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I would first like to thank Jeremy Booher for IATEX-ing this up during my lecture so
that when it came time for me to type things up for the yearbook, it saved me in cramming
to make the deadline.

Now for some representation theory! This first lecture will be a gentle one—just a few
definitions and many examples. This is so that we can start of this seminar with a firm
understanding of what is going on and so that when we think about representations, we
have some concrete ideas of what sorts of things we’re dealing with. I will basically assume
nothing but linear algebra and basic group theory. First, here is an overview of what where
we’re going in terms of this seminar as a whole.

We will start by looking at some general facts about representations of finite groups
(in characteristic 0). We will study characters, discuss some Wedderburn theory, and look
at induced representations. Then we will discuss the details of the representation theory
of the symmetric group Sym,,, which we will first look at from a combinatorial perspective
and then move to a more algebraic perspective. The combination of these two will set us
up for a final discussion of the modular representation theory of symmetric groups.

1 What Is Representation Theory?

Well, it’s exactly what it sounds like: it is the theory that arises from the study of repre-
sentations. So, then: what is a representation? We first fix some notation and then give a
definition. Let G be a group, and K a field. All our representations will be of finite groups
on finite-dimensional vector spaces V' unless noted otherwise.

Definition 1. A representation of G is a (group) homomorphism p : G — GL,(K).

Recall that GL, (K) is the group of invertible linear transformations of K™, which, after
picking a basis, can be identified with invertible n X n matrices with entries in K.
Alternatively, we may think of a representation in the following way:

Definition 2. A representation of G is a vector space V over K with a linear G—action.
Explicitly, this means that given g1, g2 € G, v1,v2,v € V and a,b € K, the action satisfies

91(92v) = (g192)v and g(av; + bve) = agvy + bgvs.



Given a representation as in Definition 1, we can construct the group action satisfying
Definition 2. Letting V = K", v € V and g € G, we may define gv = p(g)v to get a
G-action on the vector space V. Going the other direction, given an action of G on V', we
may define p(g) € GL,(K), n = dimV, to be the transformation sending v € V to gv.
Hence we see that

Definition 1 <= Definition 2.

We also have the notion of a character.

Definition 3. Let p be a representation of G on the vector space V. Then the character
xv afforded by V is defined as x,(g) = tr(p(g))-

Note that the character is a class function: it is independent of the choice of represen-
tative for the conjugacy class of G because the trace of conjugate matrices is the same.
This is essentially the fact that the trace of a linear transformation is independent of the
choice of basis.

2 First Examples

Now that we have established the basic definitions, we will look at some first examples.
The idea of presenting so many examples is to make sure we establish a good foundation
and also to give a taste of the flavor of representation theory.

Example 1. Let G be any group, V = K, and gz = z for all x € K. This is the trivial
representation, and xy(g) = 1 for all g € G.

Example 2. Let G be a finite group, n = |G|, and V = K". Let G = {g1,...,9n}, and
pick a basis {vy, } indexed by elements of G. Define gvg, to be vgg,. In terms of coordinates,

9(xg, gy, ., 2g,) = (xg—lgl,flfg—ng, .. ,wg—lgn).

Note that there are no fixed points of the action of g unless g is the identity. Therefore
Xv(g) equals 0 unless G is the identity, in which case it is |G|. This is called the regular
representation, and xy is the regular character.

For example, if G = Z,, then the action on K™ simply cyclically shifts the coordinates.
1 sends (z1,2,...,2,) to (Tpn,x1,22,...,2n—1). The coordinates shift the other direction
because 1(v1) = ve, so the coefficient of vi, 1, becomes the coefficient of vy, in the second
spot.

Example 3. Let G = S, X ={1,2,...,n} and V = K". Then S,, acts on V' by permuting
a basis {v;}. For o € Sy, 0(vi) = v,(;). Consider the matrix of a permutation. If o fixes i,
the (7,7) entry of the matrix is a 1. Otherwise the (7,7) entry is 0. Thus x, (o) equals the
number of fixed points of o.



Definition 4. Let V be a representation of G. A subrepresentation is a linear subspace
W C V such that gw e W for g € G, w € W.

Example 4. Continuing the example of G = S, acting on K", what are the subrepresen-
tations? The span of the single vector v1 +wvo+. ..+, is certainly fixed (o(vi+...+v,) =
Vg(1) + -+ + Vg(n) = V1 + ... +vp), S0 we have a one dimensional subrepresentation. Note
that this is the trivial representation. Denote it by Wj.

Now let Wy = {ajv1 +...+ apvy : a1 + ...t +a, = 0}. It is invariant under the action
of S, since permuting the coordinates does not change the sum.

These are the only two subrepresentations in characteristic 0. We can show that V =
W1 @ Wy. This implies that xw, + xw, = xv. As W is trivial, xw, (o) is one less than
the number of fixed points of o.

Exercise 1. In characteristic 0, show W; and W5 are the only non-trivial subrepresenta-
tions, and that V = Wy & Whs.

Note that the permutation representation of .S, is not the same as the regular represen-
tation of S,,. Furthermore, beware that the character of a representation is only a group
homomorphism, not a homomorphism. It is only homomorphism for one dimensional rep-
resentations. We will see (in Ian Frankel’s lecture, which is the lecture that will follow this
one) that this always happens for irreducible representations of finite Abelian groups. Then
GL1(K) ~ K*, and the trace of a representation is done through this identification. This
explains why characters in number theory (for example, Dirichlet characters) are always
group homomorphisms.

Definition 5. If V' is a representation such that the only subrepresentations are {0} and
V', we say that V is ¢rreducible.

In the previous example, Wi and Wy are irreducible while V' is not.

Example 5. Let G = D, be the dihedral group. It is generated by two elements, r and
s, where 7" = 52> = 1 and rs = sr~!. The standard representation of D,, (thought of the
symmetries of an n— gon) is on R?. We let 7 rotates by %’T and s reflects across the y—axis.
r and s act by the matrices

(e o) (00
where § = 27

In particular, these matrices make is easy to calculate the characters. x(r) = 2 cos(f),
while x(s) = 0, and in general the character can be calculated by multiplying the matrices.
Note that this representation is irreducible, because the rotation r fixes no lines.



Example 6. Let G = SU(2) = {A € GLy(C) : A'A = I,,det(4) = 1}, and let the
field K = C. (SU(2) is a three dimensional Lie group, by the way.) Let P, be the
vector space of homogeneous polynomials of degree n in variables x and y. Thus Py = C,
P ={ax+by:a,becC}, P, ={ax®+bry+cy?:a,b,cc C} and so forth. In general, the
dimension of P, is n + 1.

For A € G, let it act on p € P, via A - p(x,y) = p(A~ (z,y)!). If A= <CCL 2), then

At =p (4 ) @) = pldn = by o+ an).

& a

It turns out that these irreducible, and in fact all irreducible representations of SU(2) arise
in this way. This is a basic example in the theory of Lie groups. Physicists use similar
representations in quantum field theory.

There is a good reason that we will usually work in characteristic 0.

Example 7. Let p be a prime, G be a finite p—group, and K = Z/pZ. Let V be an
irreducible representation. The span of the orbit of v is a subrepresentation. G is a finite
group, so as V is irreducible, it must be finite dimensional.

Let G act on V'\{0}, which has p™ —1 elements. However, any G-orbit has size dividing
the order of the group by the orbit stabilizer theorem. Thus all G-orbits have size p® for
0 < a < n. Therefore there exists at least one orbit of size one, which means that the
one dimensional subspace spanned by that vector is a G invariant subspace. Therefore
any representation contains a copy of the trivial representation, so the only irreducible
representations of a p-group is the trivial one.

This last example is one that will come back at the end of this seminar. It turns out
that this fact is true if K is any field of characteristic p, and the fact that the trivial
representation is the only irreducible representation of a p-group over such a field, is an
important one to keep in mind especially in the final lecture of this seminar, which will be on
some basics of modular representation theory and in particular the modular representation
theory of symmetric groups.



