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Abstract. Let K be a local non-Archimedean field of positive characteristic and let L be
the degree-n unramified extension of K. Let θ be a smooth character of L× such that for
each nontrivial γ ∈ Gal(L/K), θ and θ/θγ have the same level. Via the local Langlands
and Jacquet-Langlands correspondences, θ corresponds to an irreducible representation ρθ
of D×, where D is the central division algebra over K with invariant 1/n.

In 1979, Lusztig proposed a cohomological construction of supercuspidal representations
of reductive p-adic groups analogous to Deligne-Lusztig theory for finite reductive groups.
In this paper we prove that when n = 2, the p-adic Deligne-Lusztig (ind-)scheme X induces
a correspondence θ 7→ H•(X)[θ] between smooth one-dimensional representations of L×

and representations of D× that matches the correspondence given by the LLC and JLC.
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1. Introduction

Deligne-Lusztig theory gives a geometric description of the irreducible representations of
finite groups G of Lie type. In [DL76], Deligne and Lusztig introduce certain locally closed
subvarieties X in flag varieties over finite fields and prove that the irreducible representations
of G occur with multiplicity one in the `-adic étale cohomology groups H i

c(X,Q`). The
varietyX has an action by G×T , where T is a maximal torus in G, and the G-representations

This work was partially supported by NSF grants DMS-0943832 and DMS-1160720.
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can (more or less) be picked off by considering the subspaces H i
c(X,Q`)[θ] of the cohomology

groups where T acts by some character θ.
In [L79], Lusztig suggests an analogue of Deligne-Lusztig theory for p-adic groups G. He

introduces a certain infinite-dimensional variety X which has a natural action of G × T ,
and defines `-adic homology groups Hi(X) respecting this action. One can then study the
correspondence θ 7→ Hi(X)[θ] between characters θ of T and representations of G arising
from the subspace Hi(X)[θ] of Hi(X) on which T acts by some character θ.

Consider the following set-up. Let K be a local non-Archimedean field of positive odd
characteristic and let L ⊃ K be the unramified extension of degree n. In the situation
that T = L× and G = D×1/n, where D1/n is the central division algebra over K with
invariant 1/n, the local Langlands and Jacquet-Langlands correspondences (LLC and
JLC) give rise to a correspondence between characters of T and representations of T .
Indeed: To a smooth character θ : L× → Q×` , one can associate a smooth irreducible
n-dimensional representation σθ of the Weil group WK of K, which corresponds to an
irreducible supercuspidal representation πθ of GLn(K) (via LLC), which finally corresponds
to an irreducible representation ρθ of D×1/n (via JLC).

The main theorem of this paper is:

Theorem 1 (Rough Formulation). Let n = 2. For a broad class of characters θ : L× → Q×` ,
there exists an r (dependent on θ) such that

Hi(X)[θ] =

{
ρθ if i = r,
0 otherwise.

In pictorial form, we have

θ θ X

σθ GK(n)

πθ AK(n)

H•(X)[θ] ∼= ρθ A′K(n)

p-adic Deligne-Lusztig Local Langlands

Jacquet-Langlands

where

X := {characters L× → Q×` with trivial Gal(L/K)-stabilizer}
GK(n) := {smooth irreducible dimension-n representations of the Weil group WK}
AK(n) := {supercuspidal irreducible representations of GLn(K)}

A′K(n) := {smooth irreducible representations of D×1/n}
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1.1. What is Known. In [B12], Boyarchenko presents a method for explicitly calculating
the representations Hi(X)[θ] and does so for a special class of characters θ in the case when
G is the multiplicative group of the central division algebra with Hasse invariant 1/n over
a local field K, and T = L×, where L is the unramified degree-n extension of K. The
approach is to reduce the computation to a problem involving certain finite unipotent groups
and then develop a “Deligne-Lusztig theory” for these groups.

Before we continue, we must introduce some terminology. Let D1/n denote the central
division algebra with Hasse invariant 1/n over K = Fq((π)) for q a p-power and let
L = Fqn((π)). The level of a smooth character θ : L× → Q×` is the smallest integer h such
that θ is trivial on UhL := 1 + πhOL ⊂ O×L , where OL is the ring of integers of L. The set
of characters of L× has a natural action by Gal(L/K). We say that θ is primitive if for
any γ ∈ Gal(L/K), both θ and θ/θγ have the same level. (Equivalently, θ is primitive if its
restriction to Uh−1L has trivial Gal(L/K)-stabilizer.)

In Section 1 we recall the unipotent situation established by Boyarchenko in [B12]. We
describe a unipotent group scheme Un,qh over Fp together with a subscheme Xh ⊂ Un,qh that
comes with a left action by U1

L/U
h
L and a right action by Un,qh (Fqn). This unipotent group

depends on three parameters that are determined by the set-up in the following way. If θ
is a character of level h, then the computation of the eigenspaces Hi(X)[θ] for D×1/n over
K = Fq((π)) will reduce to a computation of H i

c(Xh,Q`)[χ] for Un,qh (Fqn), where χ is the
character of U1

L/U
h
L induced by θ. To be completely clear, the three parameters n, q, and h

correspond respectively to the Hasse invariant of the division algebra, the size of the residue
field of K, and the level of θ.

In [BW11], Boyarchenko and Weinstein give a complete description of the Un,q2 (Fqn)-
representations H i

c(X2,Q`)[χ]. They prove the following

Theorem (Boyarchenko and Weinstein). Given a character χ : U1
L/U

2
L → Q×` , there exists

a unique r such that H i
c(X2,Q`)[χ] vanishes when i 6= r and is an irreducible Un,q2 (Fqn)-

representation when i = r. Furthermore, every irreducible representation of Un,q2 (Fqn) occurs
with multiplicity one in

⊕
i∈ZH

i
c(X,Q`).

It turns out that the scheme X2 is very closely related to certain open affinoid of the Lubin-
Tate tower (see [BW11]), and in op. cit. Boyarchenko and Weinstein use the above theorem
to give a purely local proof of the local Langlands and Jacquet-Langlands correspondences for
a broad class of supercuspidals (those whose Weil parameters are induced from a primitive
character of an unramified degree-n extension). In [BW13], Boyarchenko and Weinstein use
this result to give a geometric realization of the local Langlands and Jacquet-Langlands
correspondences in this class of supercuspidals.

The analogue of the above theorem of Boyarchenko and Weinstein for Un,qh (Fqn) when
h > 2, however, was almost completely unknown. Indeed, the only higher level situation
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known was the case h = 3 and n = 2, which Boyarchenko computed in [B12] (see Theorem
5.20 of [B12]). The following conjecture appears in [B12].

Conjecture 1.1 (Boyarchenko). Given a character χ : U1
L/U

h
L → Q×` , there exists r ≥ 0

such that H i
c(Xh,Q`)[χ] vanishes when i 6= r and is an irreducible Un,qh (Fqn)-representation

when i = r.

Assuming Conjecture 1.1 holds, Boyarchenko gives a complete description of the D×1/n-
representations Hi(X)[θ] based on the Un,qh (Fqn)-representations H i

c(Xh)[χ] (see Proposition
5.19 of [B12]). Thus, the problem of determining the representations Hi(X)[θ] arising from
Lusztig’s p-adic analogue of Deligne-Lusztig varieties, depends only on the Deligne-Lusztig
theory of the finite unipotent group Un,qh (Fqn).

Remark 1.2. The varieties constructed in [L79] are not the affine Deligne-Lusztig varieties.
In [I13], Ivanov shows that there are no nontrivial morphisms from the cohomology of the
affine Deligne-Lusztig to D×1/2-representations of level > 1. This is not true for the varieties
in [L79] associated to division algebras (see Theorem 4).

1.2. Outline of this Paper. In this paper, we prove these two conjectures when n = 2 and
χ : U1

L/U
h
L → Q×` has the property that its restriction ψ := χ|Uh−1

L /UhL
has trivial Gal(Fq2/Fq)-

stabilizer. (In this situation, we say that ψ has conductor q2.) Using Proposition 5.19 of
[B12], we can then describe the representations Hi(X)[θ] for primitive θ of arbitrary level.

Let Aψ denote the set of such χ and let Gψ denote the set of irreducible representations
of U2,q

h (Fq2) restricting to a multiple of ψ. In Section 2, we prove

Theorem 2. There exists a bijection

Aψ ←→ Gψ, χ 7→ ρχ.

Using an explicit description of this bijection, we prove a certain character formula in
Section 3 that plays a crucial role in Section 5.

In Section 4, we prove that there are no nontrivial morphisms from ρχ to H i
c(Xh,Q`) if

i 6= h− 1. This allows us to apply a variant of a Deligne-Lusztig fixed point formula (see
Lemma 2.13 of [B12]) in order to compute subspaces of intertwines in H i

c(Xh,Q`). These
computations, done in Section 5, allow us to prove

Theorem 3. The cohomology groups H i
c(Xh,Q`)[χ] vanish when i 6= h− 1 and

Hh−1
c (Xh,Q`)[χ] ∼= ρχ.

In Section 6, we show how to carry out the arguments of Section 3, 4, and 5 in the special
case h = 3. This allows us to illustrate the structure and flavor of the proofs in a simpler
setting. It also gives a different proof of Theorem 5.20 of [B12].
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It is worth noting here that Theorem 3 is stronger than Conjecture 2; it requires consid-
erably more work to prove Hh−1

c (Xh,Q`) ∼= ρχ than to prove its irreducibility (compare the
proofs of Theorems 5.1 and 5.2). Because we have an explicit description of the U2,q

h (Fq2)-
representations H i

c(Xh,Q`)[χ], we can use Proposition 5.19 of [B12] to explicitly describe the
D×1/2-representations Hi(X,Q`)[θ]. The final theorem in this paper, whose rough formulation
was stated in the main introduction (see Theorem 1), compares the correspondence

θ 7→ Hi(X,Q`)[θ]

to known correspondences between characters of L× and representations of division algebras.
We can now formulate Theorem 1 more precisely.

Theorem 4. Let θ : L× → Q×` be a primitive character of level h and let ρθ be the D×1/2
representation corresponding to θ under the local Langlands and Jacquet-Langlands corre-
spondences. Then Hi(X,Q`)[θ] = 0 for i 6= h− 1, and

Hh−1(X,Q`)[θ] ∼= ρθ.

1.3. Acknowledgements. I am deeply grateful to Mitya Boyarchenko for introducing me
to this area of research, and also for his support and advice. His work on Deligne-Lusztig
constructions for p-adic groups inspired most of the ideas of this paper. I am also extremely
thankful for his careful comments, corrections, and suggestions on early drafts of this paper.

1.4. Notation and Set-Up. Let K = Fq((π)) and let L be a degree-2 unramified extension
of K. We will work with the algebraic group U2,q

h , the higher unipotent group described in
[B12] and [BW11]. This group has a natural filtration

{1} ⊂ H2(h−1) ⊂ H2(h−1)−1 ⊂ · · · ⊂ H2 ⊂ H1 = U2,q
h ,

where Hk := {1 +
∑
aiτ

i : i ≥ k}. We will also make use of the subgroup

H := {1 +
∑

aiτ
i : i is even}.

We will work with a subscheme Xh ⊂ U2,q
h that is defined in [B12]. We restate this here.

For an Fp-algebra A and a1, . . . , a2(h−1) ∈ A, we will associate a matrix

ιh(1 +
∑

aiτ
i) :=

(
1 + a2π + a4π

2 + · · · a1 + a3π + a5π
2 + · · ·

aq1π + aq3π
2 + · · · 1 + aq2π + aq4π

2 + · · ·

)
,

which determines a map ιh from U2,q
h (A) to the set of matrices over A[[π]]/(πh). The p-adic

Deligne-Lusztig construction X described in [L79] can be identified with a certain set X̃
described in [B12], which has an ind-scheme structure given by

X̃ =
⊔
m∈Z

lim←−
h

X̃
(0)
h .
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By construction (see op. cit. for details), ιh(1 +
∑
aiτ

i) is in the A-points X̃(0)
h (A) of X̃(0)

h

if and only if its determinant is fixed by Frq. We define Xh ⊂ U2,q
h to be ι−1h (X̃

(0)
h ).

The map ιh has the following property, which we will refer to as Property ‡. If A is an
Fq2-algebra, then ιh(xy) = ιh(x)ιh(y) for all x ∈ U2,q

h (A) and all y ∈ U2,q
h (Fq2). Moreover,

for y ∈ U2,q
h (Fq2), we have det(y) ∈ Fq[π]/(πh). It therefore follows that Xh is stable under

right-multiplication by U2,q
h (Fq2). We denote by x · g the action of g ∈ U2,q

h (Fq2) on x ∈ Xh.
We now describe a left action of H(Fq2) on Xh. We can identify H(Fq2) with the set

ιh(H(Fq2)). Note that by Property ‡, the map ιh actually preserves the group structure of
H(Fq2). Since ιh is injective, then we in fact have a group isomorphism H(Fq2) ∼= ιh(H(Fq2)).
Explicitly, this isomorphism is given by

1 +
∑

a2iτ
2i 7→

(
1 +

∑
a2iπ

i 0

0 1 +
∑
aq2iπ

i

)
.

We already observed that det ιh(H(Fq2)) ⊂ Fq[π]/(πh). Thus for any Fq2-algebra A, the
natural left-multiplication action of ιh(H(Fq2)) on the set of matrices over A[[π]]/(πh)

stabilizes Xh(A). This defines a left action of H(Fq2) on Xh.1 We denote by g ∗x the action
of g ∈ H(Fq2) on x ∈ Xh.

An observation which will be frequently used throughout this paper is that we have
canonical isomorphisms

U1
L/U

h
L
∼→ H(Fq2), 1 +

h−1∑
i=1

aiπ
i 7→ 1 +

h−1∑
i=1

aiτ
2i

Fq2
∼→ Uh−1L /UhL

∼→ H2(h−1)(Fq2), a 7→ 1 + aπh−1 7→ 1 + aτ2(h−1).

Thus the left action of H(Fq2) can be interpreted as a left action of U1
L/U

h
L. Because the

study of U2,q
h (Fq2) and the cohomology groups H i

c(Xh,Q`) arose because of the interest
in computing the representations arising from Deligne-Lusztig constructions for division
algebras, we will often refer to the left H(Fq2)-action as the left (U1

L/U
h
L)-action.

2. The Representation Theory of U2,q
h (Fq2)

In this section, we will describe a class of irreducible representations of U2,q
h (Fq2) that

are in bijection with certain characters χ : U1
L/U

h
L → Q×` . Recall that we have canonical

isomorphisms U1
L/U

h
L
∼= H(Fq2) and Fq2 ∼= Uh−1L /UhL

∼= H2(h−1)(Fq2).
The additive characters of Fqn have a natural action by Gal(Fqn/Fq). We say that a

character ψ : Fqn → Q×` has conductor m if its stabilizer in Gal(Fqn/Fq) is Gal(Fqn/Fqm).
In this paper we will only work with the case when n = 2 and only work with characters

1Warning: This is not the same as the left-multiplication action of H(Fq2) ⊂ H(A) on U2,q
h (A).
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ψ : Fq2 → Q×` that have conductor 2. In this case, this just means that there exists some
x ∈ Fq2 such that ψ(xq) 6= ψ(x).

Let Aψ denote the set of all characters χ : U1
L/U

h
L → Q×` whose restriction to Uh−1L /UhL

is equal to ψ. Let Gψ denote the set of irreducible representations of U2,q
h (Fq2) wherein

H2(h−1)(Fq2) acts via ψ. In this section, we will prove the following theorem (see Propositions
2.10 and 2.18):

Theorem 2.1. If ψ has conductor q2, then there exists a bijection between Aψ and Gψ.
Furthermore, every rep of Gψ has dimension qh−1.

The first subgroup of importance is the following:

H ′0 := {1 +
∑

aiτ
i : i = 2(h− 1) OR i > (h− 1) is odd} ⊂ U2,q

h .

For an additive character ψ of Fq2 , define the character ψ̃ of H ′0(Fq2) as

ψ̃ : H ′0(Fq2)→ Q×` , 1 +
∑

aiτ
i 7→ ψ(a2(h−1)).

Lemma 2.2. Let ψ be an additive character of Fq2 with conductor q2. If ρ is an irreducible
representation of U2,q

h (Fq2) where H2(h−1)(Fq2) acts by ψ, then the restriction of ρ to H ′0(Fq2)

must contain ψ̃.

Proof. We prove this inductively. Let

G1 := {1 + a2(h−1)−1τ
2(h−1)−1 + a2(h−1)τ

2(h−1)},

G2 := {1 + a2(h−1)−3τ
2(h−1)−3 + a2(h−1)−1τ

2(h−1)−1 + a2(h−1)τ
2(h−1)},

...

Gb(h−1)/2c := H ′0.

Since

1 + a2(h−1)−1τ
2(h−1)−1 + a2(h−1)τ

2(h−1) = (1 + a2(h−1)−1τ
2(h−1)−1)(1 + a2(h−1)τ

2(h−1)),

then every extension of ψ to G1(Fq2) is of the form

1 + a2(h−1)−1τ
2(h−1)−1 + a2(h−1)τ

2(h−1) 7→ ν(a2(h−1)−1)ψ(a2(h−1))

for some additive character ν of Fq2 . Let ψ1 denote the extension of ψ to G1(Fq2) given by

ψ1(1 + a2(h−1)−1τ
2(h−1)−1 + a2(h−1)τ

2(h−1)) := ψ(a2(h−1)).

For g1 = 1− b1τ and h = 1 +
∑
aiτ

i ∈ G1(Fq2), we have
g1ψ1(h) = ψ1(g1hg

−1
1 ) = ψ1(h)ψ(b1a

q
2(h−1)−1 − b

q
1a2(h−1)−1).

Since ψ has conductor q2, every character of Fq2 is of the form y 7→ ψ(xyq − xqy) for
some x ∈ Fq2 . Thus for any additive character ν of Fq2 , there exists an g1 such that
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g1ψ1(h) = ψ1(h)ν(a2(h−1)−1). We may therefore conclude that the restriction of ρ to G1(Fq2)

contains ψ1.
We now work on extending ψ1 to G2(Fq2). Since

h = h0(1 + a2(h−1)−3τ
2(h−1)−3),

where h ∈ G2(Fq2) and h0 ∈ G1(Fq2), then every extension of ψ1 to G2(Fq2) is of the form

h 7→ ν(a2(h−1)−3)ψ1(h0),

where as before, ν is some additive character of Fq2 . Let ψ2 denote the extension of ψ1 to
G2(Fq2) given by

ψ2(1 +
∑

aiτ
i) := ψ1(1 + a2(h−1)−1τ

2(h−1)−1 + a2(h−1)τ
2(h−1)) = ψ(a2(h−1)).

For g2 = 1− b3τ3 and h = 1 +
∑
aiτ

i ∈ G2(Fq2), we have

g2ψ2(h) = ψ2(g2hg
−1
2 ) = ψ2(h)ψ(b3a

q
2(h−1)−3 − b

q
3a2(h−1)−3).

As before, this shows that the restriction of ρ to G2(Fq2) contains ψ2.
Continuing this for each Gi, we see that the conclusion of the Lemma holds. �

Now consider the subgroup H ′(Fq2) ⊂ U2,q
h (Fq2) defined as follows:

H ′(Fq2) :=

{
{1 +

∑
aiτ

i : i is even OR i > h− 1 is odd} if h is odd,
{1 +

∑
aiτ

i : i is even OR i ≥ h− 1 is odd; ah−1 ∈ Fq} if h is even.

Recall that

H ′0(Fq2) := {1 +
∑

aiτ
i : i = 2(h− 1) OR i > h− 1 is odd} ⊂ U2,q

h (Fq2)

and in the case that h is even, define

H ′1(Fq2) := {1 +
∑

aiτ
i : i = 2(h− 1) OR i ≥ h− 1 is odd; ah−1 ∈ Fq} ⊂ U2,q

h (Fq2).

The behavior of the representation theory of U2,q
h (Fq2) depends on the parity of h. At the

core of this distinction is the following.

Lemma 2.3. Let ψ be an additive character of Fq2 with conductor q2. Then

(a) If g ∈ H ′(Fq2), then gag−1 ∈ H ′0(Fq2) and ψ̃(gag−1) = ψ̃(a) for all a ∈ H ′0(Fq2).
(b) Let h be odd. If g /∈ H ′(Fq2), then there exists an a ∈ H ′0(Fq2) such that gag−1 ∈

H ′0(Fq2) but ψ̃(gag−1) 6= ψ̃(a).
(c) Let h be even and let θ be any extension of ψ̃ to H ′1(Fq2). If g /∈ H ′(Fq2), then there

exists an a ∈ H ′1(Fq2) such that gag−1 ∈ H ′1(Fq2) but θ(gag−1) 6= θ(a).
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Proof. We handle (a) first. Consider a = 1+
∑
aiτ

i ∈ H ′0(Fq2) and g = 1+
∑
biτ

i ∈ H ′(Fq2).
Then write gag−1 = 1+

∑
ciτ

i. It is clear that if in fact g ∈ H ′0(Fq2), then ψ̃(gag−1) = ψ̃(a).

When h is odd, we can write g = g′g′′ where g′ ∈ H(Fq2) and g′′ ∈ H ′0(Fq2). Thus all
that remains to show is that if g ∈ H(Fq2), then ψ̃(gag−1) = ψ̃(a). Now, g = 1 +

∑
biτ

i

has the property that bi = 0 for i odd. Since ai = 0 for all i even, with the exception of
when i = 2(h− 1), we see that the only contribution of g to the product gag−1 occurs in ci
for i odd and i > h− 1. Thus gag−1 ∈ H ′0(Fq2) and since the changes only occur in the odd
coefficients, we have that ψ̃(gag−1) = ψ̃(a).

When h is even, we can write g = g′g′′ where g′ ∈ H(Fq2) and g′′ ∈ H ′1(Fq2). If
g = 1+bτh−1 ∈ H ′1(Fq2), then the coefficient of τ2(h−1) in gag−1 is equal to baqh−1−ah−1b

q+

a2(h−1) = a2(h−1) since ah−1, b ∈ Fq. It follows that ψ̃ is centralized by g. By the same
argument as in the previous paragraph, we see that H(Fq2) centralizes ψ̃, and this completes
the proof that H ′(Fq2) centralizes ψ̃.

We now show (b) and (c). Suppose that g = 1 +
∑
biτ

i ∈ U2,q
h (Fq2) rH ′(Fq2). Let r

be the smallest odd integer such that br 6= 0. By assumption, r ≤ h − 1. We may write
g = (1 + brτ

r)g′, where the coefficient of τ r in g′ vanishes.
First assume that r < h − 1 and consider a = 1 + a2(h−1)−rτ

2(h−1)−r ∈ H ′0(Fq2). Note
that gag−1 ∈ H ′0(Fq2). We have ψ̃(g′a(g′)−1) = ψ̃(a), so

ψ̃(gag−1) = ψ̃((1 + brτ
r)(1 + a2(h−1)−rτ

2(h−1)−r)(1− brτ r))

= ψ̃(1 + a2(h−1)−rτ
2(h−1)−r + (bra

q
2(h−1)−r − b

q
ra2(h−1)−r)τ

2(h−1))

= ψ̃(a)ψ(bra
q
2(h−1)−r − b

q
ra2(h−1)−r),

Since ψ has conductor q2, then it follows that we can find a2(h−1)−r such that the above
6= ψ̃(a). Thus we have shown the desired conclusion with the assumption that r < h− 1.

If h is odd, then g ∈ U2,q
h (Fq2) r H ′(Fq2) forces r < h − 1, and thus (b) follows from

the above. Now let h be even and let θ be an arbitrary extension of ψ̃ to H ′1(Fq2). By
the above, we see that if r < h − 1, then there exists an element a ∈ H ′1(Fq2) such that
gag−1 ∈ H ′1(Fq2) but θ(gag−1) 6= θ(a). Therefore all that remains to show is the case when
r = h− 1. Consider a = 1 + ah−1τ

h−1 ∈ H ′1(Fq2). Then

θ(gag−1) = θ(a)ψ(bh−1a
q
h−1 − b

q
h−1ah−1) = θ(a)ψ(ah−1(bh−1 − bqh−1)),

where the last equality holds since ah−1 ∈ Fq. Since g /∈ H ′(Fq2), we have bh−1 /∈ Fq, then
we see that we arrange for a2(h−1)−r ∈ Fq to be such that the above 6= θ(a) (since ψ has
conductor q2 and thus its restriction to ker TrFq2/Fq is nontrivial). This proves (c). �

Corollary 2.4. If ν is any extension of ψ̃ to H ′(Fq2), then the representation Ind
U2,q
h (Fq2 )

H′(Fq2 )
(ν)

is irreducible.
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Proof. By Lemma 2.3(b), we can apply Mackey’s criterion and conclude irreducibility. �

In Section 2.1 and 2.2, we will describe all such extensions ν. We will also analyze
the following question: Given distinct extensions ν and ν ′ of ψ̃ to H ′(Fq2), when are the

representations Ind
U2,q
h (Fq2 )

H′(Fq2 )
(ν) and Ind

U2,q
h (Fq2 )

H′(Fq2 )
(ν ′) isomorphic? To begin answering this

question, we will need the following lemma. In the next two subsections, we will give a
complete answer.

Lemma 2.5. The normalizer of H ′(Fq2) in U2,q
h (Fq2) is equal to the subgroup

K := {1 +
∑

aiτ
i : i is even OR i ≥ h− 2 is odd} ⊆ U2,q

h (Fq2).

Note that when h is odd, then H ′(Fq2) is an index-q2 subgroup of K, and when h is even,
then H ′(Fq2) is an index-q subgroup of K.

Proof. Let K be as in the statement of the lemma.
Let h be odd. To show that K normalizes H ′(Fq2), we need only show that for b =

1 +
∑
biτ

i ∈ H ′(Fq2) and g = 1 − ah−2τh−2, we have gbg−1 ∈ H ′(Fq2). But this is clear
since g only contributes to the coefficients of τ i for i ≥ (h− 2) + 2 > h− 1.

Let h be even. To show that K normalizes H ′(Fq2), we need only show that for b =

1 +
∑
biτ

i ∈ H ′(Fq2) and g = 1− ah−1τh−1, we have gbg−1 ∈ H ′(Fq2). Again, this is clear
since g only contributes to the coefficients of τ i for i ≥ (h− 1) + 2 > h− 1.

Thus all that remains to show is that no other elements of U2,q
h (Fq2) normalize H ′(Fq2).

Consider g = 1 +
∑
aiτ

i ∈ U2,q
h r H ′(Fq2). Let r be the smallest odd integer such that

ar 6= 0. Then we may write g = (1 + arτ
r)g′ where the coefficient of τ r in g′ vanishes. Note

that by assumption r < h−2. Let s be the largest even integer such that 1+aτ r+s /∈ H ′(Fq2)

for a /∈ Fq. (If h is even, then s = h− 1− r, and if h is odd, then s = h− r.) Then for any
b ∈ Fq2 , x := (g′)−1(1 + bτ s)g′ ∈ H ′(Fq2) and

gxg−1 = (1 + arτ
r)(1 + bτ s)(1− arτ r + · · · ) = 1 + bτ s + (arb

q − arb)τ s+r + · · ·

In particular, we can pick b /∈ Fq, and this implies gxg−1 /∈ H ′(Fq2). Thus we have shown
that K is contains the normalizer of H ′(Fq2), and this completes the proof. �

2.1. Case: h odd. Recall that we have

H ′ := {1 +
∑

aiτ
i : i is even; or i > h− 1 and i is odd}.

For χ ∈ Aψ, consider the character on H ′(Fq2) defined as

χ](1 +
∑

aiτ
i) = χ(1 + a2π + · · ·+ a2(h−1)π

h−1).
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Lemma 2.6. Let ψ be an additive character of Fq2 of conductor q2. If ν is an extension of
ψ̃ to H ′(Fq2), then ν = χ] for some χ ∈ Aψ. Moreover,

Ind
H′(Fq2 )
H′0(Fq2 )

(ψ̃) ∼=
⊕
χ∈Aψ

χ].

Proof. The maximum number of extensions of ψ̃ to H ′(Fq2) is equal to the index of H ′0(Fq2)

in H ′(Fq2). That is, the maximum number of extensions is q3(h−1)/qh+1 = q2(h−1)−2. On
the other hand, it is clear that χ] is an extension of ψ̃ and varying χ ∈ Aψ gives q2(h−2)

distinct extensions ν. Therefore in fact every such ν is of the form χ]. �

Lemma 2.7. Let ψ be an additive character of Fq2 with conductor q2, and let χ ∈ Aψ. The
representation

ρχ := Ind
U2,q
h (Fq2 )

H′(Fq2 )
(χ])

is irreducible and hence ρχ ∈ Gψ.

Proof. Since χ] is an extension of ψ̃ to H ′(Fq2), this lemma is just a special case of Corollary
2.4. �

Lemma 2.8. For χ1, χ2 ∈ Aψ, we have ρχ1
∼= ρχ2 if and only if χ1 = χ2.

Proof. This follows from Corollary 3.2. �

Corollary 2.9. Let ψ be a character of Fq2 with conductor q2. If ρ ∈ Gψ, then ρ occurs

with multiplicity one in the representation Vψ := Ind
U2,q
h (Fq2 )

H′0(Fq2 )
(ψ̃).

Proof. Let ρ ∈ Gψ. It follows from Lemma 2.2 that the restriction of ρ to H ′0(Fq2) must

contain ψ̃. Therefore ρ is a direct summand of Vψ. Lemma 2.6 implies that Ind
H′(Fq2 )
H′0(Fq2 )

(ψ̃) ∼=⊕
χ∈Aψ χ

]. Thus

Ind
U2,q
h (Fq2 )

H′0(Fq2 )
(ψ̃) ∼= Ind

U2,q
h (Fq2 )

H′(Fq2 )
(
⊕
χ∈Aψ

χ]) ∼=
⊕
χ∈Aψ

ρχ.

By Lemma 2.7 and Lemma 2.8, this a direct sum of nonisomorphic irreducible representations,
and this completes the proof. �

We have now shown the following.

Proposition 2.10. Let ψ be a character of Fq2 with conductor q2. There is a bijective
correspondence

Aψ ←→ Gψ
and this correspondence is given by

χ←→ ρχ.
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Furthermore, every representation in Gψ has dimension qh−1.

Proof. Injectivity follows from Lemma 2.8. Surjectivity follows from Lemma 2.9. Thus every
representation of Gψ is of the form ρχ, which has dimension equal to |U2,q

h (Fq2)|/|H ′(Fq2)| =
q4(h−1)/q3(h−1) = qh−1. �

2.2. Case: h even. We first recall some general facts about group representations. Suppose
that G is a group and H,K,N ⊂ G are subgroups such that H = K ·N . Note that if χ is a
character of K and θ is a character of N such that χ = θ on the intersection K ∩N , then
the function f(k · n) := χ(k)θ(n) is well-defined. Now let χ and θ be multiplicative. If K
normalizes N and K centralizes θ, then in fact

f(k1n1k2n2) = f(k1k2(k
−1
2 n1k2n2)) = χ(k1k2)θ(n1n2) = f(k1k2n1n2),

so f is multiplicative.
We now apply the above to the situation when K = H(Fq2), N = H ′1(Fq2) and H =

H ′(Fq2). Recall that we have

H(Fq2) := {1 +
∑

aiτ
i : i is even}

H ′1(Fq2) := {1 +
∑

aiτ
i : i = 2(h− 1) OR i ≥ h− 1 is odd; ah−1 ∈ Fq}

H ′(Fq2) := {1 +
∑

aiτ
i : i is even OR i ≥ h− 1 is odd; ah−1 ∈ Fq}

Note that H ′1(Fq2) is an abelian subgroup of U2,q
h (Fq2) containing H ′0(Fq2) as an index-q

subgroup. Thus there are q extensions of ψ̃ to H ′1(Fq2). Given such an extension θ and
given χ ∈ Aψ, we wish to construct a character χ̃ of H ′(Fq2) that extends both χ and ψ̃.
(This is the analogue of χ] in the case that h is odd.)

We see that H(Fq2)∩H ′1(Fq2) = H2(h−1)(Fq2) and that χ and θ agree on this intersection.
Now define

χ̃θ(kn) = χ(k)θ(n) for k ∈ H(Fq2) and n ∈ H ′1(Fq2).

This is well-defined.

Lemma 2.11. The map χ̃θ : H ′(Fq2)→ Q×` is a group homomorphism.

Proof. It is enough to show that H(Fq2) normalizes H ′1(Fq2) and that H(Fq2) centralizes
θ. Write k = 1 +

∑
aiτ

i ∈ H(Fq2) and n = 1 +
∑
biτ

i ∈ H ′1(Fq2). Since the only nonzero
terms of k are a2iτ2i, then n only differs by knk−1 in the coefficients of τ i for i odd and
> h− 1. Thus H(Fq2) normalizes H ′1(Fq2). Moreover, the coefficient of τ2(h−1) in knk−1n−1

is equal to b2(h−1). Since θ is an extension of ψ̃, then it follows that H(Fq2) centralizes θ.
This completes the proof. �
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Lemma 2.12. Let ψ be an additive character of Fq2 of conductor q2. If ν is an extension
of ψ̃ to H ′(Fq2), then there exists a θ and χ ∈ Aψ such that ν = χ̃θ. Moreover,

Ind
H′(Fq2 )
H′0(Fq2 )

(ψ̃) ∼=
⊕
θ

⊕
χ∈Aψ

χ̃θ.

Proof. The maximum number of extensions of ψ̃ to H ′(Fq2) is [H ′(Fq2) : H ′0(Fq2)] =

q3(h−1)+1/qh+1 = q2(h−1)−1. On the other hand, it is clear that χ̃θ is an extension of ψ̃ and
varying χ and θ give rise to q2(h−2)+1 distinct extension ν. Therefore in fact every such ν is
of the form χ̃θ. �

Lemma 2.13. Let θ1 and θ2 be extensions of ψ̃ to H ′1(Fq2). Let χ̃i := χ̃θi for i = 1, 2. Then

Ind
U2,q
h (Fq2 )

H′(Fq2 )
(χ̃1) ∼= Ind

U2,q
h (Fq2 )

H′(Fq2 )
(χ̃2).

Proof. Suppose that θ1 and θ2 are any extensions of ψ̃ to H ′1(Fq2). Recall that the corre-
sponding characters χ̃1 and χ̃2 of H ′(Fq2) are defined as

χ̃i(kn) = χ(k)θi(n),

where k ∈ H(Fq2) and n ∈ H ′1(Fq2). Note that for any g ∈ U2,q
h (Fq2), we have

gkng−1 = (gkg−1)(gng−1).

Now consider the element g = 1 − aτh−1 ∈ U2,q
h (Fq2). Since h is even, h − 1 is odd, and

χ̃1(gkg
−1) = χ(k). Therefore

gχ̃1(kn) = χ(k) · gθ1(n).

We thus see that to show that χ̃1 and χ̃2 are U2,q
h (Fq2)-conjugate, it suffices to show that

there exists a g = 1− aτh−1 ∈ U2,q
h (Fq2) such that gθ1 = θ2.

Now, for any n = 1 +
∑
biτ

i ∈ H ′1(Fq2),

gng−1 =
(

1− aτh−1
)(

1 +
∑
h−1≤i

biτ
i
)(

1 + aτh−1 + aq+1τh−1
)

= 1 +
( ∑
h−1≤i<2(h−1)

biτ
i
)

+
(
b2(h−1) + bh−1a

q − abqh−1
)
τ2(h−1).

Thus
gθ1(n) = θ1(n)ψ(bh−1a

q − abqh−1).
From here, we need only show that #{gθ : g = 1− aτh−1} = q, where θ is any extension of
ψ to G.

Noting that bh−1 ∈ Fq since b ∈ G, the above computation shows that

θ1(gng
−1) = θ1(n)ψ(bh−1a

q − abh−1).
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Since ψ has trivial Gal(Fq2/Fq)-stabilizer, then in particular it is nontrivial on ker TrFq2/Fq . It
is not difficult to show that every additive character of Fq can be written as b 7→ ψ(b(aq−a))

for some a ∈ Fq2 . This completes the proof. �

Lemma 2.14. Let ψ be an additive character of Fq2 with conductor q2, and let χ ∈ Aψ.
The representation

ρχ := Ind
U2,q
h (Fq2 )

H′(Fq2 )
(χ̃θ)

is irreducible and hence ρχ ∈ Gψ.

Proof. This is a special case of Corollary 2.4. �

Remark 2.15. Note that by Lemma 2.13, the chosen extension θ does not change the

representation Ind
U2,q
h (Fq2 )

H′(Fq2 )
(χ̃θ). This justifies the suppression of θ in the notation ρχ

introduced in Lemma 2.14.

Lemma 2.16. For χ1, χ2 ∈ Aψ, we have ρχ1
∼= ρχ2 if and only if χ1 = χ2.

Proof. From Lemma 2.5, we know that there are at most q characters ν of H ′(Fq2) such

that Ind
U2,q
h (Fq2 )

H′(Fq2 )
(ν) ∼= ρχ. From Lemma 2.13, we have found q such characters, namely

χ̃θ. Therefore we have Ind
U2,q
h

H′(Fq2 )
(ν) ∼= Ind

U2,q
h

H′(Fq2 )
(ν ′) if and only if there exists χ ∈ Aψ

and extensions θ and θ′ of ψ̃ to H ′1(Fq2) such that ν = χ̃θ and ν ′ = χ̃′θ. The desired result
follows. �

Corollary 2.17. Let ψ be a character of Fq2 with conductor q2. If ρ ∈ Gψ, then ρ occurs

with multiplicity q in the representation Vψ := Ind
U2,q
h (Fq2 )

H′0(Fq2 )
(ψ̃).

Proof. This follows from Corollary 3.2. �

We have now shown the following.

Proposition 2.18. Let ψ be a character of Fq2 with conductor q2. There is a bijective
correspondence

Aψ ←→ Gψ
and this correspondence is given by

χ←→ ρχ.

Furthermore, every representation in Gψ has dimension qh−1.

Proof. Injectivity follows from Lemma 2.16. Surjectivity follows from 2.17. Thus every
representation of Gψ is of the form ρχ, which has dimension equal to |U2,q

h (Fq2)|/|H ′(Fq2)| =
q4(h−1)/q3(h−1) = qh−1. �
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3. A Character Formula

In this section we establish a character formula for certain representations of U2,q
h (Fq2).

The main consequence of this formula is that we will be able to decompose the irreducible
representations ρχ of U2,q

h (Fq2) as representations of the subgroup H(Fq2) ⊂ U2,q
h (Fq2).

Moreover, we will show that for an additive character ψ : Fq2 → Q×` of conductor q2, the
elements of Gψ are uniquely determined by their restrictions to H(Fq2). The character
formula (Theorem 3.1) and its consequences (Corollaries 3.2 and 3.3) play a fundamental
role in Section 5.

We establish some notation first. Recall the subgroup H ⊂ U2,q
h and, abusing notation,

define

H := H(Fq2) = {1 +
h−1∑
i=1

a2iτ
2i} ⊂ U2,q

h (Fq2).

We will also need the subgroups

Nk := {1 +
∑

aiτ
i : i even OR i > k} ⊂ U2,q

h (Fq2),

K := Nh−1 ⊂ U2,q
h (Fq2).

Given a character χ : H → Q×` , let χ] be the character of K defined in Section 2 (note that
K = H ′0(Fq2)). Let ρχ be the irreducible U2,q

h (Fq2)-representation constructed in Section 2
and recall that

Ind
U2,q
h (Fq2 )

K (χ]) ∼=

{
ρχ if h is odd,
q · ρχ if h is even.

Define
Gk := {1 +

∑
aiτ

i ∈ H : a2i ∈ Fq for 1 ≤ i ≤ k} ⊆ H.

We define G0 := H. Note that the center of U2,q
h (Fq2) is exactly Gh−2. We thus have a tower

of subgroups
Z(U2,q

h (Fq2)) = Gh−2 ⊂ Gh−3 ⊂ · · · ⊂ G1 ⊂ G0 = H.

In this section, we will often write 1 +
∑
aiτ

i =
∑
aiτ

i, where it is understood that
τ0 = 1 and a0 = 1.

The main results of this section are the following theorem and its corollaries. All proofs
are in Section 3.1.

Theorem 3.1. Let χ be a character of H whose restriction to H2(h−1) has conductor q2.
Let ρχ denote the irreducible representation of U2,q

h (Fq2) constructed in Section 2. Then as
elements of the Grothendieck group of H,

ρχ = (−1)h

(
q · χ+

h−2∑
i=1

(−1)i(q + 1) IndHGi(χ)

)
.
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Since H is abelian, Theorem 3.1 allows us to easily read off the decomposition of ρχ as a
representation of H.

Corollary 3.2. Let χ be as in Theorem 3.1. Let A(χ) be the collection of all characters
θ : H → Q×` such that, for some even k, θ agrees with χ on Gh−2−k but not on Gh−2−k−1.

(a) If h is odd, then the restriction of ρχ to H comprises{
1 copy of χ,
q + 1 copies of θ, for θ ∈ A(χ).

(b) If h is even, then the restriction of ρχ to H comprises{
q copies of χ,
q + 1 copies of θ, for θ ∈ A(χ).

An immediate consequence of Corollary 3.2 is

Corollary 3.3. Let ρ be an irreducible representation of U2,q
h (Fq2) wherein H2(h−1)(Fq2)

acts via a character ψ of conductor q2. Then ρ is uniquely determined by its restriction to
H(Fq2).

3.1. Proof of Theorem 3.1 and Corollary 3.2. The proof of Corollary 3.2 hinges upon
Theorem 3.1, whose proof hinges upon the following proposition.

Proposition 3.4. Let s ∈ H.
(a) If s ∈ Gh−2, then

Tr ρχ(s) = qh−1χ(s).

(b) If s ∈ Gh−2−k rGh−2−k+1 for some 1 ≤ k ≤ h− 2, then

Tr ρχ(s) = (−1)kqh−1−kχ(s).

The organization of this section is as follows: we will prove a sequence of lemmas (Lemmas
3.7 to 3.16), which will allow us to prove, in quick succession, Proposition 3.4, Theorem 3.1,
and Corollary 3.2.

Remark 3.5. The representation Ind
U2,q
h (Fq2 )

K (χ]) is a sum of copies of ρχ; it consists of 1

copy when h is odd and q copies when h is even. Thus, to prove Proposition 3.4, it suffices
to compute the sum

Tr Ind
U2,q
h (Fq2 )

K (χ])(s) =
1

|K|
∑

t∈U2,q
h (Fq2 )

χ]◦(tst
−1) for s ∈ H,

where

χ]◦(g) =

{
χ](g) if g ∈ K,
0 otherwise.



DELIGNE-LUSZTIG CONSTRUCTIONS FOR DIVISION ALGEBRAS 17

Since Gh−2 is the center of U2,q
h (Fq2), Proposition 3.4(a) is easy. Lemmas 3.7 through 3.16

build up to the proof of Proposition 3.4(b).

Remark 3.6. Note that

s = 1 +
h−1∑
i=1

s2iτ
2i ∈ Gh−2−k rGh−2−k+1

is equivalent to the conditions

s2i ∈ Fq if i ≤ h− 2− k, and s2(h−2−k+1) /∈ Fq.

Lemma 3.7. Every element of U2,q
h (Fq2) can be written in the form

(1− a1τ1)(1− a3τ3) · · · (1− a2(h−1)−1τ2(h−1)−1) · g for some g ∈ H.

Proof. We prove this inductively. It is clear that every element of N2(h−1)−2 can be written
as

(1− aτ2(h−1)−1) · g for some g ∈ N2(h−1)−1 = H.

We now show that every element of Nk−1 for k odd can be written as

(1− aτk) · g for some g ∈ Nk.

If we write

(1− aτk) · g = (1− aτk) · (
∑

giτ
i) =

∑
siτ

i,

then we have 
si = gi if i ≤ k − 1,
si = gi − agqi−k if i ≥ k and i is odd,
si = gi if i ≥ k + 1 and i is even.

Note that in this notation, we automatically have g0 = s0 = 1. From here, we see that if
we pick any

∑
siτ

i ∈ Nk−1, then we can pick an a and gi’s satisfying the above so that∑
giτ

i ∈ Nk. Explicitly, we can let
gi = si if i ≤ k − 1,
a = −sk,
gi = si if i ≥ k + 1, i even
gi = si + agqi−k if i ≥ k + 2, i odd.

Note that g2j and g2j+1 are defined independently and that the g2j+1’s are defined recursively.
This completes the proof. �
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Lemma 3.8. Let s =
∑
siτ

i ∈ U2,q
h (Fq2) and let r be an odd integer with 1 ≤ r ≤ 2(h− 1).

Then if we let s′ =
∑
s′iτ

i = (1− aτ r)s(1− aτ r)−1 for some a ∈ Fq2, we have

s′n = sn +
∑

r(l+1)+2m=n
l≥0

−aql+ql−1+···+q+1(sq2m − s2m)

+
∑

r(l+1)+2m+1=n
l≥0

−aql−1+ql−2+···+q+1(asq2m+1 − a
qs2m+1).

Proof. Let b =
∑
biτ

i = (1− aτ r)−1 for a ∈ Fq2 . Then it is easy to see that

bi =


1 if i = 0,
aq

l−1+ql−2+···+q+1 if i = lr > 0,
0 otherwise.

This implies that

s′n = sn +
∑

r(l+1)+2m=n
l≥0

−asq2mblr + s2mb(l+1)r +
∑

r(l+1)+2m+1=n
l≥0

−asq2m+1blr + s2m+1b
q
(l+1)r

= sn +
∑

r(l+1)+2m=n
l≥0

−aql+ql−1+···+q+1(sq2m − s2m)

+
∑

r(l+1)+2m+1=n
l≥0

−aql−1+ql−2+···+q+1(asq2m+1 − a
qs2m+1).

In the last step, we used the fact that aql+1+···+q2 = (aq
l−1+···+1)q

2
= aq

l−1+···+1 since
a ∈ Fq2 . �

For the next few lemmas, we need an auxiliary definition.

Definition 3.9. If s ∈ 1 +
∑
aiτ

i ∈ U2,q
h (Fq2) is such that

s2i ∈ Fq if i ≤ h− 2− k,
s2i /∈ Fq if i = h− 1− k,
si = 0 if i is odd and i ≤ 2(h− 1)− k,

(Property ?)

then we will say that s satisfies Property ? for k.

Remark 3.10. It is implicit in the formulation of Property ? that we must have k ≤ h− 2.
Thus the second condition (regarding which odd coefficients vanish) implies that s ∈ K.
Note further that if s ∈ H satisfies Property ?, then s ∈ Gh−2−k rGh−1−k.
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Lemma 3.11. Suppose that s ∈ U2,q
h (Fq2) satisfies Property ? for k. Then for any g ∈ H, the

element gsg−1 also satisfies Property ? for k. Furthermore, if we write gsg−1 = s′ =
∑
s′iτ

i,
then

s′2i = s2i for all i.

Proof. By Lemma 3.7, we can write s in the form

(1− a1τ1)(1− a3τ3) · · · (1− a2(h−1)−1τ2(h−1)−1) · g′ for some g′ ∈ H.

By assumption, we can take ai = 0 for i ≤ 2(h− 1)− k. Since H is abelian, then for any
g ∈ H,

gsg−1 = g(1− a1τ1)(1− a3τ3) · · · (1− a2(h−1)−1τ2(h−1)−1)g−1 · g′.

Thus all we need to show is that for r > 2(h−1)−k odd and a ∈ Fq2 , g(1−aτ r)g−1 satisfies
Property ? and that the coefficients of τ2i in g(1− aτ r)g−1 vanish. But this is clear since
the only contribution of g to this conjugated element appear in the coefficients of τ r+2i. �

Lemma 3.12. Suppose that s ∈ U2,q
h (Fq2) satisfies Property ? for k. Then for any odd r > k

and a ∈ Fq2 , the element (1− aτ r)s(1− aτ r)−1 also satisfies Property ? for k. Furthermore,
if we write (1− aτ r)s(1− aτ r)−1 = s′ =

∑
s′iτ

i, then

s′2i = s2i for all i.

Proof. Consider the element 1− aτ r ∈ Nk with r odd. Combining Property ? and Lemma
3.8, we know that if we write s′ = (1− aτ r)s(1− aτ r)−1, we have

s′n = sn +
∑

r(l+1)+2m=n
l≥0

m≥h−1−k

−aql+ql−1+···+q+1(sq2m − s2m)

+
∑

r(l′+1)+2m+1=n
l′≥0

2m+1≥2(h−1)−k+1

−aql
′−1+ql

′−2+···+q+1(asq2m+1 − a
qs2m+1).

Using that n ≡ l + 1 (mod 2) and n ≡ l′ (mod 2), the above implies, in particular,{
s′n = sn if n is odd and n ≤ min{r + 2(h− 2− k), 2r + 2(h− 1)− k},
s′n = sn if n is even and n ≤ min{2r + 2(h− 2− k), r + 2(h− 1)− k}.

(1)
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If k is odd, then by assumption r ≥ k + 2 and

min{r + 2(h−2− k), 2r + 2(h− 1)− k}
≥ min{k + 2 + 2(h− 2− k), 2(k + 2) + 2(h− 1)− k}
= 2(h− 1)− k,

min{2r + 2(h−2− k), r + 2(h− 1)− k}
≥ min{2(k + 2) + 2(h− 2− k), k + 2 + 2(h− 1)− k}
= 2(h− 1) + 2.

Thus Equation (1) implies{
s′n = sn if n is odd and n ≤ 2(h− 1)− k,
s′n = sn if n is even and n ≤ 2(h− 1) + 2.

If k is even, then by assumption r ≥ k + 1 and

min{r + 2(h−2− k), 2r + 2(h− 1)− k}
≥ min{k + 1 + 2(h− 2− k), 2(k + 1) + 2(h− 1)− k}
= 2(h− 1)− k − 1,

min{2r + 2(h−2− k), r + 2(h− 1)− k}
≥ min{2(k + 1) + 2(h− 2− k), k + 1 + 2(h− 1)− k}
= 2(h− 1).

Note that if n is odd and n ≤ 2(h − 1) − k for k even, then in fact n ≤ 2(h − 1) − k − 1.
Thus Equation (1) implies{

s′n = sn if n is odd and n ≤ 2(h− 1)− k,
s′n = sn if n is even and n ≤ 2(h− 1),

Therefore we have shown that for s′ = (1− aτ r)s(1− aτ r)−1, we have
s′n = sn = 0 if n is odd and n ≤ 2(h− 1)− k,
s′n = sn ∈ Fq if n is even and n ≤ 2(h− 2− k)

s′n = sn /∈ Fq if n is even and n = 2(h− 1− k)

s′n = sn if n is even.

Thus s′ satisfies Property ?. �

Lemma 3.13. Suppose s = 1 +
∑
siτ

i ∈ U2,q
h (Fq2) satisfies Property ? for k. Then for any

t ∈ Nk, the element tst−1 also satisfies Property ? for k. Furthermore, if tst−1 = s′ =
∑
s′iτ

i,
then

s′2i = s2i for all i.
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Proof. By Lemma 3.7, we can write t ∈ Nk in the form

(1− a1τ1)(1− a3τ3) · · · (1− a2(h−1)−1τ2(h−1)−1) · g for some g ∈ H.

By assumption, the coefficient of τ i in t vanishes for odd i with i ≤ k. Thus we take ai = 0

for i ≤ k. Furthermore, by Lemma 3.11, proving that tst−1 satisfies Property ? for k is
equivalent to proving that gsg−1 has Property ? for k and that for any r > k odd and
a ∈ Fq2 , (1 − aτ r)s(1 − aτ r)−1 has Property ? for k. But we already know from Lemma
3.11 and 3.12 that this holds. Furthermore, Lemma 3.11 and 3.12 imply s′2i = s2i for all i.
This completes the proof. �

Lemma 3.14. Let s ∈ Gh−2−k rGh−2−k+1. Then

χ]◦(tst
−1) = χ](tst−1) = χ(s) for any t ∈ Nk.

Proof. Let t ∈ Nk. The assumption s ∈ Gh−2−k rGh−1−k implies that s satisfies Property
? for k. Thus by Lemma 3.13, the element tst−1 also satisfies Property ? for k and the
even-degree coefficients of tst−1 agree with the corresponding coefficients of s. The desired
conclusion follows. �

Lemma 3.15. Suppose s satisfies Property ? for k where k is odd. Then∑
a∈F×

q2

χ]◦((1− aτk)s(1− aτk)−1) = −(q + 1)χ](s).

Proof. The first half of this proof is very similar to the proof of Lemma 3.12. Assume
a ∈ F×

q2
and write s′ =

∑
s′iτ

i = (1− aτk)s(1− aτk)−1. Combining Property ? and Lemma
3.8, we know

s′n = sn +
∑

k(l+1)+2m=n
l≥0

m≥h−1−k

−aql+ql−1+···+q+1(sq2m − s2m)

+
∑

k(l′+1)+2m+1=n
l′≥0

2m+1≥2(h−1)−k+1

−aql
′−1+ql

′−2+···+q+1(asq2m+1 − a
qs2m+1).

Using that n ≡ l + 1 (mod 2), we see that the above implies, in particular,{
s′n = sn if n is odd and n ≤ min{k + 2(h− 2− k), 2k + 2(h− 1)− k},
s′n = sn if n is even and n ≤ min{2k + 2(h− 2− k), k + 2(h− 1)− k}.

In the min expression, the first expression comes from the vanishing of terms in the first sum
and the second expression comes from the vanishing of terms in the second sum. Simplifying
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these expressions gives us{
s′n = sn if n is odd and n ≤ 2(h− 1)− k − 2,

s′n = sn if n is even and n ≤ 2(h− 1)− 2.
(2)

and also tells us that when n = 2(h− 1)− k and when n = 2(h− 1), the contributions to
s′n − sn come from terms in the first sum only. More precisely, we have{

s′n = sn − a(sqn−k − sn−k) if n = 2(h− 1)− k,
s′n = sn − aq+1(sqn−2k − sn−2k) if n = 2(h− 1).

(3)

Since k ≤ h− 2, then 2(h− 1)− k ≥ h. Thus since s ∈ K, Equation (2) implies that s′ ∈ K.
Recalling the definition of χ]◦, Equations (2) and (3) imply

χ]◦(s
′) = χ](s · (1− aq+1(sq2(h−1)−k − s2(h−1)−k)τ

h−1))

= χ](s) · ψ(−aq+1(sq2(h−1)−k − s2(h−1)−k)).

Note that since s satisfies Property ? for k and a 6= 0, then −aq+1(sq2(h−1)−k − s2(h−1)−k) 6=
0. Furthermore, this element is in ker(TrFq2/Fq). Since ψ has conductor q2, we know
that its restriction to ker(TrFq2/Fq) is nontrivial. Notice that ranging a ∈ F×

q2
allows

−aq+1(sq2(h−1)−k− s2(h−1)−k) to take each nonzero value of ker(TrFq2/Fq) exactly q+ 1 times.
Therefore, for any s satisfying Property ? for k,∑

a∈F×
q2

χ]◦((1− aτk)s(1− aτk)−1) = χ](s)
∑
a∈F×

q2

ψ(−aq+1(sq2(h−1−k) − s2(h−1−k)))

= −(q + 1) · χ](s). �

Lemma 3.16. Let s ∈ Gh−2−k r Gh−2−k+1. Let n1, . . . , nr be a decreasing sequence of
consecutive odd numbers starting from n1 = 2(h− 1)− 1 and assume that nr < k. Then∑

a1,...,ar∈Fq2
ar 6=0

χ]◦((1− arτnr) · · · (1− a1τn1)s(1− a1τn1)−1 · · · (1− arτnr)−1) = 0.

Proof. Let g = (1− arτnr) · · · (1− a1τn1). If nr + 2(h− 1− k) ≤ h− 1, then we see from
Lemma 3.8 that the coefficient of τnr+2(h−1−k) in gsg−1 is

−ar(sq2(h−1−k) − s2(h−1−k)) 6= 0.

Thus gsg−1 /∈ K and χ]◦(gsg−1) = 0. We may therefore assume that nr > 2k − (h− 1).
Let f be such that nr + nf = 2k (so that nr + nf + 2(h− 1− k) = 2(h− 1)).Note that

such an f exists by the assumption nr < k. To prove the lemma, we will prove the following
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sum identity. Fix ai ∈ Fq2 for 1 ≤ i ≤ r, i 6= f , and assume that ar 6= 0. Then∑
af∈Fq2

χ]◦((1− arτnr) · · · (1− a1τn1)s(1− a1τn1)−1 · · · (1− arτnr)−1) = 0. (4)

It is clear that once this is established, the lemma follows immediately. We thus focus the
rest of the proof on proving Equation (4).

Write g = (1− arτnr) · · · (1− a1τn1). We must study the contribution of af in gsg−1. By
construction nf is odd and s ∈ H. Thus af can only contribute to the coefficient of τ2l in
conjunction with (at least) one of the other ai’s for 1 ≤ i ≤ r.

For convenience, let gsg−1 = 1 +
∑
ciτ

i. First observe that since s ∈ Gh−2−k, we have
sq2i − s2i = 0 for 1 ≤ i ≤ h− 2− k, and thus the smallest odd i such that af has a nonzero
contribution to ci is when i = 2(h− 1− k) +nf > 2(h− 1− k) + 2k− (h− 1) = h− 1. Thus
we see that gsg−1 ∈ K for af = 0 if and only if gsg−1 ∈ K for any af ∈ Fq2 (remember that
g depends on af ).

If gsg−1 /∈ K, then we are done. Now assume gsg−1 ∈ K. By construction, the value of
χ](gsg−1) depends only on the coefficients c2i for 1 ≤ i ≤ h− 1. If af contributes to some
c2i, then we must have

2i ≥ nf + nr + 2(h− 1− k) = 2(h− 1).

Thus af only contributes to c2(h−1). Furthermore, its contribution to c2(h−1) is

ara
q
fs2(h−1−k) − ars

q
2(h−1−k)a

q
f − afs

q
2(h−1−k)a

q
r + s2(h−1−k)afa

q
r

= −(ara
q
f + aqraf )(sq2(h−1−k) − s2(h−1−k)).

(One can see this by computing (1− arτnr)(1− afτnf )s(1− afτnf )−1(1− arτnr)−1.) Thus

χ]◦(gsg
−1) = χ](gsg−1) = χ](γ) · ψ(−(ara

q
f + aqraf )(sq2(h−1−k) − s2(h−1−k))),

where γ does not depend on the choice of af ∈ Fq2 . Thus∑
af∈Fq2

χ]◦(gsg
−1) = χ](γ) ·

∑
af∈Fq2

ψ(−(ara
q
f + aqraf )(sq2(h−1−k) − s2(h−1−k))).

Note that for any c ∈ Fq, any solution x to arxq + aqrx = c must satisfy xq2 = x. Thus
varying af ∈ Fq2 , the quantity ara

q
f + aqraf takes the value of each element Fq exactly q

times. Since s2(h−1−k) /∈ Fq, then −(ara
q
f + aqraf )(sq2(h−1−k) − s2(h−1−k)) attains each value

of ker TrFq2/Fq exactly q times. By the assumption that ψ has conductor q2, the restriction
of ψ to the subgroup ker TrFq2/Fq is nontrivial, and thus∑

af∈Fq2

ψ(−(ara
q
f + aqraf )(sq2(h−1−k) − s2(h−1−k))) = 0.

Equation (4) follows. �
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We are now ready to prove Proposition 3.4, Theorem 3.1, and Corollary 3.2.

Proof of Proposition 3.4. It is easy to see that

|Nk| =

{
q4(h−1)−k if k is even,
q4(h−1)−(k+1) if k is odd.

(5)

We will use this at various points in this proof.
If s ∈ Gh−2, then s is central in U2,q

h (Fq2). Thus for any t ∈ U2,q
h (Fq2), tst−1 = s and

1

|K|
∑

t∈U2,q
h (Fq2 )

χ]◦(tst
−1) =

|U2,q
h (Fq2)|
|K|

χ(s) =

{
qh−1 · χ(s) if h is odd
qh · χ(s) if h is even.

Thus by Remark 3.5, we have

Tr ρχ(s) = qh−1 · χ(s).

This proves (a).
Let s ∈ Gh−2−k rGh−2−k+1. We first handle the case when k is even. We have∑

t∈U2,q
h (Fq2 )

χ]◦(tst
−1) =

∑
t∈Nk

χ]◦(tst
−1)︸ ︷︷ ︸

(1)

+
∑
t/∈Nk

χ]◦(tst
−1)

︸ ︷︷ ︸
(2)

.

By Lemma 3.14, we know
(1) = |Nk| · χ(s). (6)

By Lemma 3.7, we know that every element t ∈ U q,2h (Fq2) can be written in the form

(1− a1τ1)(1− a3τ3) · · · (1− a2(h−1)−1τ2(h−1)−1) · g

for some g ∈ H. Since H is abelian, this implies that gsg−1 = s, and the assumption t /∈ Nk

implies that there exists i odd with i < k such that ai 6= 0. Thus

(2) = |H| ·
∑
ai∈Fq2

∃ i < k, with ai 6= 0

χ]◦(asa
−1) = 0,

where a = (1− a1τ)(1− a3τ3) · · · (1− a2(h−1)−1τ2(h−1)−1), and the last equality holds by
Lemma 3.16.

Therefore,

1

|K|
∑

t∈U2,q
h (Fq2 )

χ]◦(tst
−1) =

|Nk|
|K|
· χ(s) =

{
qh−1−k · χ(s) h odd,
qh−k · χ(s) h even.

Recalling Remark 3.5, this finishes the proof of the proposition in the case k is even.
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Now let k be odd. By Lemma 3.7, we have∑
t∈U2,q

h (Fq2 )

χ]◦(tst
−1) =

∑
t∈Nk

χ]◦(tst
−1)︸ ︷︷ ︸

(1)

+
∑
t∈Nk
a∈F×

q2

χ]◦((1− aτk)tst−1(1− aτk)−1)

︸ ︷︷ ︸
(2)

+
∑
t/∈Nk

∃ i < k odd s.t. ti 6= 0

χ]◦(tst
−1)

︸ ︷︷ ︸
(3)

.

By Lemma 3.14, we know

(1) = |Nk| · χ(s). (7)

By Lemma 3.13, we know that given s ∈ Gh−2−k r Gh−2−k+1 and t ∈ Nk, we have that
tst−1 satisfies Property ? for k and that χ](tst−1) = χ(s). Thus by Lemma 3.15, we have∑

a∈F×
q2

χ]◦((1− aτk)tst−1(1− aτk)−1) = −(q + 1)χ](tst−1) = −(q + 1)χ(s).

Therefore

(2) = −|Nk|(q + 1) · χ(s). (8)

By the same argument as the case when k is even, it follows from Lemma 3.7 and Lemma
3.16 that

(3) = 0.

Therefore,

1

|K|
∑

t∈U2,q
h (Fq2 )

χ]◦(tst
−1) =

1

|K|
· (|Nk| · χ(s)− |Nk|(q + 1) · χ(s))

=

{
−qh−1−k · χ(s) h odd,
−qh−k · χ(s) h even.

By Remark 3.5, this finishes the proof of the proposition when k is odd. �

Proof of Theorem 3.1. Consider the (virtual) H-representation

ρ = (−1)h

(
q · χ+

h−2∑
i=1

(−1)i(q + 1) IndHGi(χ)

)
.
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Since H is abelian, its trace is very easy to calculate: using |H|/|Gi| = qi, for any s ∈ H,

Tr ρ(s) = (−1)h

(
q · χ(s) +

h−2∑
i=1

(−1)i(q + 1) Tr IndHGi(χ)(s)

)

= (−1)h

(
q · χ(s) +

h−2∑
i=1

(−1)i(q + 1)qi · 1Gi(s) · χ(s)

)
.

Therefore:

(a) If s ∈ Gh−2, then

Tr ρ(s) = (−1)h · χ(s) ·

(
q +

h−2∑
i=1

(−1)i(q + 1)qi

)
= qh−1 · χ(s).

(b) If s ∈ Gh−2−k rGh−2−k+1, then

Tr ρ(s) = (−1)h · χ(s) ·

(
q +

h−2−k∑
i=1

(−1)i(q + 1)qi

)
= (−1)kqh−1−k · χ(s).

Comparing this with Proposition 3.4, we see that

ρχ(s) = ρ(s) for all s ∈ H(Fq2).

Therefore ρχ = ρ as elements of the Grothendieck group of H. �

Proof of Corollary 3.2. Given a character θ : H(Fq2)→ Q×` , we can read off its multiplicity
from the result of Theorem 3.1. Indeed, since H is abelian, then if θ is an H-character
that agrees with χ on some subgroup Gm but not on Gm−1, then it occurs exactly once in
IndHGi(χ) for every i ≥ m and does not occur in IndHGi(χ) for i ≤ m− 1. Therefore:

(a) The character χ occurs in ρχ with multiplicity equal to

(−1)h
(
q − (q + 1) + (q + 1)− · · ·+ (−1)h−2(q + 1)

)
=

{
(−1)(q − (q + 1)) = 1 if h is odd,
q if h is even.

(b) Let θ be a character of H such that, for some odd k, θ agrees with χ on Gh−2−k
but not on Gh−2−k−1. Then θ occurs in ρχ with multiplicity equal to

(−1)h
(

(−1)h−2−k(q + 1) + · · ·+ (−1)h−2(q + 1)
)

= 0,

since this is an alternating sum of k + 1 terms and k is odd.
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(c) Let θ be a character of H such that, for some even k, θ agrees with χ on Gh−2−k
but not on Gh−2−k−1. Then θ occurs in ρχ with multiplicity equal to

(−1)h
(

(−1)h−2−k(q + 1) + · · ·+ (−1)h−2(q + 1)
)

= (−1)h(−1)h−2(q + 1) = q + 1.

(d) Let θ be a character of H that does not agree with χ on Gh−2. Since Gh−2 is in
the center of U2,q

h (Fq2), then the restriction of ρχ to Gh−2 must be a sum of χ|Gh−2
.

Therefore the multiplicity of θ in ρχ must be 0.

This completes the proof. �

4. Morphisms Between H i
c(Xh) and Representations of U2,q

h (Fq2)

Let H•c (Xh) =
⊕

i∈ZH
i
c(Xh,Q`). The aim of this section is to compute the space

Hom
U2,q
h (Fq2 )

(Vψ, H
•
c (Xh)). Recall that

Vψ = Ind
U2,q
h (Fq2 )

H′0(Fq2 )
(ψ̃),

where ψ̃ is the extension of ψ to H ′0(Fq2) defined in Section 2.
In the following theorem, we prove a clean way to express the equations cutting out the

scheme Xh ⊆ U2,q
h . This will be heavily used in this section, as well as in the next section.

Theorem 4.1. The scheme Xh ⊂ U2,q
h is defined by the vanishing of the polynomials

f2k := (aq
2

2k − a2k) +
2k−1∑
i=1

(−1)iaqi (a
q2

2k−i − a2k−i)

for 1 ≤ k ≤ h− 1.

Proof. It suffices to verify this claim at the level of Fq-points. Recall that we have an
embedding of U2,q

h (Fq) into the set of matrices over Fq[π]/(πh) given by

ιh : 1 +

2(h−1)∑
i=1

aiτ
i 7→

(
1 + a2π + a4π

2 + · · · a1 + a3π + a5π
2 + · · ·

aq1π + aq3π
2 + · · · 1 + aq2π + aq4π

2 + · · ·

)
.

The determinant of ιh(1 +
∑
aiτ

i) is a polynomial in π with coefficients in Fq. Let ck be
the coefficient of πk in this determinant. By definition, 1 +

∑
aiτ

i is in Xh(Fq) if and only
if cqk = ck for k = 1, . . . , h− 1. Note that ck is a polynomial in a1, . . . , a2(h−1). We wish to
find a clean way to write down cqk − ck as a polynomial in the ai’s.

The coefficient ck of πk is equal to the coefficient of πk in (1 + a2π + · · · )(1 + aq2π + · · · )
minus the coefficient of πk in (a1 + a3π + · · · )(aq1π + aq3π

2 + · · · ). Thus the coefficient of πk
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in the determinant is

ck :=

k∑
j=0

a2ja
q
2k−2j − a2j+1a

q
2k−(2j+1),

where it is understood that a0 = 1 and a−n = 0 for n ∈ N. We can now focus our attention
on the terms in ck involving ai. We see that if i = 2j, then the terms in ck involving ai are

a2ja
q
2k−2j + a2k−2ja

q
2j ,

and that if i = 2j + 1, then the terms in ck involving ai are

−a2j+1a
q
2k−(2j+1) − a2k−(2j+1)a

q
2j+1.

Therefore the terms in cqk − ck involving ai are

(−1)i[(aia
q
2k−i + a2k−ia

q
i )
q − (aia

q
2k−i + a2k−ia

q
i )],

which simplifies to
(−1)i[aqi (a

q2

2k−i − a2k−i) + aq2k−i(a
q2

i − ai)].
Setting f2k := cqk − ck completes the proof. �

The following theorem is the main result of this section.

Theorem 4.2. Let ψ be an additive character of Fq2 with conductor q2. If h is odd, then

dim Hom
U2,q
h (Fq2 )

(Vψ, H
i
c(Xh,Q`)) =

{
q2(h−2) if i = h− 1,

0 otherwise.

If h is even, then

dim Hom
U2,q
h (Fq2 )

(Vψ, H
i
c(Xh,Q`)) =

{
q2(h−2)+1 if i = h− 1,
0 otherwise.

Moreover, the Frobenius Frq2 acts on Hom
U2,q
h (Fq2 )

(Vψ, H
h−1
c (Xh,Q`)) via multiplication by

the scalar (−1)h−1qh−1.

This is proven in Section 4.1. As a corollary to Theorem 4.2, we have the following.

Corollary 4.3. Let ψ be an additive character of Fq2 with conductor q2. If χ : U1
L/U

h
L → Q×`

is a character that restricts to ψ on Uh−1L /UhL, then H
i
c(Xh,Q`)[χ] = 0 for all i 6= h− 1.

Proof. The left action of U1
L/U

h
L and the right action of U2,q

h (Fq2) onXh agree on Uh−1L /UhL
∼=

H2(h−1)(Fq2). Therefore, since Uh−1L /UhL acts by ψ on H i
c(Xh,Q`)[χ], then H2(h−1)(Fq2)

also acts by ψ. We know from our analysis of the representations of U2,q
h (Fq2) that every

irreducible component of H i
c(Xh,Q`)[χ] appears in Vψ, so this forces H i

c(Xh,Q`)[χ] = 0 if
i 6= h− 1. �
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This will allow us to compute intertwining spaces using Lemma 2.13 of [B12]. This will
be exploited in Section 5.

4.1. Proof of Theorem 4.2. The structure of the proof is as follows. We first use
Proposition 2.3 of [B12] to reduce the computation of Hom

U2,q
h (Fq2 )

(Vψ, H
i
c(Xh,Q`)) to

the computation of the cohomology of a certain scheme S with coefficients in a certain
constructible Q` sheaf F . Then, to compute H i

c(S,F ), we apply (a slightly more general
version of) Proposition 2.10 of [B12] inductively. This will allow us to reduce the computation
of H i

c(X,F ) to a computation involving a 0-dimensional scheme in the case that h is odd,
and a computation involving a 1-dimensional scheme in the case that h is even. Because the
computation is identical until this final step, we treat these to cases simultaneously until
the very last step.

We start with a slight generalization of Proposition 2.10 of [B12] that has been tailored
for our purposes.

Proposition 4.4. Let q be a power of p, let n ∈ N, and let ψ : Fqn → Q×` be a character
that has conductor qm. Let S2 be a scheme of finite type over Fqn, put S = S2 × A1 and
suppose that a morphism P : S → Ga has the form

P (x, y) = f(x)q
j
y − f(x)q

n
yq

n−j
+ α(x, y)q

m − α(x, y) + P2(x).

Here, j is some integer j not divisible by m; f, P2 : S2 → Ga are two morphisms; and
α : S2 × A1 → Ga is a morphism. Let S3 ⊂ S2 be the subscheme defined by f = 0 and let
P3 = P2|S3 : S3 → Ga. Then for all i ∈ Z, we have

H i
c(S, P

∗Lψ) ∼= H i−2
c (S3, P

∗
3Lψ)(−1)

as vector spaces equipped with an action of Frqn, where the Tate twist (−1) means that the
action of Frqn on H i−2

c (S3, P
∗
3Lψ) is multiplied by qn.

Proof of Proposition 4.4. Let P ′(x, y) = f(x)q
j
y − f(x)q

n
yq

n−j
+ P2(x) and P ′′(x, y) =

α(x, y)q
m −α(x, y). We show that the pullbacks P ∗Lψ and (P ′)∗Lψ are isomorphic. Since ψ

has conductor qm, the pullback of Lψ by the map z 7→ zq
m is trivial, and so thus (P ′′)∗Lψ

is trivial. Since Lψ is additive, then we have shown that P ∗Lψ and (P ′)∗Lψ are isomorphic
and thus by Proposition 2.10 of [B12],

H i
c(S, P

∗Lψ) ∼= H i
c(S, (P

′)∗Lψ) ∼= H i−2
c (S3, P

∗
3Lψ)(−1)

as vector spaces equipped with an action of Frq2 . �

We now return to the proof of Theorem 4.2.
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Step 0. We first need to establish some notation. I have tried to make this notation
reminiscent of that used in the proof of Proposition 6.5 in [BW11].

• Let I ′ denote the set of integers j such that h − 1 < j < 2(h − 1) and 2 - j. Put
I = I ′ ∪ {2(h− 1)}.
• Put J = [2(h− 1)] \ I, where [n] = {1, . . . , n}.
• Put I0 := I ′ and J0 := J . Then define I1 := I0 \ {2(h− 1)− 1} and J1 := J0 \ {1}.
This describes a recursive construction of Ik and Jk; namely, one obtains Ik from Ik−1
by removing the largest odd number and one obtains Jk from Jk−1 by removing the
smallest odd number. This defines indexing sets Ik and Jk for 1 ≤ k ≤ b(h− 1)/2c.
• Note that if h is odd, then

Ib(h−1)/2c = I(h−1)/2 = ∅,
Jb(h−1)/2c = J(h−1)/2 = {2, 4, . . . , 2(h− 2)}.

If h is even, then

Ib(h−1)/2c = I(h−2)/2 = ∅,
Jb(h−1)/2c = J(h−2)/2 = {2, 4, . . . , 2(h− 2)} ∪ {h− 1}.

This distinction is exactly why our inductive argument reduces to a 0-dimensional
scheme in the case that h is odd and a 1-dimensional scheme in the case that h is
even.
• Note that H ′0 = {1 +

∑
aiτ

i : i ∈ I}.
• For a finite set T ⊂ N, we will write A[T ] to denote affine space with coordinates xi
for i ∈ T .

Step 1. We apply Proposition 2.3 of [B12] to the following set-up:

• G = U2,q
h and H = H ′0, both defined over Fq2

• the morphism s : U2,q
h /H ′0 → U2,q

h defined by sending the ith coordinate to the
coefficient of τ i; that is, identify U2,q

h /H ′0 with affine space with coordinates indexed
by J , and set s : (xi)i∈J 7→ 1 +

∑
i∈J xiτ

i.
• the algebraic group homomorphism f : H ′0 → Ga given by projection to the last
coordinate. That is, f : 1 +

∑
i∈I aiτ

i 7→ a2(h−1). (From the definition of H ′0, it is
easy to see that this map is a homomorphism.)
• an additive character ψ : Fq2 → Q×`
• a locally closed subvariety Yh ⊂ U2,q

h which is chosen so that Xh = L−1
q2

(Yh)

Since Xh has a right-multiplication action by U2,q
h (Fq2), the cohomology groups H i

c(Xh,Q`)

inherit a U2,q
h (Fq2)-action. For each i ≥ 0, Proposition 2.3 of [B12] implies that we have a
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vector space isomorphism

Hom
U2,q
h (Fq2 )

(Vψ, H
i
c(Xh,Q`)) ∼= H i

c(β
−1(Yh), P ∗Lψ)

compatible with the action of Frq2 . Here, Lψ is the Artin-Schreier local system on Ga

corresponding to ψ, the morphism β : (U2,q
h /H ′0)×H ′0 → U2,q

h is given by β(x, g) = s(Frq2(x))·
g · s(x)−1, and the morphism P : β−1(Yh)→ Ga is the composition β−1(Yh) ↪→ (U2,q

h /H ′0)×
H ′0

pr−→ H ′0
f−→ Ga.

We now work out an explicit description of β−1(Yh) ⊂ A[J ] × H ′0 (keep in mind that
we identified U2,q

h /H ′0 with A[J ]). For 1 ≤ l ≤ (h− 1), recall the polynomial described in
Theorem 4.1

f2l := (aq
2

2l − a2l) +
2l−1∑
i=1

(−1)iaqi (a
q2

2l−i − a2l−i).

Write x = (xi)i∈J ∈ A[J ] and g = 1 +
∑

i∈I xiτ
i ∈ H ′0(Fq). (Note that I ∩ J = ∅; the xi in

x and xi in g are independent of each other.) For each i ∈ I, we can write xi = yq
2

i − yi for
yi ∈ Fq, so that g = Lq2(y), where y := 1 +

∑
i∈I yiτ

i. Therefore

β(x, g) = Frq2(s(x)) · Lq2(y) · s(x)−1 = Lq2(s(x) · y).

We see that β(x, g) ∈ Yh if and only if s(x) · y ∈ Xh. Let s(x) · y = 1 +
∑
aiτ

i = a. By
Theorem 4.1, we know that s(x) · y ∈ Xh if and only if f2l(a) = 0 for all l with 1 ≤ l ≤ h− 1.

Step 2. This is a necessary preparation step before we apply Proposition 4.4. As in Step 1,
let x = (xi)i∈J ∈ A[J ] and s(x) = 1+

∑
i∈J xiτ

i ∈ U2,q
h (Fq). Let g = 1+

∑
i∈I xiτ

i ∈ H ′0(Fq)
and let yi be such that xi = yq

2

i − yi for i ∈ I so that g = Lq2(y), where y = 1 +
∑

i∈I yiτ
i.

Recall that we wrote s(x) · y = 1 +
∑
aiτ

i = a.
From direct computation, we can write down an explicit description of each coefficient ai

in terms of x and y. For convenience, let r = 2bh/2c. Then

ai =



xi if i ≤ r,
yi + x2y

q2

i−2 + x4y
q4

i−4 + · · ·+ xi−(r+1)y
qi−(r+1)

r+1 if r < i and i is odd,

x1y
q
i−1 + x3y

q3

i−3 + · · ·+ xi−(r+1)y
qi−(r+1)

r+1 + xi if r < i < 2(h− 1) and i is even,
y2(h−1) + x1y

q
2(h−1)−1 + x3y

q3

2(h−1)−3 + · · ·
+x2(h−1)−(r+1)y

q2(h−1)−(r+1)

r+1 if i = 2(h− 1).
(9)

Fix 1 ≤ l ≤ h− 1. The polynomial f2l(a) is a priori a polynomial in xi for i ∈ J and yi
for i ∈ I. In this step, we show that, after setting xi = yq

2

i − yi for i ∈ I, the expression
f2l(a) is actually a polynomial in xi for i ∈ I ∪ J .

First observe that the monomials occurring in f2l(s(x) · y) can involve yi for at most one
i. More precisely, a monomial occurring f2l(a) takes one of the following forms:
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(i) It is a product of powers of xi’s.
(ii) It involves y2(h−1).
(iii) It is of the form xαi x

β
j y

γ
k , where i ≥ 0 is even, j ≤ 2bh/2c is odd, and k ≥ 2bh/2c+ 1

is odd. (As usual, we set x0 = 1.)

We need to show that setting xi = yq
2

i − yi for i ∈ I allows us to write the monomials in (ii)
and (iii) as expressions involving only xi’s for i ∈ I ∪ J .

The term y2(h−1) only occurs in the polynomial f2l(a) for l = h− 1. Its contribution to
f2(h−1)(a) is

yq
2

2(h−1) − y2(h−1) = x2(h−1),

so this takes care of (ii).
Now pick i, j, k with i + j + k = 2l so that i ≥ 0 is even, j ≤ 2bh/2c is odd, and

k > 2bh/2c is odd. Then yk, xi, and xj occur in f2l(a) in the terms

aqi (a
q2

j+k − aj+k) + aqj+k(a
q2

i − ai)− a
q
j(a

q2

i+k − ai+k)− a
q
i+k(a

q2

j − aj),

and are exactly

xqi ((xjy
qj

k )q
2 − xjyq

j

k ) + (xjy
qj

k )q(xq
2

i − xi)− x
q
j((xiy

qi

k )q
2 − xiyq

i

k )− (xiy
qi

k )q(xq
2

j − xj).

Note that monomials of the form xαi x
β
j y

γ
k do not occur in aqk(a

q2

i+j − ai+j) or aqi+j(a
q
k − ak)

(see Equation (9)). The above simplifies to

xqix
q2

j (yq
j+2

k − yq
i+1

k )− xixqj(y
qj+1

k − yq
i

k )− xqixj(y
qj

k − y
qi+1

k ) + xq
2

i x
q
j(y

qj+1

k − yq
i+2

k ).

By assumption, i is even and j is odd, which means that each expression involving yk’s is of
the form yq

m+2n

k − yq
m

k for some n. Since yq
2

k − yk = xk, we then have

yq
m+2n

k − yq
m

k = (y2nk − yk)q
m

= (xq
2n−2

k + xq
2n−4

k + · · ·+ xq
2

k + xk)
qm .

This takes care of (iii) and thus we have shown that for any 1 ≤ l ≤ h − 1, f2l(a) is a
polynomial in terms of xi for i ∈ I ∪ J . We will write F2l to mean the polynomial f2l(a)

viewed as a polynomial in xi for i ∈ I ∪ J .

Step 3. Let P (0) = x2(h−1) − F2(h−1). By Step 2, P (0) is a polynomial in terms of xi for
i ∈ I0 ∪ J = I0 ∪ J0. Recall from Step 1 that β(x, g) ∈ Yh if and only if s(x) · y ∈ Xh. If
s(x) · y ∈ Xh, then we must have F2(h−1) = f2(h−1)(s(x) · y) = 0, so P (0) = x2(h−1). Thus
we see that the 2(h− 1)th coordinate of β−1(Yh) ⊂ A[I ∪ J ] is uniquely determined by the
other coordinates. We can therefore rewrite this scheme as a subscheme S(0) of A[I0 ∪ J0].
Furthermore the morphism P (0) : S(0) → Ga is exactly the restriction of the morphism
P : β−1(Yh)→ Ga introduced in Step 1. Thus

H i
c(β
−1(Yh), P ∗Lψ) ∼= H i

c(S
(0), (P (0))∗Lψ).
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Step 4. In the next two steps, we describe an inductive application of Proposition 4.4.
We apply Proposition 4.4 to the following set-up:

• Let S(0) be as in Step 3. Explicitly, it is the subscheme of A[I0 ∪ J0] defined by the
equations F2l = 0 for l < h− 1, where A[I0 ∪ J0] is the affine space A2(h−1)−1 with
coordinates labelled by xi for i ∈ I0 ∪ J0.
• Let S(0)

2 denote the subscheme of A[I1 ∪ J0] defined by the same equations.
• Note that S(0) = S

(0)
2 × A[{2(h − 1) − 1}], since x2(h−1)−1 has no contribution to

F2l for l < h− 1.
• Let f : S

(0)
2 → Ga be defined as the projection to x1.

• For v ∈ S(0)
2 and w = x2(h−1)−1, we may write

P (0)(v, w) = f(v)qw − f(v)q
2
wq + P

(0)
2 (v). (10)

(We justify this later.)
• Let S(0)

3 ⊂ S
(0)
2 ⊂ A[I1 ∪ J0] be the subscheme defined by f = x1 = 0 and let

P
(0)
3 := P

(0)
2 |S(0)

3

: S
(0)
3 → Ga.

Then by Proposition 4.4, for all i ∈ Z,

H i
c(S

(0), (P (0))∗Lψ) ∼= H i−2
c (S

(0)
3 , (P

(0)
3 )∗Lψ)(−1)

as vector spaces equipped with an action of Frq2 , where the Tate twist (−1) means that the
action of Frq2 on H i−2

c (S
(0)
3 , (P

(0)
3 )∗Lψ) is multiplied by q2.

Before we proceed, we must show that one can indeed decompose P (0) into the form
described in Equation (10). Using Theorem 4.1 together with the explicit equations for the
coordinates of the product s(x) · y =: a described in Equation (9), we see that the only
terms in x2(h−1) − f2(h−1)(a) involving y2(h−1)−1 occur in the expression

−(aq
2

2(h−1) − a2(h−1)) + aq1(a
q2

2(h−1)−1 − a2(h−1)−1) + aq2(h−1)−1(a
q2

1 − a1)

and are exactly

−((x1y
q
2(h−1)−1)

q2 − (x1y
q
2(h−1)−1)) + xq1(y

q2

2(h−1)−1 − y2(h−1)−1) + yq2(h−1)−1(x
q2

1 − x1).

Thus the only terms involving x2(h−1)−1 in P (0) are

xq1x2(h−1)−1 − x
q2

1 x
q
2(h−1)−1.

Moreover, the remaining terms in P (0) only involve indices in I1 ∪ J0. This proves that the
decomposition in (10) exists.

Remark 4.5. Note that since S(0)
3 was defined to be the subscheme of S(0)

2 ⊂ A[I1 ∪ J0] cut
out by x1, we can actually view S

(0)
3 as a subscheme of A[I1 ∪ J1]. Thus what we have done
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in this step is reduce a computation about a subscheme of A[I0∪J0] to a computation about
a subscheme of A[I1 ∪ J1].

Step 5. We now apply Proposition 4.4 again. We apply it to the following set up.

• Let S(1) := S
(0)
3 ⊂ A[I1 ∪ J1].

• Let S(1)
2 be the subscheme of S(1) cut out by x2(h−1)−3 so that we can in fact view

S
(1)
2 as a subscheme of A[I2 ∪ J1].

• Note that S(1) = S
(1)
2 × A[{2(h − 1) − 3}] since x1 = x2(h−1)−1 = 0 implies that

x2(h−1)−3 does not contribute to F2l for l < h− 1.
• Let f : S

(1)
2 → Ga be defined as the projection to x3.

• For v ∈ S(1)
2 and w = x2(h−1)−3, we may write

P (1)(v, w) := P
(0)
3 (v, w) = f(v)qw − f(v)q

2
wq + (f(v)wq − (f(v)wq)q

2
) + P

(1)
2 . (11)

(We justify this step later.) Note that in the notation of Proposition 4.4, we have
α(v, w) = −f(v)wq.
• Let S(1)

3 ⊂ S
(1)
2 ⊂ A[I2 ∪ J1] be the subscheme defined by f = x3 = 0 and let

P
(1)
3 := P

(1)
2 |S(1)

3

: S
(1)
3 → Ga.

Then by Proposition 4.4, for all i ∈ Z,

H i
c(S

(1), (P (1))∗Lψ) ∼= H i−2
c (S

(1)
3 , (P

(1)
3 )∗Lψ)(−1)

as vector spaces equipped with an action of Frq2 .
As before, we must verify that one can indeed decompose P (1) into the form described

in Equation (11). This computation will turn out to be very similar to the computation
in Step 4. Again using Theorem 4.1 together with Equation (9), we see that once we set
x1 = 0 and x2(h−1)−1 = 0, the only terms in x2(h−1) − f2(h−1)(s(x) · y) involving y2(h−1)−3
occur in the expression

−(aq
2

2(h−1) − a2(h−1)) + aq3(a
q2

2(h−1)−3 − a2(h−1)−3) + aq2(h−1)−3(a
q2

3 − a3)

and are

−((x3y
q3

2(h−1)−3)
q2 − (x3y

q3

2(h−1)−3)) + xq3(y
q2

2(h−1)−3 − y2(h−1)−3) + yq2(h−1)−3(x
q2

3 − x3).

Thus the only terms involving x2(h−1)−3 in P (0) are

xq3x2(h−1)−3 − x
q2

3 x
q
2(h−1)−3 + x3x

q
2(h−1)−3 − x

q2

3 x
q3

2(h−1)−3.

Moreover, the remaining terms in P (1) only involve indices in I1 ∪ J0. This verifies (11).
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Remark 4.6. Each time we iterate Step 5, it will be of the following form. Let k be a positive
odd integer < (h− 1). We will have S = S2 × A[{2(h− 1)− k}] with f : S2 → Ga defined
as the projection to xk. For v ∈ S2 and w = x2(h−1)−k, we may write

P (v, w) = f(v)qw − f(v)q
2
wq + (f(v)g(w)− (f(v)g(w))q

2
) + P2, (12)

where g(w) = wq
k−2

+ wq
k−4

+ · · · + w. (In the notation of Proposition 4.4, α(v, w) =

−f(v)g(w).) Let S3 ⊂ S2 be the subscheme defined by f = xk = 0 and let P3 = P2|S3 : S3 →
Ga. Then by Proposition 4.4,

H i
c(S, P

∗Lψ) ∼= H i−2
c (S3, P

∗
3Lψ)(−1)

as vector spaces equipped with an action of Frq2 . To see (12), observe that once we set
xl = x2(h−1)−l = 0 for l odd and l < k, the only terms in x2(h−1)− f2(h−1)(s(x) · y) involving
y2(h−1)−k occur in the expression

−(aq
2

2(h−1) − a2(h−1)) + aqk(a
q2

2(h−1)−k − a2(h−1)−k) + aq2(h−1)−k(a
q2

k − ak).

Thus we see that the only terms involving y2(h−1)−k are

−((xky
qk

2(h−1)−k)
q2 − (xky

qk

2(h−1)−k)) + xqk(y
q2

2(h−1)−k − y2(h−1)−k) + yq2(h−1)−k(x
q2

k − xk),

which simplifies to

−(xq
2

k y
qk+2

2(h−1)−k − xky
qk

2(h−1)−k) + xqkx2(h−1)−k + yq2(h−1)−k(x
q2

k − xk)

= −xq
2

k (yq
k+2

2(h−1)−k − y
q
2(h−1)−k) + xk(y

qk

2(h−1)−k − y2(h−1)−k) + xqkx2(h−1)−k

= xqkx2(h−1)−k − x
q2

k x
q
2(h−1)−k

+
(
xk(x

qk−2

2(h−1)−k + xq
k−4

2(h−1)−k + · · ·+ x2(h−1)−k)

− xq
2

k (xq
k

2(h−1)−k + xq
k−2

2(h−1)−k + · · ·+ xq
2

2(h−1)−k)
)
.

This verifies (12) and allows us to use Proposition 4.4 to iterate the induction.

Step 6, Odd Case. Iterating Step 5, we reduce the computation about the cohomology
of S(0) to a computation about the cohomology of S((h−1)/2) := S

((h−3)/2)
3 , which is the

subscheme of A[I(h−1)/2 ∪ J(h−1)/2] defined by the equations

xq
2

2 − x2 = 0, xq
2

4 − x4 = 0, . . . , xq
2

2(h−2) − x2(h−2) = 0.

These equations come from the equations given in Theorem 4.1 together with setting xi = 0

for all odd i. Recalling that I(h−1)/2 ∪ J(h−1)/2 = {2, 4, . . . , 2(h− 2)}, we see that S((h−1)/2)



36 CHARLOTTE CHAN

is a 0-dimensional scheme with q2(h−2) points and Frq2 acts trivially on the cohomology.
Therefore

dimH i
c(S

((h−1)/2), (P ((h−1)/2))∗Lψ) =

{
q2(h−2) if i = 0,
0 otherwise.

Step 6, Even Case. Iterating Step 5, we reduce the computation about the cohomology
of S(0) to a computation about the cohomology of S((h−2)/2) := S

((h−4)/2)
3 , which is the

subscheme of A[I(h−2)/2 ∪ J(h−2)/2] defined by the equations

xq
2

2 − x2 = 0, xq
2

4 − x4 = 0, . . . , xq
2

2(h−2) − x2(h−2) = 0.

Recalling that I(h−2)/2 ∪ J(h−2)/2 = {2, 4, . . . , 2(h− 2)} ∪ {h− 1}, we see that S((h−2)/2) is
a one-dimensional scheme. Moreover P ((h−2)/2) is the morphism

P ((h−2)/2) : S((h−2)/2) → Ga, (xi)i∈I(h−2)/2∪J(h−2)/2
7→ xqh−1(x

q2

h−1 − xh−1).

The above shows that

H i
c(S

((h−2)/2), (P ((h−2)/2))∗Lψ) ∼= H i
c(Ga, P

∗Lψ)⊕q
2(h−2)

,

where the morphism P is defined as

P : Ga → Ga, x 7→ xq(xq
2 − x).

We now compute the right-hand-side cohomology groups in the same way as in Sections 6.5
and 6.6 in [BW11]. We may write P = p1 ◦p2 where p1(x) = xq−x and p2(x) = xq+1. Since
p1 is a group homomorphism, then p∗1Lψ ∼= Lψ◦p1 , where Lψ◦p1 is the multiplicative local
system on Ga corresponding to the additive character ψ ◦ p1 : Fq2 → Q×` . By assumption, ψ
has trivial Gal(Fq2/Fq)-stabilizer, and so ψ ◦ p1 is nontrivial. Furthermore, ψ ◦ p1 is trivial
on Fq. Thus the character ψ ◦ p1 : Fq2 → Q×` satisfies the hypotheses of Proposition 6.12 in
[BW11], and thus

dimH i
c(Ga, P

∗Lψ) = dimH i
c(Ga, p

∗
2Lψ◦p1) =

{
q if i = 1,
0 otherwise.

Moreover, the Frobenius Frq2 acts on H1
c (Ga, P

∗Lψ) via multiplication by −q.
Putting this together, we have

dimH i
c(S

((h−2)/2), (P ((h−2)/2))∗Lψ) =

{
q2(h−2)+1 if i = 1,
0 otherwise,

and the Frobenius Frq2 acts on H1
c (Ga, P

∗Lψ) via multiplication by −q.
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Step 7. We now put together all of the boxed equations. We have

Hom
U2,q
h (Fq2 )

(Vψ, H
i
c(Xh,Q`)) ∼= H i

c(β
−1(Yh), P ∗Lψ)

= H i
c(S

(0), (P (0))∗Lψ)

∼= H i−2
c (S

(0)
3 , (P

(0)
3 )∗Lψ)(−1)

= H i−2
c (S(1), (P (1))∗Lψ)(−1)

∼= H i−2b(h−1)/2c
c (S(b(h−1)/2c), (P (b(h−1)/2c))∗Lψ)(−b(h− 1)/2c)

Therefore if h is odd, then

dim Hom
U2,q
h (Fq2 )

(Vψ, H
i
c(Xh,Q`)) =

{
q2(h−2) if i = h− 1,
0 otherwise.

If h is even, then

dim Hom
U2,q
h (Fq2 )

(Vψ, H
i
c(Xh,Q`)) =

{
q2(h−2)+1 if i = h− 1,
0 otherwise.

Moreover, the Frobenius Frq2 acts on Hom
U2,q
h (Fq2 )

(Vψ, H
i
c(Xh,Q`)) via multiplication by

the scalar (−1)h−1qh−1.

5. The Representations H•c (Xh)[χ]

Let K := H ′(Fq2), where H ′ is defined as in Section 2. Let ψ : Fq2 → Q×` be a character
of conductor q2 and let χ ∈ Aψ. In this section, we will compute the representation
σχ := Hh−1

c (Xh,Q`)[χ] by computing its restriction to H := H(Fq2). It will turn out that
σχ is irreducible and therefore by Corollary 3.3, determining σχ as a representation of H
will be enough to determine σχ as a representation of U2,q

h (Fq2).
Recall that the left action of U1

L/U
h
L and right action of U2,q

h (Fq2) on Xh induce a
(U1

L/U
h
L × U

2,q
h (Fq2))-module structure on Hh−1

c (Xh,Q`). The primary object of interest in
this section is the subspace Hh−1

c (Xh,Q`)χ1,χ2 ⊂ Hh−1
c (Xh,Q`) wherein U1

L/U
h
L ×H(Fq2)

acts by χ1 ⊗ χ2. Here, χ1 and χ2 are characters of U1
L/U

h
L
∼= H(Fq2).

We first present the main theorems of this section.

Theorem 5.1. Let ψ : Fq2 → Q×` be a character of q2 and let χ ∈ Aψ. Then Hh−1
c (Xh,Q`)[χ]

is an irreducible representation of U2,q
h (Fq2).

Theorem 5.1 proves Conjecture 5.18 of [B12] (this was restated in Section 1 of this
paper). We prove this in Section 5.2. However, it will be important to know exactly which
representation Hh−1

c (Xh,Q`)[χ] is. Thus we need the following finer statement
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Theorem 5.2. Let ψ : Fq2 → Q×` be a character of conductor q2 and let χ1 ∈ Aψ. Then for
any character χ2 : U1

L/U
h
L → Q×` ,

dimHh−1
c (Xh,Q`)χ1,χ2 = (−1)h

(
q · 〈χ1, χ2〉+

h−2∑
i=1

(−1)i(q + 1) · 〈χ1, χ2〉Gi

)
.

We prove this in Section 5.1. Note that Theorem 5.1 is a consequence of Theorem 5.2.
However, because the proof of Theorem 5.2 is complicated, we hope that proving Theorem
5.1 independently (in Section 5.2) will illustrate the flavor of the computation in a simpler
situation.

As a consequence of Theorem 5.2, we have

Theorem 5.3. Let ψ : Fq2 → Q×` be a character of conductor q2 and let χ ∈ Aψ. Then

H i
c(Xh,Q`)[χ] =

{
ρχ if i = h− 1,
0 otherwise.

Proof. We know from Theorem 4.2 that H i
c(Xh,Q`)[χ] = 0 if i 6= h − 1. Let σχ =

Hh−1
c (Xh,Q`)[χ]. By construction, σχ is a representation of U2,q

h (Fq2) wherein H2(h−1)(Fq2)

acts by some character ψ with conductor q2.
Theorem 5.2 implies that

σχ = (−1)h(q · χ+

h−2∑
i=1

(−1)i(q + 1) · IndHGi(χ)), (13)

which implies that dimσχ = qh−1. By Theorem 2.1, we know that if ρ is an irreducible
representation of U2,q

h (Fq2) such that H2(h−1)(Fq2) acts by ψ, then dim ρ = qh−1. Therefore
σχ is irreducible. (Note that instead of the reasoning in this paragraph, we could have
referenced Theorem 5.1.)

Thus Corollary 3.3 implies that the isomorphism class of σχ is determined by σχ. Fi-
nally, Equation (13) and Theorem 3.1 allow us to conclude that σχ ∼= ρχ as U2,q

h (Fq2)-
representations. �
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5.1. Proof of Thoerem 5.2. By Theorem 4.2, we can apply Lemma 2.13 of [B12] to our
situation and get

dimHh−1
c (Xh,Q`)χ1,χ2 =

1

q5(h−1)

∑
g,γ∈H

χ1(g)−1χ2(γ) ·N(g, γ) (14)

=
1

q5(h−1)

∑
g,γ∈H

g2i = h2i for 1 ≤ i ≤ h− 2

χ1(g)−1χ2(γ) ·N(g, γ) (15)

+
1

q5(h−1)

∑
g,γ∈H

∃ k < h− 2 s.t. h2k 6= g2k

χ1(g)−1χ2(γ) ·N(g, γ), (16)

where

g = 1 +
∑

giτ
i

γ = 1 +
∑

hiτ
i

N(g, γ) = #{x ∈ Xh(Fq) : g ∗ Frq2(x) = x · γ}.

We compute line (15) in Proposition 5.4 and line (16) in Proposition 5.11.
In both of these situations, we need to analyze the set of solutions to a large system of

equations. These equations are:

xq
2

2k − x2k =

2k−1∑
i=1

(−1)(i+1)xqi (x
q2

2k−i − x2k−i) for 1 ≤ k ≤ h− 1 (∗)

xq
2

2k − x2k =
k∑
i=1

[
(h2i − g2i)x2k−2i

− g2i(xq
2

2k−2i − x2k−2i)
]

for 1 ≤ k ≤ h− 1 (∗∗)

xq
2

2k+1 − x2k+1 =
k∑
i=1

[
(hq2i − g2i)x2k+1−2i

− g2i(xq
2

2k+1−2i − x2k+1−2i)
]

for 1 ≤ k ≤ h− 2 (∗ ∗ ∗)

The equations of Type (∗) are equivalent to the condition that x ∈ Xh(Fp) (this was proved
in Theorem 4.1). The equations of Type (∗∗) and Type (∗ ∗ ∗) are equivalent to the condition
that g ∗ Frq2(x) = x · h, where we write g = 1 +

∑h−1
i=1 g2iτ

2i and similarly for h. (These
two actions were defined in Section 1.4.) We will call the above equations the Type (∗)
equation for 2k, the Type (∗∗) equation for 2k, and the Type(∗ ∗ ∗) for 2k + 1, respectively.
Furthermore, when we refer to these equations as polynomials, we view them as multivariate
polynomials in the xi’s.
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5.1.1. Computation of Line (15). We prove a sequence of lemmas that build up to the
following

Proposition 5.4. Let ψ : Fq2 → Q×` be a character with conductor q2 and let χ1 ∈ Aψ.
Then

Line (15) = (−1)h

(
〈χ1, χ2〉 · q +

h−2∑
i=1

(−1)i〈χ1, χ1〉Gi · (q + 1)

)
.

Lemma 5.5. Assume that h2i = g2i for 1 ≤ i ≤ h−2. Then xq
2

2k−x2k = 0 for 1 ≤ k ≤ h−2.

Proof. This is just a simple execution of induction. It is clear that this is true for k = 1.
Now assume that it is true for k < h− 2, and we can show that it is true for k + 1. Indeed,
by assumption, h2i = g2i for 1 ≤ i ≤ h − 2, so the induction hypothesis implies that the
Type (∗∗) equation for 2(k + 1) simples to

xq
2

2(k+1) − x2(k+1) =
k+1∑
i=1

h2ix2k−2i − g2ixq
2

2k−2i =
k+1∑
i=1

(h2i − g2i)x2k−2i = 0. �

Important Remark 5.6. The key observation that we will capitalize on in the next few
lemmas is the following. The Type (∗) equations “intertwine” the equations of Type (∗∗)
and Type (∗ ∗ ∗). Using Lemma 5.5 and substituting Type (∗∗) and (∗ ∗ ∗) equations into
Type (∗) equations, we have, for 1 ≤ k ≤ h− 1,

h2k − g2k =
∑
i odd

1≤i≤2k−3

xqi

 ∑
j odd

1≤j≤2k−2−i

(gq2k−i−j − g2k−i−j)xj − g2k−i−j(x
q2

j − xj)



=
∑
i odd

1≤i≤2k−3

xqi

 ∑
j odd

1≤j≤2k−2−i

(gq2k−i−j − g2k−i−j)xj

− ∑
2≤l≤2k−2

g2k−l(x
q2

l − xl).

Thus:

h2k − g2k =
∑
i odd

1≤i≤2k−3

xqi

 ∑
j odd

1≤j≤2k−2−i

(gq2k−i−j − g2k−i−j)xj

 for 1 ≤ k ≤ h− 1 (†)

Recall that h2k − g2k = 0 for 1 ≤ k ≤ h− 2 by assumption.

Lemma 5.7. Assume that h2i = g2i for 1 ≤ i ≤ h− 2. If g2k ∈ Fq for 1 ≤ k ≤ h− 2, then

N(g, γ) =

{
q4(h−1) if g2(h−1) = h2(h−1)

0 otherwise.
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Proof. If g2k ∈ Fq for 1 ≤ k ≤ h−2, then all the coefficients in the Type (†) equations vanish,
imposing no further conditions on the xi’s but forcing h2(h−1) − g2(h−1) = 0. Therefore
the number of solutions to the equations of Types (∗) through (∗ ∗ ∗) are the solutions to
xq

2

1 − x1 = 0 together with the the solutions to (∗∗) and (∗ ∗ ∗). Thus we have q2 choices
for each xk, and so

N(g, γ) =

{
q2(2(h−1)) if g2(h−1) = h2(h−1),
0 otherwise.

�

Lemma 5.8. Assume that h2i = g2i for 1 ≤ i ≤ h−2. Pick k ≥ 1 and suppose that g2i ∈ Fq
for 1 ≤ i ≤ h− (2k + 1) and g2(h−2k) /∈ Fq. Then

N(g, γ) =


q2(2(h−1)−k) if h2(h−1) = g2(h−1),
(q + 1)q2(2(h−1)−k) if 0 6= h2(h−1) − g2(h−1) ∈ ker TrFq2/Fq ,

0 otherwise.

Proof. All the coefficients in the Type (†) equations for 2 ≤ 2j ≤ 2(h− 2k) vanish so we get
the empty conditions h2j − g2j = 0, yielding no additional restrictions on any of the xi’s.
The first nontrivial restriction comes from the Type (†) equation for 2(h− 2k + 1):

h2(h−2k+1) − g2(h−2k+1) = xq1(g
q
2(h−2k) − g2(h−2k))x1.

By assumption, the left-hand side vanishes and the coefficient of x1 on the right-hand side is
nonvanishing, which forces x1 = 0. This extra condition implies that the subsequent Type
(†) equation (i.e. the Type (†) equation for 2(h− 2k + 2)) simplifies to

h2(h−2k+2) − g2(h−2k+2) = 0,

imposing no additional constraints on the xi’s. The subsequence Type (†) equation simplifies
to

h2(h−2k+3) − g2(h−2k+3) = xq3(g
q
2(h−2k) − g2(h−2k))x3,

which forces x3 = 0 since the left-hand side vanishes. This continues until the equation

h2(h−1) − g2(h−1) = xq2k−1(g
q
2(h−2k) − g2(h−2k))x2k−1.

Thus we see that regardless of whether h2(h−1) and g2(h−1) agree, Equations (†) force
x1 = 0, x3 = 0, . . . , x2k−3 = 0. Note that equation (∗ ∗ ∗) for 2k−1 implies that x2(k−1) ∈ Fq2 .
Thus we see that if h2(h−1) = g2(h−1), then this last displayed equations implies that we
have the additional constraint that x2k−1 = 0. Furthermore, this gives q + 1 choices for
x2k−1 if h2(h−1) − g2(h−1) ∈ ker TrFq2/Fq and no choices for x2k−1 otherwise. We see from
equations of Type (∗∗) and (∗ ∗ ∗) that regardless of whether h2(h−1) and g2(h−1) agree, we
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have q2 choices for the remaining xi’s (i.e. for even i ≤ 2k− 2 and all i > 2k− 1). Therefore

N(g, γ) =


q2k−2 · 1 · q2(2h−2k−1) if h2(h−1) = g2(h−1),
q2k−2 · (q + 1) · q2(2h−2k−1) if 0 6= h2(h−1) − g2(h−1) ∈ ker TrFq2/Fq ,

0 otherwise.

�

Lemma 5.9. Assume that h2i = g2i for 1 ≤ i ≤ h−2. Pick k ≥ 1 and suppose that g2i ∈ Fq
for 1 ≤ i ≤ h− (2k + 2) and g2(h−(2k+1)) /∈ Fq. Then

# =

{
q2(2(h−1)−k) if h2(h−1) = g2(h−1),

0 otherwise.

Proof. We argue as in the proof of Lemma 5.8. All the coefficients in the Type (†) equations
for 2 ≤ 2j ≤ 2(h− 2k − 1) vanish so we get the empty conditions h2j − g2j = 0, yielding no
additional restrictions on any of the xi’s. The first nontrivial restriction comes from the
Type (†) equation for 2(h− 2k):

h2(h−2k) − g2(h−2k) = xq1(g
q
2(h−(2k+1)) − g2(h−(2k+1)))x1.

Thus, for odd l with 1 ≤ l ≤ 2k− 1, the Type (†) equation for 2(h− (2k+ 1) + l) reduces to

h2(h−(2k+1)+l) − g2(h−(2k+1)+l) = xql (g
q
2(h−(2k+1)) − g2(h−(2k+1)))xl,

which forces xl = 0. But then this implies that the Type (†) equation for 2(h− 1) simplifies
to

h2(h−1) − g2(h−1) = 0.

Thus there are no solutions if h2(h−1) 6= g2(h−1). If h2(h−1) = g2(h−1), then we get q2 solutions
for each of the xi’s other than the odd i, 1 ≤ i ≤ 2k − 1. Therefore

N(g, γ) =

{
q2k−2 · q2(2h−2k−1) if h2(h−1) = g2(h−1),
0 otherwise.

�

Lemma 5.10. Assume that h2i = g2i for 1 ≤ i ≤ h− 2 and let ψ be the restriction of χ1 to
Uh−1L /UhL. By assumption, we can write γ = g · (1 + ετ2(h−1)). Then

∑
ε∈Fq2

ψ(ε) ·N(g, γ) =


q4(h−1) if g ∈ Gh−2,
−q · q2(2(h−1)−k) if g ∈ G2(h−(2k+1)) rG2(h−(2k+2)), k ≥ 1,
q2(2(h−1)−k) if g ∈ G2(h−(2k+2)) rG2(h−(2k+3)), k ≥ 1.

Proof. By assumption ψ is a nontrivial additive character Fq2 → Q×` . Recalling the definition
of Gi from Section 3, it is easy to see that the first and third cases of the lemma follow from
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Lemmas 5.7 and 5.9 respectively. To see the second case, recall from Lemma 5.8 that we
have

N(g, γ) =


q2(2(h−1)−k) if ε = 0,
(q + 1)q2(2(h−1)−k) if 0 6= ε ∈ ker TrFq2/Fq ,

0 otherwise.
Thus ∑

ε∈Fq2

ψ(ε) ·N(g, γ) = −q · q2(2(h−1)−k) +
∑

ε∈kerTrF
q2
/Fq

ψ(ε) · (q + 1)q2(2(h−1)−k)

= −q · q2(2(h−1)−k). �

We are now ready to prove Proposition 5.4.

Proof of Proposition 5.4. First notice that by the assumption h2i = g2i for 1 ≤ i ≤ h− 2,
we can write Line (15) as

1

q5(h−1)

∑
g∈H
ε∈Fq2

χ2(g)

χ1(g)
· ψ(ε) ·N(g, γ),

where γ = g · (1 + ετ2(h−1)). Also notice that∑
g∈H

=
∑

g∈Gh−2

+
∑

g∈Gh−3rGh−2

+ · · ·+
∑

g∈G1rG2

+
∑

g∈HrG1

.

We first analyze each of the summands. Pick k ≥ 1. Then:∑
g∈Gh−2

χ2(g)

χ1(g)

∑
ε∈Fq2

ψ(ε) ·N(g, γ)

= 〈χ1, χ2〉Gh−2
· |Gh−2| · q2(2(h−1)) = q5(h−1) · 〈χ1, χ2〉Gh−2

· q∑
g∈Gh−(2k+1)

g/∈Gh−2k

χ2(g)

χ1(g)

∑
ε∈Fq2

ψ(ε) ·N(g, γ)

=
(
〈χ1, χ2〉Gh−(2k+1)

· |Gh−(2k+1)| − 〈χ1, χ2〉Gh−2k
· |Gh−2k|

)
· −q · q2(2(h−1)−k)∑

g∈Gh−(2k+2)

g/∈Gh−(2k+1)

χ2(g)

χ1(g)

∑
ε∈Fq2

ψ(ε) ·N(g, γ)

=
(
〈χ1, χ2〉Gh−(2k+2)

· |Gh−(2k+2)| − 〈χ1, χ2〉Gh−(2k+1)
· |Gh−(2k+1)|

)
· q2(2(h−1)−k)

Now we put this together. From the definition, it is easy to see that

|Gh−n| = qh−2+n.
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We now analyze the coefficient of 〈χ1, χ2〉Gh−n .
• We first handle the border cases. Recall that H = G0. If h is odd, then from the
above we see that the coefficient of 〈χ1, χ2〉G0 is

|G0| · −q · q4(h−1)−(h−1) = q5(h−1) · −q.

If h is even, then from the above we see that the coefficient is

|G0| · q4(h−1)−(h−2) = q5(h−1) · q.

• Now for the middle cases. Let k ≥ 1. The coefficient of 〈χ1, χ2〉Gh−(2k+1)
is

|Gh−(2k+1)| · (−q · q2(2(h−1)−k) − q2(2(h−1)−k)) = q5(h−1) · (−q − 1).

The coefficient of 〈χ1, χ2〉Gh−(2k+2)
is

|Gh−(2k+2)| · (q2(2(h−1)−k) + q · q2(2(h−1)−(k+1))) = q5(h−1) · (q + 1).

The desired result follows. �

5.1.2. Computation of Line (16). In this subsection, we prove the following

Proposition 5.11. Let ψ : Fq2 → Q×` be a character with conductor q2 and let χ1 ∈ Aψ.
Then

Line (16) = 0.

Here is the idea of the proof. First let

Ag,γ := {x ∈ Xh(Fp) : g ∗ Frq2(x) = x · γ}.

We will show that a partial solution (x1, . . . , x2(h−2)) extends to a full solution (x1, . . . , x2(h−1))

if and only if the partial solution satisfies an equation of the form axq − aqx+ a0 = 0 for
some nonzero a ∈ Fq2 . The x in this equation will be one of the xk’s. The main work is
in giving a nonvanishing condition for coefficients for certain xk’s which will allow us to
find such an a. This will give us a bijection between Ag,h and Ag,h+δτ2(h−1) . Once we have
established this, we will be able to prove Proposition 5.11.

Lemma 5.12. Let (x1, . . . , x2(h−1)) be a solution to the equations of type (∗∗) and (∗ ∗ ∗).
Then (x1, . . . , x2(h−1)) also satisfies the equations of type (∗) if and only if, for every k, the
tuple satisfies the equation

h2k − g2k =
∑

1≤i≤2k−1
i odd

xqi

(2k−i−1)/2∑
j=1

(hq2j − g2j)x2k−i−2j



−
∑

1≤i≤2k−1
i even

xqi

(2k−i)/2∑
j=1

(h2j − g2j)x2k−i−2j

− k−1∑
i=1

(h2i − g2i)x2k−2i. (††)
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Proof. First note that a tuple (x1, . . . , x2(h−1)) satisfying (∗∗) and (∗ ∗ ∗) can be constructed
as follows: pick any x1, x2 ∈ Fq2 and then notice that the equations of type (∗∗) and (∗ ∗ ∗)
allow us to choose xk given x1, . . . , xk−1.

Now we substitute (∗∗) and (∗ ∗ ∗) into (∗).

xq
2

2k − x2k =
2k−1∑
i=1

(−1)i+1xqi (x
q2

2k−i − x2k−i)

=
∑
i odd

xqi

[ (2k−i−1)/2∑
j=1

(
(hq2j − g2j)x2k−i−2j − g2j(x

q2

2k−i−2j − x2k−i−2j)
)]

−
∑
i even

xqi

[ (2k−i)/2∑
j=1

(
(h2j − g2j)x2k−i−2j − g2j(xq

2

2k−i−2j − x2k−i−2j)
)]

=
∑
i odd

xqi

∑
j

(hq2j − g2j)x2k−i−2j

− ∑
i even

xqi

∑
j

(h2j − g2j)x2k−i−2j


−
k−1∑
j=1

g2j(x
q2

2k−2j − x2k−2j).

On the other hand,

xq
2

2k − x2k =
k∑
i=1

(
(h2i − g2i)x2k−2i − g2i(xq

2

2k−2i − x2k−2i)
)

= (h2k − g2k) +

k−1∑
i=1

(h2i − g2i)x2k−2i −
k−1∑
i=1

g2i(x
q2

2k−2i − x2k−2i).

Therefore

h2k − g2k =
∑

1≤i≤2k−1
i odd

xqi

(2k−i−1)/2∑
j=1

(hq2j − g2j)x2k−i−2j



−
∑

1≤i≤2k−1
i even

xqi

(2k−i)/2∑
j=1

(h2j − g2j)x2k−i−2j

− k−1∑
i=1

(h2i − g2i)x2k−2i.

This shows that the above collection of equations imposes the same conditions as the
equations of type (∗). �

Lemma 5.13. Let k be the smallest k such that h2k 6= g2k and assume that k ≤ h− 2. If
(x1, . . . , x2(h−1)) is a solution to the equations (∗) through (∗ ∗ ∗), then:

(a) If g2i ∈ Fq for 1 ≤ i ≤ k − 3, then g2(k−2) ∈ Fq and x1(g
q
2k−2 − g2k−2) 6= 0.
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(b) If g2i ∈ Fq for 1 ≤ i < k − 3 and g2(k−3) /∈ Fq, then x3(gq2(k−3) − g2(k−3)) 6= 0.
(c) If n is odd and g2i ∈ Fq for 1 ≤ i < k − n and g2(k−n) /∈ Fq, then xn(gq2(k−n) −

g2(k−n)) 6= 0.
(d) If n > 2 is even and g2i ∈ Fq for 1 ≤ i < k − n and g2(k−n) /∈ Fq, then # = 0.

Proof of (a). If g2i ∈ Fq for 1 ≤ i ≤ k − 3, then by Lemma 5.12, the tuple (x1, . . . , x2(h−1))

must satisfy

0 = h2(k−1) − g2(k−1) = xq1
(
(gq2(k−2) − g2(k−2))x1

)
0 6= h2k − g2k = xq1

(
(gq2(k−1) − g2(k−1))x1 + (gq2(k−2) − g2(k−2))x3

)
+ xq3

(
(gq2(k−2) − g2(k−2))x1

)
.

If x1 = 0, then this automatically implies that h2k − g2k = 0, which contradicts the
assumption that h2k 6= g2k. Therefore x1 6= 0. The first equation above then forces
g2(k−2) ∈ Fq, and so the second equation simplifies to

0 6= h2k − g2k = xq1(g
q
2(k−1) − g2(k−1))x1. �

Proof of (b). If g2i ∈ Fq for 1 ≤ i < k − 3 and g2(k−3) /∈ Fq, then by Lemma 5.12, we
necessarily have

0 = h2(k−2) − g2(k−2) = xq1
(
(gq2(k−3) − g2(k−3))x1

)
0 = h2(k−1) − g2(k−1) = xq1

(
(gq2(k−2) − g2(k−2))x1 + (gq2(k−3) − g2(k−3))x3

)
+ xq3

(
(gq2(k−3) − g2(k−3))x1

)
0 6= h2k − g2k = xq1

(
(gq2(k−1) − g2(k−1))x1 + (gq2(k−2) − g2(k−2))x3 + (gq2(k−3) − g2(k−3))x5

)
+ xq3

(
(gq2(k−2) − g2(k−2))x1 + (gq2(k−3) − g2(k−3))x3

)
+ xq5

(
(gq2(k−3) − g2(k−3))x1

)
.

By assumption g2(k−3) /∈ Fq, so the first equation forces x1 = 0. Then the second equation
simplifies to 0 = 0 and the third equation simplifies to

0 6= h2k − g2k = xq3(g
q
2(k−2) − g2(k−2))x3. �

Proof of (c) and (d). Now suppose that there is some n > 3 such that g2i ∈ Fq for 1 ≤ i <
k − n and g2(k−n) /∈ Fq. Then since h2i = g2i for 1 ≤ i < k, the equations (††) simplify to

h2m − g2m =
∑

1≤i≤2m−1
i odd

xqi

(2m−i−1)/2∑
j=k−n

(gq2j − g2j)x2m−i−2j

 for k − n+ 1 ≤ m ≤ k.
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So Equation (††) for 2(k − n+ 1) is

0 = xq1(g
q
2(k−n) − g2(k−n))x1,

which forces x1 = 0 since by assumption g2(k−n) /∈ Fq. This implies that Equation (††) for
2(k− n+ 2) gives the empty condition 0 = 0. Setting x1 = 0, Equation (††) for 2(k− n+ 3)

simplifies to
0 = xq3(g

q
2(k−n) − g2(k−n))x3,

which forces x3 = 0. Continuing this, we see that:
• For 2l + 1 ≤ n, Equation (††) for 2(k − n+ 2l + 1) yields

h2(k−n+2l+1) − g2(k−n+2l+1) = xq2l+1(g
q
2(k−n) − g2(k−n))x2l+1,

which forces x2l+1 = 0 if 2l+1 < n, and xqn(gq2(k−n)−g2(k−n))xn 6= 0 when 2l+1 = n.
This proves (c).
• For 2l ≤ n, the test equation for m = k − n + 2l gives the condition equation
h2(k−n+2l) − g2(k−n+2l) = 0. In particular, if 2l = n, then we have h2k − g2k = 0,
which is a contradiction. This proves (d). �

Lemma 5.14. Let k be as in Lemma 5.13. Then
(a) If g2i ∈ Fq for 1 ≤ i ≤ k − 3, then Equation (††) for 2(h − 1) is of the form

axq2(h−1)−2(k−1)−1 − aqx2(h−1)−2(k−1)−1 + a0 = 0, where a = x1(g
q
2k−2 − g2k−2).

Moreover, x2(h−1)−2(k−1)−1 has no contribution to a or a0.
(b) If n ≥ 3 is odd and g2i ∈ Fq for 1 ≤ i < k − n and g2(k−n) /∈ Fq, then Equation (††)

for 2(h− 1) is of the form axq2(h−1)−2(k−n)−n − a
qx2(h−1)−2(k−n)−n + a0 = 0, where

a = xn(gq2(k−n) − g2(k−n)). Moreover, x2(h−1)−2(k−n)−n has no contribution to a or
a0.

Proof. First note that since k ≤ h− 2, then necessarily 2(h− 1)− 2(k − n)− n 6= n, which
automatically implies that x2(h−1)−2(k−n)−n has no contribution to a.

Recall Equation (††) for 2(h− 1):

h2(h−1) − g2(h−1) =
∑

1≤i≤2(h−1)−1
i odd

xqi

(2(h−1)−i−1)/2∑
j=1

(hq2j − g2j)x2(h−1)−i−2j



−
∑

1≤i≤2(h−1)−1
i even

xqi

(2(h−1)−i)/2∑
j=1

(h2j − g2j)x2(h−1)−i−2j



−
(h−1)−1∑
i=1

(h2i − g2i)x2(h−1)−2i. (17)
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We prove (a). We need only show that the only terms in Equation (17) involving
x2(h−1)−2(k−1)−1 are exactly the terms

axq2(h−1)−2(k−1)−1 − a
qx2(h−1)−2(k−1)−1, where a = x1(g

q
2k−2 − g2k−2).

Clearly any term involving x2(h−1)−2(k−1)−1 must come from the first sum in the equation.
These terms are∑

xqi (h
q
2j − g2j)x2(h−1)−2(k−1)−1 + xq2(h−1)−2(k−1)−1(h

q
2j − g2j)xi,

where the sum ranges over i and j such that i+ 2j + 2(h− 1)− 2(k − 1)− 1 = 2(h− 1). In
particular, if i ≥ 3, then 2j ≤ 2(k − 2). We know by assumption that h2j = g2j ∈ Fq for
2j ≤ 2(k − 3) and Lemma 5.13(a) implies g2(k−2) ∈ Fq, so the coefficient hq2j − g2j vanishes
for 2j ≤ 2(k − 2). Therefore the sum above simplifies to

xq1(g
q
2(k−1) − g2(k−1))x2(h−1)−2(k−1)−1 + xq2(h−1)−2(k−1)−1(g

q
2(k−1) − g2(k−1))x1.

Set a = x1(gq2(k−1) − g2(k−1)) and notice that since x1 ∈ Fq2 , the above expression simplifies
to

−aqx2(h−1)−2(k−1)−1 + axq2(h−1)−2(k−1)−1,

which is exactly what we wanted to show in (a).
We now prove (b). We need to establish the following statements:
(i) xn ∈ Fq2
(ii) The only term in the equation for 2(h−1) in Lemma 5.12 that contains x2(h−1)−2(k−n)−n

are the terms axq2(h−1)−2(k−n)−n and aqx2(h−1)−2(k−n)−n.

In the proof of Lemma 5.13(c), we showed that for odd m with m < n, we have xm = 0.
Then by the equation for n of type (∗ ∗ ∗), we see that we must have

xq
2

n − xn = 0,

so this shows (i).
To see (ii), we proceed as in the proof of part (a) of this lemma. Clearly any term

involving x2(h−1)−2(k−n)−n must come from the first sum in Equation (17). In this sum, the
terms involving x2(h−1)−2(k−n)−n are∑

xqi (h
q
2j − g2j)x2(h−1)−2(k−n)−n + xq2(h−1)−2(k−n)−n(hq2j − g2j)xi,

where the sum ranges over i and j such that i+ 2j + 2(h− 1)− 2(k − n)− n = 2(h− 1).
Equivalently, i + 2j = 2(k − n) + n. Note that this forces i to be odd since n is odd by
assumption. If i < n, then xi = 0, and thus any terms involving (hq2j − g2j) for j > 2(k− n)

vanish. If j < 2(k − n), then by assumption h2j = g2j ∈ Fq, and so hq2j − g2j = 0 when
j < 2(k − n). Therefore the above sum simplifies to

xqn(gq2(k−n) − g2(k−n))x2(h−1)−2(k−n)−n + xq2(h−1)−2(k−n)−n(gq2(k−n) − g2(k−1))xn.
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Set a = xn(gq2(k−n)− g2(k−n)). By (i), we know that xn ∈ Fq2 , and thus the above expression
simplifies to

−aqx2(h−1)−2(k−n)−n + axq2(h−1)−2(k−n)−n,

which is exactly what we wanted to show in (b). This completes the proof. �

Definition 5.15. Let δ ∈ ker TrFq2/Fq . Given a tuple (x1, . . . , x2(h−1)) ∈ F2(h−1)
q together

with g, γ ∈ H(Fq2) satisfying the conditions of Line (16), define a tuple (x′1, . . . , x
′
2(h−1)) in

the following way:
• Pick z so that zq2 − z = δ

• Pick y such that ayq − aqy + δ = 0, where a is as in Lemma 5.14.
• Set y2(h−1)−2(k−n)−n := y and yi = 0 for odd such that i < 2(h − 1) − n and
i 6= 2(h− 1)− 2(k − n)− n. Here, k is as in Lemma 5.14.
• For each odd i with i > 2(h− 1)− n, pick yi so that

yq
2

i − yi =
∑
2m≤i

(hq2m − g2m)yi−2m

Finally, define

x′i =


xi + yi if i is odd,
xi + z if i = 2(h− 1),
xi otherwise.

Lemma 5.16. Let k be the smallest integer such that h2k 6= g2k and assume that k ≤ h− 2.
Let (x1, . . . , x2(h−1)) ∈ Ag,γ and δ ∈ ker TrFq2/Fq . Then the tuple (x′1, . . . , x

′
2(h−1)) defined

in Definition 5.15 is an element of Ag,γ+δτ2(h−1).

Proof. It is easy to see that x′ satisfies each Type (∗∗) equation. To see that x′ satisfies the
Type (∗ ∗ ∗) equations for the all odd i, amounts to checking that

(x′i)
q2 − (x′i) = xq

2

i − xi +
∑
2m≤i

(hq2m − g2m)yi−2m,

which certainly holds by the construction of yi. By Lemma 5.12, it remains only to show
that x′ satisfies each Type (††) equation. This amounts to showing that for each i,

∑
1≤j≤2i−1
j odd

xqj

(2i−j−1)/2∑
m=1

(hq2m − g2m)x2i−j−2m

 =
∑

1≤j≤2i−1
j odd

(x′j)
q

(2i−j−1)/2∑
m=1

(hq2m − g2m)x′2i−j−2m


Note that by construction, if j is odd and j < n, then x′j = xj = 0 (using the proof of
Lemma 5.13(c) here). Furthermore, since we have hq2m−g2m = 0 if m < k−n, then the only
potentially nonzero terms on the right-hand side are of the form (x′j)

q(hq2m − g2m)x′2i−j−2m
where j ≥ n, m ≥ k−n, and 2(h− 1)− j− 2m ≥ n. First assume i < h− 1. Then it follows
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that j, 2i− j − 2m < 2(h− 1)− 2(k − n)− n, and thus x′j = xj and x′2i−j−2m = x2i−j−2m.
Therefore equality holds when i < h− 1.

Finally, let i = h− 1. Then by the above analysis together with Lemma 5.14, showing x′

satisfies the Type (††) equation for 2(h− 1) is equivalent to showing the equality

a(x′2(h−1)−2(k−n)−n)q − aq(x′2(h−1)−2(k−n)−n)) + a0 + δ = 0.

But since (x1, . . . , x2(h−1)) satisfies Equation (††) for 2(h− 1), and since x′2(h−1)−2(k−n)−n =

x2(h−1)−2(k−n)−n + y where ayq − aqy + δ = 0, then the above equality holds. This finishes
the proof that (x′1, . . . , x

′
2(h−1)) ∈ Ag,γ+δτ2(h−1) . �

Lemma 5.17. There is a bijection between Ag,γ and Ag,γ+δτ2(h−1), where δ ∈ ker TrFq2/Fq .

Proof. Pick δ ∈ ker TrFq2/Fq . First notice is that if g and h satisfy the hypotheses of Lemma
5.13(d), then g and γ + δτ2(h−1) also satisfy the hypotheses of Lemma 5.13(d). Thus, by
Lemma 5.13(d), Ag,γ and Ag,γ+δ are both empty.

From now on, we assume that g and h either satisfy the hypotheses in Lemma 5.14(a) or
5.14(b). By Lemma 5.14, the Type (††) equation for 2(h−1) is of the form axq2(h−1)−2(k−n)−n−
aqx2(h−1)−2(k−n)−n + a0 = 0 where a = xn(gq2(k−n) − g2(k−n)).

Let (x1, . . . , x2(h−1)) ∈ Ag,γ and let (x′1, . . . , x
′
2(h−1)) be the element of Ag,γ+δτ2(h−1)

constructed in Definition 5.15. Then we have a map

ϕδ : Ag,γ → Ag,γ+δτ2(h−1) , x 7→ x′.

Now we check that ϕδ is invertible. Using the same notation as in Definition 5.15, it is
easy to see that by Lemma 5.16, setting

x′′i =


xi − yi if i is odd
xi − z if i = 2(h− 1)

xi otherwise

defines a map

ϕ−δ : Ag,γ+δτ2(h−1) → Ag,γ , x 7→ x′′

wherein

ϕ−δ ◦ ϕδ = idAg,γ
ϕδ ◦ ϕ−δ = idA

g,γ+δτ2(h−1)
.

Therefore ϕδ must be a bijection. �

We are now ready to prove Proposition 5.11.
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Proof of Proposition 5.11. From Lemma 5.17, |Ag,γ | = |Ag,γ+δτ2(h−1) |, so∑
χ2(g

−1γ) ·# =
∑′

χ2(g
−1γ)

∑
δ∈kerTr

ψ(δ) ·Ng,γ+δτ2(h−1) = 0,

where
∑

and
∑′ range over g ∈ H and γ ∈ H satisfying the condition that there exists

k ≤ h− 2 such that h2k 6= g2k, and
∑′ has the additional restriction that h2(h−1) ∈ Fq. This

completes the proof of Proposition 5.11. �

Proof of Theorem 5.2. This follows directly from Proposition 5.4 and 5.11. �

5.2. Proof of Theorem 5.1. Let ψ and χ ∈ Aψ be as in the statement of the theorem.
Let θ be an arbitrary character of Gh−2 ⊂ H. To prove Theorem 5.1, we will compute

dimHh−1
c (Xh,Q`)χ,θ =

1

qh−1 · q2(h−1) · qh
∑
g∈H
γ∈G2

χ(g)−1θ(γ) ·N(g, γ),

where the above equation follows by Lemma 2.13 of [B12] and N(g, γ) = #{x ∈ Xh(Fq) :

g ∗ Frq2(x) = x · γ} = #Ag,γ , as in Section 5.1. Since Gh−2 is a subgroup of H, then in fact
x ∈ Ag,γ if and only if x = (x1, . . . , x2(h−1)) satisfies Equations (∗) through (∗ ∗ ∗), where
as before, we write g = 1 +

∑
giτ

i and γ = 1 +
∑
hiτ

i.
Now comes the simplification. It is not difficult to see inductively that since γ ∈ Gh−2,

Equations (∗) through (∗ ∗ ∗) are equivalent to the following:

(i) For 1 ≤ n ≤ 2(h− 1), we have xq
2

n − xn = 0.
(ii) For 1 ≤ k ≤ h− 1, we have h2k = g2k.

Thus,

N(g, γ) =

{
q4(h−1) if g = γ,
0 otherwise.

Therefore,

dimHh−1
c (Xh,Q`)χ,θ =

1

qh−1 · q2(h−1) · qh
∑
g∈H
γ∈G2

χ(g)−1θ(γ) ·N(g, γ)

=
1

qh−1 · q2(h−1) · qh
∑
γ∈G2

χ(γ)−1θ(γ) · q4(h−1)

=
q4(h−1) · |G2|

qh−1 · q2(h−1) · qh
· 〈χ, θ〉Gh−2

= qh−1〈χ, θ〉Gh−2
.

It follows that Hh−1
c (Xh,Q`)[χ] has dimension qh−1. Now, Hh−1

c (Xh,Q`)[χ] is a rep-
resentation of U2,q

h (Fq2) wherein H2(h−1)(Fq2) acts by ψ. Therefore, by Theorem 2.1,
Hh−1
c (Xh,Q`)[χ] is irreducible. This completes the proof.
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6. An Example: Level 3

In [B12] (see Theorem 5.20), Boyarchenko computes the representations H•c (X3)[χ] for
characters χ whose restriction to U2

L/U
3
L has conductor q2. The computational method

presented in this paper generalizes the result Theorem 5.20 in [B12] but differs from its
proof. Specifically, for characters χ1, χ2 : U1

L/U
3
L → Q×` , Boyarchenko computes the subspace

H•c (X3)χ1,χ
]
2
⊂ H•c (X3) wherein U1

L/U
3
L acts by χ1 and H ′(Fq2) acts by χ]2.

In this paper (see Section 5), we compute the subspace H•c (Xh)χ1,χ2 ⊂ H•c (Xh) wherein
U1
L/U

h
L acts by χ1 and H(Fq2) ⊂ U2,q

h (Fq2) acts by χ2. Here, the action of U1
L/U

h
L is the

one induced by the left action on Xh, and the action of any subgroup of U2,q
h (Fq2) is the

one induced by the right-multiplication action on Xh. We then use the character formula
established in Section 3 to determine the representation H•c (Xh)[χ].

In this section, we apply the arguments of this paper to the special case h = 3, thereby
obtaining a different proof of Theorem 5.20 of [B12]. These examples allow us to illustrate
the structure and flavor of the general computations in a simpler setting. The boxed
equations indicate the milestone steps.

6.1. Restrictions of Irreducible Representations of U2,q
3 (Fq2). In this subsection,

we describe the computations of Section 3 in our special case h = 3. For a character
χ : U1

L/U
3
L → Q×` whose restriction to U2

L/U
3
L has conductor q2, let ρχ be the irreducible

representation of U2,q
3 (Fq2) associated to χ under the bijection described in Proposition 2.10.

For convenience, we remind the reader of the notation established in Section 3. Let

H = {1 + a2τ
2 + a4τ

4 : ai ∈ Fq2},

K = {1 + a2τ
2 + a3τ

3 + a4τ
4 : ai ∈ Fq2},

G1 = {1 + a2τ
2 + a4τ

4 : a2 ∈ Fq, a4 ∈ Fq2},

A(χ) = {characters θ : H → Q×` s.t. χ = θ on G1 but not on H}.

We would like to show that as elements of the Grothendieck group of H,

ρχ = (−1)(q · χ+ (−1)(q + 1) · IndHG1
(χ)), (18)

and therefore, as a representation of H, the representation ρχ comprises{
1 copy of χ, and
q + 1 copies of θ, for θ ∈ A(χ).

(19)

First note that G1 is the center of U2,q
3 (Fq2), so if s ∈ G1, then Tr ρχ(s) = q2 · χ(s).

Now suppose s ∈ H rG1. (Note that if we write 1 = h− 1− k, we have k = 1.) By a
straightforward computation, one can see that every element t ∈ U2,q

3 (Fq2) can be written in
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the form t = (1−a1τ)(1−a3τ3) ·g for some g ∈ H. Furthermore, (1−a3τ3)s(1−a3τ3)−1 = s.
Thus if t ∈ K, then tst−1 = s.

Now take a ∈ F×
q2
. Then

(1−aτ)(1+s2τ
2+s4τ

4)(1−aτ)−1 = (1+s2τ
2+(−a(sq2−s2))τ

3+s4τ
4)(1+(−aq+1(sq2−s2))τ

4),

and therefore, remembering that χ](1 + a2τ
2 + a3τ

3 + a4τ
4) = χ(1 + a2τ

2 + a4τ
4) by

definition, we have

χ]((1− aτ)s(1− aτ)−1) = χ(s) · ψ(−aq+1(sq2 − s2)).

Since ψ has conductor q2, its restriction to the subgroup ker TrFq2/Fq ⊂ Fq2 is nontrivial.
Note that for any a ∈ F×

q2
, we have aq+1(sq2 − s2) ∈ ker TrFq2/Fq r{0} since s2 /∈ Fq by

assumption. Therefore if s ∈ H rG1, we have

ρχ(s) =
1

|K|
∑

t∈U2,q
3 (Fq2 )

χ]◦(tst
−1)

=
1

|K|

(∑
t∈K

χ]◦(tst
−1) +

∑
t/∈K

χ]◦(tst
−1)
)

= χ(s) +
∑
a∈F×

q2

χ]◦((1− aτ)s(1− aτ)−1)

= χ(s) + (−1)(q + 1) · χ(s) = −q · χ(s).

Consider the H-representation

ρ = (−1)(q · χ+ (−1)(q + 1) · IndHG1
(χ)).

Then since H is abelian,

Tr ρ(s) = (−1)(q · χ(s) + (−1)(q + 1)
|H|
|G1|

· 1G1(s) · χ(s))

=

{
q2 · χ(s) if s ∈ G1,
−q · χ(s) if s ∈ H rG1.

Thus we can conclude that as (virtual) representations of H, ρχ = ρ, and Equation (18)
follows.

Let θ : H → Q×` be any character. If it agrees with χ on G1, then it occurs exactly once
in IndHG1

(χ). Moreover, if θ is a constituent of ρχ, then it must agree with χ on G1. Thus
by Equation (18), we see that if θ = χ, then θ occurs in ρχ exactly once (−q + (q + 1) = 1),
and if θ = χ on G1 but not on H, then θ occurs in ρχ exactly q + 1 times. This proves
Equation (19).
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6.2. Morphisms Between H i
c(X3) and Representations of U2,q

3 (Fq2). Let ψ : Fq2 →
Q×` have conductor q2. Recall from Section 2 that every irreducible representation of

U2,q
3 (Fq2) that restricts to a sum of ψ occurs in Vψ = Ind

U2,q
3 (Fq2 )

H′0(Fq2 )
(ψ̃).

Let H•c (X3) =
⊕

i∈ZH
i
c(X3,Q`). The action of U2,q

3 (Fq2) on Xh induces a U2,q
3 (Fq2)-

module structure on H•c (Xh). We wish to compute the space of morphisms from Vψ to
H•c (X3). We can show that Frq2 acts on Hom

U2,q
3 (Fq2 )

(Vψ, H
i
c(X3)) via multiplication by q2

and that

dim Hom
U2,q
3 (Fq2 )

(Vψ, H
i
c(X3)) =

{
q4 if i = 2,
0 otherwise.

(20)

If we specialize the proof of Theorem 4.2 to the case h = 3, we recover the proof of
Lemma 6.18 of [B12]. We omit this part of the example and refer the reader to [B12] for
this computation.

6.3. Intertwining Spaces of H•c (X3). For characters χ1, χ2 : U1
L/U

3
L → Q×` , consider the

subspace H i
c(X3,Q`)χ1,χ2 ⊂ H i

c(X3,Q`) wherein U1
L/U

3
L ×H ⊂ U1

L/U
3
L × U

2,q
3 (Fq2) acts by

χ1 ⊗ χ2. (Recall that the left action of U1
L/U

3
L and the right action of U2,q

3 (Fq2) on X3

described in Section 1.4 induce a (U1
L/U

3
L × U

2,q
3 (Fq2))-module structure on the cohomology

of X3. Recall also that U1
L/U

3
L
∼= H.) Assume that the restriction of χ1 to U2

L/U
3
L is ψ and

that ψ has conductor q2. Then by Equation (20), we know that H i
c(X3,Q`)χ1,χ2 vanishes

for i 6= 2. We will show that

dimH2
c (X3,Q`)χ1,χ2 = (−1)

(
〈χ1, χ2〉 · q + (−1)(q + 1) · χ1, χ2〉G1

)
(21)

Equation (20) implies that we can apply Lemma 2.13 of [B12], which implies

dimH2
c (X3,Q`)χ1,χ2 =

1

q2 · q4 · q4
∑
g,h∈H

χ1(g)−1χ2(h) ·#{x ∈ X3(Fq) : g ∗ Frq2(x) = x · h}.

Tracing through the definitions in Section 1.4, we have

g ∗ Frq2(x) = (1 + g2τ
2 + g4τ

4) ∗ (1 + xq
2

1 τ + · · ·+ xq
2

4 τ
4)

= 1 + xq
2

1 τ + (xq
2

2 + g2)τ
2 + (xq

2

3 + g2x
q2

1 )τ3 + (xq
2

4 + g2x
q2

2 + g4)τ
4,

x · h = (1 + x1τ + · · ·+ x4τ
4) · (1 + h2τ

2 + h4τ
4)

= 1 + x1τ + (x2 + h2)τ
2 + (x3 + x1h

q
2)τ

3 + (x4 + x2h2 + h4)τ
4.
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Equating coefficients of τ and combining these equations with the defining equations of X3

(see Theorem 4.1) implies that x ∈ X3(Fq) if and only if x satisfies

xq
2

2 − x2 = xq1(x
q2

1 − x1) (22)

xq
2

4 − x4 = xq1(x
q2

3 − x3)− x
q
2(x

q2

2 − x2) + xq3(x
q2

1 − x1) (23)

xq
2

1 − x1 = 0 (24)

xq
2

2 − x2 = h2 − g2 (25)

xq
2

3 − x3 = hq2x1 − g2x
q2

1 (26)

xq
2

4 − x4 = h4 − g4 + h2x2 − g2xq
2

2 (27)

which reduce to the conditions x1, x2 ∈ Fq2 , h2 = g2, and

xq
2

4 − x4 = xq1(x
q2

3 − x3) (28)

xq
2

3 − x3 = (gq2 − g2)x1 (29)

xq
2

4 − x4 = h4 − g4. (30)

Note that Equations (22) and (23) are of Type (∗), Equations (25) and (27) are of Type
(∗∗), and Equations (24) and (26) are of Type (∗ ∗ ∗).

First observe that if g2 ∈ Fq, then Equation (29) implies that x3 ∈ Fq2 , which forces
x4 ∈ Fq2 by Equation (28). Thus by Equation (30), we know that

#{x ∈ X3(Fq) : g ∗ Frq2(x) = x · h} =

{
q8 if g4 = h4,
0 otherwise.

(This is Lemma 5.7.)
If g2 /∈ Fq, then combining Equations (28), (29), and (30), we see that

#{x ∈ X3(Fq) : g ∗ Frq2(x) = x · h} = q6 ·#{x1 ∈ Fq : h4 − g4 = xq1(g
q
2 − g2)x1}

=


q6 if g4 = h4,
q6(q + 1) if g4 6= h4 and g4 − h4 ∈ ker TrFq2/Fq ,

0 otherwise.

(This is Lemma 5.8 for k = 1.) Thus if g2 /∈ Fq, then∑
ε∈Fq2

ψ(ε) ·#{x ∈ X3(Fq) : g ∗ Frq2(x) = x · h} = q6 − (q + 1)q6 = −q7.
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Putting this together, we have

dimH2
c (X3,Q`)χ1,χ2 =

1

q10

∑
g∈H
ε∈Fq2

χ2(g)

χ1(g)
· ψ(ε) ·#{x ∈ X3(Fq) : g ∗ Frq2(x) = x · h}

=
1

q10

( ∑
g∈G1
ε∈Fq2

χ2(g)

χ1(g)
· ψ(ε) ·#{x ∈ X3(Fq) : g ∗ Frq2(x) = x · h}

+
∑

g∈HrG1
ε∈Fq2

χ2(g)

χ1(g)
· ψ(ε) ·#{x ∈ X3(Fq) : g ∗ Frq2(x) = x · h}

)

=
1

q10

(
|G1| · 〈χ1, χ2〉G1 · ψ(1) · q8

+ |H| · 〈χ1, χ2〉H · −q7 − |G1|〈χ1, χ2〉G1 · −q7
)

= (q + 1) · 〈χ1, χ2〉G1 − q · 〈χ1, χ2〉H .

This completes the proof of Equation (21).

Remark 6.1. Note that for h = 3, the arguments in Section 5.1.1 are enough to compute the
intertwining spaces H i

c(X3)χ1,χ2 . The arguments in Section 5.1.2 are needed to compute the
intertwining spaces H i

c(Xh)χ1,χ2 for h ≥ 4.

6.4. The Representations H•c (X3)[χ]. By Equation (21), the dimension of the U2,q
3 (Fq2)-

representation H2
c (X3,Q`)χ1,χ2 is equal to q2, which implies by Section 2 (see Lemma 2.7 and

Proposition 2.10) that it is irreducible. Thus by Corollary 3.3, it is uniquely determined by
its restriction to H(Fq2). Comparing Equation (21) to Equation (19) allows us to conclude
that if χ : U1

L/U
3
L → Q×` restricts to a character of conductor q2 on U2

L/U
3
L, then

H i
c(X3,Q`)[χ] =

{
ρχ if i = 2,
0 otherwise.

This proves Theorem 5.20 of [B12] and completes our example.

7. Representations of Division Algebras

Throughout this section, θ : L× → Q×` will be a primitive character of level h. Recall
that θ is primitive of level h if for each γ ∈ Gal(L/K), both θ and θ/θγ have level h. This
induces a character χ : U1

L/U
h
L → Q×` whose restriction to Uh−1L /UhL

∼= Fq2 has conductor q2

and will be denoted by ψ.
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In this section, we use Theorem 5.3 in order to describe the representations of the division
algebra D× := D×1/2 arising from Lusztig’s conjectural p-adic Deligne-Lusztig variety X (see
[L79] and [B12]). We can write D = L〈Π〉/(Π2 − π), where L〈Π〉 is the twisted polynomial
ring defined by the commutation relation Π · a = ϕ(a) · Π (ϕ is the nontrivial element of
Gal(L/K)), and π is the uniformizer of L. Write OD = OL〈Π〉/(Π2 − π) for the ring of
integers of D. Define P rD = ΠrOD and U rD = 1 + P rD.

There exists a connected reductive group G over K such that G(K) is isomorphic to
D×, and a K-rational maximal torus T ⊂ G such that T(K) is isomorphic to L×. We
describe G more explicitly here. Let K̂nr be the completion of the maximal unramified
extension of K and let ϕ denote the Frobenius automorphism of K̂nr (inducing x 7→ xq on
the residue field). Letting $ = ( 0 1

π 0 ), the homomorphism F : GL2(K̂nr)→ GL2(K̂nr) given
by F (A) = $−1Aϕ$ is a Frobenius relative to a K-rational structure whose corresponding
algebraic group over K is G.

Let G̃ := G(K̂nr) = GL2(K̂
nr) and T̃ := T(K̂nr). Let B ⊂ G ⊗K K̂nr be the Borel

subgroup consisting of upper triangular matrices and let U be its unipotent radical. Note
that T̃ consists of all diagonal matrices and Ũ := U(K̂nr) consists of unipotent upper
triangular matrices. Let Ũ− ⊂ GL2(K̂nr) denote the subgroup consisting of unipotent lower
triangular matrices.

The p-adic Deligne-Lusztig construction X for D× described in [L79] is the quotient

X := (Ũ ∩ F−1(Ũ))\{A ∈ GL2(K̂
nr) : F (A)A−1 ∈ Ũ}.

In [B12] (see Section 4.2 of op. cit.), Boyarchenko proves that X can be identified2 with the
set

X̃ := {A ∈ GL2(K̂
nr) : F (A)A−1 ∈ Ũ ∩ F (Ũ−)}

and describes how to define the homology groups Hi(X̃,Q`) (see Section 4.4 of op. cit.). For
each i ≥ 0, Hi(X̃,Q`) inherits commuting smooth actions of G(K) ∼= D× and T(K) ∼= L×.
Given a smooth character θ : L× → Q×` , we may consider the subspace Hi(X̃,Q`)[θ] ⊂
Hi(X̃,Q`) wherein L× acts by θ.

Using Proposition 5.19 of op. cit., we can now describe the cohomology groupsHi(X̃,Q`)[θ]

as representations of the division algebra D× := D×1/2. For convenience, we restate the
description given in this proposition.

• Let ρχ denote the representation Hh−1
c (Xh,Q`)[χ]. (Note that by Theorem 5.3, this

notation is consistent with the representation ρχ introduced in Section 2.) This is a
representation of U2,q

h (Fq2) ∼= U1
D/U

2(h−1)+1
D .

• This extends to a representation η◦θ of O×D/U
2(h−1)+1
D with the property that

Tr(η◦θ(ζ)) = (−1)h−1θ(ζ).

2Since we are in the situation n = 2, the subgroup Ũ ∩ F−1(Ũ) is actually trivial. For arbitrary n, the
analogous subgroup is not trivial, but then there is more substance to the identification of X with X̃.
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• This inflates to a representation η̃◦θ of O×D.
• This extends to a representation η′θ of πZ · O×D via setting η′θ(π) := θ(π).

• Set ηθ := IndD
×

πZ·O×D
(η′θ) and Proposition 5.19 of [B12] asserts that

Hi(X̃,Q`)[θ] ∼= ηθ for i = h− 1.

Via the local Langlands and Jacquet-Langlands correspondences, there is a bijection
between smooth characters of L× and irreducible representations of D×. For a character
θ : L× → Q×` , let ρθ denote the corresponding D×-representation. Theorem 2.6 of [BW11]
gives an explicit construction of ρθ in the case that θ is primitive using a geometric ingredient
given by the representation H1

c (X2,Q`)[ψ] of U2,q
2 (Fq2). Note that in [BW11], X2 is denoted

by X and U2,q
2 (Fq2) is denoted by U2,q(Fq2).

Our work describes a correspondence between L×-representations and D×-representations
arising in Lusztig’s conjectural construction of a local analogue of Deligne-Lusztig theory. A
natural question to ask is whether the map

{primitive characters of L×} {irreducible representations of D×}

θ H•(X̃,Q`)[θ]

matches the correspondence given by the local Langlands and Jacquet-Langlands correspon-
dences. It in fact does!

Theorem 7.1. Let θ : L× → Q×` be a primitive character of level h and let ρθ be the
D×-representation corresponding to θ under the local Langlands and Jacquet-Langlands
correspondences. Then Hi(X̃,Q`)[θ] = 0 if i 6= h− 1 and

ρθ ∼= Hh−1(X̃,Q`)[θ].

Proof. The first assertion is clear from Theorem 5.3 and Proposition 5.19 of [B12]. As the
description in Theorem 2.6 of [BW11] depends on the parity of h, we will handle the even-h
and odd-h cases separately. In the case that h is odd, the heart of the proof is really in the
observation that the image of L× ·UhD∩U1

D in U2,q
h (Fq2) under the surjection U1

L → U2,q
h (Fq2)

is exactly the group H ′(Fq2). The case when h is even requires a bit more work as we
must unravel the connection between the U2,q

2 (Fq2)-representations H1
c (X2,Q`)[ψ] and the

U2,q
h (Fq2)-representations Hh−1

c (Xh,Q`)[χ].
Let h be odd. By Theorem 2.6 of [BW11], there is a unique character θ̃ of L× · UhD

that restricts to θ on L× and is trivial on 1 + (C ′ ∩ P hD). Here, C ′ = L · Π ⊂ D. Then
ρθ = IndD

×

L×·UhD
(θ̃). We would like to compare ρθ to the representation ηθ = Hh−1(X̃,Q`)[θ].

Notice that πZ · O×D = L× · U1
D so that ηθ = IndD

×

L×·U1
D

(η′θ).
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The image of (L× · UhD) ∩ U1
D under the surjection

ϕ : U1
D → U2,q

h (Fq2)

1 +
∑
i≥1

aiΠ
i 7→ 1 +

2(h−1)∑
i=1

aiτ
i

is exactly equal to H ′(Fq2) and the pullback of χ] : H ′(Fq2)→ Q×` along ϕ is exactly equal
to θ̃ : (L× · UhD) ∩ U1

D → Q×` . Therefore

Ind
U1
D

(L×·UhD)∩U1
D

(θ̃) ∼= Ind
U1
D

(L×·UhD)∩U1
D

(χ] ◦ ϕ),

and if follows that, viewing Hh−1
c (Xh,Q`)[χ] as a representation of U1

D by pulling back along
ϕ, we have

Ind
U1
D

(L×·UhD)∩U1
D

(θ̃) ∼= Hh−1
c (Xh,Q`)[χ].

We may identify O×D/U
2(h−1)+1
D with the semidirect product 〈ζ〉 n U2,q

h (Fq2), where
ζ can be viewed as a generator of F×

q2
. By Proposition 5.19 of [B12], we know that

Hh−1
c (Xh,Q`)[χ] extends to a representation η◦θ of O×D/U

2(h−1)+1
D which is characterized by

Tr(η◦θ(ζ)) = (−1)h−1θ(ζ), where ζ is a chosen generator of F×
q2
. We now check that

Ind
O×D
(L×·UhD)∩O×D

(θ̃) ∼= η◦θ .

It is sufficient to show that the traces agree on ζ. But this is easy: The representation

Ind
O×D
(L×·UhD)∩O×D

(θ̃) is the pullback of the representation Ind
〈ζ〉nU2,q

h (Fq2 )
〈ζ〉nH′(Fq2 )

(θ̃), whose trace on ζ

is exactly θ(ζ) since any element g ∈ 〈ζ〉n U2,q
h (Fq2) conjugates ζ out of 〈ζ〉nH ′(Fq2).

Pulling back these representations to O×D, we see that

Ind
O×D
(L×·UhD)∩O×D

(θ̃) ∼= η̃◦θ .

It is clear that
Ind

L×·O×D
L×·UhD

(θ̃) ∼= η′θ.

Noting that L× · O×D = πZ · O×D, we may now conclude that

ρθ = IndD
×

L×·UhD
(θ̃) = IndD

×

πZ·O×D
Ind

πZ·O×D
L×·UhD

(θ̃) ∼= IndD
×

πZ·O×D
(η′θ)
∼= Hh−1(X̃,Q`)[θ].

Now let h be even. By Theorem 2.6 of [BW11], there is an irreducible representation σ
of L× · Uh−1D such that Trσ(x) = (−1) · θ(x) for each very regular element x ∈ O×L and the
restriction of σ to K× · U1

L · UhD is a direct sum of copies of a character that equals θ on
K× · U1

L and is trivial on 1 + (C ′ ∩ P hD). Then ρθ = IndD
×

L×·Uh−1
D

(σ). Just as in the odd-h

case, we would like to compare ρθ to the representation ηθ = Hh−1(X̃,Q`)[θ].
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The image of (L× · Uh−1D ) ∩ U1
D under the surjection ϕ : U1

D → U2,q
h (Fq2) is equal to

H ′′(Fq2), where

H ′′ := {1 +
∑

aiτ
i : i is even; or i ≥ h− 1} ⊂ U2,q

h .

Note that H ′′(Fq2) contains H ′(Fq2) as a degree-q subgroup.
By the proof of Theorem 2.6 of [BW11], σ is constructed as follows. Consider the

group J = 1 + P h−1L + (C ′ ∩ P h−1D ) and J+ = 1 + P hL + (C ′ ∩ P h+1
D ). Then we have an

isomorphism J/J+ ∼= U2,q
2 (Fq2) coming from the natural surjection L×nJ → 〈ζ〉nU2,q

2 (Fq2).
Consider pullback of H1

c (X2,Q`)[ψ] to L× n J and tensor this representation with θ to
obtain a representation that descends to a representation σ of L× ·Uh−1D . The representation
H1
c (X2,Q`)[ψ] is constructed as follows. Let ψ̃ be any extension of ψ to {1 + aτ + bτ2 : a ∈

Fq} ⊂ U2,q
2 (Fq2). Then H1

c (X2,Q`)[ψ] ∼= IndU
2,q
2 (Fq2 )(ψ̃) as representations of U2,q

2 (Fq2). By
Theorem 2.9 of [BW11], Tr(σ(ζ)) = −θ(ζ).

We can realize U2,q
2 (Fq2) as a subgroup of U2,q

h (Fq2) via the inclusion

U2,q
2 (Fq2)→ U2,q

h (Fq2)

1 + ah−1τ + a2(h−1)τ
2 7→ 1 + ah−1τ

h−1 + a2(h−1)τ
2(h−1).

Thus H1
c (X2,Q`)[ψ] ∼= Ind

{1+aτh−1+bτ2(h−1)}
{1+aτh−1+bτ2(h−1):a∈Fq}

(ψ̃) and as representations of (L× ·Uh−1D )∩

U1
D, σ ∼= Ind

H′′(Fq2 )
H′(Fq2 )

(χ̃). Therefore,

Ind
U1
D

(L×·Uh−1
D )∩U1

D

(σ) ∼= Ind
U1
D

ϕ−1(H′′(Fq2 ))
Ind

ϕ−1(H′′(Fq2 ))
ϕ−1(H′(Fq2 ))

(χ̃)

= Ind
U1
D

ϕ−1(H′(Fq2 ))
(χ̃)

∼= Hh−1
c (Xh,Q`)[χ].

By Proposition 5.19 of [B12], there exists a unique extension of Hh−1
c (Xh,Q`)[χ] to a

representation of O×D characterized by Tr(ζ;Hh−1
c (Xh,Q`)[χ]) = (−1)h−1θ(ζ) = −θ(ζ). This

therefore implies that as representations of O×D,

Ind
O×D
(L×·Uh−1

D )∩O×D
(σ) ∼= η̃◦θ .

The final conclusion is exactly the same as the argument in the h-odd case, and this completes
the proof of Theorem 7.1. �
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