

and set d := #I = |[(n—1)(h —1)/2|. Note that AU J ={1,2,...,n(h—1)}.
e Set Ip:=1 and Jy:=J. For 1 <i<d, let

r; = maXIZ-_l, Ii =11\ {T’Z‘}, Jz = Ji—1\ {(h — 1)n — T’i}.

Note that I; = @. In Case 1, J; = &, and in Case 2, J; = {n(h —1)/2}.

e For a finite set A, we will write A[A] to denote the affine space A#4 with coordinates
labelled by A.

e For m € N, we will denote by [m] the unique integer in {1,...,n} with m = [m]| modulo
n, and denote by m the unique integer in {0,...,n — 1} with m = m modulo n.

e For any finite-type scheme S over Fgn, we consider H?(S,Qy) := ;e HL(S,Qy) as a
finite-dimensional graded vector space over Q, equipped with an action of Frgn. We write
Hi(S,Qp)[~1] := HI71(S, Q) and we write H.(S,Q,)(—1), to denote that the action of
Fryn on HX(S,Qy) is multiplied by ¢".

Step 1. We apply Proposition 3.3 to the following set-up:

o U ;Z ! together with the connected subgroup H’, both of which are defined over Fgn

e a morphism s: U)")//H' — Uy defined by identifying U,/ /H' with affine space A[J]

and setting s: (z;)ics — 1+ > ;0 @it

e the algebraic group morphism f: H' — H given by >, 4 2;7" 2on)i z;7!

e a character x: H(Fgn) — Q/

o Y := Lgn(X}), a locally closed subvariety of U satisfying X, = Lt (Ya)
Since X}, has a right-multiplication action of U,Z A(Fqn), the cohomology groups HE(Xp, Q)
inherit a U : ’,g (Fgn)-action. By Proposition 3.3, we have graded vector space isomorphisms

Homgmag, .y (Wy: HE (Xn, Q) = H (B~ (Yh), P*Ly)

compatible with the action of Fry». Here, £, is the local system on H corresponding to x,
the morphism 3: (U} /H') x H' — Uy is given by B(z, g) = s(Frgn(2)) - g - s(x)~!, and the
morphism P: 87(Y;) — H is the composition 8~(Y;) — (U, /H') x H' RNy (R 5§

We now work out an explicit description of 371(Y,) C A[J]x H'. For 1 <m < h—1, let g be
the polynomial defined in Lemma 5.4. Write z = (z;)ics € AlJ] and g = 1+, 4 2i7" € H'(F,).
For any y =1+ Y. 4 it € H'(F,) such that Lgn(y) = g, we have

B(z,9) = Frgn(s(x)) - Lgn(y) - s(2) ™" = Lgn(s(2) - ).
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We see that 5(z,g) € Y}, if and only if s(x) -y € Xj,. Let s(z) -y =1+ > a;7". By Lemma 5.4,
we know that s(x) -y € Xj, if and only if gyn(a) =0 for m =1,...,h — 1. Recall from Lemma
5.8 that using the identity Lgn(y) =1+ >_,c; 27, each polynomial gmn(a), which a priori is a
polynomial in z; for j € J and y; for i € A', is in fact a polynomial in z; for 1 <i < n(h —1).

Step 2. By Lemma 5.9(a), for each m = 1,...,h — 1, the polynomial g,,,(s(z) - y) is of the form
Tpnn + (stuff with z; for i < mn). Thus the coordinates x,,,, of 5~1(Y) C A[A’U.Jy] are uniquely
determined by the other coordinates. Equivalently, the morphism (x;)ic arug, — (Zi)icoug, gives
an isomorphism 871(Y;,) = A[lp U Jo] =: S(©. Then

HE (87} (Ya), PLy) = H2 (S, (PO) L),

where P(©): SO — H is the morphism determined by P and the isomorphism BUY) = 5.
it is the map determined by (z;)icrouto = (Tn, P20 - -+, T(h—1)pn), Where for m =1,... h — 1, we
View Ty, as a polynomial in x; for i € Iy U Jp.

Step 3: Base case. We now apply Proposition 3.4 to the following set-up:
Let S©) = A[Io U Jy].

Let S = A[I, U Jy).

Note that S© = S x A[{r{}].

Let f: Séo) — G4 be the morphism (%;)icr,u0 = Tn(h—1)—r, -

e Set v € Séo) and w = x,,. By Lemma 5.9, we may write
~ (F@t @)™ + f@)ta(w)) - P (),

where g: G, — H is the morphism z — 1 + z7"("~1) Observe that this is the negative
of the expression appearing in Lemma 5.9 since we solved for x(;,_1), in the equation

Jh—1)n(s(z) - y) = 0.
o Let S?()O) = A[I; U Ji] so that this is the subscheme of Séo) = A[I; U Jo] defined by f =0,
and let P:,EO) = PQ(O)\ S?()O) — H.

POw,w) = g ()" w — f(o)"wt "

S
Then by Proposition 3.4, as graded vector spaces with an action of Fry», we have

H (5O, (POY L) = H (S, (PY) Ly)(~1)[-2].

Step 3: Inductive step. We now describe the inductive step for dg < d. We apply Proposition 3.5
to the following set-up:

o Let §(0) .= §4%0~1) — A[1, U Jy).

Let S{%) = A[Iz41 U Jg)-

Note that (@) = Sédo) x Al{ra,}]-

Let f: Sédo) — Gq be the morphism (2;)ier,, 1044 = Tn(h—1)

,,,-do.

Set v € Sgdo) and w = x, . Let t4,(z) be as in Lemma 5.9 so that, by the same lemma,
the morphism P(0) := Pg(do_l): S(d) — H has the following form:

ﬂ%mmng(ﬂm

q[“"do] n—[lrg)

w— f(v)?" w

<ﬂ@%@m“+fwMMwQ-%wa

where as in Step 3: Base case, the morphism ¢g: G, — H is z — 1 + z7(h=1),
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o Let Sédo) = A[l4,+1UJ4,+1] so that this is the subscheme of Sédo) = A[lgy41UJyg,] defined
by f =0, and let P?EdO) = P2(d0)|s(do) : S?(,do) — H.
3

Then by Proposition 3.4, as graded vector spaces with an action of Frgn, we have

H2 (S0 (PUo)y L,y = H2(S%) (PY™)*£,)(—1)[-2].

Step 4: Case 1. Step 3 allows us to reduce the computation about the cohomology of S to a

(d—1)
3

computation about the cohomology of S(@ := S , which is a point. Thus Frg» acts trivially

on the cohomology of S(@ and for all i € Z,

dim H(SD (P@D)*L,) = ..

Step 4: Case 2. Step 3 allows us to reduce the computation about the cohomology of S to a
computation about the cohomology of S(@) := S?(’d_l) = A[{n(h —1)/2}]. The morphism P is

n/2 n n(h—
PO SO H, o anuenyz = L a1 @1y = Gngunony2) 770,

Then we claim that for all i € Z
H{(Ga, (P'V)*Ly) = H{(Ga, P*Ly),
where v is the restriction of x to Fgn — @Z and Py is the morphism
Py: G, — Gy, T an/Z(an —x).

We now compute the cohomology groups H(G,, P*L,) in the same way as in [BW16, Section
6.5.6 and Proposition 6.6.1]. We may write P = fjo fo where fi(z) = 20"~z and fy(z) = 20771,
Since fi is a group homomorphism, then f{Ly = Lyof,. By assumption ¢ has trivial Gal(IFg» /F)-
stabilizer, so ¢ o fi is nontrivial. Furthermore, t o f1 is trivial on F n/2. Thus the character
Yo fi:Fgn — @Z satisfies the hypotheses of [BW16, Proposition 6.6.1], and thus Frg» acts on
H(Gq, Pt Ly) via multiplication by —q"/?

dim H.(Gq, PjLy) = q"? by

and

Thus for all 7 € Z,

dim HY(SD (PD)y*L,) = ¢V/? - 6,

Step 5. We now put together all of the boxed equations. For all ¢ € Z,
Homgag,.y (Wy, He(Xn, Qo)) = H(7' (Ya), P*Ly)
= Hy (5, (PO)L,)
= HI(8y (B L)1)
= H; (5, (PY)" L) (-1)
= 1S, (PYD) L) (~d).
Therefore if we are in Case 1, then

dim Hom prg ) (Wy, HA(Xn, Qp)) = 0(n—1)(h—1).4-

Moreover, the Frobenius Fry» acts on HomU;z,g(Fqn) (WX, Hc(nfl)(hfl) (Xp, @6)) via multiplication

by the scalar ¢~ D(h=1)/2,
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If we are in Case 2, then
dim Homyrae, ) (W Hi(Xn, Qo)) = 072 61y (1)

Moreover, the Frobenius Frgn acts on Homgma g, . (WX, Hc(n—l)(h—l)(Xm @6)) via multiplication
by the scalar —q”(”_l)(h_l)/Q.
Finally, observe that if we are in Case 1, then (n — 1)(h — 1) is even and if we are in Case 2,

then (n —1)(h — 1) is odd, and therefore Fryn acts on Hc("_l)(h_l)(Xh,@e)[x] by multiplication
by (_qn)(n—l)(h—l)‘

6.2. Proof of Proposition 6.2. By Corollary 5.5, X}, is a separated, finite-type scheme over F»
and the action of (¢, h,g) € Fgn x H(Fgn) x U;i W (Fqn) on X, defines a finite-order automorphism.
Moreover, (¢, h,g) = (1,h,g) - (¢,1,1), where (1,h,g) is a p-power-order automorphism and
(¢,1,1) is an automorphism with prime-to-p order. By the Deligne-Lusztig fixed point formula
[DL76, Theorem 3.2],

> (1) Te((C, s g)s HA(Xn, Qo) = D (=1) Tr((L hy 9)"s HUXG, Q0)).
i i
It is easy to calculate X,S. Indeed, it can be identified with the subvariety of all elements of U,
of the form 1 + El <i<h-1 an;T™. Then the determinant condition on X}, implies that a,; € Fyn

and hence X,f is just a discrete set naturally identified with H(F4») and the left and right actions
of H(F,n) are given by left and right multiplication. Therefore H(X 2,@0 =0 for ¢ > 0 so

i
Furthermore, as a (H(F4n) x H(F4n))-representation, HO(X g,@z) is the pullback of the regular
representation of H(Fg») along the multiplication map H(Fgn) x H(Fgn) — H(F4n). Thus
HY(X;, Q) = . X0 ® Xo
X0 : .FI(]Fqn)—)@Z<
as representations of H(Fgn) x H(Fgn). Therefore
Yo x(M) Y (Y TG by g) Ho(Xn, Q1)) = x(9) - #H (Fgn).
hEH(]Fqn) 7

This is equivalent to
D (=11, 9)5 He(Xn, Qo)) = x(9),

and since H(Xp,, Qg)[x] =0 for i # (n — 1)(h — 1) by Proposition 6.1, the desired result follows.

6.3. Proof of Proposition 6.3 and Theorem 6.4. By Proposition 6.1, any p € G occurs
exactly once in Hc(n_l)(h_l)(X 1, Q). Recalling that G is the set of irreducible representations
of U}"(Fgn) whose central character has trivial Gal(L/K)-stabilizer, observe that p must oc-

cur in Hc(n_l)(h_l)(Xh,@g)[X] for some x € T. Conversely, each irreducible constituent of

Hc(nfl)(hfl)(Xh,@z)[X] must be in G, and therefore

B =@ a0 (X, T .

peG x€T
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By Theorem 4.3, the left-hand side has at most #7 irreducible constituents. By Proposition 6.2,
each H"™V (h_l)(Xh’@g)[X] for x € T is nonzero, and therefore the right-hand side has at least
#7T irreducible constituents. Therefore both sides must have exactly #7 irreducible constituents,
#G = #7T, and the U;Z};](Fqn)—representations Hc(n_l)(h_l)(Xh,@g)[x] for x € T are irreducible
and mutually nonisomorphic. This proves Proposition 6.3 and Theorem 6.4.

7. DIVISION ALGEBRAS AND JACQUET-LANGLANDS TRANSFERS

Our goal in this final section is to understand two connections. The first, explained in Section
7.1, is to unravel the relationship between Theorem 6.4 and the representations arising from
Deligne—Lusztig constructions of division algebras. Because Theorem 6.4 proves a conjecture of
Boyarchenko (see [B12, Conjecture 5.18]) for primitive characters x, we can use [B12, Proposition
5.19] to explicitly describe this relationship.

The second connection, explained in Section 7.2, is to unravel the relationship between
the representations described in Section 7.1 with respect to the local Langlands and Jacquet—
Langlands correspondences. We prove that the correspondence 6 — Hq(X)[f] is consistent with
the correspondence given by the composition of the local Langlands and Jacquet—Langlands
correspondences, and therefore the homology of Deligne-Lusztig constructions gives a geometric
realization of the Jacquet-Langlands correspondence between division algebras of different
invariants.

7.1. Deligne—Lusztig constructions for division algebras. We temporarily drop the as-

sumption on the characteristic of K as the following discussion is not restricted to the positive

characteristic setting. Let K™ be the completion of the maximal unramified extension of K and

let ¢ denote the Frobenius automorphism of K™ (inducing z — 27 on the residue field).
Consider the following automorphisms of GLn(IA( oy

_ 0 1,-
Fig) = w5 "plo). m= (o 5.

_ 0 1,—
Fig) = = ()", == (0 )

Here, we write ¢(g) to mean the matrix obtained by applying ¢ to each entry of g. For i = 1,2,
let G; be the algebraic group over K with Frobenius F;. Let T; C G; be the algebraic group
corresponding to the diagonal matrices over K™. Then we have

Gi(K) = Go(K),  Ti(K)—> To(K),
where the isomorphism is given by f: g — y~! - g-~, where v = o - diag(7™,...,7) for a
permutation matrix vy and for some \; € Z. Since the image of w in the Weyl group has order
n, we may choose 7 so that e = e, where eris the first elementary row vector.

Let G := G; (Knr) GL, (K“r) and T :=T; (Knr) Let B C G; @ K™ be the Borel _subgroup
consisting of upper triangular matrices and let U be its unipotent radical. Note that T consists
of all dlagonal matrices and U := [U(K ™) consists of unipotent upper triangular matrices. Let
U-C GL, (K ") denote the subgroup consisting of unipotent lower trlangular matrices.

The Deligne-Lusztig construction X associated to the pair (GL,(K™), F}) described in [L79]
is the quotient

= (UNFTHU)W{AeG: Fi(A)A™ e U}.
The quotient X carries an action of T (K) X G1(K) = L* x D* induced by the action

(t,g) * x:=t lag, for t € Ti(K), g€ G(K), and z € G.
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By [B12, Corollary 4.3], X can be identified with the set
X ={AeG:F(AA ' cUNF(U)},

and this choice of section X — @ respects the (T1(K) x G1(K))-action. By [B12, Lemma 4.4], a
matrix A € G belongs to X if and only if it has the form

Ao Al A2 o Anfl
Tp(An-1) ¢(Ao) p(A1) o p(An—2)
A=a(Agy..., Apy) = | T (An2) 7% (An1)  @*(Ao) - P(Ans) | (7.)
k: n I(Al) k n I(AQ) k n 1(A3) SDn—ll(AO)

where A; € K™ for 0 < i <n—1 and det(A) € K*. We remark here that in [B12], k is assumed
to be 1, but the proofs of [B12, Corollary 4.3, Lemma 4.4] work for arbitrary k by simply replacing
7 with 7%, (In fact, the identification of X with X and the explicit description in (7.1) hold
without our running hypothesis that (k,n) = 1.) We may therefore write
X ||,
meZ
where X (™) consists of all A € X with det(A) € 7™Oj;. Note that the action of wy, takes each
X (m) isomorphically onto X (™% and the action of 7 takes each X (M) jsomorphically onto
X (m+n) By assumption, (k,n) =1 and so the X (m) are all isomorphic. It is therefore sufficient

to show that X(© can be realized as the F,-points of a scheme. To do this, we use Lemma 7.1,
whose proof is very similar to that of [B12, Lemma 4.5].

Lemma 7.1 (Boyarchenko, [B12, Lemma 4.5]). If a matriz A of the form 7.1 satisfies det(A) €
O, then Aj € m=UF/MOW for 0 < j <n—1 and Ay € (OF)*.

Proof. Write A = (a;j) and let v; = v(A;) for 0 < j <n — 1. By definition,

n

det(A) = Z sgn(U)Hai,a(w-

ocES, i=1

Let 7 € Sy, be the n-cycle given by (123---n). Note that 77(i) = [i + j] and hence the summand
of det(A) corresponding to 77 only involves A;. It is easy to see that

V(Hawj(i)):n'vj—i—j-k:, for0<j<n-—1

We now calculate the valuation of the summand corresponding to a fixed o € S, where ¢ is not
a power of 7. Set

. o) —1, if i <o(2), . 0, ifi<o(i),
a(iy = 4O 0 TS ol gy f0 WS o)
o(i)—i+mn, ifi>o(i), k, ifi> o(i).
Then the valuation of the o-summand is ) (va) + (7). Since ) (o(i) — i) = 0, we have
flz (i) = > B(i), and therefore
v ([T tioy) = it (Vagey + B(0) = 5 iy (Magy + kali).
Since (k,n) = 1, the set {nv; + jk : 0 < j <n — 1} consists of n distinct numbers, and hence

v(det(A)) = ogﬂ%ﬁ_l{mj + jk}.
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By assumption v(det(A)) = 0, and this implies that
nvj + jk >0, for0<j<n-—1. (7.2)
Conversely, since (k,n) = 1, if (7.2) is satisfied, then v(det(A4)) = 0 only if vg = v(4p) =0. O
We have now shown that a matrix of the form (7.1) with determinant in O is of the form
A(Ag, Avy .o Apt) o= a(AL, AL AL ),
for some Aj € ((5}?)X and A; € @}}r for 1 <j <n—1, where we write
A; = ﬂftjk/”JAj, for0<j<n-—1.
For any integer h > 1, the set
Ao, 41, A1) 4 € (O3 /7" OB,
Aj e O /ah =10 for 1< j<n—1,
det(A(Ag, ..., An_1)) € ((’)K/ﬂh(’)K)X}
can be naturally viewed as the set of Fy-points of a finite-type scheme X }(lo) over F,. If R is an
F,-algebra, then for h > 1, let W, (R) = R[x]/(n") if K has positive characteristic and let Wy,(R)

be the R-points of the truncated ramified Witt vectors of K if K has characteristic zero. Then

determinant of a matrix A(Ag, A1 ..., Ap—1) for Ag € Wy(R)* and Ay, ..., Ap—1 € Wy_1(R) can

be viewed as an element of W (R)*, and X }(10) is then the closed Fg-subscheme of W} x WZ:}

defined as the fiber of
WX x Wit = WYX, (Ao, A1,y Apo1) =

o(det(A(Ag, A1, ..., Apn—1)))
det(A(Ag, A1,..., An_1))
over the identity element of W;*. By Lemma 7.1, we have X0 = @h X ,(LO) (F,) and we may
define )NC,(ZmH) =w- X}gm) for all m € Z so that X (™) = lim )Nf,(lm) (F,). Thus X(m) is the set of
F,-points of a (pro-)scheme.
Note that X ,(ZO) has a left-multiplication action of Of /U f and a right-multiplication action of

Of/ Ug(h_l)ﬂ, and these actions are defined over Fyn and by the following subgroups of G;(K):
Ox U = {A(AO,O, L ,0): Ag € (oL/whoL)X}

AoE(OL/WhOL)X, }

0% Ut DT > L A(Ag, Ay, Ant)
o/Up (4o, 41 ) AjEOL/thl(’)Lforlgjgn—l

We now define f-adic homology groups of X0,
Lemma 7.2 (Boyarchenko, [B12, Lemma 4.7]). Set W}, := ker(Wp,(Fgn)* = Wjy_1(Fgn)*) for
h > 2. The action of Wy, on )Z'}(Lm) preserves every fiber of the natural map )Z',(Lm) — )?,(Lnji, the
induced morphism Wh\)?}(Lm) — va(ﬁi is smooth, and each of its fibers is isomorphic to the affine
space A1 over Fq.

Proof. The proof of [B12, Lemma 4.7] is independent of the invariant k/n of the division algebra
D once replace the matrix Ap(ag,ai,...,a,—1) by the matrix A(ag,as,...,a,—1) of Equation
(7.1). Note that there is a minor typo in the proof: In 6.11.2, the isomorphism of schemes

X n—1 n X n—1
Okn1 X Ok o x Gy = O, x O
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should be given by
(a0, a1, an-1,b0,b1, ..., bp_1) = (a0 + bor", @y + by, .. Lapg + by Y. O

For a smooth scheme S of pure dimension d, set H;(S,Q,) := H2~%(S,Q,(d)). By Lemma
7.2, we have an isomorphism

Hi(X{™, Q) — Hi(X,™, Q)"
In particular, we have a natural embedding H()Z'}(LT%,@@) — Hi()?(m),@). We define
Hy(X™), Q) = @H( Q). Hi(X,Q): =P Hi(X
meZ

The vector space H;(X,Q,) inherits commuting smooth actions of L* and D*. Therefore, given
a smooth character #: L* — Q,, we may consider the subspace H;(X,Q,)[f | C Hi (X,Q))
wherein L* acts by 6. If 6 has level h, then H;(X,Q,)[d] is a subspace of H;(Xp,,Q;), where

Xh = ez X( ™) One can show that Xh is equal to the translates of X}(L ) under the action of
(L*JUM x (D X/UD n(h— 1)H). It therefore follows that if I'j, is the stabilizer of X,(L ), then

L% Uh DX U”(h_1)+1 ~ —
(Xh,@é) ~ Ip d( JUL)X( / D ) (Hz(X}(LO),Qg>) )

This type of argument is crucial in the proof of Theorem 7.8.

7.1.1. Boyarchenko’s conjectures. Strictly speaking, [B12, Conjectures 5.16 and 5.18] require

D to be a division algebra of invariant 1/n over a non-Archimedean local field K of positive

characteristic. In this section, we formulate extensions of Boyarchenko’s conjectures for any

division algebra D of dimension n? over any non-Archimedean local field K with residue field F,.
The morphism f: G; — Gy given by g — v~! - g - v is injective. Set

X0 = f(X)
so that if we write A’(Ag, ..., An_1) =71 A(Ag,..., Apn_1) -7, then
X O(F,) = {A’(AO, o Ap_) : Ag € (0% /hOnny <
A e O/ 1O% for 1 <j<n—1,
det(A'(Ao, ..., A1) € Ok /7"O)* |,
The group (Of /UP) x (OE/Ug(h_l)H) acts on )A(:,’L(O) via f. Hence we obtain the lemma:
Lemma 7.3. For all i >0, as representations of Of /U x OE/Ughil)H

HY(X",Q,) = HI(X,©,Q)).

2

For any [Fyn-algebra R, define
Xn(R) == {4 (4o,..., Au1) € X0+ Ag € WS)(R)} , (7.3)

where if V: Wy,_1 — Wy_q is the Verschiebung morphism, then Wg) =14+ VW, C W), We
remark that we have abused notation here in the sense that when K has positive characteristic,
the X, defined in Equation (7.3) is the image of the X}, defined in Definition 2.5 under ¢, ;. Since
the definition of U}" h, k is not available when K has characteristic 0 and Boyarchenko’s conjectures

can be formulated Wlthout U b, k, we choose to proceed as in Equation (7.3).
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h—1)+1

Let T, denote the stabilizer of X}, in O /UL x O}/ Ug( . Then by Lemma 7.3,

i =\ ~u OX JUuhx 0% jurh=D+1 i —
HC(X}(LO)aQZ) = Indl"hL/ £XOp/Up (HC(X}MQK)) .

Boyarchenko’s conjectures concern the cohomology groups H:(Xp, Q) as representations of
Ul /Ut x U urtOt .

Conjecture 7.4 (Boyarchenko, [B12, Conjecture 5.16]). For i > 0, we have Hi(X},, Q) =0
unless i or n is even, and Fryn acts on HY(Xy,, Q) by the scalar (—1)'q™/?.

Conjecture 7.5 (Boyarchenko, [B12, Conjecture 5.18]). Given a character x: UL /UM — Qy,

there exists r > 0 such that H.(Xp,Q,)[x] = 0 for all i # r. Moreover, H:(Xp,Q,)[x] is an

irreducible representation of Ub/Ug(h_l)H.

Remark 7.6. Tt is useful to have an explicit formula for A’(Ag, ..., A,—1). First observe that
A(Ag,..., An-1) = D(AR) + DAYy + -+ D(AL_ )},

where we write D(x) = diag(x, o(z),...,¢" 1(z)). Let 4o be the permutation matrix corre-

sponding to the permutation ¢ — [(i +{ — 1)k]. Then

70_1 ccoy = . where ¢ = ((1) 1"01>,
This implies that
25 D) 0 = diag(e, o), ..., (D (@) = D),
Therefore
A(Ag,. ., Any) = D'(A5) + D (At + o 4 D (4] )l
= D'(Ag) + D'(AD)@ + - + D'(A,—1)w! (DK,

which, when expanded, is

, Ao lAm ;4[211 o lAun—lm
moll (Af—1yy) oll(Ag) ol (Ag) e o (Aln2yy)
TP (Af_ay) TP (Annyy) 92U (Ag) e P (A—ay)
mpl=DI(Ay)  mel =D (Apy) - mpl =D (A, 1)) @l Ag)

Observe that when K has positive characteristic, after appropriately permuting the a;’s, the
point x(Y_ ani™, Y0 Anit1 Ty Y Anig (n—)T) 18 th k(D2 aiT") as defined in Equation (2.3). ¢

From now on, assume char K > 0. Then Proposition 6.1 gives evidence supporting Conjecture
7.4, and by Theorem 6.4, we have:

Theorem 7.7. Let x: U} /UN — @Z be a primitive character. Then Conjecture 7.5 holds.

By [B12, Proposition 5.19], we have
Theorem 7.8. Let 0: L* — @Z be a primitive character of level h and let x: UE/UQ — @ZX
denote the restriction of 6 to U,—{.
(a) Pick any ¢ € OF JUM with the property that its image in Fon generates . The
representation Hc(nfl)(hfl)(Xh,@g)[X] extends uniquely to a representation 1, of the
semidirect product Ry, (Fgn) & OB/Ug(h_l)H with Tr(ng(¢)) = (—1)=DE=Dg(¢).
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(b) The inflation 75 of 3 to OFy extends to a representation n), of 72 - OF by setting
np(m) = 0(mw). Then
H(n—1)(h—1)()?,@z)[9] =g 1= Indfzx.o; ()

and Hy(X,Q,)[0] =0 for i # (n—1)(h—1).

(c) H(n_l)(h_l)(;(,@g)[ﬁ] is an irreducible representation of dimension n - g"(~D(h=1)/2

Proof. We outline the proof given in [B12, Section 6.15].
(n—1)(h—1)

The uniqueness in (a) follows from the irreducibility of He (X1, Qp)[x]. The rep-
resentation 7y is the tensor product 6° ® Hc(nfl)(hfl)(Xh,@g)[X] where 6°(z,g9) = 6(z) for

(z,9) € () XU (Fgn) =R}y o(Fgn). Finally, the trace identity is a special case of Proposition
6.2.

Let Xp, := || )A(;,(Zm) The action of L* x D* on X induces an action of the quotient
meZ

G, = (L* /UM x (DX/Ug(hfl)Jrl) on Xj,. Moreover, H,(X,Q,)[0] € H.(X,Q,), so it is enough
to understand the cohomology of Xj,. Since X-}(Lerl) = w)?,sm) and w € G1(K) = D*, we see
that X}, is equal to the Gp-translates of f(up 1 (Xp)) C )Nf}(LO). One can define an action of

T = ((m, ) - (¢, ¢Y) - (UL /UE x U Ut~ c Gy,

on X so that f oy is I'y-equivariant. Moreover, the stabilizer of f(up1(Xp)) in Gy, is
exactly equal to I'y,. The claim in (b) then follows from an analysis of the #-eigenspace of

Indlg: (Hi(Xha@z)) .
Let ¢ := 9’U£Lfl. For any = € Ug_l C Ug(h_l), we have 7(z) = ¢(x) and

M-z - 117 = nj(p(@)) = w(a®).
Since 6 is primitive and [ is coprime to n, it follows that the normalizer of 7, in D* is equal
to w2 . OJ. Irreducibility then follows by Mackey’s criterion. The dimension of the 7 is equal
to the product of [D* : 7% - O] = n and the dimension of 7, so the desired result holds by
Theorem 4.3 and Proposition 6.1. (|

7.2. Local Langlands correspondences. It is known that automorphic induction is not
compatible with induction on Weil groups in the sense that one must often keep track of a
rectifying character when constructing the Langlands parameter oy of the automorphic induction
of a character 6: L* — @ZX . Instead, we recall Langlands—Shelstad’s theory of y-datum [LS87,
Section 2.5] to give a canonical construction of op: Wg — GL,,(C). We then recall the statements
of the local Langlands and Jacquet—Langlands correspondences and prove in Theorem 7.12 that
the homology of X realizes the composition of these two correspondences. As always in this
paper, L is the degree-n unramified extension of K.

Fix an isomorphism Q, = C. Let T = Resj, /k Gm and let G = GL,,. Viewing L as an
n-dimensional K-vector space induces an embedding 7' < G. Let ® = ®(G,T) be the root
system of T in GG and recall that there is a natural action of the absolute Galois group I' on
®. For each A € ®, let L) and Li) be the extensions of K corresponding to the subgroups
{g €Tk :92= A} and {g € ' : 9\ = £A}. We note that since L/K is unramified, it is Galois
and hence Ly = L. (In general, one only has Ly O L.) We say that A € ® is symmetric if
Ly # Liy and asymmetric otherwise. Observe that if A is symmetric, then L) is a quadratic
extension of L.

Definition 7.9. A y-datum is a collection of characters {xy}ico satisfying:
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i) xa: — is a homomorphism.

i) xa: Ly = C*isah hi

(ii) For each A\ € ®, we have y_) = X;l and yw) = Yy, for all w € Wk.

(iii) If A is symmetric, then x| Lx, equals the quadratic character of Ly/L4 .

Consider the dual groups of G and T given by G = GL, (C) and T = (C™ A x-
datum {XA} rea determines an embedding x: T — LG, where YT and “G are the L-groups

LG = GxWg and LT := T x Wy (see [LS87, Section 2.6]). The local Langlands correspondence
for T gives a natural isomorphism

Hom(L*,C*) = H' (W, T).

Let 0: Wy — LT be a 1-cocycle representing the image of § under the above isomorphism. Then
by [T'16, Proposition 6.5], the representation given by the composition

Wi~ L7 25 Lg P GL,(C) (7.4)
is isomorphic to the induced representation
dWK 0 -w), where p = H X (7.5)
NeWwk\®

and where we view 8-y as a character of Wy, via local class field theory. Since L/K is unramified,
it is easy to write down a natural choice of y-datum. It is clear from the definition that a
x-datum {x)}eq is determined by {xx}rca, where A is any choice of coset representatives of
'k \®. The I'k-orbits of ® are in bijection with the nontrivial double cosets of I'y, in 'y (see
[T16, Proposition 3.1]), and we may write

(T \Lk/TL) = {[¢"] :=Tr¢'Tr:1<i<n-—1},

where ¢ is the g-power Frobenius. By [T16, Proposition 3.3], [¢'] is symmetric if and only if n is
even and i = n/2. It is clear that the following specifies a y-datum for 7' — G:

(i) If [¢"] is symmetric, we let X4 be the unramified character with x4i(7) = —1.

(ii) If [¢] is asymmetric, we let X[gi] = 1.
Define oy to be the Wi-representation in Equation (7.4) corresponding to the above canonical
choice of y-datum. Then by Equation (7.5),

o9 = Ind)y< (60 - pu), (7.6)

where p: L* — C* is the character determined by p|,x =1 and p(r) = (—1)""L.
L

Pick any division algebra D of dimension n? over K. We now describe the relevant corre-

spondences between representations of L™, Wy, GL,(K), and D*. Fix a character ¢ of K*
whose kernel is equal to the image of the norm Ny : L* — K*. Let 2™ denote the set of
all characters of L* that have trivial stabilizer in Gal(L/K) and let G4 (n) denote the set of
(isomorphism classes of) smooth irreducible n-dimensional representations o of Wy that satisfy
0= o0 ® (eorecp). Then

x-datum
2/ Gal(L/K) —— G5 (n)

0+ o’

is a bijection.
Now let A% (n) denote the set of (isomorphism classes of) irreducible supercuspidal represen-
tations 7 of GL,,(K) such that # 2 7 ® (e o det). There exists a canonical bijection
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LLC

Gi(n) Ajc(n)

gg t o

known as the local Langlands correspondence.

Finally, let A’%(n) denote the set of (isomorphism classes of) irreducible representations p
of D* such that p = p® (e o Nrdp, k). Then the Jacquet—Langlands correspondence gives a
bijection
JLC
Afe(n) Aj (n)

7o Po

Remark 7.10. Since L/K is unramified, the restriction of € to O is trivial, and thus the
composition € o Nrdp / is trivial on E* - Of > 7. OJ. Thus by the construction of 79, we have
that 7y is invariant under twisting by € o Nrdp k. %

Theorem 7.8 describes a correspondence between L*-characters and D*-representations given
by

o DL tructi . . .
{primitive characters of L*} construction {irreducible representations of D*}

0 No = Ho()?7@€)[9]

By Remark 7.10, we see that 7y € A’¢(n). In Theorem 7.12, we prove that this correspondence
matches the composition of the previous three, therefore giving a geometric realization of the
Jacquet—Langlands correspondence.

Remark 7.11. The construction of the local Langlands and Jacquet—Langlands correspondences
was already known. See, for example, [H93]. Recent work of Boyarchenko and Weinstein (see
[BW13]) gives a partially geometric construction of these correspondences using the representa-
tions H? 1(Xs,Q,)[¢] of U3 (Fyn). Note that in [BW16] and [BW13], the scheme X5 is denoted
by X and the group U;"(Fyn) is denoted by U™%(Fyn). O

Theorem 7.12. Let 6: L* — @ZX be a primitive character of level h and let pg be the D*-
representation corresponding to 0 under the local Langlands and Jacquet—Langlands correspon-
dences. Then H;(X,Q,)[0] =0 ifi # (n—1)(h—1) and

Hn 1y 1) (X, Q) [6] =2 po.

Proof. By Equation (7.6) and [BW13, Proposition 1.5(b)], we just need to show that 7y :=
H,_1y(n—1)(X, Q) [0] satisfies the following two properties:

(i) For any character e of K* whose kernel is equal to the image of the norm map Ny, /g : L™ —
K>, we have ng = 19 ® (e o Nrdp ).
(ii) There exists a constant ¢ such that trng(z) = ¢ >_ cqar k) 07 (%) for each very regular
element = € OF.
Since L/K is unramified, the restriction of € to O is trivial, and thus the composition

€oNrdp g is trivial on L™ - Of D t. OJ. Thus by construction, 7y is invariant under twisting
by 7o Nrdp, . This proves (i).
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We now prove (ii). By the construction of 7y, since 7. Op=L*- Ull)7 we have

trop(z) = Y. troplgzgh).

geD?/LXU;i
grg~rE€L*-Up,

Now let z € OF be very regular. By Proposition 6.2, nj(z) = (—1)"~D(=1g(z). By [BW13,
Lemma 5.1(b)], if g € D* is such that gzg~' € L* - U}, then g € Npx (L*) - U}, where N;5(L*)
is the normalizer of L™ in D*. Therefore

trog(z) = > trop(geg ™) =Y tr(ng(gzg ™))

gEN % (LX) UL /L*-UL

— Z(_l)(n—l)(h—l)g(gmg—l) = (—1)(=D(h=1) Z 0 (). 0

g ~EGal(L/K)

The following corollary shows that the homology of Deligne-Lusztig constructions for division
algebras gives a geometric realization of the Jacquet-Langlands correspondence.

Theorem 7.13. Let D and D’ be division algebras of rank n and let Xp and Xp: be their cor-
responding Deligne—Lusztig constructions. For any primitive character 6: L — @Z of level h, the
Jacquet-Langlands transfer of H ,,_1yn—1)(Xp, Qg)[0] is isomorphic to H,_1yn—1)(Xpr, Qp)[0].
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