
DELIGNE–LUSZTIG CONSTRUCTIONS FOR DIVISION ALGEBRAS AND

THE LOCAL LANGLANDS CORRESPONDENCE, II

CHARLOTTE CHAN

Abstract. In 1979, Lusztig proposed a cohomological construction of supercuspidal repre-
sentations of reductive p-adic groups, analogous to Deligne–Lusztig theory for finite reductive
groups. In this paper we establish a new instance of Lusztig’s program. Precisely, let X be the
Deligne–Lusztig (ind-pro-)scheme associated to a division algebra D over a non-Archimedean
local field K of positive characteristic. We study the D×-representations H•(X) by establishing
a Deligne–Lusztig theory for families of finite unipotent groups that arise as subquotients of
D×. There is a natural correspondence between quasi-characters of the (multiplicative group
of the) unramified degree-n extension of K and representations of D× given by θ 7→ H•(X)[θ].
For a broad class of characters θ, we show that the representation H•(X)[θ] is irreducible and
concentrated in a single degree. After explicitly constructing a Weil representation from θ
using χ-data, we show that the resulting correspondence matches the bijection given by local
Langlands and therefore gives a geometric realization of the Jacquet–Langlands transfer between
representations of division algebras.
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1. Introduction

Deligne–Lusztig theory [DL76] gives a geometric description of the irreducible representations
of finite groups of Lie type. In [L79], Lusztig suggests an analogue of Deligne–Lusztig theory for
p-adic groups G. For a maximal unramified torus T ⊂ G, he introduces a certain set which has
a natural action of T ×G. Conjecturally, this set has an algebro-geometric structure and one
should be able to define `-adic homology groups functorial for the T ×G action. By [L79] and
[B12], when G is a division algebra, one can realize Lusztig’s set X as an (ind-pro-)scheme and
define corresponding `-adic homology groups Hi(X,Q`). One therefore obtains a correspondence
θ 7→ Hi(X,Q`)[θ] between characters of T and representations of G. In this paper, we study this
correspondence and, after describing a Weil representation associated to θ, give a description
from the perspective of the local Langlands and Jacquet–Langlands correspondences.

Let K be a non-Archimedean local field of positive characteristic with ring of integers OK and
residue field Fq = OK/π for a fixed uniformizer π, and let L ⊃ K be the unramified extension of

degree n with ring of integers OL. The level of a smooth character θ : L× → Q×` is the smallest
1
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integer h such that θ is trivial on UhL, where U0
L := O×L and UhL := 1 + πhOL for h ≥ 1. We

say that θ is primitive if for all 1 6= γ ∈ Gal(L/K), the smooth characters θ and θ/θγ have

the same level. Equivalently, the restriction of θ to Uh−1
L /UhL has trivial Gal(Fqn/Fq)-stabilizer.

There is a canonical choice of Langlands–Shelstad χ-datum associated to the maximal torus
L× ↪→ GLK(L) ∼= GLn(K), and using this, one can associate a smooth irreducible n-dimensional

WK-representation σθ to a primitive character θ : L× → Q×` .1 The representation σθ corresponds
via local Langlands to an irreducible supercuspidal representation πθ of GLn(K), which in turn
corresponds via Jacquet–Langlands to an irreducible representation ρθ of D× where D is a
division algebra of dimension n2 over K.

Main Theorem. Let θ : L× → Q×` be a primitive character of level h. Then

Hi(X,Q`)[θ] =

{
ρθ if i = rθ := (n− 1)(h− 1),

0 otherwise.

Pictorially,

θ θ X

σθ GK(n)

πθ AK(n)

Hrθ(X,Q`)[θ] ∼= ρθ A′K(n)

Deligne–Lusztig construction

χ-datum

Local Langlands

Jacquet–Langlands

where

X := {primitive characters L× → Q×` }
GK(n) := {smooth irreducible dimension-n representations of the Weil group WK}
AK(n) := {supercuspidal irreducible representations of GLn(K)}
A′K(n) := {smooth irreducible representations of D×}

1.1. What is known. The only progress on Deligne–Lusztig constructions X is in the context
of division algebras. For two relatively prime integers k, n ≥ 1, let Dk/n denote the division
algebra over K of invariant k/n. (Note that the Brauer group of K is Q/Z, so Dk/n

∼= Dk′/n

if k ≡ k′ modulo n.) In the next two sections, we will pick an embedding L ↪→ Dk/n and set

G = D×k/n, T = L×.

Let G1 and T 1 denote the norm-1 elements of G and T , and let X1 be the associated Deligne–
Lusztig construction. In [L79], Lusztig proves that when k = 1, the virtual G1-representations∑

(−1)iHi(X
1,Q`)[θ] are (up to a sign) irreducible and mutually nonisomorphic. We remark

that his argument can be modified to prove the same conclusion for
∑

(−1)iHi(X,Q`)[θ].
Our paper focuses on the much subtler issue of describing the individual homology groups

Hi(X,Q`)[θ] and their vanishing behavior. Analogous to the behavior of classical Deligne–Lusztig
varieties, one expects Hi(X,Q`)[θ] to vanish outside a single degree, at least for “sufficiently
generic” characters θ. Additionally, one hopes to get a description of the irreducible representa-
tions arising from these homology groups.

1Let ξ : L× → Q×` be the rectifying character determined by ξ(π) = −1 and ξ|O×
L
≡ 1. Viewing θ · ξ as a

character of WL via local class field theory, the representation σθ is isomorphic to IndWK
WL

(θ · ξ).
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There exists a unipotent group scheme Un,qh,k over Fp such that Un,qh,k (Fqn) is isomorphic to

a subquotient of G. The study of Hi(X,Q`)[θ] reduces to the study of certain subschemes
Xh ⊂ Un,qh,k endowed with a left action by U1

L/U
h
L and a right action by Un,qh,k (Fqn). When k = 1,

these definitions were established in [BW16] for h ≤ 2 and in [B12] for h > 2. We remark that
Un,q2,1 (Fqn) is isomorphic to a subquotient of G even if K has characteristic zero, but this fails

when h > 2 (see Remark 2.2). The definitions of X, Xh, and Un,qh,k can be generalized to arbitrary

k, and we do so in this paper.
In [BW16, Sections 4-6], Boyarchenko and Weinstein study the representations H i

c(X2,Q`)
when k = 1 (see Theorem 4.7 of op. cit.). This comprises one of the main ingredients in studying
the cohomology of the Lubin–Tate tower. In [BW13], they specialize this result to the primitive
case to give an explicit and partially geometric description of local Langlands correspondences.
Roughly speaking, the Weil representation in classical constructions is replaced by the cohomology
of X2. In [B12], Boyarchenko uses the representations H i

c(X2,Q`) to prove that for any smooth

character θ : T → Q×` of level ≤ 2, the representation Hi(X,Q`)[θ] vanishes outside a single
degree and gives a description of this representation (see Theorem 5.3 of op. cit.). Moreover, he
shows that if θ is primitive, then Hi(X,Q`)[θ] is irreducible in the nonvanishing degree.

In contrast to the Lubin–Tate setting, we need to understand the cohomology of Xh for all h
to understand high-depth representations arising in Deligne–Lusztig constructions. Outside of
the case for k = 1, n = 3, and h = 3 (see [B12, Theorem 5.20]), this was completely open.

In [C16], we study Xh for arbitrary h, assuming n = 2 and θ is primitive. We prove that
the representation Hi(X,Q`)[θ] is irreducible and nonvanishing in a single degree. In addition
we prove a character formula in the form of a branching rule for representations of the finite
unipotent group U2,q

h,1(Fq2), a subquotient of the quaternion algebra. Using this, we are able to

give an explicit description of the representation Hi(X,Q`)[θ].
In this paper, we generalize this work to arbitrary n and arbitrary k. We take a more conceptual

approach that allows us to bypass many of the computations needed in [C16]. As a corollary,
we obtain a geometric realization of the Jacquet–Langlands transfer between representations of
division algebras.

Remark 1.1. In the special case that n = 2, the Deligne–Lusztig constructions we study in this
paper and its prequel [C16] are cut out by equations that resemble the equations defining certain
covers of affine Deligne–Lusztig varieties. This was observed by Ivanov in [I15, Section 3.6]. ♦

1.2. Outline of this paper. Let h, k, n ≥ 1 be integers with (k, n) = 1. In Section 2, we
introduce the unipotent group scheme Un,qh,k together with a certain subgroup scheme H ⊂ Un,qh,k ,

both of which are defined over Fqn . These group schemes have the property that H(Fqn) ∼= U1
L/U

h
L

and Un,qh,k (Fqn) is isomorphic to an analogous finite subquotient of D×k/n (see Remark 2.2). We

then define a certain Fqn-scheme Xh ⊂ Un,qh,k , whose relation to the Deligne–Lusztig construction

X is as follows: X can be identified with a set X̃ endowed with an ind-pro-scheme structure

X̃ =
⊔
m∈Z

lim←−
h

X̃
(m)
h ,

where each X̃
(m)
h is isomorphic to the disjoint union of qn−1 copies of Xh(Fq). This decomposition

naturally realizes X̃ as an increasing union of Fq-(pro-)schemes. Roughly speaking, the action of

T ×G on X̃ has two behaviors: there is an action on each X̃
(m)
h , and there is an action permuting

these pieces. In order to understand the (T ×G)-representations arising from Hi(X,Q`), one
must understand these two actions. The former is captured by the action of H(Fqn)× Un,qh,k (Fqn)

on Xh; the latter was studied by Boyarchenko [B12, Proposition 5.19].
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Let T denote the set of primitive characters of H(Fqn). Let G denote the set of irreducible
representations of Un,qh,k (Fqn) whose central character has trivial Gal(L/K)-stabilizer. In Section

4, we give a correspondence χ 7→ ρχ from T to G. This construction matches that of [C74].
In Section 5 we study the geometry of Xh using a combinatorial notion known as juggling

sequences. We prove in Theorem 5.4 and Corollary 5.5 that the varieties Xh are smooth affine
varieties of dimension (n− 1)(h− 1) defined by the vanishing of polynomials whose monomials
are indexed by juggling sequences. By studying the combinatorics of these objects, we are able
to prove structural lemmas crucial to the analysis of H i

c(Xh,Q`).
Section 6 is concerned with combining the general algebro-geometric results of Section 3, the

representation-theoretic results of Section 4, and the combinatorial results of Section 5. The
main result of this section is Theorem 6.4, but the heart of its proof is in Proposition 6.1, where
we calculate certain cohomology groups by inducing on linear fibrations. In Theorem 6.4, we
prove that the correspondence χ 7→ ρχ is bijective and that every representation ρ ∈ G appears

in H i
c(Xh,Q`) with multiplicity one. In addition, we prove a character formula (Proposition

6.2) for the representations H i
c(Xh,Q`)[χ] using the Deligne–Lusztig fixed point formula [DL76,

Theorem 3.2].
Section 7 is devoted to understanding two connections. The first, explained in Section 7.1, is

to unravel the relationship between the results of Section 6 and the representations of division

algebras arising from Deligne–Lusztig constructions X̃. The second, explained in Section 7.2,
is to describe Hi(X,Q`)[θ] from the perspective of the local Langlands and Jacquet–Langlands
correspondences. We use Theorem 6.4, the trace formula established in Proposition 6.2, and a
criterion of Henniart described in [BW13, Proposition 1.5(b)].

Theorem (7.12, 7.13). Let θ : L× → Q×` be a primitive character of level h and let ρθ be
the D×k/n-representation corresponding to θ under the local Langlands and Jacquet–Langlands

correspondences. Then

Hi(X,Q`)[θ] =

{
ρθ if i = (n− 1)(h− 1),

0 otherwise.

Moreover, if X and X ′ are the Deligne–Lusztig constructions associated to Dk/n and Dk′/n, then

the Jacquet–Langlands transfer of H(n−1)(h−1)(X,Q`)[θ] is isomorphic to H(n−1)(h−1)(X
′,Q`)[θ].

Using the techniques developed in this paper, we have evidence to support that for nonprimitive

characters θ : L× → Q×` of level h with restriction χ : U1
L → Q×` , the cohomology groups

H i
c(Xh,Q`)[χ] are irreducible and concentrated in a single non-middle degree. This implies that

the homology groups Hi(X,Q`)[θ] are also concentrated in a single degree, though it it not
expected that these representations are irreducible in general. We plan to investigate this in a
future paper.

Acknowledgements. I am deeply grateful to Mitya Boyarchenko for introducing me to this
area of research. I’d also like to thank Stephen DeBacker, Tasho Kaletha, Jake Levinson, David
Speyer, Kam-Fai Tam, and Jared Weinstein for helpful conversations. Finally, I’d like to thank
the referees for numerous helpful comments on both the exposition and the mathematics. This
work was partially supported by NSF grants DMS-0943832 and DMS-1160720.

2. Definitions

Fix a non-Archimedean local field K with residue field Fq and fix a uniformizer π. Fix an
integer n ≥ 1 and let L be the unramified degree-n extension of K. For any integer k ≥ 1 with
(k, n) = 1, we denote by D := Dk/n the rank-n division algebra of Hasse invariant k/n over K.
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Fix an integer l such that lk ≡ 1 modulo n. Then we may write D = L〈Π〉/(Πn − π), where
Π ·a = ϕl(a) ·Π and ϕ ∈ Gal(L/K) is the arithmetic q-Frobenius, and this specifies an embedding
L ↪→ D. The ring of integers (i.e. the unique maximal order) of D is OD = OL〈Π〉/(Πn − π),
where OL is the ring of integers of L. We write U0

L := O×L and U0
D := O×D, and for h ∈ Z>0, we

write UhL := 1 + P hL and UhD := 1 + P hD, where PL := π · OL and PD := Π · OD.
From now until Section 7, we assume that K has positive characteristic. In Section 2.1, we

construct a ring scheme Rh,k,n,q over Fp with the property that Rh,k,n,q(Fqn) is a quotient of OD.

We then focus our attention on a unipotent group scheme Un,qh,k ⊂ R
×
h,k,n,q with the property that

Un,qh,k (Fqn) ∼= U1
D/U

n(h−1)+1
D . In Section 2.2, we define a Fqn-subscheme Xh ⊂ Un,qh,k endowed with

commuting actions of H(Fqn) and Un,qh,k (Fqn). These actions are described in Section 2.3.

2.1. The unipotent group scheme Un,qh,k .

Definition 2.1. If A is an Fp-algebra, let A〈τ〉 be the twisted polynomial ring with the commu-

tation relation τ · a = aq
l · τ , and define

Rh,k,n,q(A) := A〈τ〉/(τn(h−1)+1).

The functor A 7→ Rh,k,n,q(A) defines a ring scheme representable by An(h−1)+1 over Fp. We write

Rh,k,n,q(A) =
{
a0 + a1τ + · · ·+ an(h−1)τ

n(h−1) : ai ∈ A
}
,

and consider the following subgroup schemes of R×h,k,n,q:

Un,qh,k (A) :=
{

1 +
n(h−1)∑
i=1

aiτ
i ∈ Rh,k,n,q(A)

}
,

H(A) :=
{

1 +
h−1∑
i=1

aniτ
ni ∈ Un,qh,k (A)

}
.

The q-Frobenius ϕ induces a morphism Rh,k,n,q by acting on the coefficients of τ . Note that

H(Fqn) is commutative since Fqn = (Fq)ϕ
n
, but H is not a commutative group scheme.

Remark 2.2. Note that R×h,k,n,q(Fqn) ∼= F×qn n Un,qh,k (Fqn) and we have natural isomorphisms

R×h,k,n,q(Fqn) ∼= O×D/U
n(h−1)+1
D , Un,qh,k (Fqn) ∼= U1

D/U
n(h−1)+1
D , H(Fqn) ∼= U1

L/U
h
L. (2.1)

These are induced by the ring isomorphism

Rh,k,n,q(Fqn)→ OD/Pn(h−1)+1
D ,

n(h−1)∑
i=0

aiτ
i 7→

n(h−1)∑
i=0

aiΠ
i =

n−1∑
j=0

AjΠ
j , (2.2)

where we write

A0 := a0 + anπ + · · ·+ an(h−1)π
h−1,

Aj := aj + an+jπ + · · ·+ an(h−2)+jπ
h−2, 1 ≤ j ≤ n− 1.

Note that we crucially used that L = Fqn [[π]]. We remark that h ≤ 2, the morphism in (2.2)
defines an isomorphism of multiplicative monoids even when K has characteristic 0, and therefore
the isomorphisms in (2.1) hold regardless of the characteristic of K.

The center Z(Un,qh,k (Fqn)) of Un,qh,k (Fqn) is a subgroup of H(Fqn) and can be described explicitly:

Z(Un,qh,k (Fqn)) = {1 +
∑
aniτ

ni ∈ H(Fqn) : an(h−1) ∈ Fqn and ani ∈ Fq for 1 ≤ i ≤ h− 2}. ♦

Definition 2.3. We say that a character χ : H(Fqn) ∼= U1
L/U

h
L → Q×` is primitive if its restriction

to Uh−1
L /UhL

∼= Fqn has trivial Gal(Fqn/Fq)-stabilizer.
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2.2. The varieties Xh.

Definition 2.4. For any Fp-algebra A, let Mh(A) denote the ring of all n× n matrices (bij)
n
i,j=1

with bii ∈ A[[π]]/(πh), bij ∈ A[[π]]/(πh−1) for i < j, and bij ∈ πA[[π]]/(πh) for i > j. The

determinant can be viewed as a multiplicative map det : Mh(A)→ A[[π]]/(πh).

For any integer m, let [m] denote the unique integer with 1 ≤ [m] ≤ n such that m ≡ [m]
modulo n. Let A be any Fp-algebra. The q-Frobenius morphism ϕ on A induces a ring

endomorphism on A[[π]]/(πm) given by
∑m−1

i=0 aiπ
i 7→

∑m−1
i=0 ϕ(ai)π

i for any positive integer m.
Consider the injective morphism of sets

ιh,k : Rh,k,n,q(A)→Mh(A)

given by defining ιh,k
(∑

aiτ
i
)

to be
A0 A1 A2 · · · An−1

πϕ[l](An−1) ϕ[l](A0) ϕ[l](A1) · · · ϕ[l](An−2)

πϕ[2l](An−2) πϕ[2l](An−1) ϕ[2l](A0) · · · ϕ[2l](A[n−3])
...

...
. . .

. . .
...

πϕ[(n−1)l](A1) πϕ[(n−1)l](A2) · · · πϕ[(n−1)l](An−1) ϕ[(n−1)l](A0)

 (2.3)

where we write

A0 = a0 + anπ + · · ·+ an(h−1)π
h−1,

Aj = aj + an+jπ + · · ·+ an(h−2)+jπ
h−2, j = 1, . . . , n− 1 (2.4)

Although ιh,k does not preserve the ring structure, it does satisfy a weak multiplicative property
that we explicate in Section 2.3.

In Section 7.1, we describe how to extend the results of [B12, Sections 4.2, 4.3] to division
algebras of arbitrary invariant. In particular, we show that the Deligne–Lusztig construction X

described in [L79] can be identified with a certain set X̃ which can be realized as the Fq-points
of an ind-pro-scheme

X̃ :=
⊔
m∈Z

lim←−
h

X̃
(m)
h ,

where each X̃
(m)
h is a finite-type Fp-scheme and X̃

(m)
h
∼= X̃

(0)
h for all m ∈ Z. By Lemma 7.3, for

any Fp-algebra A,

X̃
(0)
h (A) ∼=

{
ιh,k(

∑
aiτ

i) : ai ∈ A, det(ιh,k(
∑
aiτ

i)) is fixed by ϕ
}

=: X̃ ′h
(0)(A).

Definition 2.5. For any Fp-algebra A, define

Xh(A) := Un,qh,k (A) ∩ ι−1
h,k(X̃

′
h

(0)(A)).

Remark 2.6. Observe that X̃ ′h
(0) is a disjoint union of qn − 1 copies of Xh. ♦

2.3. Group actions. We first prove the following lemma.

Lemma 2.7. Let A be an Fqn-algebra. The map ιh,k has the following weak multiplicativity
property:

ιh,k(xy) = ιh,k(x)ιh,k(y) for all x ∈ Un,qh,k (A) and all y ∈ Un,qh,k (Fqn). (2.5)

Moreover, for y ∈ Un,qh,k (Fqn), the determinant of ιh,k(y) is fixed by ϕ.
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Proof. Observe from Equation (2.3) that

ιh,k(
∑
aiτ

i) = ιh,k(A0) + ιh,k(A1)$ + · · ·+ ιh,k(An−1)$n−1, (2.6)

where we write $ =
(

0 1n−1

π 0

)
and

Aj =

{
a0 + anτ

n + · · ·+ an(h−1)τ
n(h−1) if j = 0,

aj + an+jτ
n + · · ·+ an(h−2)+jτ

n(h−2) if j > 0.

Note that
∑
aiτ

i = A0 +A1τ + · · ·+An−1τ
n−1. For any a ∈ H(A), we have

$ · ιh,k(a) = diag(ϕ[l](a), . . . , ϕ[(n−1)l](a), a) ·$,

ιh,k(ϕ
[l](a)) = diag(ϕ[l](a), . . . , ϕ[(n−1)l](a), ϕn(a)),

and therefore we see that if a ∈ H(Fqn), then

$ · ιh,k(a) = ιh,k(ϕ
[l](a)) ·$.

This proves Equation (2.5). Using Equation (2.6) together with the observation that under the
isomorphism H(Fqn) ∼= U1

L/U
h
L, we have det(ιh,k(a)) = NmL/K(a) for a ∈ H(Fqn). The second

assertion of the lemma follows. �

It follows from Lemma 2.7 that after base-changing to Fqn , the variety Xh is stable under
right-multiplication by Un,qh,k (Fqn). For this reason, from now on, we consider Xh as a variety over

Fqn . We denote by x · g the action of g ∈ Un,qh,k (Fqn) on x ∈ Xh.

The conjugation action of ζ ∈ F×qn on Un,qh,k (A) stabilizes Xh(A). This extends the right

Un,qh,k (Fqn)-action on Xh to an action of the semidirect product F×qn n Un,qh,k (Fqn) ∼= R×h,k,n,q(Fqn).

We now describe a left action of H(Fqn) on Xh. We can identify H(Fqn) with the set
ιh,k(H(Fqn)). Note that by the weak multiplicativity property, the map ιh,k is a group homomor-
phism on H(Fqn), and since ιh,k is injective, we have H(Fqn) ∼= ιh,k(H(Fqn)) as groups. Explicitly,
this isomorphism is given by

1 +
h−1∑
i=1

aniτ
ni 7→ diag

(
1 +

∑
aniπ

i, 1 +
∑
aq

l

niπ
i, . . . , 1 +

∑
aq

(n−1)l

ni πi
)
.

Observe that we may remove the brackets in the exponent since ϕn(A0) = A0. From Equation
(2.6), it is clear that the left-multiplication action of ιh,k(H(Fqn)) on Mh(A) stabilizes ιh,k(Xh(A)),

and we therefore obtain an action2 of g ∈ H(Fqn) ∼= U1
L/U

h
L on x ∈ Xh, which we denote by g ∗ x.

The actions of H(Fqn) and R×h,k,n,q(Fqn) commute.

3. General principles: some algebraic geometry

In this section, we prove some general algebro-geometric results that will allow us to compute
certain cohomology groups via an inductive argument. We generalize the techniques of [B12]
from Ga to the group scheme H ⊂ Un,qh,k defined in Section 2.1.

We begin by recalling some results of [B12, Section 2.2]. Let G be an algebraic group over
Fqn , suppose that Y ⊂ G is a (locally closed) subvariety defined over Fqn , and set X = L−1

qn (Y ),

where Lqn : G → G is the Lang map g 7→ Frqn(g)g−1. Let G0 ⊂ G be any connected subgroup

defined over Fqn and let η : G0(Fqn)→ Q×` be a homomorphism. Write Vη = Ind
G(Fqn )

G0(Fqn )(η).

2Warning: This is not the same as the action induced by left-multiplication of H(Fqn) ⊂ H(A) on Un,qh,k (A).

For example, if x = ιh,k(x0, . . . , xn−1) ∈ Xh(Fq) and x0 /∈ Fqn , then for g := 1 + anτ
n ∈ H(Fqn) has the property

that g ∗ x = ιh,k(x0 + anx0π, . . .) but left-multiplication gives g · x = ιh,k(x0 + anx
qn

0 π, . . .) ∈ Un,qh,k (Fq).
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Consider the right-multiplication action of G0(Fqn) on G and form the quotient Q :=
G/(G0(Fqn)). The Lang map Lqn : G→ G is invariant under right multiplication by G0(Fqn) and
thus it factors through a morphism α : Q→ G. On the other hand, the quotient map G→ Q is
a right G0(Fqn)-torsor, so the character η yields a Q`-local system Eη of rank 1 on Q.

Lemma 3.1 ([B12, Lemma 2.1]). There is a natural Frqn-equivariant vector-space isomorphism

HomG(Fq)
(
Vη, H

i
c(X,Q`)

) ∼= H i
c(α
−1(Y ), Eη|α−1(Y )) for all i ≥ 0.

As in [B12], we now make two further assumptions under which the right-hand side of the
isomorphism in Lemma 3.1 can be described much more explicitly. This will allow us to calculate
certain cohomology groups via an inductive argument. These two assumptions are:

1. The quotient morphism G→ G/G0 admits a section s : G/G0 → G.
2. There is an algebraic group morphism f : G0 → H defined over Fqn such that η = χ ◦ f

for a character χ : H(Fqn)→ Q×` .

Let Lχ be the local system on H defined by χ via the Lang map Lqn : H → H. The following
lemma is proved in [B12].

Lemma 3.2 ([B12, Lemma 2.2]). There is an isomorphism γ : (G/G0) × G0
'−→ Q such that

γ∗Eη ∼= (f ◦ pr2)∗Lχ and α ◦ γ = β, where pr2 : (G/G0)×G0 → G0 is the second projection and
β : (G/G0)×G0 → G is given by β(x, h) = s(Frqn(x)) · h · s(x)−1.

Combining Lemmas 3.1 and 3.2, we obtain the following proposition.

Proposition 3.3 ([B12, Proposition 2.3]). Assume that we are given the following data:

• an algebraic group G with a connected subgroup G0 ⊂ G defined over Fqn;
• a section s : G/G0 → G of the quotient morphism G→ G/G0;
• an algebraic group homomorphism f : G0 → H;

• a character χ : H(Fqn)→ Q×` ;
• a locally closed subvariety Y ⊂ G.

Set X = L−1
qn (Y ), where Lqn is the Lang map g 7→ Frqn(g)g−1 on G. Then for each i ≥ 0, we

have a Frqn-compatible vector space isomorphism

HomG(Fqn )

(
Ind

G(Fqn )

G0(Fqn )(χ ◦ f), H i
c(X,Q`)

)
∼= H i

c(β
−1(Y ), P ∗Lχ).

Here, Lχ is the local system on H corresponding to χ, the morphism β : (G/G0)×G0 → G is
given by β(x, h) = s(Frqn(x)) · h · s(x)−1, and the morphism P : β−1(Y )→ H is the composition

β−1(Y ) ↪→ (G/G0)×G0
pr2−→ G0

f→ H.

Our goal now is to prove the following crucial proposition. This is the proposition that gives
us an inductive technique for calculating the cohomology groups appearing in Section 6.

Proposition 3.4. Let q be a power of p and let n ∈ N. Let S2 be a scheme of finite type over
Fqn, put S = S2 ×Ga and suppose that a morphism P : S → H has the form

P (x, y) = g(f(x)q
j1
yq

j2 − f(x)q
j3
yq

j4
) · P2(x)

where

• j1, . . . , j4 are non-negative integers,
• j1 − j2 = j3 − j4 and j2 − j4 is not divisible by n,
• f : S2 → Ga, P2 : S2 → H are two morphisms defined over Fqn, and

• g : Ga → H is the morphism z 7→ 1 + zτn(h−1).
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Let S3 ⊂ S2 be the subscheme defined by f = 0 and let P3 = P2|S3 : S3 → H. If χ : H(Fqn)→ Q×`
is primitive, then for all i ∈ Z,

H i
c(S, P

∗Lχ) ∼= H i−2
c (S3, P

∗
3Lχ)(−1)

as vector spaces equipped with an action of Frqn , where the Tate twist (−1) means that the action
of Frqn on H i−2

c (S3, P
∗
3Lχ) is multiplied by qn.

Proof. Let pr : S = S2 ×Ga → S2 be the first projection, let ι : S3 → S2 be the inclusion map,
and let η : S → H be the morphism (x, y) 7→ g(η0(x, y)), where η0 : S → Ga is the morphism

(x, y) 7→ f(x)q
j1yq

j2 − f(x)q
j3yq

j4 . We then have the following commutative diagram, where (∗)
is a Cartesian square

S Ga

S3 ×Ga S2 ×Ga H

(∗) H ×H H

V(f) S3 S2 H

g

ι

pr pr

η

η0

(−,1)

m

ι P2 (1,−)

The sheaf Lχ is a multiplicative local system on H, and hence

P ∗Lχ ∼= (η∗Lχ)⊗ pr∗(P ∗2Lχ).

Thus, by the projection formula,

R pr!(P
∗Lχ) ∼= P ∗2Lχ ⊗R pr!(η

∗Lχ) in Db
c(S2,Q`).

We now claim that

R pr!(η
∗Lχ) ∼= ι!(Q`)[−2](−1) in Db

c(S2,Q`),

where Q` denotes the constant local system of rank 1 on S2. It is clear that once we have
established this, the desired conclusion follows. We therefore spend the rest of the proof proving
this.

The restriction of η to pr−1(S3) ⊂ S2 is constant, so the restriction of the pullback η∗Lχ to
pr−1(S3) is a constant local system of rank 1. Thus, by proper base change with respect to the
Cartesian square (∗), we have the following isomorphisms in Db

c(S2,Q`):

ι∗R pr!(η
∗Lχ) ∼= R pr!(ι

∗η∗Lχ) = R pr!(Q`) ∼= Q`[−2](−1).

To complete the proof, we need to show that R pr!(η
∗Lχ) vanishes outside S3 ⊂ S2. Let ψ denote

the restriction of χ to g(Ga)(Fqn) ∼= Ga(Fqn) and let Lψ denote the corresponding Artin–Schreier
sheaf on Ga. Since η = g ◦ η0,

η∗Lχ ∼= η∗0Lψ.

We now calculate the stalk of R pr!(η
∗
0Lψ) for any x ∈ S2(Fq) r S3(Fq). By proper base change,

Ri pr!(η
∗
0Lψ)x ∼= H i

c(Ga, f
∗
xLψ),

where fx : Ga → Ga is given by y 7→ f(x)q
j1yq

j2 −f(x)q
j3yq

j4 . Fix an auxiliary nontrivial additive

character ψ0 : Fp → Q×` , and for any z ∈ Fp, define

Lz := m∗zLψ0 , where mz : Ga → Ga is the map x 7→ xz,
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where Lψ0 is the Artin–Schreier sheaf on Ga corresponding to ψ0. Then there exists a unique
z ∈ Fqn such that Lψ = Lz, and since ψ has nontrivial Gal(Fqn/Fq)-stabilizer by assumption, so
must z. By [B12, Corollary 6.5], we have f∗xLψ ∼= Lf∗x (z), where

f∗x(z) = f(x)q
j1/qj2z1/qj2 − f(x)q

j3/qj4z1/qj4 = f(x)q
j1−j2

(zq
−j2 − zq−j4 ).

But zq
−j2 − zq−j4 6= 0 since by assumption z 6= 0 and j2 − j4 is not divisible by n. Thus f∗xLψ is

a nontrivial local system on Ga and by [B10, Lemma 9.4], H i
c(Ga, f

∗
xLψ) = 0 for all i ≥ 0. �

Proposition 3.5. Let j1, . . . , j4, f, g, S, P2, S2, S3, P3 be as in Proposition 3.4 and suppose that
P : S = S2 × A1 → H has the form

P (x, y) = g(f(x)q
j1
yq

j2 − f(x)q
j3
yq

j4
+ α(x, y)q

n − α(x, y)) · P2(x)

for some morphism α : S → Ga defined over Fqn . If χ : H(Fqn)→ Q×` is primitive, then for all i,

H i
c(S, P

∗Lχ) ∼= H i−2
c (S3, P

∗
3Lχ)(−1)

as vector spaces equipped with an action of Frqn , where the Tate twist (−1) means that the action
of Frqn on H i−2

c (S3, P
∗
3Lχ) is multiplied by qn.

Proof. Let P ′(x, y) = g(f(x)q
j1yq

j2 −f(x)q
j3yq

j4 ) ·P2(x). Then P ∗Lχ and (P ′)∗Lχ are isomorphic

since the pullback of Lχ|g(Ga) by the map 1 + zτn(h−1) 7→ 1 + zq
n
τn(h−1) is trivial. Then by

Proposition 3.4, the desired conclusion holds. �

The following proposition is extremely useful in the context of applying the inductive argument
described by the above propositions. We will use it in several of the technical lemmas in Section
5 and in the proof of the main proposition and theorem of Section 6.

Proposition 3.6. Suppose that S ↪→ R is a finite map of polynomial rings over k = Fq. Assume
that FracR is finite Galois over FracS with Galois group G a p-group. Then:

(a) R is stable under G and RG = S.
(b) As multiplicative monoids, ((Rr {0})/k×)G = (S r {0})/k×.
(c) If (f) ⊂ R is an ideal such that (σf) = (f) for all σ ∈ G, then f ∈ S.

Proof. First observe that since S and R are polynomial rings, they are normal and therefore
integrally closed. Since S ↪→ R is a finite map, R is the integral closure of S in FracR. Thus R
is G-stable. It is clear that S ⊂ RG and that RG is integral over S. But since S is integrally
closed, we necessarily have S = RG. This proves (a).

To see (b), consider the short exact sequence

1→ k× → FracR× → FracR×/k× → 1

and take G-invariants to get a long exact sequence

1→ k× → FracS× → (FracR×/k×)G → H1(G, k×)→ · · ·

Since G acts trivially on k×, we have H1(G, k×) = Hom(G, k×), which is trivial since G is a
p-group. Thus (FracR×/k×)G = FracS×/k× and ((Rr {0})/k×)G = (S r {0})/k×.

Now we prove (c). If f = 0, then we are done, so for the rest of the proof we may assume
f 6= 0. Necessarily σf = f up to a unit in R, and thus their images in the quotient (Rr {0})/k×
are equal. Thus the image of f is in ((Rr {0})/k×)G = (S r {0})/k×, and so f ∈ S. �
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4. Representations of Un,qh,k (Fqn)

Let T denote the set of all primitive characters of H(Fqn) and let G be the set of irreducible
representations of Un,qh,k (Fqn) whose central character has trivial Gal(L/K)-stabilizer.

In this section, we show that G can be parametrized by T and explicitly describe such a
parametrization. There are two main cases of behavior, depending on the parameters n and h.

Definition 4.1. Given a pair of positive integers (n, h), we say that:

• (n, h) is in Case 1 if (n− 1)(h− 1) is even.
• (n, h) is in Case 2 if (n− 1)(h− 1) is odd.

Consider the subset of Z given by

A′ := {ni : 1 ≤ i ≤ h− 1} ∪
{
i : n - i, n(h−1)

2 < i < n(h− 1)
}
. (4.1)

and define a subgroup scheme H ′ of Un,qh,k by setting

H ′(A) :=

{
1 +

∑
i∈A′

aiτ
i ∈ Un,qh,k (A)

}
for any Fqn-algebra A.

We now specialize to the setting where A = Fqn . If (n, h) is in Case 1, set H+(Fqn) := H ′(Fqn),
and if (n, h) is in Case 2, define

H+(Fqn) :=

{
1 + an(h−1)/2τ

n(h−1)/2 +
∑
i∈A′

aiτ
i ∈ Un,qh,k (Fqn) : an(h−1)/2 ∈ Fqn/2

}
.

Notice that

[H+(Fqn) : H ′(Fqn)] =

{
1 if (n, h) is in Case 1,

qn/2 if (n, h) is in Case 2,
(4.2)

[Un,qh,k (Fqn) : H+(Fqn)] = qn(n−1)(h−1)/2. (4.3)

One can think of H ′(Fqn) and H+(Fqn) as enlargements of H(Fqn) by the “deeper half” of
Un,qh,k (Fqn). We will also need the analogous enlargements of Z(Un,qh,k (Fqn)):

H ′0(Fqn) :=

{
1 +

n(h−1)∑
i=1

aiτ
i ∈ H ′(Fqn) : 1 +

h−1∑
i=1

aniτ
ni ∈ Z(Un,qh,k (Fqn))

}
,

H+
0 (Fqn) :=

{
1 +

n(h−1)∑
i=1

aiτ
i ∈ H+(Fqn) : 1 +

h−1∑
i=1

aniτ
ni ∈ Z(Un,qh,k (Fqn))

}
.

These subgroups of Un,qh,k (Fqn) fit into the picture

H(Fqn) H ′(Fqn) H+(Fqn)

Z(Un,qh,k (Fqn)) H ′0(Fqn) H+
0 (Fqn)

For χ ∈ T , define an extension χ] of χ to H ′(Fqn) by setting

χ]
(

1 +
∑
i∈A′

aiτ
i

)
:= χ

(
1 +

∑
n|i
aiτ

i

)
.

Fix any extension χ̃ of χ] to H+(Fqn). Note that in Case 1, necessarily χ̃ = χ]. In Case 2, there

are qn/2 choices of χ̃.
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Lemma 4.2. If ρ ∈ G has central character ω and ω has trivial Gal(L/K)-stabilizer, then the
restriction of ρ to H ′0(Fqn) contains the character

ω] : H ′0(Fqn)→ Q×` , 1 +
∑
i∈A′

aiτ
i 7→ ω

(
1 +

∑
n|i
aiτ

i

)
.

Furthermore, the restriction of ρ to H+
0 (Fqn) contains every extension of ω] to H+

0 (Fqn).

Proof. First let ψ be the restriction of ω to {1 + aτn(h−1) : a ∈ Fqn} ∼= Fqn and observe that the
assumption on the stabilizer of ω implies that ψ has trivial Gal(Fqn/Fq)-stabilizer.

We will first show that if the restriction of ρ to H ′0(Fqn) contains ω], then the restriction of ρ

to H+
0 (Fqn) contains every extension of ω] to H+

0 (Fqn). This assertion is trivial if we are in Case
1 since H ′0(Fqn) = H+

0 (Fqn), so let us assume we are in Case 2.

Let ν := n(h−1)/2. Let ω̃ be any extension of ω] to H+
0 (Fqn). To prove that ρ|H+

0 (Fqn ) contains

ω̃, it is enough to prove that the orbit of ω̃ under Un,qh,k (Fqn)-conjugacy contains every extension

of ω] to H+
0 (Fqn). Indeed, for any b ∈ Fqn , consider the element g := 1 + bτν ∈ Un,qh,k (Fqn). Then

writing h = 1 + aτν +
∑

i∈A′ aiτ
i ∈ H+

0 (Fqn), we have

ω̃(ghg−1) = ω̃
(

(1 + bτν)(1 + aτν +
∑
i∈A′

aiτ
i)(1− bτν + bq

lν+1τn(h−1))
)

= ω̃
(

1 + aτν + (baq
lν − abqlν )τn(h−1) +

∑
i∈A′

aiτ
i
)

= ω̃
(

1 + aτν +
∑
i∈A′

aiτ
i
)
· ψ
(
baq

lν − abqlν
)
.

Note that for any m not divisible by n, since ψ has trivial Gal(Fqn/Fq)-stabilizer,

#
{
ψb : Fqn → Q×` such that b ∈ Fqn

}
= qn, where ψb(a) := ψ

(
baq

n−m − abqm
)
. (4.4)

Indeed, if b 6= 0 and ψ(baq
n−m − abqm) = 1 for all a ∈ Fqn , then it follows that ψ(x) = ψ(xq

m
) for

all x ∈ Fqn , which contradicts the assumption on the Gal(Fqn/Fq)-stabilizer of ψ. By assumption,
a ∈ Fqn/2 and lν = n/2 modulo n. Since every character of Fqn/2 extends to a character of Fqn ,

then by (4.4) in the special case m = n/2, it follows that

#
{
ψb : Fqn/2 → Q×` such that b ∈ Fqn

}
= qn/2, where ψb(a) := ψ

(
a(b− bqn/2)

)
.

Thus the orbit of ω̃ under Un,qh,k (Fqn)-conjugacy contains every extension of ω] to H+
0 (Fqn).

It now remains to show that the restriction of ρ to H ′0(Fqn) contains ω]. Define

I := {i : n(h− 1)/2 < i ≤ n(h− 1), n - i}
r1 := max(I), ri := max(I r {r1, . . . , ri−1}), for 2 < i ≤ #I.

We prove the lemma by extending ω to each step of the chain

Z(Un,qh,k (Fqn)) ⊂ G1 ⊂ G2 ⊂ · · · ⊂ G#I = H ′0(Fqn),

where

Gd0
:=
{

1 +
∑
n|i
aiτ

i +
∑
i≥d0

ariτ
ri ∈ H ′0(Fqn)

}
, for 1 ≤ d0 ≤ #I.

Consider the following extension of ω to G1:

ω1 : G1 → Q×` , 1 +
∑
n|i
aiτ

i + ar1τ
r1 7→ ω

(
1 +

∑
n|i
aiτ

i
)
.
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For any b ∈ Fqn , consider the element g1 := 1 + bτn(h−1)−r1 ∈ Un,qh,k (Fqn). Then for any

g := 1 +
∑
n|i
aiτ

i + aτ r1 ∈ G1,

ω](g1gg
−1
1 ) = ω]

(
1 +

∑
n|i
aiτ

i + (baq
l(n(h−1)−r1) − abqlr1 )τn(h−1)

)
= ω

(
1 +

∑
n|i
aiτ

i
)
· ψ
(
baq
−lr1 − abqlr1

)
.

Since ψ has trivial Gal(Fqn/Fq)-stabilizer and lr1 is not divisible by n, it follows from Equation
(4.4) that the orbit of ω1 under the conjugation action of Un,qh,k (Fqn) contains every extension of

ω to G1, and so the restriction of ρ to G1 must contain ω1. Applying the above argument to
each Gd0 inductively proves that the restriction of ρ to H ′0(Fqn) contains ω]. �

Theorem 4.3. For any χ ∈ T , the representation

ρχ := Ind
Un,qh,k (Fqn )

H+(Fqn )
(χ̃)

is irreducible with dimension qn(n−1)(h−1)/2. Moreover, G = {ρχ : χ ∈ T }.

Proof. The dimension follows from Equation (4.3). To prove irreducibility, we use Mackey’s
criterion. First note that it is clear that H ′(Fqn) centralizes χ] and H+(Fqn) centralizes χ̃. We
must show that these are exactly the centralizers of these characters.

Let i be an integer such that n - i and i ≤ n(h− 1)/2. Then for any a, b ∈ Fqn ,

χ̃
(

(1 + bτ i)(1 + aτn(h−1)−i)(1 + bτ i)−1
)

= χ̃
(

(1 + bτ i)(1 + aτn(h−1)−i)(1− bτ i + · · · )−1
)

= χ̃
(

1 + aτn(h−1)−i + (baq
li − abql(n(h−1)−i)

)τn(h−1)
)

= χ̃
(

1 + aτn(h−1)−i
)
· ψ
(
baq

li − abq−li
)
. (4.5)

If i < n(h− 1)/2, then since li is not divisible by n and ψ has trivial Gal(Fqn/Fq)-stabilizer, it
follows from (4.5) that if b 6= 0, then 1 + bτ i does not centralize χ̃. Now assume we are in Case 2
and that i = n(h− 1)/2. If b ∈ Fqn r Fqn/2 and a ∈ Fqn/2 , then (4.5) simplifies to

χ̃(1 + aτ i) · ψ
(
a(b− bqli)

)
= χ̃(1 + aτ i) · ψ

(
a(b− bqn/2)

)
.

Every character of Fqn/2 has exactly qn/2 extensions to Fqn , and since ψ has trivial Gal(Fqn/Fq)-
stabilizer, it follows that ψ(a(b − bqn/2)) = 1 for all a ∈ Fqn/2 if and only if b ∈ Fqn/2 . Hence

1 + bτ i does not centralize χ̃ and this completes the proof. �

5. Juggling sequences and the varieties Xh

We give a description of Xh in terms of juggling sequences that will be crucial in understanding
the cohomology groups H i

c(Xh,Q`). In this section, we also include some technical lemmas that
will be used in the proof of Theorem 6.4. As usual, for any integer m, let [m] be the unique
integer with 1 ≤ [m] ≤ n such that m ≡ [m] modulo n.
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5.1. Juggling sequences. We recall the combinatorial notion of a juggling sequence [BEGW].

Definition 5.1. A juggling sequence of period n is a sequence (j1, . . . , jn) of nonnegative integers
satisfying the following condition:

The integers i+ ji are all distinct modulo n.

For a juggling sequence j = (j1, . . . , jn), define |j| :=
n∑
i=1

ji.

The following lemmas are straightforward.

Lemma 5.2 (Properties of juggling sequences). Let j = (j1, . . . , jn) be a juggling sequence.

(a) There exists a unique permutation σj ∈ Sn such that

(j1, . . . , jn) ≡ (σj(1)− 1, . . . , σj(n)− n) mod n.

(b) Let c = (12 · · ·n) ∈ Sn and define c · j := (jc(1), . . . , jc(n)). Then σc·j = c−1σjc. In
particular, the map j 7→ sgnσj is invariant under the action of the subgroup 〈c〉 ⊂ Sn.

Lemma 5.3. Let m ≥ 1 be an integer, let j be a juggling sequence of period n with |j| = mn,
and let ei ∈ Zn denote the n-tuple with a 1 in the ith coordinate and 0’s elsewhere.

(a) If j has a coordinate labelled mn, then j = (mn) · e1 up to the action of 〈c〉.
(b) Let r ≤ mn be a positive integer with n - r. If j consists of coordinates labelled only by 0,

r, and mn− r, then j = r · e1 + (mn− r) · e[r]+1 up to the action of 〈c〉.

5.2. The varieties Xh. We coordinatize Un,qh,k = An(h−1) in the following way. Let

A := {0, 1, . . . , n(h− 1)}. (5.1)

Then every element of Un,qh,k is of the form
∑
i∈A

xiτ
i, where we set x0 := 1.

Lemma 5.4. The scheme Xh ⊂ Un,qh,k is defined by the vanishing of the polynomials

gmn :=
∑
j

(−1)sgn(σj)xq
[l]

j1
xq

[2l]

j2
· · ·xq

[(n−1)l]

jn−1
(xq

n

jn
− xjn), 1 ≤ m ≤ h− 1,

where x0 := 1 and the sum ranges over juggling sequences j = (j1, . . . , jn) ∈ An with |j| = mn.

Proof. Let A = ιh,k(
∑
xiτ

i) (see Equation (2.3)) and let Ar,s denote the (r, s)th entry of A.
Then if we set xi = 0 for i /∈ A,

Ar,s =
∑
i∈Z

xq
[(r+k−1)l]−1

ni+s−r πi.

For 1 ≤ m ≤ h− 1, let cm denote the coefficient of πm in

detA =
∑
σ∈Sn

(−1)sgnσ
n∏
r=1

Ar,σ(r).

Then

cm =
∑
σ∈Sn

(−1)sgnσ
∑
|i|=m

n∏
r=1

xq
[(r+k−1)l]−1

nir+σ(r)−r ,

where i = (i1, . . . , in) ∈ Zn≥0. Then setting jr := nir + σ(r) − r defines a juggling sequence

j = (j1, . . . , jn) ∈ An with

|j| =
n∑
r=1

jr =
n∑
r=1

nir + σ(r)− r = mn.
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It is clear that every juggling sequence j ∈ An arises in this way, and we therefore have

cm =
∑
j

(−1)sgnσjxj1x
q[l]

j2
· · ·xq

[(n−1)l]

jn
,

where the sum ranges over juggling sequences j ∈ An with |j| = mn.
Recall thatXh is defined by the equations cqm−cm for 1 ≤ m ≤ h−1. Let c = (12 · · ·n) ∈ Sn and

let j be any juggling sequence with |j| = mn. By Lemma 5.2, ck ·j is a juggling sequence such that
|c ·j| = mn and sgn(σck·j) = sgn(σ). Moreover, j′ := (j′1, . . . , j

′
n) := ck ·j = (j[k+1], j[k+2], . . . , j[k])

has the property that

(xj1x
q[l]

j2
xq

[2l]

j3
· · ·xq

[(n−1)l]

jn
)q = xq

n

j′1
xq

[l]

j′2
xq

[2l]

j′3
· · ·xq

[(n−1)l]

j′n
.

Thus we may arrange the monomials in cqm − cm so that we obtain:

cqm − cm =
∑
j

(−1)sgnσjxq
[l]

j1
xq

[2l]

j2
· · ·xq

[(n−1)l]

jn−1
(xq

n

jn
− xjn). �

Corollary 5.5. Xh is smooth integral affine scheme of pure dimension (n− 1)(h− 1) over Fp.

Proof. By Lemma 5.4, we know that

Xh = Spec
(
Fp[x0, x1, . . . , xn(h−1)]/(g0, gn, g2n, . . . , g(h−1)n)

)
,

where g0 := 1−x0 and gni for 1 ≤ i ≤ h− 1 is as in the lemma. Let J = dg
dx be the corresponding

Jacobian matrix and consider the h× h square submatrix

M :=

(
∂gnr
∂xns

)
0≤r,s≤h−1

.

Obviously

∂g0

∂xns
=

{
−1 if s = 0,

0 otherwise.

Since we are working in characteristic p, for any 1 ≤ r ≤ h− 1, we have

∂gnr
∂xi

= −
∑
j

(−1)sgn(σj)xq
[l]

j1
xq

[2l]

j2
· · ·xq

[(n−1)l]

jn−1
,

where the sum ranges over juggling sequences j = (j1, . . . , jn) ∈ An such that |j| = nr and jn = i.
It follows that if h− 1 ≥ s ≥ r ≥ 1, then

∂gnr
∂xns

=

{
−1 if s = r,

0 if s > r.

This implies that M is lower-triangular with −1 along the diagonal and hence is invertible at
every point in Xh. It follows then that Xh has dimension n(h− 1) + 1− h = (n− 1)(h− 1). �

5.3. Technical lemmas. This section contains technical lemmas that will be used in the proof
of Theorem 6.4. We recommend the reader to return to this section during or after Section 6.

Recall the definitions of A and A′ from Equations (5.1) and (4.1). The first two lemmas are
straightforward computations.

Lemma 5.6. For any elements

s(x) :=
∑

i∈ArA′
xiτ

i and y := 1 +
∑
i∈A′

yiτ
i
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in Un,qh,k (Fq), we have s(x) · y =
∑
i∈A

aiτ
i where

ai =


xi +

∑
j≡i (mod n)

1<j<i

xjy
qlj

i−j if i ∈ ArA′,

yi +
∑

j∈ArA′
1≤j<i

xjy
qlj

i−j if i ∈ A′.

Lemma 5.7. Suppose 1 +
∑
i∈A′

xiτ
i = Lqn(1 +

∑
i∈A′ yiτ

i) ∈ H ′(Fq). Then

xi = yq
n

i − yi + δi,

where δi is some polynomial in yj for j < i.

Lemma 5.8. Let s(x) :=
∑

i∈ArA′
xiτ

i ∈ Un,qh,k and for any integer m with 1 ≤ m ≤ h− 1, let gmn

be as in Lemma 5.4. Suppose that for any y, y′ ∈ H ′ with Lqn(y) = Lqn(y′),

gmn(s(x) · y) = 0 ⇐⇒ gmn(s(x) · y′) = 0.

If Lqn(y) = 1 +
∑

i∈A′ xiτ
i, then gmn(s(x) · y) is a polynomial in xi for i ∈ A with i ≤ mn.

This is a corollary of Proposition 3.6.

Proof. For i ∈ A′, let xi be the polynomials determined by Lqn(1 +
∑
i∈A′

yiτ
i) = 1 +

∑
i∈A′

xiτ
i. For

i ∈ ArA′, define yi := xi. Consider the rings

R = Fq[yi : i ∈ A] ⊃ S = Fq[xi : i ∈ A]

and their fraction fields

E = FracR = Fq(yi : i ∈ A) ⊃ F = FracS = Fq(xi : i ∈ A).

It is clear that S ↪→ R is a finite map of polynomial rings.
We now show that E/F is a Galois extension of degree qn#A′ . For every ζ = 1 +

∑
i∈A′ ζiτ

i ∈
H ′(Fqn), the assignment

yi 7→ y′i, for i ∈ A′, where yζ = 1 +
∑
i∈A′

y′iτ
i

defines an automorphism of E fixing F . Indeed, Lqn(yζ) = Frqn(yζ) · (yζ)−1 = Lqn(y) since

ζ ∈ H ′(Fqn) = H ′(Fq)Frqn . On the other hand, [E : F ] = qn#A′ since by Lemma 5.7, each yi for
i ∈ A′ satisfies a separable degree-qn polynomial. It follows that # Aut(E/F ) ≥ |H ′(Fqn)| =

qn#A′ = [E : F ], and so E/F is Galois.
We are now in a position to apply Proposition 3.6. Fix 1 ≤ m ≤ h−1. For each σ ∈ Gal(E/F ),

σ(gmn(s(x) · y)) = gmn(s(x) · y′), for some y′ ∈ H ′ with Lqn(y′) = Lqn(y).

Hence by assumption, we know that for each σ ∈ Gal(E/F ),

gmn(s(x) · y) = 0 ⇐⇒ σ(gmn(s(x) · y)) = 0.

By the Nullstellensatz, this implies that the ideal generated by gmn(s(x) · y) in R is equal to
the ideal generated by σ(gmn(s(x) · y)) for all σ ∈ Gal(E/F ). Thus by Proposition 3.6, we have
that in fact gmn(s(x) · y) ∈ S. Finally, since gmn(s(x) · y) ∈ R is a polynomial in xi and yi for
i ≤ mn by Lemma 5.4, it follows by Lemma 5.7 that gmn(s(x) · y) ∈ S is a polynomial in xi for
i ≤ mn. �

To prove Proposition 6.1, we will need a more precise result than Lemma 5.8.
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Lemma 5.9. Let s(x), y ∈ Un,qh,k (Fq) be as in Lemma 5.6 and let a = (a0, a1, . . . , an(h−1)) where

s(x) · y =
∑
i∈A

aiτ
i. Let Lqn(y) := 1 +

∑
i∈A′

xiτ
i and assume that for any y, y′ ∈ H ′(Fq) with

Lqn(y) = Lqn(y′), we have gmn(s(x) · y) = 0 if and only if gmn(s(x) · y′) = 0.

(a) For any 1 ≤ m ≤ h− 1, the polynomial gmn(a) is a polynomial in xi for 1 ≤ i ≤ mn and

gmn(a) = xmn + (polynomial in xi for i < mn).

(b) Let I := {i : n(h− 1)/2 < i ≤ n(h− 1), n - i} and define

r1 := max(I), ri := max(I r {r1, . . . , ri−1}), for 2 < i ≤ #I.

Pick a positive integer d0 ≤ #I and set

td0(x) := xq
l(n(h−1)−rd0 )−n

+ xq
l(n(h−1)−rd0 )−2n

+ · · ·+ xq
n−[lrd0

]

.

If xri = x(h−1)n−ri = 0 for 1 ≤ i ≤ d0 − 1, then the contribution of xrd0 to g(h−1)n(a)
occurs in the expression

xq
n

n(h−1)−rd0
xq

n−[lrd0
]

rd0
− xq

[lrd0
]

n(h−1)−rd0
xrd0 + (xn(h−1)−rd0 td0(xrd0 ))q

n − xn(h−1)−rd0 td0(xrd0 ).

Proof. We first prove (a). By Lemma 5.4, gmn(a) is a polynomial in ai for i ≤ mn, and by
Lemma 5.6, ymn only appears in ai for i ≥ mn. Therefore by Lemma 5.3(a), the contribution of
ymn to gmn(a) must come from the juggling sequence (0, . . . , 0,mn), and hence we have

gmn(a) = yq
n

mn − ymn + (polynomial in xi, yi for i < mn)

= xmn + (polynomial in xi, yi for i < mn) (by Lemma 5.7)

= xmn + (polynomial in xi for i < mn) (by Lemma 5.8).

We now prove (b). By Lemma 5.6 and the vanishing assumption, yrd0 only appears in ai
for i = rd0 and i = (h− 1)n. Furthermore, any juggling sequence j = (j1, . . . , jn) wherein yrd0
contributes to g(h−1)n nontrivially must have the following criteria:

• jn 6= 0
• For 1 ≤ i ≤ d0 − 1, the numbers ri and (h− 1)n− ri do not appear in j.

It therefore follows from Lemma 5.3 that the only terms in g(h−1)n involving yrd0 occur exactly
in the summands corresponding to the juggling sequences

(h− 1)n · en ←→ 1 ∈ Sn,
rd0 · en−r̄d0 + ((h− 1)n− rd0) · en ←→ (n− r̄d0 , n) ∈ Sn,
((h− 1)n− rd0) · er̄d0 + rd0 · en ←→ (r̄d0 , n) ∈ Sn.

By Lemma 5.4, this exactly corresponds to the following summands in g(h−1)n(a):

(aq
n

(h−1)n − a(h−1)n)− aq
[l(n−r̄d0 )]

rd0
(aq

n

(h−1)n−rd0
− a(h−1)n−rd0 )− aq

[lr̄d0
]

(h−1)n−rd0
(aq

n

rd0
− ard0 ).

Thus by Lemma 5.6, we see that the only terms involving yrd0 occur in the expression(
(xn(h−1)−rd0y

q
l(n(h−1)−rd0 )

rd0
)q
n − xn(h−1)−rd0y

q
l(n(h−1)−rd0 )

rd0

)
− yq

n−[lr̄d0
]

rd0

(
xq

n

n(h−1)−rd0
− xn(h−1)−rd0

)
− xq

[lr̄d0
]

n(h−1)−rd0

(
yq

n

rd0
− yrd0

)
. (5.2)

By Lemma 5.7, xrd0 = yq
n

rd0
− yrd0 + δrd0 . By Lemma 5.8, the terms in δrd0 will contribute

elsewhere to a polynomial that can be written in terms of xi for i ∈ A with i < rd0 . (The
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condition i < rd0 can be seen from the proof of Lemma 5.8, proceeds by showing that yi is a
polynomial in xj for j ≤ i.) Thus the contribution of xrd0 in (5.2) simplifies to

xq
n

n(h−1)−rd0

(
yq

l((h−1)n−rd0 )+n

rd0
− yq

n−[lrd0
]

rd0

)
− xn(h−1)−rd0

(
yq

l(n(h−1)−rd0 )

rd0
− yq

n−[lrd0
]

rd0

)
− xq

[lrd0
]

n(h−1)−rd0

(
yq

n

rd0
− yrd0

)
= xq

n

n(h−1)−rd0
td0(xrd0 )q

n
+ xq

n

n(h−1)−rd0
xq

n−[lrd0
]

rd0
− xn(h−1)−rd0 td0(xrd0 )− xq

[lrd0
]

n(h−1)−rd0
xrd0 ,

where the last equality holds modulo terms without xrd0 . �

6. The representations H•c (Xh)[χ]

In this section, we prove the irreducibility of H i
c(Xh,Q`)[χ] and its vanishing outside a single

degree. The key proposition, which we prove in Section 6.1, is:

Proposition 6.1. For any χ ∈ T ,

dim HomUn,qh,k (Fqn )

(
ρχ, H

i
c(Xh,Q`)

)
= δi,(n−1)(h−1),

where ρχ ∈ G is the representation described in Theorem 4.3. Moreover, Frqn acts on the

cohomology group H
(n−1)(h−1)
c (Xh,Q`)[χ] via multiplication by (−qn)(n−1)(h−1).

Recall that F×qn n Un,qh,k (Fqn) ∼= R×h,k,n,q(Fqn) and that F×qn acts on Xh by conjugation. For any

z ∈ F×qn and any g, h ∈ H(Fqn), let (z, h, g) denote the map Xh → Xh given by x 7→ z(h∗x ·g)z−1.
We prove the following proposition in Section 6.2.

Proposition 6.2. If ζ ∈ F×qn has trivial Gal(Fqn/Fq)-stabilizer, then for any g ∈ H(Fqn),

Tr((ζ, 1, g)∗;H(n−1)(h−1)
c (Xh,Q`)[χ]) = (−1)(n−1)(h−1)χ(g).

From the multiplicity-one statement of Proposition 6.1, the nonvanishing statement of Propo-
sition 6.2, and a counting argument coming from Theorem 4.3, one obtains the following two
results, which we prove simultaneously in Section 6.3.

Proposition 6.3. The parametrization

T → G, χ 7→ ρχ

described in Theorem 4.3 is a bijection.

Theorem 6.4. For any χ ∈ T , the Un,qh,k (Fqn)-representation H i
c(Xh,Q`)[χ] is irreducible when

i = (n−1)(h−1) and vanishes otherwise. Moreover, for χ, χ′ ∈ T , we have H
(n−1)(h−1)
c (Xh,Q`)[χ] ∼=

H
(n−1)(h−1)
c (Xh,Q`)[χ

′] if and only if χ = χ′.

6.1. Proof of Proposition 6.1. Note that from Section 4, the representation

Wχ := Ind
Un,qh,k (Fqn )

H′(Fqn ) (χ])

is irreducible and isomorphic to ρχ in Case 1, and is a direct sum of qn/2 copies of ρχ in Case 2.
Thus the statement of the proposition is equivalent to:

dim HomUn,qh,k (Fqn )

(
Wχ, H

i
c(Xh,Q`)

)
=

{
δi,(n−1)(h−1) if (n, h) is in Case 1,

qn/2 · δi,(n−1)(h−1) if (n, h) is in Case 2.
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We use Proposition 3.3 to reduce the computation of the space HomUn,qh,k (Fqn )

(
Wχ, H

i
c(Xh,Q`)

)
to a computation of the cohomology of a certain scheme S with coefficients in a certain con-
structible Q`-sheaf F . Then, to compute H i

c(S,F ), we inductively apply Proposition 3.4. This
will allow us to reduce the computation to a computation involving a 0-dimensional scheme in
Case 1 and a 1-dimensional scheme in Case 2. We will treat these cases simultaneously until the
final step.

Step 0. We first establish some notation. Note the resemblance to the notation in Lemma 5.9.

• Let

I := {i : n(h− 1)/2 < i ≤ n(h− 1), n - i}
J := {i : 1 ≤ i ≤ n(h− 1)/2, n - i}

and set d := #I = b(n− 1)(h− 1)/2c. Note that A′ ∪ J = {1, 2, . . . , n(h− 1)}.
• Set I0 := I and J0 := J . For 1 ≤ i ≤ d, let

ri := max Ii−1, Ii := Ii−1 r {ri}, Ji := Ji−1 r {(h− 1)n− ri}.

Note that Id = ∅. In Case 1, Jd = ∅, and in Case 2, Jd = {n(h− 1)/2}.
• For a finite set A, we will write A[A] to denote the affine space A#A with coordinates

labelled by A.
• For m ∈ N, we will denote by [m] the unique integer in {1, . . . , n} with m ≡ [m] modulo
n, and denote by m̄ the unique integer in {0, . . . , n− 1} with m ≡ m̄ modulo n.
• For any finite-type scheme S over Fqn , we consider H•c (S,Q`) :=

⊕
i∈ZH

i
c(S,Q`) as a

finite-dimensional graded vector space over Q` equipped with an action of Frqn . We write

H i
c(S,Q`)[−1] := H i−1

c (S,Q`) and we write H i
c(S,Q`)(−1), to denote that the action of

Frqn on H i
c(S,Q`) is multiplied by qn.

Step 1. We apply Proposition 3.3 to the following set-up:

• Un,qh,k together with the connected subgroup H ′, both of which are defined over Fqn
• a morphism s : Un,qh,k/H

′ → Un,qh,k defined by identifying Un,qh,k/H
′ with affine space A[J ]

and setting s : (xi)i∈J 7→ 1 +
∑

i∈J xiτ
i

• the algebraic group morphism f : H ′ → H given by
∑

i∈A′ xiτ
i 7→

∑
n|i xiτ

i

• a character χ : H(Fqn)→ Q×`
• Yh := Lqn(Xh), a locally closed subvariety of Un,qh,k satisfying Xh = L−1

qn (Yh)

Since Xh has a right-multiplication action of Un,qh,k (Fqn), the cohomology groups H i
c(Xh,Q`)

inherit a Un,qh,k (Fqn)-action. By Proposition 3.3, we have graded vector space isomorphisms

HomUn,qh,k (Fqn )

(
Wχ, H

•
c (Xh,Q`)

) ∼= H•c (β−1(Yh), P ∗Lχ)

compatible with the action of Frqn . Here, Lχ is the local system on H corresponding to χ,
the morphism β : (Un,qh,k/H

′) ×H ′ → Un,qh,k is given by β(x, g) = s(Frqn(x)) · g · s(x)−1, and the

morphism P : β−1(Yh)→ H is the composition β−1(Yh) ↪→ (Un,qh,k/H
′)×H ′ pr−→ H ′

f−→ H.

We now work out an explicit description of β−1(Yh) ⊂ A[J ]×H ′. For 1 ≤ m ≤ h−1, let gmn be
the polynomial defined in Lemma 5.4. Write x = (xi)i∈J ∈ A[J ] and g = 1+

∑
i∈A′ xiτ

i ∈ H ′(Fq).
For any y = 1 +

∑
i∈A′ yiτ

i ∈ H ′(Fq) such that Lqn(y) = g, we have

β(x, g) = Frqn(s(x)) · Lqn(y) · s(x)−1 = Lqn(s(x) · y).
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We see that β(x, g) ∈ Yh if and only if s(x) · y ∈ Xh. Let s(x) · y = 1 +
∑
aiτ

i. By Lemma 5.4,
we know that s(x) · y ∈ Xh if and only if gmn(a) = 0 for m = 1, . . . , h− 1. Recall from Lemma
5.8 that using the identity Lqn(y) = 1 +

∑
i∈I xiτ

i, each polynomial gmn(a), which a priori is a
polynomial in xj for j ∈ J and yi for i ∈ A′, is in fact a polynomial in xi for 1 ≤ i ≤ n(h− 1).

Step 2. By Lemma 5.9(a), for each m = 1, . . . , h− 1, the polynomial gmn(s(x) · y) is of the form
xmn+(stuff with xi for i < mn). Thus the coordinates xmn of β−1(Yh) ⊂ A[A′∪J0] are uniquely
determined by the other coordinates. Equivalently, the morphism (xi)i∈A′∪J0 7→ (xi)i∈I0∪J0 gives

an isomorphism β−1(Yh) ∼= A[I0 ∪ J0] =: S(0). Then

H•c (β−1(Yh), P ∗Lχ) = H•c (S(0), (P (0))∗Lχ),

where P (0) : S(0) → H is the morphism determined by P and the isomorphism β−1(Yh) ∼= S(0);
it is the map determined by (xi)i∈I0∪J0 7→ (xn, x2n, . . . , x(h−1)n), where for m = 1, . . . , h− 1, we
view xmn as a polynomial in xi for i ∈ I0 ∪ J0.

Step 3: Base case. We now apply Proposition 3.4 to the following set-up:

• Let S(0) = A[I0 ∪ J0].

• Let S
(0)
2 = A[I1 ∪ J0].

• Note that S(0) = S
(0)
2 × A[{r1}].

• Let f : S
(0)
2 → Ga be the morphism (xi)i∈I1∪J0 7→ xn(h−1)−r1 .

• Set v ∈ S(0)
2 and w = xr1 . By Lemma 5.9, we may write

P (0)(v, w) = g
(
f(v)q

[lr1]
w − f(v)q

n
wq

n−[lr1] − (f(v)t1(w))q
n

+ f(v)t1(w)
)
· P (0)

2 (v),

where g : Ga → H is the morphism z 7→ 1 + zτn(h−1). Observe that this is the negative
of the expression appearing in Lemma 5.9 since we solved for x(h−1)n in the equation
g(h−1)n(s(x) · y) = 0.

• Let S
(0)
3 = A[I1 ∪ J1] so that this is the subscheme of S

(0)
2 = A[I1 ∪ J0] defined by f = 0,

and let P
(0)
3 := P

(0)
2 |S(0)

3

: S
(0)
3 → H.

Then by Proposition 3.4, as graded vector spaces with an action of Frqn , we have

H•c (S(0), (P (0))∗Lχ) ∼= H•c (S
(0)
3 , (P

(0)
3 )∗Lχ)(−1)[−2].

Step 3: Inductive step. We now describe the inductive step for d0 ≤ d. We apply Proposition 3.5
to the following set-up:

• Let S(d0) := S
(d0−1)
3 = A[Id0 ∪ Jd0 ].

• Let S
(d0)
2 = A[Id0+1 ∪ Jd0 ].

• Note that S(d0) = S
(d0)
2 × A[{rd0}].

• Let f : S
(d0)
2 → Ga be the morphism (xi)i∈Id0+1∪Jd0 7→ xn(h−1)−rd0 .

• Set v ∈ S(d0)
2 and w = xrd0 . Let td0(x) be as in Lemma 5.9 so that, by the same lemma,

the morphism P (d0) := P
(d0−1)
3 : S(d0) → H has the following form:

P (d0)(v, w) = g

(
f(v)q

[lrd0
]

w − f(v)q
n
wq

n−[lrd0
]

− (f(v)td0(w))q
n

+ f(v)td0(w)

)
· P (d0)

2 (v),

where as in Step 3: Base case, the morphism g : Ga → H is z 7→ 1 + zτn(h−1).
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• Let S
(d0)
3 = A[Id0+1∪Jd0+1] so that this is the subscheme of S

(d0)
2 = A[Id0+1∪Jd0 ] defined

by f = 0, and let P
(d0)
3 := P

(d0)
2 |

S
(d0)
3

: S
(d0)
3 → H.

Then by Proposition 3.4, as graded vector spaces with an action of Frqn , we have

H•c (S(d0), (P (d0))∗Lχ) ∼= H•c (S
(d0)
3 , (P

(d0)
3 )∗Lχ)(−1)[−2].

Step 4: Case 1. Step 3 allows us to reduce the computation about the cohomology of S(0) to a

computation about the cohomology of S(d) := S
(d−1)
3 , which is a point. Thus Frqn acts trivially

on the cohomology of S(d) and for all i ∈ Z,

dimH i
c(S

(d), (P (d))∗Lχ) = δ0,i.

Step 4: Case 2. Step 3 allows us to reduce the computation about the cohomology of S(0) to a

computation about the cohomology of S(d) := S
(d−1)
3 = A[{n(h− 1)/2}]. The morphism P (d) is

P (d) : S(d) → H, an(h−1)/2 7→ 1 + aq
n/2

n(h−1)/2(aq
n

n(h−1)/2 − an(h−1)/2)τn(h−1).

Then we claim that for all i ∈ Z
H i
c(Ga, (P

(d))∗Lχ) = H i
c(Ga, P

∗Lψ),

where ψ is the restriction of χ to Fqn → Q×` and P0 is the morphism

P0 : Ga → Ga, x 7→ xq
n/2

(xq
n − x).

We now compute the cohomology groups H i
c(Ga, P

∗Lψ) in the same way as in [BW16, Section

6.5.6 and Proposition 6.6.1]. We may write P = f1◦f2 where f1(x) = xq
n/2−x and f2(x) = xq

n/2+1.
Since f1 is a group homomorphism, then f∗1Lψ ∼= Lψ◦f1 . By assumption ψ has trivial Gal(Fqn/Fq)-
stabilizer, so ψ ◦ f1 is nontrivial. Furthermore, ψ ◦ f1 is trivial on Fqn/2 . Thus the character

ψ ◦ f1 : Fqn → Q×` satisfies the hypotheses of [BW16, Proposition 6.6.1], and thus Frqn acts on

H1
c (Ga, P

∗
0Lψ) via multiplication by −qn/2 and

dimH i
c(Ga, P

∗
0Lψ) = qn/2 · δ1,i.

Thus for all i ∈ Z,

dimH i
c(S

(d), (P (d))∗Lχ) = qn/2 · δ1,i.

Step 5. We now put together all of the boxed equations. For all i ∈ Z,

HomUn,qh,k (Fqn )

(
Wχ, H

i
c(Xh,Q`)

) ∼= H i
c(β
−1(Yh), P ∗Lχ)

= H i
c(S

(0), (P (0))∗Lχ)

∼= H i−2
c (S

(0)
3 , (P

(0)
3 )∗Lχ)(−1)

= H i−2
c (S(1), (P (1))∗Lχ)(−1)

∼= H i−2d
c (S(d), (P (d))∗Lχ)(−d).

Therefore if we are in Case 1, then

dim HomH(Fqn )

(
Wχ, H

i
c(Xh,Q`)

)
= δ(n−1)(h−1),i.

Moreover, the Frobenius Frqn acts on HomUn,qh,k (Fqn )

(
Wχ, H

(n−1)(h−1)
c (Xh,Q`)

)
via multiplication

by the scalar qn(n−1)(h−1)/2.
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If we are in Case 2, then

dim HomUn,qh,k (Fqn )

(
Wχ, H

i
c(Xh,Q`)

)
= qn/2 · δ(n−1)(h−1),i.

Moreover, the Frobenius Frqn acts on HomUn,qh,k (Fqn )

(
Wχ, H

(n−1)(h−1)
c (Xh,Q`)

)
via multiplication

by the scalar −qn(n−1)(h−1)/2.
Finally, observe that if we are in Case 1, then (n− 1)(h− 1) is even and if we are in Case 2,

then (n− 1)(h− 1) is odd, and therefore Frqn acts on H
(n−1)(h−1)
c (Xh,Q`)[χ] by multiplication

by (−qn)(n−1)(h−1).

6.2. Proof of Proposition 6.2. By Corollary 5.5, Xh is a separated, finite-type scheme over Fqn
and the action of (ζ, h, g) ∈ F×qn ×H(Fqn)×Un,qh,k (Fqn) on Xh defines a finite-order automorphism.

Moreover, (ζ, h, g) = (1, h, g) · (ζ, 1, 1), where (1, h, g) is a p-power-order automorphism and
(ζ, 1, 1) is an automorphism with prime-to-p order. By the Deligne–Lusztig fixed point formula
[DL76, Theorem 3.2],∑

i

(−1)i Tr((ζ, h, g)∗;H i
c(Xh,Q`)) =

∑
i

(−1)i Tr((1, h, g)∗;H i
c(X

ζ
h,Q`)).

It is easy to calculate Xζ
h. Indeed, it can be identified with the subvariety of all elements of Un,qh,k

of the form 1 +
∑

1≤i≤h−1 aniτ
ni. Then the determinant condition on Xh implies that ani ∈ Fqn

and hence Xζ
h is just a discrete set naturally identified with H(Fqn) and the left and right actions

of H(Fqn) are given by left and right multiplication. Therefore H i
c(X

ζ
h,Q`) = 0 for i > 0 so∑

i

(−1)i Tr((1, h, g)∗;H i
c(X

ζ
h,Q`)) = Tr((1, h, g)∗;H0

c (Xζ
h,Q`)).

Furthermore, as a (H(Fqn)×H(Fqn))-representation, H0
c (Xζ

h,Q`) is the pullback of the regular
representation of H(Fqn) along the multiplication map H(Fqn)×H(Fqn)→ H(Fqn). Thus

H0
c (Xζ

h,Q`) =
⊕

χ0 : H(Fqn )→Q×`

χ0 ⊗ χ0

as representations of H(Fqn)×H(Fqn). Therefore∑
h∈H(Fqn )

χ(h)−1
∑
i

(−1)i Tr((ζ, h, g)∗;H i
c(Xh,Q`)) = χ(g) ·#H(Fqn).

This is equivalent to ∑
i

(−1)i Tr((ζ, 1, g)∗;H i
c(Xh,Q`)[χ]) = χ(g),

and since H i
c(Xh,Q`)[χ] = 0 for i 6= (n− 1)(h− 1) by Proposition 6.1, the desired result follows.

6.3. Proof of Proposition 6.3 and Theorem 6.4. By Proposition 6.1, any ρ ∈ G occurs

exactly once in H
(n−1)(h−1)
c (Xh,Q`). Recalling that G is the set of irreducible representations

of Un,qh,k (Fqn) whose central character has trivial Gal(L/K)-stabilizer, observe that ρ must oc-

cur in H
(n−1)(h−1)
c (Xh,Q`)[χ] for some χ ∈ T . Conversely, each irreducible constituent of

H
(n−1)(h−1)
c (Xh,Q`)[χ] must be in G, and therefore⊕

ρ∈G
ρ =

⊕
χ∈T

H(n−1)(h−1)
c (Xh,Q`)[χ].
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By Theorem 4.3, the left-hand side has at most #T irreducible constituents. By Proposition 6.2,

each H
(n−1)(h−1)
c (Xh,Q`)[χ] for χ ∈ T is nonzero, and therefore the right-hand side has at least

#T irreducible constituents. Therefore both sides must have exactly #T irreducible constituents,

#G = #T , and the Un,qh,k (Fqn)-representations H
(n−1)(h−1)
c (Xh,Q`)[χ] for χ ∈ T are irreducible

and mutually nonisomorphic. This proves Proposition 6.3 and Theorem 6.4.

7. Division algebras and Jacquet–Langlands transfers

Our goal in this final section is to understand two connections. The first, explained in Section
7.1, is to unravel the relationship between Theorem 6.4 and the representations arising from
Deligne–Lusztig constructions of division algebras. Because Theorem 6.4 proves a conjecture of
Boyarchenko (see [B12, Conjecture 5.18]) for primitive characters χ, we can use [B12, Proposition
5.19] to explicitly describe this relationship.

The second connection, explained in Section 7.2, is to unravel the relationship between
the representations described in Section 7.1 with respect to the local Langlands and Jacquet–

Langlands correspondences. We prove that the correspondence θ 7→ H•(X̃)[θ] is consistent with
the correspondence given by the composition of the local Langlands and Jacquet–Langlands
correspondences, and therefore the homology of Deligne–Lusztig constructions gives a geometric
realization of the Jacquet–Langlands correspondence between division algebras of different
invariants.

7.1. Deligne–Lusztig constructions for division algebras. We temporarily drop the as-
sumption on the characteristic of K as the following discussion is not restricted to the positive

characteristic setting. Let K̂nr be the completion of the maximal unramified extension of K and

let ϕ denote the Frobenius automorphism of K̂nr (inducing x 7→ xq on the residue field).

Consider the following automorphisms of GLn(K̂nr):

F1(g) = $−1
k ϕ(g)$k, $k =

(
0 1n−1

πk 0

)
,

F2(g) = $−kϕ(g)$k, $ =

(
0 1n−1

π 0

)
.

Here, we write ϕ(g) to mean the matrix obtained by applying ϕ to each entry of g. For i = 1, 2,
let Gi be the algebraic group over K with Frobenius Fi. Let Ti ⊂ Gi be the algebraic group

corresponding to the diagonal matrices over K̂nr. Then we have

G1(K)
∼=−→ G2(K), T1(K)

∼=−→ T2(K),

where the isomorphism is given by f : g 7→ γ−1 · g · γ, where γ = γ0 · diag(πλ1 , . . . , πλn) for a
permutation matrix γ0 and for some λi ∈ Z. Since the image of $ in the Weyl group has order
n, we may choose γ0 so that e1 · γ0 = e1, where e1 is the first elementary row vector.

Let G̃ := Gi(K̂
nr) = GLn(K̂nr) and T̃ := Ti(K̂nr). Let B ⊂ Gi ⊗K K̂nr be the Borel subgroup

consisting of upper triangular matrices and let U be its unipotent radical. Note that T̃ consists

of all diagonal matrices and Ũ := U(K̂nr) consists of unipotent upper triangular matrices. Let

Ũ− ⊂ GLn(K̂nr) denote the subgroup consisting of unipotent lower triangular matrices.

The Deligne–Lusztig construction X associated to the pair (GLn(K̂nr), F1) described in [L79]
is the quotient

X := (Ũ ∩ F−1
1 (Ũ))\{A ∈ G̃ : F1(A)A−1 ∈ Ũ}.

The quotient X carries an action of T1(K)×G1(K) ∼= L× ×D× induced by the action

(t, g) ∗ x := t−1xg, for t ∈ T1(K), g ∈ G1(K), and x ∈ G̃.
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By [B12, Corollary 4.3], X can be identified with the set

X̃ := {A ∈ G̃ : F1(A)A−1 ∈ Ũ ∩ F1(Ũ−)},

and this choice of section X → G̃ respects the (T1(K)×G1(K))-action. By [B12, Lemma 4.4], a

matrix A ∈ G̃ belongs to X̃ if and only if it has the form

A = x(A0, . . . , An−1) :=


A0 A1 A2 · · · An−1

πkϕ(An−1) ϕ(A0) ϕ(A1) · · · ϕ(An−2)
πkϕ2(An−2) πkϕ2(An−1) ϕ2(A0) · · · ϕ2(An−3)

...
...

. . .
. . .

...
πkϕn−1(A1) πkϕn−1(A2) πkϕn−1(A3) · · · ϕn−1(A0)

 , (7.1)

where Ai ∈ K̂nr for 0 ≤ i ≤ n− 1 and det(A) ∈ K×. We remark here that in [B12], k is assumed
to be 1, but the proofs of [B12, Corollary 4.3, Lemma 4.4] work for arbitrary k by simply replacing

π with πk. (In fact, the identification of X with X̃ and the explicit description in (7.1) hold
without our running hypothesis that (k, n) = 1.) We may therefore write

X̃ =
⊔
m∈Z

X̃(m),

where X̃(m) consists of all A ∈ X̃ with det(A) ∈ πmO×K . Note that the action of $k takes each

X̃(m) isomorphically onto X̃(m+k), and the action of π takes each X̃(m) isomorphically onto

X̃(m+n). By assumption, (k, n) = 1 and so the X̃(m) are all isomorphic. It is therefore sufficient

to show that X̃(0) can be realized as the Fq-points of a scheme. To do this, we use Lemma 7.1,
whose proof is very similar to that of [B12, Lemma 4.5].

Lemma 7.1 (Boyarchenko, [B12, Lemma 4.5]). If a matrix A of the form 7.1 satisfies det(A) ∈
O×K , then Aj ∈ π−bjk/ncÔnr

K for 0 ≤ j ≤ n− 1 and A0 ∈ (Ônr
K )×.

Proof. Write A = (aij) and let vj = ν(Aj) for 0 ≤ j ≤ n− 1. By definition,

det(A) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i).

Let τ ∈ Sn be the n-cycle given by (123 · · ·n). Note that τ j(i) = [i+ j] and hence the summand
of det(A) corresponding to τ j only involves Aj . It is easy to see that

ν
(∏

ai,τ j(i)
)

= n · vj + j · k, for 0 ≤ j ≤ n− 1.

We now calculate the valuation of the summand corresponding to a fixed σ ∈ Sn, where σ is not
a power of τ . Set

α(i) :=

{
σ(i)− i, if i ≤ σ(i),

σ(i)− i+ n, if i > σ(i),
β(i) :=

{
0, if i ≤ σ(i),

k, if i > σ(i).

Then the valuation of the σ-summand is
∑

(vα(i) + β(i)). Since
∑

(σ(i) − i) = 0, we have
k
n

∑
α(i) =

∑
β(i), and therefore

ν
(∏n

i=1 ai,σ(i)

)
=
∑n

i=1(vα(i) + β(i)) = 1
n

∑n
i=1(nvα(i) + kα(i)).

Since (k, n) = 1, the set {nvj + jk : 0 ≤ j ≤ n− 1} consists of n distinct numbers, and hence

ν(det(A)) = min
0≤j≤n−1

{nvj + jk}.
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By assumption ν(det(A)) = 0, and this implies that

nvj + jk ≥ 0, for 0 ≤ j ≤ n− 1. (7.2)

Conversely, since (k, n) = 1, if (7.2) is satisfied, then ν(det(A)) = 0 only if v0 = ν(A0) = 0. �

We have now shown that a matrix of the form (7.1) with determinant in O×K is of the form

A(A0, A1, . . . , An−1) := x(A′0, A
′
1, . . . , A

′
n−1),

for some A0 ∈ (Ônr
K )× and Aj ∈ Ônr

K for 1 ≤ j ≤ n− 1, where we write

A′j := π−bjk/ncAj , for 0 ≤ j ≤ n− 1.

For any integer h ≥ 1, the set{
A(A0, A1, . . . , An−1) : A0 ∈ (Ônr

K /π
hÔnr

K )×,

Aj ∈ Ônr
K /π

h−1Ônr
K for 1 ≤ j ≤ n− 1,

det(A(A0, . . . , An−1)) ∈ (OK/πhOK)×
}

can be naturally viewed as the set of Fq-points of a finite-type scheme X̃
(0)
h over Fq. If R is an

Fq-algebra, then for h ≥ 1, let Wh(R) = R[[π]]/(πh) if K has positive characteristic and let Wh(R)
be the R-points of the truncated ramified Witt vectors of K if K has characteristic zero. Then
determinant of a matrix A(A0, A1 . . . , An−1) for A0 ∈Wh(R)× and A1, . . . , An−1 ∈Wh−1(R) can

be viewed as an element of Wh(R)×, and X̃
(0)
h is then the closed Fq-subscheme of W×h ×Wn−1

h−1
defined as the fiber of

W×h ×Wn−1
h−1 →W×h , (A0, A1, . . . , An−1) 7→ ϕ(det(A(A0, A1, . . . , An−1)))

det(A(A0, A1, . . . , An−1))

over the identity element of W×h . By Lemma 7.1, we have X̃(0) = lim←−h X̃
(0)
h (Fq) and we may

define X̃
(m+1)
h := $ · X̃(m)

h for all m ∈ Z so that X̃(m) = lim←−h X̃
(m)
h (Fq). Thus X̃(m) is the set of

Fq-points of a (pro-)scheme.

Note that X̃
(0)
h has a left-multiplication action of O×L/UhL and a right-multiplication action of

O×D/U
n(h−1)+1
D , and these actions are defined over Fqn and by the following subgroups of G1(K):

O×L/U
h
L
∼=
{
A(A0, 0, . . . , 0) : A0 ∈ (OL/πhOL)×

}
O×D/U

n(h−1)+1
D

∼=

{
A(A0, A1, . . . , An−1) :

A0 ∈ (OL/πhOL)×,

Aj ∈ OL/πh−1OL for 1 ≤ j ≤ n− 1

}
.

We now define `-adic homology groups of X̃(0).

Lemma 7.2 (Boyarchenko, [B12, Lemma 4.7]). Set Wh := ker(Wh(Fqn)× →Wh−1(Fqn)×) for

h ≥ 2. The action of Wh on X̃
(m)
h preserves every fiber of the natural map X̃

(m)
h → X̃

(m)
h−1, the

induced morphism Wh\X̃
(m)
h → X̃

(m)
h−1 is smooth, and each of its fibers is isomorphic to the affine

space An−1 over Fq.

Proof. The proof of [B12, Lemma 4.7] is independent of the invariant k/n of the division algebra
D once replace the matrix Ah(a0, a1, . . . , an−1) by the matrix A(a0, a1, . . . , an−1) of Equation
(7.1). Note that there is a minor typo in the proof: In 6.11.2, the isomorphism of schemes

O×K,h−1 ×On−1
K,h−2 ×Gn

a → O×K,h ×O
n−1
K,h−1
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should be given by

(a0, a1, . . . , an−1, b0, b1, . . . , bn−1) 7→ (â0 + b0π
h, â1 + b1π

h−1, . . . , ân−1 + bn−1π
h−1). �

For a smooth scheme S of pure dimension d, set Hi(S,Q`) := H2d−i
c (S,Q`(d)). By Lemma

7.2, we have an isomorphism

Hi(X̃
(m)
h ,Q`)→ Hi(X̃

(m)
h ,Q`)

Wh .

In particular, we have a natural embedding Hi(X̃
(m)
h−1,Q`) ↪→ Hi(X̃

(m)
h ,Q`). We define

Hi(X̃
(m),Q`) := lim−→

h

Hi(X̃
(m)
h ,Q`), Hi(X̃,Q`) :=

⊕
m∈Z

Hi(X̃
(m),Q`).

The vector space Hi(X̃,Q`) inherits commuting smooth actions of L× and D×. Therefore, given

a smooth character θ : L× → Q×` , we may consider the subspace Hi(X̃,Q`)[θ] ⊂ Hi(X̃,Q`)

wherein L× acts by θ. If θ has level h, then Hi(X̃,Q`)[θ] is a subspace of Hi(X̃h,Q`), where

X̃h :=
⊔
m∈Z X̃

(m)
h . One can show that X̃h is equal to the translates of X̃

(0)
h under the action of

(L×/UhL)× (D×/U
n(h−1)+1
D ). It therefore follows that if Γ̃h is the stabilizer of X̃

(0)
h , then

Hi(X̃h,Q`) ∼= Ind
(L×/UhL)×(D×/U

n(h−1)+1
D )

Γ̃h

(
Hi(X̃

(0)
h ,Q`)

)
.

This type of argument is crucial in the proof of Theorem 7.8.

7.1.1. Boyarchenko’s conjectures. Strictly speaking, [B12, Conjectures 5.16 and 5.18] require
D to be a division algebra of invariant 1/n over a non-Archimedean local field K of positive
characteristic. In this section, we formulate extensions of Boyarchenko’s conjectures for any
division algebra D of dimension n2 over any non-Archimedean local field K with residue field Fq.

The morphism f : G1 → G2 given by g 7→ γ−1 · g · γ is injective. Set

X̃ ′h
(0) := f(X̃

(0)
h )

so that if we write A′(A0, . . . , An−1) := γ−1 ·A(A0, . . . , An−1) · γ, then

X̃ ′h
(0)(Fq) =

{
A′(A0, . . . , An−1) : A0 ∈ (Ônr

K /π
hÔnr

K )×,

Aj ∈ Ônr
K /π

h−1Ônr
K for 1 ≤ j ≤ n− 1,

det(A′(A0, . . . , An−1)) ∈ (OK/πhOK)×
}
.

The group (O×L/UhL)× (O×D/U
n(h−1)+1
D ) acts on X̃ ′h

(0) via f . Hence we obtain the lemma:

Lemma 7.3. For all i ≥ 0, as representations of O×L/UhL ×O
×
D/U

n(h−1)+1
D ,

H i
c(X̃

(0)
h ,Q`) ∼= H i

c(X̃
′
h

(0),Q`).

For any Fqn-algebra R, define

Xh(R) :=
{
A′(A0, . . . , An−1) ∈ X̃(0)

h : A0 ∈W(1)
h (R)

}
, (7.3)

where if V : Wh−1 →Wh−1 is the Verschiebung morphism, then W(1)
h := 1 + VWh−1 ⊂W×h . We

remark that we have abused notation here in the sense that when K has positive characteristic,
the Xh defined in Equation (7.3) is the image of the Xh defined in Definition 2.5 under ιh,k. Since
the definition of Un,qh,k is not available when K has characteristic 0 and Boyarchenko’s conjectures

can be formulated without Un,qh,k , we choose to proceed as in Equation (7.3).
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Let Γh denote the stabilizer of Xh in O×L/UhL ×O
×
D/U

n(h−1)+1
D . Then by Lemma 7.3,

H i
c(X̃

(0)
h ,Q`) ∼= Ind

O×L /U
h
L×O

×
D/U

n(h−1)+1
D

Γh

(
H i
c(Xh,Q`)

)
.

Boyarchenko’s conjectures concern the cohomology groups H i
c(Xh,Q`) as representations of

U1
L/U

h
L × U1

D/U
n(h−1)+1
D ⊂ Γh.

Conjecture 7.4 (Boyarchenko, [B12, Conjecture 5.16]). For i ≥ 0, we have H i
c(Xh,Q`) = 0

unless i or n is even, and Frqn acts on H i
c(Xh,Q`) by the scalar (−1)iqni/2.

Conjecture 7.5 (Boyarchenko, [B12, Conjecture 5.18]). Given a character χ : U1
L/U

h
L → Q`,

there exists r ≥ 0 such that H i
c(Xh,Q`)[χ] = 0 for all i 6= r. Moreover, Hr

c (Xh,Q`)[χ] is an

irreducible representation of U1
D/U

n(h−1)+1
D .

Remark 7.6. It is useful to have an explicit formula for A′(A0, . . . , An−1). First observe that

A(A0, . . . , An−1) = D(A′0) +D(A′1)$k + · · ·+D(A′n−1)$n−1
k ,

where we write D(x) = diag(x, ϕ(x), . . . , ϕn−1(x)). Let γ0 be the permutation matrix corre-
sponding to the permutation i 7→ [(i+ l − 1)k]. Then

γ−1
0 · c · γ0 = ck, where c =

(
0 1n−1

1 0

)
.

This implies that

γ−1
0 ·D(x) · γ0 = diag(x, ϕ[l](x), . . . , ϕ[(n−1)l](x)) =: D′(x).

Therefore

A′(A0, . . . , An−1) = D′(A′0) +D′(A′1)$k + · · ·+D′(A′n−1)$(n−1)k

= D′(A0) +D′(A1)$[k] + · · ·+D′(An−1)$[(n−1)k],

which, when expanded, is
A0 A[l] A[2l] · · · A[(n−1)l]

πϕ[l](A[(n−1)l]) ϕ[l](A0) ϕ[l](A[l]) · · · ϕ[l](A[(n−2)l])

πϕ[2l](A[(n−2)l]) πϕ[2l](A[(n−1)l]) ϕ[2l](A0) · · · ϕ[2l](A[(n−3)l])
...

...
. . .

. . .
...

πϕ[(n−1)l](A[l]) πϕ[(n−1)l](A[2l]) · · · πϕ[(n−1)l](A[(n−1)l]) ϕ[(n−1)l](A0)

 .

Observe that when K has positive characteristic, after appropriately permuting the ai’s, the
point x(

∑
aniπ

i,
∑
ani+1π

i, . . . ,
∑
ani+(n−1)π

i) is ιh,k(
∑
aiτ

i) as defined in Equation (2.3). ♦

From now on, assume charK > 0. Then Proposition 6.1 gives evidence supporting Conjecture
7.4, and by Theorem 6.4, we have:

Theorem 7.7. Let χ : U1
L/U

h
L → Q×` be a primitive character. Then Conjecture 7.5 holds.

By [B12, Proposition 5.19], we have

Theorem 7.8. Let θ : L× → Q×` be a primitive character of level h and let χ : U1
L/U

h
L → Q×`

denote the restriction of θ to U1
L.

(a) Pick any ζ ∈ O×L/U
h−1
L with the property that its image in F×qn generates F×qn. The

representation H
(n−1)(h−1)
c (Xh,Q`)[χ] extends uniquely to a representation η◦θ of the

semidirect product R×h,k,n,q(Fqn) ∼= O×D/U
n(h−1)+1
D with Tr(η◦θ(ζ)) = (−1)(n−1)(h−1)θ(ζ).
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(b) The inflation η̃◦θ of η◦θ to O×D extends to a representation η′θ of πZ · O×D by setting
η′θ(π) = θ(π). Then

H(n−1)(h−1)(X̃,Q`)[θ] ∼= ηθ := IndD
×

πZ·O×D
(η′θ)

and Hi(X̃,Q`)[θ] = 0 for i 6= (n− 1)(h− 1).

(c) H(n−1)(h−1)(X̃,Q`)[θ] is an irreducible representation of dimension n · qn(n−1)(h−1)/2.

Proof. We outline the proof given in [B12, Section 6.15].

The uniqueness in (a) follows from the irreducibility of H
(n−1)(h−1)
c (Xh,Q`)[χ]. The rep-

resentation η◦θ is the tensor product θ◦ ⊗ H
(n−1)(h−1)
c (Xh,Q`)[χ] where θ◦(z, g) = θ(z) for

(z, g) ∈ 〈ζ〉nUn,qh,k (Fqn) = R×h,k,n,q(Fqn). Finally, the trace identity is a special case of Proposition
6.2.

Let X̃h :=
⊔
m∈Z

X̃
(m)
h . The action of L× × D× on X̃ induces an action of the quotient

Gh := (L×/UhL)× (D×/U
n(h−1)+1
D ) on X̃h. Moreover, H∗(X̃,Q`)[θ] ⊂ H∗(X̃h,Q`), so it is enough

to understand the cohomology of X̃h. Since X̃
(m+1)
h = $X̃

(m)
h and $ ∈ G1(K) ∼= D×, we see

that X̃h is equal to the Gh-translates of f(ιh,k(Xh)) ⊂ X̃(0)
h . One can define an action of

Γh = 〈(π, π−1)〉 · 〈(ζ, ζ−1)〉 · (U1
L/U

h
L × U1

D/U
n(h−1)+1
D ) ⊂ Gh

on Xh so that f ◦ ιh,k is Γh-equivariant. Moreover, the stabilizer of f(ιh,k(Xh)) in Gh is
exactly equal to Γh. The claim in (b) then follows from an analysis of the θ-eigenspace of

IndGhΓh

(
Hi(Xh,Q`)

)
.

Let ψ := θ|Uh−1
L

. For any x ∈ Uh−1
L ⊂ Un(h−1)

D , we have η′θ(x) = ψ(x) and

η′θ(Π · x ·Π−1) = η′θ(ϕ(x)) = ψ(xq
l
).

Since θ is primitive and l is coprime to n, it follows that the normalizer of η′θ in D× is equal

to πZ · O×D. Irreducibility then follows by Mackey’s criterion. The dimension of the ηθ is equal

to the product of [D× : πZ · O×D] = n and the dimension of η′θ, so the desired result holds by
Theorem 4.3 and Proposition 6.1. �

7.2. Local Langlands correspondences. It is known that automorphic induction is not
compatible with induction on Weil groups in the sense that one must often keep track of a
rectifying character when constructing the Langlands parameter σθ of the automorphic induction

of a character θ : L× → Q×` . Instead, we recall Langlands–Shelstad’s theory of χ-datum [LS87,
Section 2.5] to give a canonical construction of σθ : WK → GLn(C). We then recall the statements
of the local Langlands and Jacquet–Langlands correspondences and prove in Theorem 7.12 that
the homology of X realizes the composition of these two correspondences. As always in this
paper, L is the degree-n unramified extension of K.

Fix an isomorphism Q`
∼= C. Let T = ResL/K Gm and let G = GLn. Viewing L as an

n-dimensional K-vector space induces an embedding T ↪→ G. Let Φ = Φ(G,T ) be the root
system of T in G and recall that there is a natural action of the absolute Galois group ΓK on
Φ. For each λ ∈ Φ, let Lλ and L±λ be the extensions of K corresponding to the subgroups
{g ∈ ΓK : gλ = λ} and {g ∈ ΓK : gλ = ±λ}. We note that since L/K is unramified, it is Galois
and hence Lλ = L. (In general, one only has Lλ ⊇ L.) We say that λ ∈ Φ is symmetric if
Lλ 6= L±λ and asymmetric otherwise. Observe that if λ is symmetric, then Lλ is a quadratic
extension of L±λ.

Definition 7.9. A χ-datum is a collection of characters {χλ}λ∈Φ satisfying:
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(i) χλ : L×λ → C× is a homomorphism.

(ii) For each λ ∈ Φ, we have χ−λ = χ−1
λ and χwλ = wχλ for all w ∈ WK .

(iii) If λ is symmetric, then χλ|L×±λ equals the quadratic character of Lλ/L±λ.

Consider the dual groups of G and T given by Ĝ := GLn(C) and T̂ := (C×)n. A χ-
datum {χλ}λ∈Φ determines an embedding χ : LT → LG, where LT and LG are the L-groups
LG := ĜoWK and LT := T̂ oWK (see [LS87, Section 2.6]). The local Langlands correspondence
for T gives a natural isomorphism

Hom(L×,C×) ∼= H1(WK , T̂ ).

Let θ̃ : WK → LT be a 1-cocycle representing the image of θ under the above isomorphism. Then
by [T16, Proposition 6.5], the representation given by the composition

WK
θ̃−→ LT

χ−→ LG
pr−→ GLn(C) (7.4)

is isomorphic to the induced representation

IndWK
WL

(θ · µ), where µ =
∏

[λ]∈WK\Φ

χλ, (7.5)

and where we view θ ·µ as a character ofWL via local class field theory. Since L/K is unramified,
it is easy to write down a natural choice of χ-datum. It is clear from the definition that a
χ-datum {χλ}λ∈Φ is determined by {χλ}λ∈A, where A is any choice of coset representatives of
ΓK\Φ. The ΓK-orbits of Φ are in bijection with the nontrivial double cosets of ΓL in ΓK (see
[T16, Proposition 3.1]), and we may write

(ΓL\ΓK/ΓL)′ = {[φi] := ΓLφ
iΓL : 1 ≤ i ≤ n− 1},

where φ is the q-power Frobenius. By [T16, Proposition 3.3], [φi] is symmetric if and only if n is
even and i = n/2. It is clear that the following specifies a χ-datum for T ↪→ G:

(i) If [φi] is symmetric, we let χ[φi] be the unramified character with χ[φi](π) = −1.

(ii) If [φi] is asymmetric, we let χ[φi] ≡ 1.

Define σθ to be the WK-representation in Equation (7.4) corresponding to the above canonical
choice of χ-datum. Then by Equation (7.5),

σθ ∼= IndWK
WL

(θ · µ), (7.6)

where µ : L× → C× is the character determined by µ|O×L ≡ 1 and µ(π) = (−1)n−1.

Pick any division algebra D of dimension n2 over K. We now describe the relevant corre-
spondences between representations of L×, WK , GLn(K), and D×. Fix a character ε of K×

whose kernel is equal to the image of the norm NL/K : L× → K×. Let X denote the set of

all characters of L× that have trivial stabilizer in Gal(L/K) and let GεK(n) denote the set of
(isomorphism classes of) smooth irreducible n-dimensional representations σ of WK that satisfy
σ ∼= σ ⊗ (ε ◦ recF ). Then

X /Gal(L/K) GεK(n)
χ-datum

θ σθ

is a bijection.
Now let AεK(n) denote the set of (isomorphism classes of) irreducible supercuspidal represen-

tations π of GLn(K) such that π ∼= π ⊗ (ε ◦ det). There exists a canonical bijection
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GεK(n) AεK(n)
LLC

σθ πθ

known as the local Langlands correspondence.
Finally, let A′εK(n) denote the set of (isomorphism classes of) irreducible representations ρ

of D× such that ρ ∼= ρ ⊗ (ε ◦ NrdD/K). Then the Jacquet–Langlands correspondence gives a
bijection

AεK(n) A′εK(n)
JLC

πθ ρθ

Remark 7.10. Since L/K is unramified, the restriction of ε to O×K is trivial, and thus the

composition ε ◦NrdD/K is trivial on E× · O×D ⊃ πZ · O
×
D. Thus by the construction of ηθ, we have

that ηθ is invariant under twisting by ε ◦NrdD/K . ♦

Theorem 7.8 describes a correspondence between L×-characters and D×-representations given
by

{primitive characters of L×} {irreducible representations of D×}DL construction

θ ηθ := H•(X̃,Q`)[θ]

By Remark 7.10, we see that ηθ ∈ A′εK(n). In Theorem 7.12, we prove that this correspondence
matches the composition of the previous three, therefore giving a geometric realization of the
Jacquet–Langlands correspondence.

Remark 7.11. The construction of the local Langlands and Jacquet–Langlands correspondences
was already known. See, for example, [H93]. Recent work of Boyarchenko and Weinstein (see
[BW13]) gives a partially geometric construction of these correspondences using the representa-
tions Hn−1

c (X2,Q`)[ψ] of Un,q2 (Fqn). Note that in [BW16] and [BW13], the scheme X2 is denoted
by X and the group Un,q2 (Fqn) is denoted by Un,q(Fqn). ♦

Theorem 7.12. Let θ : L× → Q×` be a primitive character of level h and let ρθ be the D×-
representation corresponding to θ under the local Langlands and Jacquet–Langlands correspon-

dences. Then Hi(X̃,Q`)[θ] = 0 if i 6= (n− 1)(h− 1) and

H(n−1)(h−1)(X̃,Q`)[θ] ∼= ρθ.

Proof. By Equation (7.6) and [BW13, Proposition 1.5(b)], we just need to show that ηθ :=

H(n−1)(h−1)(X̃,Q`)[θ] satisfies the following two properties:

(i) For any character ε ofK× whose kernel is equal to the image of the norm map NL/K : L× →
K×, we have ηθ ∼= ηθ ⊗ (ε ◦NrdD/K).

(ii) There exists a constant c such that tr ηθ(x) = c ·
∑

γ∈Gal(L/K) θ
γ(x) for each very regular

element x ∈ O×L .

Since L/K is unramified, the restriction of ε to O×K is trivial, and thus the composition

ε ◦NrdD/K is trivial on L× · O×D ⊃ πZ · O
×
D. Thus by construction, ηθ is invariant under twisting

by η ◦NrdD/K . This proves (i).
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We now prove (ii). By the construction of ηθ, since πZ · OD = L× · U1
D, we have

tr ηθ(x) =
∑

g∈D×/L×·U1
D

gxg−1∈L×·U1
D

tr η′θ(gxg
−1).

Now let x ∈ O×L be very regular. By Proposition 6.2, η◦θ(x) = (−1)(n−1)(h−1)θ(x). By [BW13,

Lemma 5.1(b)], if g ∈ D× is such that gxg−1 ∈ L× ·U1
D, then g ∈ ND×(L×) ·U1

D, where N×D (L×)
is the normalizer of L× in D×. Therefore

tr ηθ(x) =
∑

g∈ND× (L×)·U1
D/L

×·U1
D

tr η′θ(gxg
−1) =

∑
g

tr(η◦θ(gxg
−1))

=
∑
g

(−1)(n−1)(h−1)θ(gxg−1) = (−1)(n−1)(h−1) ·
∑

γ∈Gal(L/K)

θγ(x). �

The following corollary shows that the homology of Deligne–Lusztig constructions for division
algebras gives a geometric realization of the Jacquet–Langlands correspondence.

Theorem 7.13. Let D and D′ be division algebras of rank n and let XD and XD′ be their cor-

responding Deligne–Lusztig constructions. For any primitive character θ : L→ Q×` of level h, the
Jacquet–Langlands transfer of H(n−1)(h−1)(XD,Q`)[θ] is isomorphic to H(n−1)(h−1)(XD′ ,Q`)[θ].
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