PERIODS IDENTITIES OF CM FORMS ON QUATERNION ALGEBRAS

CHARLOTTE CHAN

ABSTRACT. Waldspurger’s formula gives an identity between the norm of a torus period and an
L-function of the twist of an automorphic representation on GL(2). For any two Hecke characters
of a fixed quadratic extension, one can consider the two torus periods coming from integrating one
character against the automorphic induction of the other. Because the corresponding L-functions
agree, (the norms of) these periods—which occur on different quaternion algebras—are closely
related. In this paper, we give a direct proof of an explicit identity between the torus periods

themselves.
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1. INTRODUCTION

Waldspurger’s work in 1985 sparked the beginnings of a rich theory studying the relationship
between special values of L-functions and automorphic periods. In [W85a], he studies torus periods
for representations of By, where B is a quaternion algebra over a number field F. Consider

PP, —-cC, e FP(9) - Q(g) dg,
To\Ty

where 78 is the Jacquet-Langlands transfer of an irreducible automorphic representation 7 of
GL2(Aqg) and Q is a character of a maximal torus 7. Waldspurger establishes a formula

|P(f5.Q)P = *- L(BC(r) @ 2, 1), (L1)

where * consists of factors that depend only on local data. Combining Waldspurger’s formula with
Tunnell-Saito’s work on e-dichotomy, which characterizes the branching behavior of representations
of local quaternion algebras in terms of local e-factors, one sees that there is at most one quaternion
algebra B such that * is nonzero. If L(BC(r) ® Q,1) # 0 and the central character condition

wr - QY x =1, where w; is the central character of m,
Q

holds, then there is a unique quaternion algebra B—characterized by local e-factors—such that
the linear functional (75, Q) is nonzero.
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In this paper, we will consider the torus periods arising from two symmetric special cases of
this: fixing two Hecke characters x1, x2 of E*, consider
(1) m=my, and Q = x2
(2) m=my, and Q = x1
As such, the only automorphic representations of GLy we will consider are those that arise as the
automorphic induction 7, of a Hecke character x. As the central character of m, is x| A% E€EB/F

the analogue of the central character condition for both (1) and (2) is:
X1|A1>;'X2|AI>;'€E/F:1. (1.2)
Formally, the Rankin-Selberg L-function for the (GLg x GLg)-representation m,, ® m,, satisfies
L(BC(my,) ® x2,8) = L(my, ® Ty,,s) = L(BC(my,) ® x1,5). (1.3)

On the other hand, as we see in Equation (1.1), Waldspurger’s formula relates (1) to the left-hand
side of (1.3) and (2) to the right-hand side of (1.3). Furthermore, the quaternion algebras B; and
By arising from (1) and (2) are related by the following simple formula:

The ramification of By and Bj at a place v agree if and only if —1 € Nm(E, /F,)). (1.4)

Therefore one obtains a relationship between (the norms of) the torus periods arising from our
two symmetric cases.

As these torus periods occur on different quaternion algebras, it is of interest to study these
periods directly, without invoking Waldspurger. In this paper, we do exactly this: we prove an
explicit identity between the periods on B; and Bs. We will employ the theta correspondence
to construct automorphic forms and compare the resulting torus periods. To this end, the key
to our approach is the construction of a seesaw of dual reductive pairs that precisely realizes the
quaternion algebras B; and Bo.

Main Theorem (6.17). There exist explicitly constructed pairs of automorphic forms ffgl IS
JLPL (my,) and f£2 € JLPZ (my,) such that

PP x2) = P(f27 x1)

We point out the simplest interesting case of the Main Theorem. Let F' = Q and E = Q(v/=7),
and consider the canonical Hecke character xcan of E in the sense of Rohrlich [Ro80]. Since
Xcan Testricts to the quadratic character, x1 = x7,, and x2 = x7,, satisfy (1.2) so long as n and
m have opposite parity. When n = 2 and m = 3 + 2] > 3, B; is the split quaternion algebra
M>(Q) and By is the definite quaternion algebra B ramified at exactly 7 and co. The newform
J in the automorphic induction 7,2 ~has weight 3 and level I'1(7) with nebentypus EQ(v=7)/Q’
and 65 f is a test vector for the torus period against x312 where 0} is the Ith iterate of the
Shimura—Maass differential operator. The Main Theorem gives an explicit automorphic form le

in the Jacquet-Langlands transfer of T 32 to a definite quaternion algebra such that

0+ / (641)(g) - 22 (g) dg = / 12(9) - x2unl9) dg. (15)
[EX] [EX]

As [ changes, the 5é f live in the same representation, but on the definite side, the representation
space containing le also varies. This set-up is now primed for arithmetic application: after
dividing by a canonical period and taking p-adic limits in /, the left-hand side of (1.5) is related to
logarithms of generalized Heegner cycles via Bertolini-Darmon—Prasanna [BDP13]. Although we
do not consider arithmetic consequences of the Main Theorem here, we plan to explore this in
future work.
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1.1. Outline. We begin by establishing notation and background in Sections 2 and 3. In Section
4, we give a simple description of the relationship between B and By. We then construct dual
reductive pairs (Ug(V),Ug(W*)) and (Ug(Res V), Ug(W)) that both capture the behavior of
E* C B{, B and also compatibly map into the same symplectic group. The goal of this paper
is then to study the following seesaw of similitude unitary groups with respect to the theta
correspondence:

GUg(ResV) GUp(W™) 32>< BIX

> X

GUB(V) GUE(W) EX EX

In Section 5, we use Kudla’s splittings for unitary groups and explicitly study their compatibility
on E* x E*. Many of the calculations are similar to the calculations in [I[P16b]. From the
compatibility statements about the splittings, we can deduce precise information about how the
Weil representations on GUg(V) x GUg(W*) and GUg(Res V') x GUg (W) are related.

In Section 6, we give a representation theoretic description of the global theta lifts. This requires
a careful study of Kudla’s splittings at the places v where everything is unramified (Section 5.6). We
prove (Theorem 6.1) that the global theta lifts can be described in terms of automorphic induction
and Jacquet—Langlands and that the global theta lift vanishes if and only if the Jacquet-Langlands
transfer does not exist. Combining these results with the compatibility results of Section 5, we
obtain our Main Theorem (Theorem 6.17).

In Sections 7 and 8, in the case E/F is CM, we construct a Schwartz function ¢ whose theta
lift 0,(x) to GLa(F') is the newform. We prove an explicit Rallis inner product formula relating
0,(x) to L(1,X), which in particular shows that the theta lift is nonvanishing. These Schwartz
functions have been considered in various places before. At the finite places, they have appeared
for example in [P06, Proposition 2.5.1], [X07, N1]. At the infinite places, our choice is constructed
from a confluent hypergeometric function 1 Fi(a, b,t) of the first type.

We conclude the paper (Section 9) with details on the canonical Hecke character Xcan of Q(v/=7),
the example mentioned earlier in the introduction.

Acknowledgements. I'd like to thank my advisor Kartik Prasanna for introducing me to this
area of research and to thank Atsushi Ichino for many helpful conversations. A further thank
you to both Kartik and Atsushi for sharing their impeccably written preprints with me at an
early stage. This work was partially supported by NSF grants DMS-0943832, DMS-1160720, and
DMS-1802905.

2. DEFINITIONS

For a number field F, let O be the ring of integers of F' and D the different of F’ over Q. Let rq
be the number of real embeddings of I’ and 219 be the number of complex embeddings of F'. For
each finite place v of F', let O, be the ring of integers of F,, 7, a uniformizer of O,, and ¢, the
cardinality of the residue field O, /m,. Let D = D be the discriminant of F' and for each finite
place v of F', let d,, be the non-negative integer such that D ®n O, = 7rf}l” O,. Set §, = m, dv  Then

Throughout this paper, let E be a (possibly split) quadratic extension of F' and let B be a
quaternion algebra over F' containing E. The main groups in this paper are A%, AL, and BY. For
shorthand, we write

[EX] := AFE*\AY, [E'] := FN\AL, [B*] := ARB*\BJ,

where in the last definition, we view A as the center of B .
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2.1. Measures. Throughout this paper, all integrations over adelic groups are performed with
respect to the Tamagawa measure. We define dz = [], dz, to be the measure on Ap that is
self-dual with respect to a chosen additive character ¥ of F. We now describe the Tamagawa
measure explicitly in a few special cases.

Example 2.1. The standard additive character of F\Ap is 1 := 1y o Trp g, where 1y = ®y90,»
is the non-trivial additive character of Q\Aqg given by

e2mV=lzif g = o,
e P T

Observe that if v is a finite place of F, then 1), is trivial on 7, % Op, but nontrivial on 7, %10, .

The measure dxr on Ap that is self-dual with respect to ¢ has the property that:
- If v is finite, then vol(Op,, dz,) = q;d“/Q.
- If v is infinite, then dzx, is the Lebesgue measure.

More generally, if ¢/ is any additive character of Ap, then for any finite place v, we have

vol(Oy, dx,) = qf,(w”)/ ? where c(1)y) is the smallest integer such that 1, is trivial on o F,-

Example 2.2. For any number field k, put
) 2" (2m)"2hR
Pk -— Ress:1 CF('I:) = ‘D|1/2’U] )

where r1 is the number of real places of k, ro is the number of complex places of k, h = h;, is the
class number of k, R = Ry, is the regulator of k, D = Dy, is the discriminant of k, and w = wy, is
the number of roots of unity in k. Then the Tamagawa measure of A} is

X pTem — P;;l . dexg‘am,
v

where
% pTam . (1 - qfu_l)_ldxv/|$|v if v is finite,
v dz, /|y if v is infinite.

Observe that if v is finite, then vol(OX, d*z*™) = q;d“/Z. The Tamagawa number of G, is 1, i.e.
vol(kX\A ), d¥zTem) = 1.
Example 2.3. The previous example explicitly describes the Tamagawa measure of Ay and Aj.
For each place v of F', one has a short exact sequence

1= Ff - Ef=E—1,

and hence we may define a local measure d'g
Tamagawa measure of E}% is

Tam on Bl as the quotient measure. Then the

PF 1, . Tam
dtgtem .= =2 T dtalem,
PE 1:[ !
Observe that if v is a finite place of F, then
—-1/2

if v ramifies in F
vol(E) N OF ,d'z,™™) = {qudF 1 :

if v is inert or split in E.
Observe that vol(E} N (’)gv,dla:gam) = 1 for all but finitely many places v. If F' is totally real

and E/F is totally imaginary, then one can show (for example by calculating the measure of an
annulus in C containing the unit circle) that

vol(Ch, d'z18m) = 27
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2.2. Conductors. In this section we briefly review the notion of the conductor of an admissible
representation. First let & be a non-Archimedean local field with ring of integers O and a fixed
uniformizer 7. For any integer N € Zx, let

K\(N) == {(Z Z) € GLy(Oy) : c € wNOk}.

Theorem 2.4 (Casselman). Let p be an irreducible admissible infinite-dimensional representation
of GLa(k) with central character w. Let c(p) € Z>q be the smallest integer such that

{vensta=wtapporang= (4 1) e mifcon} # 01

Then this space has dimension one.

We call ¢(p) the conductor of p. For a smooth character x: k¥ — C*, define its conductor
c¢(x) € Z>o to be the smallest number such that x| ) =1, where Up =0 and U} = 1+ 7O,
k

for n > 0. Now let L/k be a (possibly split) quadratic extension of k. Let x be a smooth character
of L* and let 7, denote its automorphic induction to GLa(k). It will be useful for us to have an
explicit description of ¢(my) in terms of ¢(x) for each place v of F'. This calculation follows from
facts about Artin conductors of Galois representations and the fact that conductors of admissible
representations of GLa(k) are compatible with Artin conductors of Galois representations under
the local Langlands correspondence. We have

c(x1) + c(x2) if L=Fk&kand x = x1® X2,
c(my) = { c(my) = valg(4) + 2¢(x) if L/k is unramified, (2.1)
c(my) =14 vali(4) + c(x) if L/k is ramified.

3. WEIL REPRESENTATIONS

Let k be any field. Let V be a symplectic vector space over k. The Weil representation of Sp(V)
is a representation of a cover of Sp(V). It arises in a very natural way, which we briefly recall. The
symplectic space V gives rise to a Heisenberg group H(V), which is a central extension of V by k.
The natural action of Sp(V) on V extends to an action on H(V) fixing the center Z(H(V)) = k.
Let V =X+ Y be a complete polarization. By the Stone-von Neumann theorem, the irreducible
representations of H (V) with nontrivial central character are uniquely determined by their central
character and can be realized on the vector space S(X) of Schwartz functions. Thus by Schur’s
lemma, the Sp(V) action on H(V) induces an automorphism ¢, of S(X) that is unique up to
scalars. We therefore have a group homomorphism

wy]: Sp(V) = PGL(S(X)), g+ o],

where [¢4] denotes the image of ¢, under the quotient map GL(S(X)) — PGL(S(X)). This is the
projective Weil representation of Sp(V).

It is natural to try to understand when [wy] lifts to a genuine representation of Sp(V). When
k =T, there exists a lift, but this isn’t the case in general. The assignment g — ¢, satisfies

¢g¢h = ZY(Q? h)¢gh7 for g, h € Sp(V)

It is a straightforward check that (g,h) + zy(g,h) defines a 2-cocycle in H?(Sp(V),C*). The
2-cocycle zy corresponds to a central extension Mp(V) of Sp(V) and certainly the projective Weil
representation of Sp(V) lifts to a genuine representation of Mp(V). But we can realize the Weil
representation on Sp(V) itself if and only if zy is in fact a 2-coboundary.

In this paper, we will be interested in the adelic Weil representation, which is comprised of Weil
representations of local fields. For the rest of this section, let k be a local field of characteristic
zero, fix an additive character ¢: k — C*, and fix a complete polarization V=X + Y.
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3.1. Metaplectic groups over local fields. Following [R93, Lemma 3.2], there is an explicit
unitary lift 7: Sp(V) — GL(S(X)) (a map of sets) of the projective Weil representation given by

(r(o)p) (z) = / o ol el o)

a B
v o

ytkery € Y/ kery, and fo(z+y) = ¥(go(z+y)) for go(z+y) = g{za, 2B)+35 (v, yo) + (v, 25)-
Moreover, this lift is the unique lift satisfying the properties in [R93, Theorem 3.5]. We then define
the 2-cocycle zy: Sp(V) x Sp(V) — C! by

r(gh) = 2v(g,h) ™" - (g) - r(h).

This represents a class in H?(Sp(V), C!) and therefore gives rise to a Cl-extension Mp(V) of Sp(V)
which we call the metaplectic group. Explicitly, this group is the set Sp(V) x C! together with the
multiplication rule

for any ¢ € S(X) and any o = ( ), where 11, is a Haar measure on Y/ ker~, ¢ is the coset

(gax) ’ (hvy) = (thl’y : ZY(ga h))
We define the Weil representation w,, on the metaplectic group Mp(V) to be
wy: Mp(V) = GL(S(X)),  (g,2) = z-7(9).

Oftentimes, it is easier to work with the following description of wy:

Wy <(“ (at)1> ,z) o(z) =z - | deta|'/? - p(za) (3.1)

oy <(1" 1bn> ,z> o(z) = 2 - (;xbtx> () (3.2)

oo ((Ly, ™) 5) et =2 [ etwvtetnay 33)

for p € S(X), # € X 2 k", a € GL(X) = GL,(k), b € Hom(X,Y) = M, (k) with b* = b, and z € C.
In (3.3), we take dy to be the product of the self-dual Haar measure on k with respect to 1.

It will later (for example, in Section 7) be convenient to understand how changing the additive
character v affects the Weil representation wy. One can check that the Weil representation with
respect to the additive character ¢, (z) := ¢ (vx) satisfies

wy(d(v) " tgd(v), 2) = wy, (9, 2), where d(v) := (§9) for v € k. (3.4)

If for a subgroup ¢: G — Sp(V), the restriction of zy represents the trivial class in H?(G, Cl),
then via an explicit trivialization s of zy|gxq, we can define the Weil representation w, on G as

wy: G = GL(S(X)), g wy(g,s(9)).

One feature that makes the Weil representation computable is the fact that the 2-cocycle zy
can be expressed in terms of the Weil index of the Leray invariant. The properties of these that
we will use in Section 5 can be found in [R93], [IP16a, Sections 3.1.1, 3.1.2].

3.2. The doubled Weil representation. Now consider the doubled symplectic space V& :=
V 4 V~, where V™ has the negated form. Let X® = X +X~, YP = Y+ Y, and let wg denote

the Weil representation on the metaplectic group Mp(V"Y) with respect to V& = XU + YU,
We will also make use of the polarization V5 = V2 4+ VV, where V& = {(v,v) : v € V} and
VV = {(v,—v) : v € V}. Identifying Sp(V~) with Sp(V)°P, we have a natural homomorphism

i+ Mp(V) x Mp(V)™ = Mp(V7),  ((g,2), (h,w)) > (ding(g, "), zu").
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3.3. Dual reductive pairs and the Howe correspondence. A dual reductive pair (G,G’) in
Sp(V) is a pair of reductive subgroups of Sp(V) which are mutual centralizers of each other. There
is a natural map

i: G x G — Sp(V), (9,9") — (v g tug).
If the cocycle zy can be trivialized on i(G x G') C Sp(V), we can define the Weil representation on
i(G x G') and pull back to a Weil representation of G x G'. In [K94], Kudla wrote down explicit
splittings of zy. We will make use of this work heavily in the present paper.

The Weil representation wy, on G x G’ has the following multiplicity-one property. For an
irreducible G-representation 7, let S(7) denote the largest quotient of S(X) such that G acts by
7. By [MVW, Chapter 2, Lemma III.4], there exists a unique irreducible G’-representation © ()
such that

S(m) = 7m®0O(r).
We call ©(7) the local theta lift of .

4. WALDSPURGER, TUNNELL—SAITO, AND A PAIR OF QUATERNION ALGEBRAS

For any quaternion algebra B over F', we write X := {places v of F such that B, is ramified}.

4.1. Waldspurger’s formula. Let 7 be an irreducible automorphic representation of GLa(AFp)
with central character w, that has a nonzero Jacquet-Langlands transfer 72 to B . Recall that
this means that , is discrete series at all v € ¥ 5. Let Q be any Hecke character of E* such that
Q|,x = wy!. Define
F
PP P sC, fe f(t)Q(t) dt.
2

We have the following classical theorem, which follows from combining Waldspurger’s formula
with the local e-dichotomy theorem of Tunnell and Saito.

Theorem 4.1 (Waldspurger [W85a], Tunnell [T83], Saito [S93]). Let w be an irreducible automor-
phic representation of GLo(Ap) with central character wy. If

L(BC(m) ® Q, 3) #0, and Q|A§ =w !

then there exists a unique quaternion algebra B = Br o over F' such that
2 (7B,Q) # 0.
Moreover, B is the unique quaternion algebra with ramification set
Yra i ={v:6(BC(r)®@Q)- w,(-1)=—1}.
Proof. If L(BC(m) ® €, 3) # 0, then ¢(BC(m) ® ) = +1. Since w is a Hecke character of A%, we
must have w(—1) = +1. Therefore, there must be an even number of places v of F' such that
€,(BC(7m) ® ) - wy(—1) = —1, and hence there exists a unique quaternion algebra B o over F'

with ramification set ¥ o, and the conclusion now follows from Waldspurger’s formula and the
local branching criterion of Tunnell and Saito. g

4.2. A pair of quaternion algebras. We now specialize to the setting where m comes from
automorphic induction. Let x, x’ be Hecke characters of A7,. One has

L(BC(my) ®@ X', 8) = L(my ® myr, 8) = L(BC(my) @ X, 8),
and let us assume that

L(BC(my) ® ¥/, 1) = L(BC(my) ® X, 3) # 0. (4.1)
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It is a standard calculation to see that the central character of 7, (and of any Jacquet-Langlands
transfer 7[‘5 ) is x| AX EB/F where €g,/p is the quadratic character of AY associated to the quadratic

extension E/F. Therefore the central character condition in Theorem 4.1 is:
X|A; 'X/|A; ~ep/rp =1 (4.2)

If x, x satisfy (4.2), then by Theorem 4.1, B = B,/ and B’ = Br , x are the unique quaternion

algebras such that 33(75](3,)(’) # 0 and Qz(ﬂf/,x) £ 0.

Proposition 4.2. Let x, X" be Hecke characters of A}, satisfying (4.1) and (4.2), and let E = F (i)
with i? =u. If B = By, y 1s the quaternion algebra that corresponds to the Hilbert symbol (u,J),
then B’ = By, corresponds to the Hilbert symbol (u, —J).

Proof. Tt is a standard computation to show that:
€,(BC(my) @ X') = €,(BC(my) ® X).

Equation (4.2) implies that Wry *Wr, - €B/F = 1. Using Theorem 4.1, we see that Eﬂxux can be

described in terms of ¥,

v € Yy, v and g, /g, (—1) =1, or
mex TV v ¢ e and eEv/Fv(—l) = —1.

An equivalent way to state this relationship is the following. The quaternion algebra B can be
given an F basis 1,1, j,ij such that E = F[i]. Write i> = u and j2 = J so that B is the quaternion
algebra associated to the Hilbert symbol (u,J). That is,

(u, J)y = —1 = vV E Nn, -
By the bimultiplicativity of the Hilbert symbol, B’ is the quaternion algebra associated to
(U, J) : 6E/F(_l) = (’LL, J) : (u7 _1) = (U, _‘]) U

4.3. A seesaw of unitary groups. In this section, we introduce the main dual reductive pairs
of interest in this paper. Fix i € E with trg/pi = i+1i=0. Note that £ = F[i]. Let B be
a (possibly split) quaternion algebra over F' and let 1,1i,j,k be a standard basis for B over F.
Viewing B = E @ Ej, we set pr: B — F to be the projection onto the E-component. We consider
the following spaces:

V = B = 1-dimensional right B-space with skew-Hermitian form (z,y) = z*iy

W* = B®g FE = 1-dimensional left B-space with Hermitian form (x,y) = xy*

Res V' = 2-dimensional right F-space with skew-Hermitian form (x,y) = pr(z*iy)

W = E = 1-dimensional left E-space with Hermitian form (a,b) = ab

Vo = 1-dimensional right E-space with Hermitian form (a, b)g = ab

Wy = B = 2-dimensional left E-space with skew-Hermitian form (z,y)o = —ipr(zy*)
V=VRW*=ResV W =V ® Wy = 4-dimensional F-space with symplectic form
3 Tre/r((5) ® ()

Then both pairs (Ug(V),Up(W*)) and (Ug(Res V), Ug(W)) are irreducible dual reductive pairs
(of type 1) in Sp(V). (See, for example, [P93].) For any pair (V,W) = (V,W*), (ResV, W), or
(Vo, Wh), we take as our convention

GL(V) x GL(W) — GL(V @ W), (g,h) = (v@w— g~ v @ wh).
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It is clear that Ug(V) C Ug(ResV) and that Ug(W) C Ug(W*). Furthermore, we have a
commutative diagram

Ug(V) x  Up(W*) —— Sp(Respg/p(V @p W*))

[ ! w

Ug(ResV) X Ug(W) —— Sp(ResE/F(ResV ®@p W))

Therefore we have the following seesaw of dual reductive pairs

Ur(ResV) Ug(W*) (B! x (BHY)/F! Bl
> 2 =]
Ug(V) Ur(W) E'UE7J] B!

Here, B’ = <#) and the superscript » € Q picks out the norm-r elements. The analogous
seesaw with similitudes is

GUg(Res V) GUs(W*)  (E* x (B))/F* B

e (4.4)
GUs(V) GUR(W) EX U E¥j X

The only isomorphism that is not straightforward to see is GUg(Res V') = (E* x (B')*)/F*. This
comes from a natural right action of (B")* on ResV = B defined by

1 =i =
We note that the point of introducing the FE-spaces Vy and W is that we have natural maps
Up(V) =2 Ug(Vp), Up(W*) < Ug(Wo).

This will allow us to compute splittings on the quaternionic unitary groups Ug(V') and Ug(W™)
by pulling back splittings on Ug(Vy) and Ug(Wp).

5. SPLITTINGS FOR UNITARY SIMILITUDE GROUPS

In this section, we define the Weil representation on the dual reductive pairs introduced in
Section 4.3 using the explicit splittings of zy defined by Kudla [K94]. The properties of the Weil
index and the Leray invariant we will use in this section can be found in [R93], [[P16a, Sections
3.1.1, 3.1.2]. We prove that the splittings are compatible with the seesaws constructed in Section
4.3. In Sections 5.1, 5.2, 5.3, and 5.4, we fix a place v of F' and suppress v from the notation. In
Section 5.5, we combine the local considerations from the preceding subsections into the global
picture. Many of these calculations (especially in Sections 5.3 and 5.4) are similar to those in
[[P16a, Appendix C], [IP16b].

In order to describe the global automorphic theta lift from a Hecke character to a quaternion
algebra, which we will do later in Section 6, we will need to give an explicit description of the
local splittings in Section 5.3 in the special case that the quaternion algebra is unramified (i.e.
split) at the place in question. We do this in Section 5.6.
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5.1. Kudla’s splitting for split unitary groups. We first recall Kudla’s splitting [K94] of
Rao’s cocycle [R93] for split unitary groups over E. Let W =2 E?" (row vectors) be an E-vector
space of dimension 2n with e-skew Hermitian form

((z1,91), (T2,92)) = T1T5 — €Ty,

and let ey, ..., e, €],..., e, be the E-basis of W giving the isomorphism W 2 E?. Let V be an
E-vector space of dimension m with a non-degenerate e-Hermitian form (-,-). (Here, T denotes the
image of x under the nontrivial involution of E over F and the superscript * denotes transposition.)
Then (Ug(V),Ug(W)) is a dual reductive pair and there is a natural map

t: Up(V) x Ug(W) — Sp(V @ W), (h,9) = (w®v— hw @ vg).

We denote by tw: Ug(V) = Sp(V®p W) and tyv: Ug(W) — Sp(V @ W) the restrictions of ¢
to Ug(V) x {1} and {1} x Ug(W), respectively.
For 0 < j <, let 7; € Ug(W) be the element defined by

—ee) if1<i<y, , e; if1<i<y,
€iTj = e and €Ty = e o
€; ifi > 7, e; ifi>j.

Then

J
=| | PP,
i=0
where P = Py C Ug(W) is the parabolic subgroup stabilizing the maximal isotropic subspace
Y :=spang{e},...,e,}. If g = pi7jp2 € P7;P, then we define
i(g) == 7, and z(g) := det(p1p2ly) € E*.
For any FE-vector space Vg endowed with a non-degenerate Hermitian form, define
vr(3¢ 0 RVo) := (u,det(Vo)) pyr(—u, 3) " vr (1, 39) 7.
Definition 5.1. Define

&(z(9))vr (31 0 RV) =@ if € = +1,
E(2(9)A) vr(3v 0 RV/)0  if e = —1,

where V' is the Hermitian form obtained by scaling the skew-Hermitian form on V by i.

5V,§: UE(W) — Cl, g — {

Theorem 5.2 (Kudla, [K94, Thm 3.1)). Let & be a unitary character of E* whose restriction to
F* s eg/F, where eE/F(x) = (x,u)F is the quadratic character corresponding to the extension

E/F. Then for the mazimal isotropic subspace Y :==V @Y of VRrp W,

2y (tv(91),tv(92)) = Bv.e(9192)Bv ¢(91) By e(g2) ™!

In other words, with respect to the isomorphism Mp(V @ W) = Sp(V @ W) x C! determined
by zy, the following diagram commutes:

V®E W)Y

(ev ,V l

Up(W) —5— Sp(V @r W)
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5.2. Changing polarizations.

Lemma 5.3 (Kudla, [K94, Lemma 4.2]). Let X+Y and X'+Y’ be two polarizations of a symplectic
space V. Then

2y/(g1,92) = Ag192)M(91) " A(g2) " - 2w (91, 92),
where \: Sp(V) — C! is given by
Mg) = Avevr(9) = vr(39 0 q(Y, YY) - yp (3¢ 0 q(Y, Y, Yg)).
In particular, the bijection
Mp(V)y = Mp(V)yr,  (g,2) = (9.2 A(9))
18 an isomorphism.

5.3. Three seesaws of unitary groups. For any two unitary similitude groups GUg(V) and
GUg(W), we write
G(Ug(V) x Ug(W)) :={(g9,h) € GUE(V) x GUg(W) : v(g9) =v(h)}.

Fix a complete polarization V. = X + Y. In this section, we define splittings (of zy or zyo,
depending on context) for the unitary groups G(Ug(V{?) x Up(Wp)), G(Ug(Vo) x Ug(Wo)),
G(Ug(ResV) x Ug(W")), and G(Ug(Res V') x Ug(W)), which fit into the seesaw

Ug(ResV) Ur(Wo)
> o
Urs(Vo) Ug(W)
and the two corresponding doubling seesaws:
Ur(VH) Ug(Wy) x Ug(Wp) Ug(ResV) Ug(WH)
| = >
Ug(Vo) x Ug(Vp) Up(Wo)® Ug(Res V)4 Up(W) x Ug(W)

(5.2)

5.3.1. Splittings for G(Ug(V{Y) x Up(Wy)) and G(Ug (Vo) x Ug(Wy)). Consider the 2-dimensional
E-space Vy® gWj with skew-Hermitian form given by (-, -)®(-, -). By a straightforward computation,
we see that this allows us to identify Vo @ p Wy = Wy as E-spaces endowed with skew-Hermitian
forms. Define

G(Ug (Vo) x Up(Wo)) = Un((Vo ® Wo)"),

(g, h) > (v@w,v” @w )~ (¢ vRwh,v” @w")),
G(Ug(Vo) x Up(Wo)) = Up((Vo ® Wo)),

(g, h) = (v@w,v” @w ) — (v@w, g 'v” @w h))
G(Up(Vy) x Up(Wo)) = Up(Vo' ® W),

(g,h) — (v @w — g v @ wh).

We may identify Vi~ @ Wy = (Vo @ Wy)- = . We have natural embeddings
G(Up(Vo) x Ur(Vo) x Up(Wo)) (UE(VO) x Ug(Wo)) x G(Up(Vo) x Up(Wo))
)

— G
G(UE(Vb) X UE(%) X UE(W()) — G(UE(VO ) X UE(W())).
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Observe that for (g1,92,h) € G(Ug(Vh) x Ug(Vy) x Ug(Wy)),
i(g1,h)i (92,h) = i (g1, 92, h) € Up(Wy).
We identify Resp, F(W5) =V and let
v: Up(Wg) = Sp(Resg/r(Wy)) = Sp(V")
be the natural embedding. We will often identify Ug(W{) with «(Ug(W)).
Definition 5.4. Pick a character £: EX — C! such that &|px = €g/r- Define
B: Up(Wg) = C' g &x(9)) - ((u, =1 pye(u, 310) 79
Define \ := )\VO®WOAWYD: Sp(VY) — C! and
§1=1i"B, §T=(7)"B, $1i= ()8,
= i"(BY), 7= ()" (BN), s = (i7)7(BA).

Lemma 5.5.

(a) 8, §, and §9 are splittings of = ~ on the images of i, i~, and i, respectively.

Vo@W,
(b) s is a splitting of zy on the image of i, s~ is a splitting of zY on the image of i~, and s5
is a splitting of zyo on the image of i-.

Proof. Observe that det(Vp) = 1 and dim(Vp) = 1 so that
(310 RVp) = (u, 1) pyr(—u, 3¢0)vr (=1, 3¢) 7" = (u, —1) pyp(u, 31).

This implies that 8 = By, ), (see Definition 5.1) and hence is a splitting of z A. Since §,

VO@EW()
57, and 89 are pullbacks of /3, they must also be splittings of the same cocycle. O

Lemma 5.6. For any (g,h) € G(Ug(Vo) x Up(Wy)),
§7(g,h) = 3(g, h) - £(det(g, h)).

Proof. Let dy,s(~1) = (§5) and set

dwe: Us(Wo) = Up(We), g dya(=1)gdy,a(-1).
Let g € G(Ug(Vp) x Ug(Wo)). By a straightforward computation, we have

w(i™(9)) = (=19a(i(g)),  and  j(i (9)) = i(i(9)).
Therefore, since yp(u, 3¢)? = (u, —1)p,

§7(9) = &= (9))((w, =) pyr (u, %w» o)
= &(2(i(9))) ((u, = 1) pyr(u, 5))7 9 = £(x(i(9)))*3(g) = &(det(9))3(g). O

Lemma 5.7. For (g1,g2,h) € G(Ug(Vy) x Ug(Vo) x Ug(Wy)),

5791, 92, h) = s(g1, h) - s(g2, h) - £(det(i(g2, b))
Proof. This is [HKS96, Lemma 1.1]. See also [Lemma D.4, periods2]. O
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5.3.2. Splittings for G(Ug(Res V) x Ug(W")) and G(Ug(Res V) x Ug(W)). This section is com-
pletely analogous to Section 5.3.1. The 2-dimensional E-space ResV ®p W with skew-Hermitian
form (+,-) ® (-, -) can be identified with Res V. Define

i': G(Ug(ResV) x Ug(W)) = Ug(Res V"), (g,h) = ((v,v7) = (g toh,v7)),
/. G(Ug(Res V) x Ug(W)) = Up(Res VD), (g,h) — ((v,v7) = (v,g v h),
D7 G(Up(Res V) x Ug(WD)) = Ug(Res VDY), (g,h) — (v g~ oh).

We have natural embeddings
G(Ug(ResV) x Ug(W) x Ug(W)) — G(Ug(Res V) x Ug(W)) x G(Ug(Res V') x Ug(W)),
G(Ug(ResV) x Ug(W) x Ug(W)) < G(Ug(Res V) x Ug(WH)).
Observe that for (g, hi,hs) € G(Ug(ResV) x Ug(W) x Ug(W)),
"(g,h1)i~"(g, ho) = i (g, h1, h2) € Ug(Res V7).
We identify Respg, (V) = VY and let

)
i (
/: Ug(Res V) — Sp(VD)
be the natural embedding. We will often identify Ug(Res V") with ¢(Ug(Res VY)).
Definition 5.8. Pick a character &: EX — C! such that {|px = €g/r- Define

s Up(ResVY) = €', g0 € (a(9)) - (u, = 1) pye(u, 31)) 79

Define
N = Mpesvagwoyo: Sp(VH) — C
Define
=), ST= ()8 = ()8,
S, — (Z/) (BIA )7 S_/ — (Z ) (6,)\ )’ SI:II i (’L'D,)*(Bl)\,).

Lemma 5.9.

(a) &, 87", and 87 are splittings of zresyagy on the images of i, i~

(b) s is a splitting of zy on the image of i', s~
sY" is a splitting of zyo on the image of i’

, and i, respectively.
is a splitting of z§1 on the image of i~', and

Lemma 5.10. For (g, hi,h2) € G(Ug(ResV) x Ug(W) x Ug(W)),
s7'(g,h, ha) = 8'(g, 1) - §'(g, ha) - €' (det(¥' (9, ha))).

5.4. Compatibility between the splittings for the three seesaws. In this section, we
investigate the compatibility of the splittings of the four pairs of unitary groups relative to the
three seesaws presented in (5.1) and (5.2). Compatibility of the splittings in the two doubling
seesaws of (5.2) is explicated in Lemmas 5.7 and 5.10. Hence it remains to investigate the
compatibility of the splittings

s: G(Up(Vp) x Up(Wy)) = C' and  §': G(Ug(ResV) x Ug(W)) — CL.
Precisely, we would compare s and s’ on the subgroup
G(Up(Vo) x Up(W)) 2 {(a, B) € B x E* : Nm(a) = Nm(8)}.

We prove a sequence of lemmas that to break up the computation showing Proposition 5.14.
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Let o, 8 € E* with Nm(a) = Nm(8) so that (a, 8) € G(Ug(Vp) x Ug(W)). Let g € Up(W§)
denote the map (w,w™) + (@ 'wB,w™) and let ¢’ € Up(Res V") denote the map (v,v7)
(a~'vB,v7). Define:

i i ij ij / / .
= ——, — = —, —— = (1,1 = :
U1 ( 2’ 2’LL> ) V2 <2uJ’ 2UJ> ) U1 ( ) )7 Vo (Ju])
This defines an E-basis of W' and of Res V" with the following property:
(Uz',?f;)o = dij, ('Uz'an)O = (UQ,U})O =0, <Uz‘>v§> = dij, <Uiavj> = <U§>U/') = 0.

With respect to the basis {v1, v, v}, v5},

1+ —1 1— -13,
Lo 5 1q% o 1043
0 4o 8 0 _1=a" "B,
9= 1 2 lta-18 dut (5.3)
(1 — ,8)1 0 5 0 B
0 e ) A La”lp
1+a~18 0 1—0F1,Bi 0
(2) 1+a—1p 48 1-a 148,
' 2 Tug ! (5.4)
T la-api 0 Lasls '
__ . 1+a—1p
0 (1—a'p)iJ 0 =+ £

Here, we view each unitary group as a subgroup of GL4(FE) with GL4(F) acting formally by
right-multiplication. Note however that I/VOIj is a left E-space, and so we interpret the formal
multiplication v - a for v € WOD and a € F as av. Throughout this section, we write g when we
want to refer to one of g or ¢’ simultaneously.

Lemma 5.11. We have

Conditions z(g) z(g") Jj(g)
alB=1alp=1 1 1 0
T B=La £ —(-a B (= B 1
a l8#£1, a7 =1 (1—-a1B)i (1—-a'B)i 1
a £, a7 1841 | ~(1—a B (1 —a 'BuJ |(1—a 1B —a B)ul | 2

Proof. The proof amounts to giving explicit decompositions

1o
g = p1wpa, where p; € Pya and w =7; = ( 1o, ’ )
1

There are four cases:
(a) If a~ !B =1and a '3 =1, then
g=1, g =1.
(b) If a3 =1and a= B # 1, then g = p17ip2 and ¢’ = p|miph for
1 0 0 0

100 0 _ e
010 —1ta"'B 0 (~1+a 'B)iJo o P
p1= 001 2(71+%—1B>U ) P2=1o0 0 1 0 )
a_lg
000 1 0 0 0 T
rr 0 1 0 0 0,
, 010 —_ 1ta"'8 , 0—(-1+a'giso =8
P = 001 2<71+OH*16>U ) P2=1o0o0 0 1 0,
__ & 'p
000 1 0 0 e N
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(c) f a™'B # 1 and !B = 1, then
a5 0 1 0.
o —
/ 010 2i(1—a—13) (17(1_118)i 0 w 0
g=9g = 1100 0 tTLC 0 0 0 1
000
001

1 o~ 1p
0 R

(d) f a8 # 1 and a8 # 1, then g = p1ope and ¢’ = p|mph for

o ipys 1+a"lp
Lo Lia—lp 0 (1—a=*p)i 0 5 0_17
2(1-a—1p) ) 0 —(1—a~1B)iJ 0 SR
= __1+a” "B = —1
n 01 0 e TH | P2 0 0 o 15 0 )
00 o 1 e 5
«
0 0 0 T (—a-1B)iJ
IS e 1+a"18
10 1+a”18 0 (I—a™"p)i 0 2 70_1
, 2(1—a~18)i , 0 (1—a~1p)iJ 0 w
= 1+a_1ﬂ = —1
Py 01 0 aaThT | V2] 0 0 o 15 _ 0
60 o 1 T ey
[e%
0 0 O G=Teu
From the above decompositions, we can easily read off the desired information. ]

Lemma 5.12. Let o = a1 + b1i. Then
. el (ar,u)p if by =0,
S(O[,Oé) - -1 1 .
(o) - (=2biud,u)p - yr(u, 5¢) - (=1, —u)r  otherwise.
N _ é—l(a—l) : (alvu)F /Lf bl = Oa
§a,a) = . 1 _
@) (—2byud,u)r - yr(u, 539) - (=1, —u)p  otherwise.

Proof. We use Lemma 5.11 in the two cases where a1 = 1. If o~ '@ = 1, then a = @ and so
b1 = 0. By Lemma 5.11, we have

§<O‘ﬂa) = §/(04,0é) =1= f(a_l) ) (alvu)F = §/<a_l) : (ahu)F'

If o~ '@ # 1, then by # 0. Note that

l-ala=ala—-a)=at 2bji, l-ala=1-ala=-a ' 2ni
The desired conclusion now follows by Lemma 5.11. O
Lemma 5.13. Let ( = a +bi € E'. Then
. 1 ifa=1, . 1 ifa=1,
5(1,¢) = . (LG =19, )
((2—=2a)ud,u)r ifa#1, &) ((2—2a)ud,u)p ifa##1.

Proof. We use Lemma 5.11. If ¢ = 1, this corresponds to the case a '8 =1, a '8 =1, and
3L =481, =1
If ¢ # 1, this corresponds to the case a1 # 1, a~ '8 # 1, and

5(LO=6-1-00=Qut)- (=Lu)p,  F(1,0)=¢E((1-* ) (~Lu)p.

The desired conclusion follows from the simple observation

1-00-0=2-2a  (1-¢°=—1-O1~¢) =2~ 2a). .

Proposition 5.14. Let g € G(Ug(Vp) x Ug(W)) C G(Ug(Vh) x Ug(Wy)) and ¢’ € G(Ug(Vp) X
Ug(W)) C G(Ug(ResV) x Ug(W)) correspond to (e, B) € E* x E* with Nm(«) = Nm(3). Then

s'(9") = £(@)€'(B)s(g)-



16 CHARLOTTE CHAN

Proof. We use the formulas given in Lemma 5.12 and Lemma 5.13 together with Lemma 5.3.
Recall that g = g1 - g2, ¢ = ¢} - gb, where g; corresponds to (a, «) and g corresponds to (1, 3/«).
First notice that under the natural maps

i: Up(Vo @ Wo) — Sp(V), i Up(Vo ® Wo) — Sp(VP),
i': Ug(ResV @ W) — Sp(V), i7" Ug(ResV @ W) — Sp(VD),

we have
i(ge) =1'(g2) €Sp(V),  i7(gs) =i""(gL) € Sp(V"),

where g, denotes any of g, g1, g2. This implies that for A := Aya _,y0o,

Ai7(ge)) = A7 (gh)),  and  2v(i(g1),i(g2)) = 2v(i'(g)), 7' (gh))-

By definition,

Thus we have
x(, 8) = 5(9) - s'(¢') " = 3(g1) - 8(g2) - 3'(g1) " - 5 (g5) .
Now we combine the results of Lemmas 5.12 and 5.13 to compute x(c, ). Using the fact
al-pat=5,

in the calculation of §'(¢})8(¢5) when o # 8, we have:

Ela™) - (a1,u)p a€eF* a=0
o) (a1, u)r - (2 —2a)ud,u)p acF* a#p
3(g1) - 8(g2) = { €a™h) - (201w, w)p - yr(u, 59) - (=1, —u)p ag F* a=p
Eat) - (=20t u) - yr(u, 39) - (=1, —u)p
((2=-2a)uJ,u)p a g F*, a#0
@) (a1,u)r acF* a=8
§’(371)-(al,u)p-((2—2a)uJ,u)F aeF* a#f
§(gh) 8 (ga) = €@ h) - (=2brwd, u)p - yr(u, 59) - (=1, —u)F agF,a=4
(B 1) (=2bjud,u)p - yr(u, %1/}) (=1, —u)p
\ ((2=2a)uJ,u)p a g F*, a#p
Therefore
(la”h) @) aeF* a=4
Ea™h)-¢(B) acF* a#p
MDD =V ea) - ¢@) agFra=p
Ea™h)-E(B) agF* a#p

Il
MmN
—

Q\
N
N—
M
—~~
sy
S—

Il
M
—

Q\

=
N—
oy
—
=

AN
N—
My
—
=
=)
N—

Il
m
—

[
AN
S~—
M
~—~~
=
N
S—
O
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5.5. Product formula. In this section, we put the local considerations of the Sections 5.1, 5.2,
5.3, and 5.4 into the global picture. Once and for all, pick Hecke characters
/. X X 1 ! .
f,gE \AE—>(C such that g’A;_é.’A;,_EE/F'
Note that Ug(Vp) =2 EX = Ug(V)? and hence we have a natural embeddings
G(U(V)? x Ug(W)) = G(Ug(Vy) x Ug(Wp))
G(UB(VE)? x Up(W)) = G(Ur(Vy) x Up(Wy)).

Thus functions defined on the unitary spaces pull back to functions on the quaternionic unitary
spaces. For each place v of F', by Definition 5.4 and 5.8, we have functions

sy: G(Ug(Vy) x Ug(W;)) — CL, s2: G(UB(VE) x Ug(Wr)) — CL,
sl G(Ug(ResVy) x Ug(W,)) — C, s2: G(Ug(Res V,) x Ug(WD)) — €t
Formally define

/ / / /
5:2”5”’ s ::”sv7 sH = 85], SD::”svD.
v v

v v

These products converge by the following lemma, where we write “a.a.” for “all but finitely many.”

Lemma 5.15.

(a) Let v € G(Ug(V)(F) x Ug(W)(F)). Then sy(y) =1 for a.a. v and s(y) = 1.

(b) Let v € G(Ug(VE)Y(F) x Ug(W)(F)). Then s5(v) =1 for a.a. v and s7(y) = 1.
(c) Let v € G(Ug(ResV)(F) x Ug(W)(F)). Then si,(y) =1 for a.a. v and s'(y) = 1.
(d) Let v € G(Ug(Res V) (F) x Ug(WE)(F)). Then s5'(vy) =1 for a.a. v and s7'(y) =1

Proposition 5.16.
(a) [Lemma 5.7] For (g1,g2,h) € G(Up(V)?(A) x Ug(V)(A) x Ug(W)(A)),
591,92, h) = s(g1, h) - 52, h) - £(det(ilga, 7).
(b) [Lemma 5.10] For (h,g1,92) € G(Ug(ResV)(A) x Ug(W)(A) x Ug(W)(A)),
s (hs91,92) = 5'(h 1) - ' (1, g2) - €' (det(i' (B, 92)))-
(¢) [Proposition 5.14] For a, 3 € A}, such that Nm(a) = Nm(f),
s' (v, B) = &(a)€(B)s(ev, B).

5.6. Two splittings on E° x GLy(F,). To calculate the theta lift at all the unramified places,
we will have to understand the Weil representation more concretely. In particular, we will need
to explicate the local splittings defined in Section 5 in the cases v ¢ Yp and v ¢ X /. These
exactly correspond, respectively, to the cases when Wy, and ResV,, are split Hermitian spaces.
For notational convenience, we drop the subscript v in this section.

Consider the group

R :=G(E* x GL2(F)) = {(a,9) € E* x GLy(F) : Nm(a) = det(g)} .

Assume that the 2-dimensional E-spaces Wy and Res V' are hyperbolic planes (i.e. they are split
Hermitian spaces). Then we have embeddings

R < G(Ug(Vo) x Up(Wo)),  (a,9) = (a.9)
R — G(Ug(ResV) x Ug(W)), (a, 9) — (g,).

Furthermore, any decomposition of Wy or ResV into maximal isotropic subspaces induces a
complete polarization

V=X+Y.
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Our goal in this section is to explicate the values of the splittings in Section 5.3 associated to this

particular polarization. To make it clear that we are working in this specialized context, we let
s: G(Up(Vy) x Ug(Wy)) = CL, &' G(Ug(ResV) x Ug(W)) — C!

denote the splittings for zy: defined in Section 5.3.
We briefly recall the construction of s, s’. Recall that from Sections 5.3.1 and 5.3.2, we have
natural maps

i: G(Up(Vo) x Ug(Wp)) = Ug(Wy)),  i': G(Ug(ResV) x Ug(W)) — Ug(Res VD).
If we let A: Sp(VY) — C! be given by
Ag) = r(39 0 g(V2, Y71 YD) -y (5 0 g(VA, Y'P,V2g)),
then we have
s:=5§-A: G(Ug(Vy) x Ug(Wy)) = Ct, &' :=§ - X: G(Ug(ResV) x Ug(W)) — C,
where 0§ = W and 058" = 2oy agw -

Let W7 and W5 be isotropic subspaces such that Wy, = Wy + Wy and fix w; € W; so that
(w1, we) = 1. Analogously, let V; and V5 be isotropic subspaces such that ResV = V; + V5 and fix
w; € V; such that (wi,ws) = 1. Define

wi = (w1, —5w1), Wy = (—gws, ws), wi = (wg, w), w3 = (w1, wr)
so that we have (w;, w;) = (W, w}), (W;, W}) = d;5, (W}, w;) = —dj;, and
W =wy + WOA, where W/ = span{w1, w2} and WOA = span{wj, w3},

Res VP =ResVV + Res V2, where Res VV = span{w1, ws} and Res V> = span{w}, w}}.

Then a symplectic basis preserving the complete polarizationVZ = VV + V2 is given by

—1 —1e * . * * . *
w1, iwy, Wa, —iwg, wi, iw], w3, iwj. (5.5)

5.6.1. A splitting s of zy. For a,d € F*, write D(a,d) := diag(a, d).
Lemma 5.17. Let (o, D(a,d)) € R. Then
s(a, D(a,d)) = &(~(a"la—1)(a"'d - 1)).
In particular, for a € F* and a € E*,
s(1, D(a,a™ ")) = (u,a)p, (e, D(1,Nm(a))) = ().

Proof. We have (1,D(1,1)) = (1,U(0)), and this is proved in Lemma 5.18, so we assume that
(o, D(a,d)) # (1,D(1,1)). This assumption will be necessary when we calculate §.

Recall that (o, D(a,d)) sends wy — o~ taw; and wa — o~ 'dws. Recalling that i: Ug(Wy) —
Ugp(Wo + Wj) is defined by Ug(Wp) acting linearly on Wy and trivially on W, it is a straight-

forward computation to see that the image of (o, D(a,d)) in Ug(Wy + W) with respect to the
basis w1, wg, W}, w5 is

ala+1 ala—1
2 10 ? 1
a” td+1 a td—1
0 . - 0
0 —(a~ld-1) 2L g
1
—(a~ta—1) 0 o ookl

‘We have
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where
(e la+1)? a~la—1 oa"latl
0 74(a—1a—1)+ 4 -2 0
_ (a7 td+1)? q=1ld—1 a~ld+1
= | foTaen T 4 0 0 —7 3 ,
0 0 0 (a~1d—1)
0 0 —(a"ta—1) 0
a"lat1
Lo 0 2(a—la—1)
= a"td+1
P2 01 —F(a=1d-1)
00 1
00 0 1

This implies that
2(i(@, D(a,d))) = (a~'a — 1)(a~'d~1),  j(i(a, D(a,d))) =2,
and therefore by Definition 5.4,
(ifa, D(a,d)) = &((a~"a — 1)@~ d — 1)) - 7 (u, 31) 2 = &(~(a~a — 1)(a~1d — 1)).

With respect to the symplectic basis given in (5.5), the image of i(a, D(a, d)) in Sp(V") is
za+1 _yau za—1 ya
2 2 7 1
__Yya ra+1 ya xa—1
2 2 m 4
xd+1 _ydu _zd—1 _yd
2 2 ! 1
_yd zd+1 _yd _zd—1 -
_ 2 2 1u 7 € Sp(Vo).
g —(xd —1) ydu zdtl %d p(V")
d
yd  —(zd—1) 5 2EH "
ra a
ra—1 —yau o sz_l
ya za—1 S 5

By definition,
M, D(a,d)) = yr(59 0 (VY g™ Y1) - e (50 0 g(VA, Y, VAg)).
Since g stabilizes Y,
(Lo g(VA, Y g™ Y1) = 1.
To calculate the second factor, notice that
V& ={(0,0,0,0, 21, 22, 23, 24) },
Y™ = {(0,0, 21, 22, 23, 24, 0,0)},
V29 = {((za — 1)z + yazy, —yauzs + (xa — 1)zq, —(xd — 1)z + ydz, yduz, — (zd — 1) 2y,
zd+1 yd yd zd+1

za+1 ya ya zra+1
— TG — Sz, = ay — TG, T 23 4 iz, Grag + T 2)

and one can see that this implies that R = {(0, 0, *, %, %, %,0,0)} and hence
ve (390 (V2 Y, V2g)) = 1.

We therefore have
s(a, D(a,d)) = 3(a, D(a,d)) = £(—(ata — 1) (o td — 1)).

This proves the main assertion and the remaining formulas can be deduced as follows: Assuming
a# 1 and a # 1 (observe that if o € E', then = 1 if and only if a = 1),

s(1,D(a,a” ")) =&(—(a—1)(a™" = 1)) =&la  (a—1)%) = &(a™) = (u,a) .
If a € E, then
s(o, D(1,Nm(a))) = &(—(a7! = D)(a taa - 1)) = &(a Neg/p(Nm(a - 1)) =&( ). O
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Lemma 5.18. Let a € F. Then
s(1,U(a)) =

Proof. The matrix U(a) sends w; — wy+aws and wg — wsy. Recalling that i: Ug(Wy) — Ug(Wy+
W, ) is defined by Ug(Wy) acting linearly on Wy and trivially on W, it is a straightforward
computation to see that

1-5%0
2 1
i(1,U(a)) = 8 (1) (1)8
Ofagl
We have
1
1550 1000 1543 1
0100 0a 01} —[0-104qa"" -1
00(110 (0010) 001 0 < 1 >’
0agl 0 0 Oa 00 % 1 1
and therefore z(i(1,U(a))) = — and j(i(1,U(a))) = 1. By Definition 5.4, we have
1 if a =0,
&(— (u,—1)p - vr(u ,21/1)_1:(u,a)p-’yp(u, %1/1)_1, if a € F'*.

We next calculate A(1,U(a)). Since g = (1,U(a)) stabilizes Y'",
Mg)=vr(z¥0q),  q:=q(VE YT, Vo).
Working in the F-basis given in (5.5)
2 ={(0,0,0,0,y1,92,¥3,4)},
7= 1{(0,0, 91,92, 93,54, 0,0)},
V29 ={(0,0, —ays, 2ya, y1 + 2ys,y2 — Ly, Y3, ya) }-

If a =0, then A\(1,U(0)) = 1, and the lemma holds. It remains to prove the assertion for when
a € F*. Then we have R = {(0,0,0,0,,%,0,0)}, Rt = {(0,0, %, %, %, %, %, )} so that

(VA)R - {(07 07 07 07 07 Ovylu y2)}7
(Y/D)R = {(05 05 917?/270,0,070)}7
(V2g)r = {(0,0, —ay1, 22,0,0,y1,%2)}-

It is clear from the above equations that

1
(YR (§%) = (V2 9)R, where (%) € Pyay, C Sp(R1/R), for b = < S )

Qg ©

By definition, ¢ = (Y'™)g with the symmetric bilinear form given by

q((z1,22), (Y1, 42)) = — 22191 + Laaye.

Therefore we have
dimg=2,  detq=—Z.  hrg) = (=5 D)r

Observe that (—1,%)p = (—a, au)p(—a, a)F = (—a,u)p, and so

A1,U(a) = vr(39) - vr(—2%,5¢) - (=5, 9 r = vr(=1,3¢) " yr(—u, 3¢) - (—a,u)p.

Finally, we have

S<17 U(a)> = (ua a)F : ’YF(uv %w)_l ’ ’YF(_L %w)_l : P)/F(_u7 %lb) : (-CL,U)F =1 g
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Lemma 5.19. We have
s(1,W) = (u, —1)p - yr(u, %1/1)
In particular, if ord(u) is even, then
s(1,W) = 1.
Proof. The matrix W sends w; — —w; and wy — —ws. Recalling that (W) acts linearly on W)
and trivially on Wy, it is a straightforward computation to see that

1 11 1 11
2 72171 T=1-1 1 20-10
1111 L L1 1 02 0 —1
iLw)y=12 214 |= o (—1 1) 003 0
-1 1573 0o 3 —3 -1 1
Lo L2 0o L 1L 000 3
“l=lg g 2 2
Therefore we have z(i(1, W)) = £ and j(i(1,W)) = 2, and by Definition 5.4,
$(LW) = &(g) - ((w, =) -y (u, 59)) 72 = (u,~2)p. (5.6)

We next calculate A(1,W). With respect to the symplectic basis given in (5.5), the image of
i(1,W) in Sp(VY) is

1 1 1 1
2 T2 1 !
1 1 u u
2 2 1 1
1 1 1 1
2 2 1 1
1 1 _u _u .
g = 2 20t A eSp(v).
-1 1 5 -3
1 1
-1 -1 5 3
1 1

By definition,
Ag) = vr(3¢ 0 g(VA, Y g™ Y)) (39 0 g(VE, Y, VAg)).
We have
V4 ={(0,0,0,0, 41,42, 3, 54)},
Y59 = {(y1, v2, Y3, Y4, 3Y3, — oY, 31, —5y2) )
2 ={(0,0,41,52,93,4,0,0)},
which implies that R = {(0, 0, %, *, *,%,0,0)} and hence
yr(59 0 q(VE, Y gL Y1) = 1. (5.7)
Now we calculate the second factor of A(1,W). We have
4 ={(0,0,0,0,51,y2,y3,y0)},
2 ={(0,0,91,42,3,4,0,0)},
V29 = {(y1, Y2, Y3, Y4, —5Y1, 592, — 593 5=4) ),
and hence R = {(0,0,0,0, %, %,0,0)}, R+ = {(0,0, %, %, *, %, %, %) }. This implies that
(V) = {(0,0,0,0,0,0,41,92)},
(Y5)r = {(0,0,41,42,0,0,0,0)},
(VEg)r = {(0,0,y1,92,0,0, —y1, 5-0) },
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and we have

It follows that
Tr(31 0 g(VE, Y, VE9) = yr(39)* - vr (=25 39) - (=30 )P = vr(w 39) - 2 u)p. (5:8)
Putting together Equations (5.6), (5.7), and (5.8), we have
s(1,W) = 3(1, W) - A1, W) = (4, =2)p - v (u, 30) - (u,2)p = (u, —1) - v (u, 200).

To see the final assertion, first observe that if ord(u) is even, then either F is split or unramified
over F. In either case, (u,—1)Fr = 1. By [R93, Proposition A.11], ord(u) even implies that

vr(u, 59) = 1. u
Lemma 5.20. Let a € F. Then
s(1, D(—1))s(1, W)s(1, U(a))s(1, W) = 1.
Proof. We have s(1, D(~1))s(1, W)s(1, U(a))s(1, W) = (u, ~1)p((u, ~ 1) pyp(u, 3)> = 1. O
Lemma 5.21. If F = R and E = C, then for any (a,g) € R,
s(a,9) = &(@71).
Proof. Since (o, D(1, Nm(a))) stabilizes Y,
s(a, 9) = s(a, D(1,Nm(«))) - s(1, D(1,Nm(a) " !)g).

By Lemma 5.17, to prove the desired assertion, it remains to show that s(1,¢g) = 1 for g € SLa(R).
But this follows from [R93, Proposition A.10(1)]. O

5.6.2. A splitting s’ of zy,. As in the previous subsection, write D(a,d) := diag(a, d).

Lemma 5.22.

(i) If (D(a,d),a) € G(GLy(F) x E*), then s'(D(a,d),a) = &(—(a"ta —1)(d ta —1)). In
particular, we have s'(D(a,a™'),1) = (u,a)r and s'(D(1,Nm(a)),a) = £ (a).
(ii) For a € F, we have s'(1,U(a)) = 1.
(iii) We have s'(1,W) = (u, —1)p - yr(u, 39). In particular, if ord(u) € 2Z, then s'(1,W) = 1.
(iv) For a € F, we have s'(1, D(—1))s'(1,W)s'(1,U(a))s'(1,W) = 1.
(v) If F =R and E = C, then s'(«, g) = &' ().

Proof. The proof of (i) is similar to Lemma 5.17 except that (D(a,d), @) sends wy — ¢~ aw; and
wo — d~'awy. Thus the image of (D(a,d),a) in Ug(Res V + Res V™) with respect to the basis
Wi, Wo, Wi, W5 is

~—_ O~

1

a"latl 0 0 a la—1

2 1

0 d—12a+1 _ d—lfq 0

0 —(dta—-1) datl g
_(afla _ 1) 0 0 a*151+1

To be more precise, this proof is the proof of Lemma 5.17 except with a replaced by a~!, b replaced
by b~!, and o~ ! replaced by a. The proofs of the remaining parts are exactly the same as that of
the analogous statements for s. O
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6. GLOBAL THETA LIFTS

In this section, we examine the global theta lifts in the similitude seesaw (4.4) in comparison to
automorphic induction. Let x be a Hecke character and recall that its automorphic induction
to GL2(AFr) has a Jacquet—Langlands transfer to B* if and only if the following condition holds:

If B, is ramified, then x, does not factor through Nm: E — F*.

We write Wf to denote the Jacquet—Langlands transfer to B* if the pair (B, x) satisfies the above

B

X = 0 otherwise. The main theorem of this section is:

condition, and we set m

Theorem 6.1. The theta lifts O(x - &) from GUp(V) to GUg(W*) = B* and ©'(x' - &'~1) from
GUg(W) to GUg(Res V) = (E* x (B')*)/F* can be described in terms of automorphic induction
and the Jacquet—Langlands correspondence:

O =nl, and O & =rie K¢,
where the right-hand side is viewed as a representation of GUg(Res V') descended from (Bj)* x A%.

To prove Theorem 6.1, we will need two arguments.

(1) If O(x - £) = 0, then 72 = 0.

(2) I O(x - &) #0, then O(x - &) =75
To prove (1), we will need to make use of the theory of doubling zeta integrals. Since the
nonvanishing of the global theta lift ©(y - £) is determined by the nonvanishing of local doubling
zeta integrals (Section 6.2), the crux of (1) is to establish the local zeta integral is vanishing only
if the local theta lift is. To prove (2), we will need to calculate the local theta lift from GU(1), to
GU(2), at all places where GU(2), = GU(1,1),. After showing that ©(x - £) must be cuspidal if
it is nonzero, we apply Jacquet—Langlands [JL] to conclude.

6.1. Theta lifts with similitudes. We first recall some general properties of Weil representations.
Denote by wy, and wi’ the Weil representations of Mp(V) on S(X) and of Mp(VY) on S(XV) =
S(X) ® S(X). We have a natural map

7: Mp(V) x Mp(V) = Mp(VO)
inducing (21, z2) — 21%Z2 on C!, and Wy, wg enjoy the following compatibility:
wg 0T wy ® (wy ojy),
where jy is the automorphism of Mp(V)y = Sp(V) x C! defined by

jv(g:2) = Gv(9),27"),  iv(g) =dy(=1)-g-dy(-1).
We make the following definitions:

GY = aqUg(Vh) GY = GUg(W")
G:=GUp(V)° =2 E* =2 GUg(V) G = GUg(W)
H:=GUp(W™*) = B* C GUg(Wy) H = GUg(ResV) = ((B/)X X EX)/F><
Recall that these groups fit into the following seesaws:
H' H GY HxH H xH GY 6.1)
e | | | -
G G’ GXGXH H/)(G’XG/
Adding a subscript 1 to any of the above groups indicates that we take the kernel of the similitude
character. If G, ..., G™ is a collection of unitary similitude groups, we define

G e = 1G5 gn) € W x5 G s w(gr) = -+ = v(ga)}.
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We also define Z := F* and C := (AX)?(F*)T\(A*)T, where
(A)T = v(G(A)) Nv(H(A)) = v(G'(A) Nv(H'(A)) = Nmp,r(Af),
(F)T = F*n(A*)*.
Adding a superscript + to any of the groups G, H,G’, H' means we take the preimage of (AX)*

(or (F*)*, etc.) under the similitude map.
Fix sections

C—GA), C—HA'Y, CoG(A)T, - H(AY

of the natural surjections induced by the similitude character. We write g, he, g., h.. for the images
of ¢ € C under these sections. The following lemma is straightforward:

Lemma 6.2. The similitude character induces isomorphisms
Z(M)GL(A)G(F)N\G(A) = ¢, Z(A)Hy(A)H(F)"\H(A)* = C,
Z(B)G (A)G (F)N\G'(A)F = ¢, Z(A)H}(A)H' (F)"\H'(A)* = C.
and
H(A)/(H(F)H(A)") = H'(A)/(H'(F)H'(A)") = Gal(E/F),
GZ(A)/(GR(F)GP(A)T) 2 GH'(A)/(GT(F)GT'(A)") 2 Gal(E/F).
Recall that in Section 5 (see Definitions 5.4 and 5.8), for each place v of F', we defined splittings

of zy, and Zyo on certain unitary groups. Recall also that the discussion in Section 5.5 allowed us
to multiply the local splittings to obtain global splittings of zy

s: Gaxn(A) — Cl, 't Grrxar (A) = C,
and global splittings of zyo
s2: Gonpg(A) = CY ST G (A) — CL

These allow us to define corresponding Weil representations wy, wip, wg, wg’ . By Proposition 5.16,

wy (91, 92, h) = wy (g1, h) ® &(det(ga, h))wy (g2, 1), (91,92, h) € Gaxaxm(A), (6.2)
wy'(h, g1, 92) = wip(h, g1) ® €' (det(h, g2))wl, (B, g2),  (hy1,92) € Grixarxar (), (6.3)
wy(9,9") = €(9)€' (9" )wy (9, 9), (9:9") € Gaxar (A). (6.4)

Define a theta distribution
0: S(X(A) = C, o Y o

zeX(F)
Let ¢ € S(X(A)) and let x be a Hecke character. For h = hih. € H(A)* where hy € Hi(A), define

0o (x)(h) = / O(wy(919¢: h)@)x(919¢) dgr-
G1(F)\G1()
Here, dg =[], dg1,, is the Tamagawa measure on G1(A). Note that 6,(x)(vh) = 0,(f)(vh) for
v € H(F)NH(A)T and h € H(A)". By declaring
0,(x)(vh) = 0,(x)(h), for all v € H(F) and h € H(A)T,

we obtain an automorphic form on the subgroup H(F)H(A)T of H(A). Let p € S(X(A)) and let
X’ be a Hecke character. For h' = k| h., € H'(A)* where b € H|(A), define

0L () = / 81, (W, i) )X (dl) dg).
G (FO\G](A)
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Here, dg; =[], dg} , is the Tamagawa measure on G (4).

Let ©1(x) be the automorphic representation of H(F)H(A)" generated by 6,(x) for ¢ €
S(X(A)) and let ©’, (x’) be the automorphic representation of H'(F)H'(A)* generated by 6/,(x’)
for all ¢ € S(X(A)). Define

O(x) =Indgg () oo (04(0),  O'(X) =T oy (O4(X)) -

By Lemma 6.2, [H(A) : H(F)H(A)"] =2, so 6,(x) extends to an automorphic form in ©(y) via
0,(x)(hy) if h=~hy for v € H(F) and hy € H(A)™T,
0,(x)(h) := :
0 otherwise.
Similarly, 6,,(x’) extends to an automorphic form in ©'(x’) by setting
0 (') () := 0,(xX") () if B' =k, for v € H'(F) and b/, € H'(A)T,
v 0 otherwise.

The theta lifts for wi’ and wg’ are defined analogously.

6.2. The Rallis inner product formula. In this section, we will write down an equation relating
the Petersson inner product of a theta lift to a theta lift to a doubled unitary similitude group. To
this end, we will use the doubled seesaws in (5.2), (6.1).

For automorphic forms fi, fo on H(A) = By and f{, f5 on H'(A) = (B x Aj)/A%., define

(f1, fo)m = /[H} fi(h) - fa(h) dh, (fl fo)w = /[H’] fi(R) - f5(n') dh,

where dh =[], dh, and dh’ =[], dh!, are the Tamagawa measures of H(A) and H'(A).
Recall from Proposition 5.16 that the splittings s: Goxn(A) — C! and s7: Goo, 4 (A) — C!
enjoy the property that for (g1, g2, h) € GaxaxH,

SD(gla 92, h‘) = s(gla h‘) . 8(927 h‘) : g(det(Z(QQa h‘)))
This compatibility implies that for any hy € Hy, g1, ¢} € G1, and (ge, he) € Gaxu(A),
O(wy (919¢:hhe)p1) - Owy (919e, hihe)p2)
= O(wi; ((919¢, 919¢), hihe)pr ® By) - E(det(hihe)) ™ - (gl ge)*.

Hence for o1, p2 € S(X(A)) and Hecke characters x1, x2 of E*, by formally switching the integrals
at the equality, we have

<9<p1 (x1 - 5)7 Hcpz (X2 : §)>H
= [ [ vata ) Bl i) di de
C J[Hi]

—// / O(wy (919¢, hihe)w1)(x16)(919¢)-
Hl] Gl Gl]
O (wy (g1 9e, h1he)p2) (x2€) (91 9c) dgr dg} dh de

//Gl] /Gl] X1€)(9ege) - (X28)(919c)- (6.5)

[ ]@(ww((glgag’lgc%hlhc)(wl ®Py)) - §(det(h1he)) " dhy dgi dg de.  (6.6)
Hq

The inner integral in Equation (6.6) is the theta lift of £(det)~! to GUpg(V"), but to make actual
sense of the above, one must be careful about convergence issues. In the case that B is division, the
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quotient B*\ B is compact, and therefore the integral in (6.6) is absolutely convergent. Hence
the formal manipulation above is completely justified. We can then use the Siegel-Weil formula
together with the theory of doubling integrals [PSR87] to obtain a Rallis inner product formula. In
the case that B is split (i.e. B = My(F')), (6.6) does not converge absolutely in general, so the last
equality does not make sense. In this case, we use the regularized Siegel-Weil formula of [GQT].

6.2.1. The Siegel-Weil formula for division quaternion algebras. In this section, we explain how
to obtain a Rallis inner product formula in the case that B is division. For ¢ € S(XV(A)), define

E(9.F,)= Y, Felvg),  where Fu(g) = (wy(d(v(9)"")g)¢)(0).
AEP(F)\U(L1)

This is the value of an Eisenstein series at s = % In this case, the Siegel-Weil formula states that
for g, ¢’ € GU(1) such that v(g) = v(¢),

E(i(g,9'), Fo) = " O(wy (9,9 1) (91 @ By)) - E(det(h)) ™" dh

where i: G(U(1) x U(1)) — U(1,1) and ¢ € S(VV(A)) is the partial Fourier transform of
01 @ Py € S(XP(A)). We now see that, continuing from (6.5), (6.6), we have

B (X1 ), 0y (x2 - )11 = /c /G} /[G]<X15><glgc)-<x25><gigc>-E(z’(glgc?giga,f@)dgl dg, de.

We have F,(i(g19c, 919¢)) = F(i(g) 191,1))€%(g}), and hence unfolding the above integral and
making the substitution g = g1g., ¢ = ¢} 191 gives

/G(A/ (i6)(99") - (2E)(9) - Folig, 1)) dg g’

The Tamagawa measure on G1(A) can be written as a product of local measures dgi, on G,

times a global factor pr/pg (see Section 2.1). Hence if x1 = x2 = x and @1 = p2 = ¢ = Ry, We
have
(Op(x - €):0p(x - &) m = /GI(A) Folilg, D)) {(xE)(9) (xE) X)) ey dg’ = % : IZIZ(évfwan)a
where
Z(%v }-meXv) = /G <ww(gl,’u)d)7 ¢> : (vav)(gl,v) dgl,v' (67)

6.2.2. The reqularized Siegel-Weil formula for (E*,GL(2)). In this section, we follow [GQT] and
describe how to make sense of (6.6) and obtain a Rallis inner product formula in the case that B is
split. We will need to translate between the quaternionic unitary groups (GUg(V)°, GUg(W™)) =
(E*,GL2(F)) and the dual reductive pair (GO(2), GSp(2)) = (E*, GLy(F')). In the notation of
[GQT], we have n = m = 2, r = 1, e = 1, which puts us in the second term range since 1 < 2 < 2-1.
Recall that we have an embedding
G(Us(V)®, Up(W™)) = G(Ug(Vo) x Ug(W)).
When B is split, then there is a decomposition Wy = Wy + Ws of the E-space Wy into isotropic
subspaces of dimension 1. Set
X' = Resg,p(Vo © W1), Y' = Resp/p(Vo © Wa)

so that V= X’ + Y’ forms a complete polarization. In Section 5.6, we explicated a splitting s of
zys. Comparing s to the splitting

$0(2),8p2): G(O(2) x Sp(2))s — C!



PERIODS IDENTITIES OF CM FORMS ON QUATERNION ALGEBRAS 27

defined in [K94], we see that for « € E*, a € F*, and d' € F,

s(a, d(Nm(a ))) =¢&(a ) - 5(0(2),5p(2)) (@ d(Nm(a))),
(1 diag(a,a” ) ) =&(a 5(0(2),9p(2)) (l,diag(a, ail)) ,
s(L,(69)) = p) (1 (69))
s(1,(%10)) = s@.spn (1 (F10)) -
Now set V¥ := {(v,—v) : v € Vp} and VOA = {(v,v) : v € W} so that

VY = Resp/p(Vy @ Wo), V2 =Resgp(Vy @ Wo)

gives a complete polarization V& = VV 4+ V% of the doubled symplectic space. Let 5(0(2,2),5p(2))
denote the splitting of zya defined in [K94] and define

S(O(Z,Q),Sp(Q))(hv g) = §(O(2,2),Sp(2))(ha g) : )\g{/lmeA (ga h) for (97 h) € G(O(27 2)7 Sp(2))a
where A := Ayo_,ya is the change-of-polarization function defined in Lemma 5.3. Then using
Proposition 5.16(a),

5(g1,92,h)

=5"(g1,92,1) - A(g1, 92, h)

= s(g1,h) - s(g2, h) - £(det(i(g2, 1)) - (g1, g2, h)

= S(02).8p2) (91: M)E(g1) ™"+ s(0(2).8p(2)) (92, R)E(92) 7" - £(g2) "2E(det(h)) - A(g1, g2, )

= 50(2),8p(2)) (91, 1) - 5(0(2) 5p(2)) (92, 1) - E(g1) " E(g2) "€ (det(h)) - Mg, g2, h)

= 5(0(2,2),5p(2)) (91, 92, 1) - §(g ) '€(g2) ™" Ag1, 92, 1)

= $(0(2.2)8p(2)) (91, 92, h) - £(91) " €(g2) . (6.8)
t
),

Define Po C GO(Resg,/p Vi) 2 GO(2,2) to be the stabilizer of the totally isotropic subspace
ResE/FVOA ofResE/FVOD. For ¢ € S(VV(A)
®(¢)(9) := (w5 (9)9)(0), for g € GO(2,2)s € GUp(Vy))a,
PO (6)(g) = (w, P (9)9)(0), for g € GO(2,2)a.
Observe that ®(¢)(g) = 5(9) - 3(0(2,2),9p(2 ))(g)*l - ®OSP(¢)(g). We make the analogous definitions
for the local objects ®,(¢,) and &P (¢, ). The Siegel-Weil section ®OSP(¢) € IndGO(2 2) (det) -

| det |1/2 determines a standard section ®$°P(¢) € In dGO(2 2)(det) - | det |* and we may form the
associated Eisenstein series

E(s,89%°(¢))(g) := > o0 (vg),  for g € GO(2,2),.
WGPO(F)\GO(2,2)

define the Siegel-Weil sections

Define
Z(5,®,x) = / B(s,®)(91,92) - x(on) - X(g2) don dgs.
[G(O(2)x0(2))]

If ® = ®,P,, define

Zv(syq)va) = /El <I>v(gv» 1) : Xv(gv)dgv-

v

By construction of the Tamagawa measure of AL (see Section 2.1), one has

Z(s,®,x) := 'Z; HZ S, Py, Xov)-
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Define the partial Fourier transform ¢: S(X'Z(A)) — S(VV(A)) by
5 w) = T Lz, y) — (u,v dv,
DO = [ o 80 () = o)

where we write u +v = x +y with u € VV(A), v € VA(A), 2 € X'U(A), y € Y'P(A), and dv is the
Tamagawa measure.

Observe that if ¢ € S(VV(A)) is the partial Fourier transform of ¢1 ® @, for ¢1, 2 € S(X'(A)),
then for the Siegel-Weil section ® = ®9SP(§(p1 ® B,)), we have

Zu(5: v X0) = VOl(Ey) /E PO (3(ip1 ® 7)) (i(g1.0. 1)) - X (90) dgo

= vol(B}) [ % (g, )61 © 2))(0) - xo(00) o

—vol(E}) | (@500, D301 B2 (O) - xulon) - €u(91) dg

v

—vol(EY) [ (wulg)eren) - (0 (9) da, (69

v

Proposition 6.3. For ¢, 2 € S(X'(A)), we have
PF
(0p1 (XE), 02 (XE)) = . JI 206 225 (601 ©%2)). x0)-

v

Proof. We use (6.8) to translate between our setting and that of [GQT, Proposition 11.1]. We
have

<9601 (X : 5)7 9802 (X ' §)>H
_/ Oy (X - &) (hahe) - Oy (X - §) (R1he) dhy de
C J[Hi]

= // / O(wy (919¢, hihe) 1) (X€) (919c)
[H1] Gl] [G1]
O (wy (919¢: hihe)p2) (X€)(919¢) dgr dgi dh de

//Sp / / O(wy 0P (g1ge, hihe)p1) (XE) (g19¢)-

O(w) ™ (g ge, hahe)p2) () (dhge) - € H(g1)E ' (9}) dg1 dgh dh de

— Val,_y 5 / / / (s, Boa sp(a) (5001 © B2))) (9100, 916)-
0O(2)] J[0(2)]

x(919¢) - X(919¢) dg1 dg} de
= Val,_1 /5 Z(s,2(6(p1 @ P2)), X)- O

6.3. Local doubling zeta integrals. Let v be a nonsplit place of F'. For notational convenience,
we drop all subscripts v in this section. We preemptively note that the notation we use to describe
the zeta integrals in this section differ from the notation used to describe the same (local) zeta
integrals in the rest of the paper. We learned the proof of Proposition 6.6 from A. Ichino. Similar
arguments appear in [GI14].

Consider the Siegel parabolic subgroup

pP= {(g (a:;_l) € GLQ(E)} c U(1,1),
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and for any unitary character n: U(1) — C!, consider the functional

Z(s,m,6%): 1(s,8%) > C,  Fw Elf(i(g,l))n(g)dg,

where ¢: U(1) x U(1) — U(1,1) is the natural map and

IS, 2 ::IndU(lvl) 2. .8 = .F: Ul,l _>C
(5,£7) p &) (1,1) for all g € U(1,1) and p = ({521

Flpg) = E(a)laly > F(g)
)eP

is the normalized principal series representation. One has an intertwining operator
M(87 ‘52) : I(Sv 52) - I(_87 5_2) = I(_Sa 52)
given by
M(s,6%)F(g) = | F(wng)dn,
Np
where w = diag(1, —1) and Np is the unipotent radical of the parabolic P.

Following Lapid—Rallis (see also Gan—Ichino, Section 10), after normalizing the intertwining
operator by some rational function cy(s, £2),

MR(s,€) = cy(s, €)M (s, )

has a functional equation of the shape

Z(=5,m, ) MR (s, ) F) = -7 (s + 5,10,& ) - Z(s,0,E)(F), (6.10)

where * denotes some nonzero factors. In particular, if we understand the behavior of the
intertwining operator M (s,n) and if v(sp + %,7]) = 0, the functional equation gives a relation
between the nonvanishing of Z(—sg,n,£2) and the nonvanishing of Z(sg,n, £2).
We take a short detour to examine when the local theta lift to the nonsplit unitary group U(2)
vanishes. Define
V= H,, V.o :=DoH, ,

where H,, is the 2n-dimensional split Hermitian E-space and D is the nonsplit quaternion algebra
over F viewed as a 2-dimensional Hermitian E-space via (z,y) = prg(z*y). For a character
n: U(1) =2 E! — C!, denote its theta lift to U(V,;¥) by Oy, (n). To make tower “compatible” one

takes the Weil representation for U(1) x U(V,) to be such that the splitting on U(1) is given
by &. In particular, the Weil representation on U(1) x U(Vyt) = U(1) x {1} is given by the one-
dimensional representation £. The first occurrence of the theta lift in the towers {U(V,) : n > 0},
{U(V,7) : n > 0} is defined to be

n* =min{n : ©y.+(n) # 0}, n~ = min{n : ©-(n) # 0}.
The following result is a special case of a theorem of Sun-Zhu [SZ15]:

Theorem 6.4 (Sun-Zhu). n™(n) + n=(n) = 2.

We can describe the first occurrence in this setting more explicitly. By the compatible choice of
splittings in the tower of unitary groups U(V,), we have that @VO+(X§) # 0 if and only if y is the

trivial character. Hence we must necessarily be in the setting n™(x&) +n~(x¢) = 0+ 2, and in
particular, @Vf (x§) = 0.
Now suppose that y is nontrivial. Then by the previous paragraph, @VO+ (x§) = 0. We now

argue that ®V1+(X§) # 0. One explicit way to see this is as follows. Let V;© = VY + VlA be
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a decomposition of V1+ into totally isotropic E-subspaces. For the Schwartz function ¢(z) =
X(x)ﬂog (z) € S(Resg/p V1Y), we have

| (wela)e)0)- () a) g 0,
which proves that there is a nontrivial E'-equivariant map

(S(RGSE/F ‘/’1V)7ww) - (C7X§)
Hence @V1+ (x§) # 0 by definition of the local theta lift. This now implies that we must necessarily
be in the setting n™(x&) +n~(x€) =1+ 1, and @Vf (x§) #0.

In summary, the above arguments prove:

Lemma 6.5.
(a) GVf (x€) # 0 if and only if x: E* — C* is nontrivial.
(b) If x: B — C! is nontrivial, @V1+ (x§) # 0.

We now discuss the relationship between the theory of the doubling zeta integral and the local
theta correspondence. Consider the two doubling seesaws for Vfr and V| :

U(1,1) U(Vi") x U(VY)

<

U(1) x U(1) U(v)

If we have U(1,1) = U(W), then one has a decomposition W = W; + Wy of W into 1-dimensional
isotropic F-spaces, and hence by viewing VljE as the F-space Resg/ r(W1 ®g Vli) = Resg/ F(Vli),
the Weil representation wg for U(1,1) x U(V{) can then be modeled on the space of Schwartz
functions S(V,). Define

SVi) = 1(5,€%), ¢ (9 (wylilg: 1)9)(0)),

where i: U(1) x U(1) — U(1,1) is the natural map. Let R(V;) denote the image of this map.

Since £2|px = 1, there is a unique one-dimensional representation &2 of U(1,1) extending the
a *

representation defined by (§."1) + &2(a). For the 0-dimensional Hermitian space V;", we define
a map

SV =C—=1(=4,6), 2= (9 &(9)
Let R(V,") denote the image of this map. We say that @V0+ (x€) # 0if and only if Homy(q) (£2,x€) #
0. Since &2 is one-dimensional, we have HomU(l)(?, x€) # 0 if and only if Z(—3, X, 52)|R(V0+) # 0.
Observe also that G)VO+(X§) # 0 if and only if y = 1.

The goal of the remainder of this section is to prove the following;:

Proposition 6.6. Let {: Ay, — C' be such that f\A; =eg/r- Then

le—(Xf) # 0 = Z(%7X5752)|R(V1—) # 0.

We first remark that the converse of Proposition 6.6 is true and straightforward to see: If
Z(%vX&fQ)’R(Vf) # 0, then this immediately implies that HomU(l)(wi‘]i(U(l)X{l}),(Xg)*l) #
0. But since wg >~ wy ® wyé? (see Lemma 5.7) as a representation of U(1) x U(1), we have
Homyq) (wy, (x¢)™1) # 0, and so @Vf (x§) # 0 by definition.

Before we prove Proposition 6.6, we recall a special case of a theorem of Kudla—Sweet:.
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Theorem 6.7 (Kudla—Sweet, [KS97, Theorem 1.2(1),(4)]).
(i) R(VOJr) is the unique irreducible submodule of 1(—%,&%).
(ii) I(—%,€2)/R(0,€?) is an irreducible representation of U(1,1).
(i) ROT) = I(4,€2).
(iv) R(V1 ) is the unique mazimal submodule of I(%,£%) and is irreducible of codimension 1.

We are now ready to prove the proposition.

Proof of Proposition 6.6. By Lemma 6.5(a), we may assume that x,: E} — C* is nontrivial. Since
x&€ = x and x&€ =X, by the “Ten Commandments” for y-factors [LR05, Theorem 4], we have

LS 3 X H%) Xé U7§U7¢U> LS(1 - 37%)7
veS

where S is a finite set of places containing all the archimedean places and all places where Yy, is
ramified. Now, since y is nontrivial, we must have L(0,x) # 0 and L%(1,%) # 0 , and therefore

Yo (05 (XE)ws Evs ¥hw) # 0.

This implies that Equation (6.10) gives

Z (3:x6,€%) (Mg (=3.8)(F)) = * - Z (—3.x6.€) (F), (6.11)
where * is nonzero. We now investigate the intertwining operator

Myt (=5,6): 1(—3,6%) = 1(3,6%).
We refer to Theorem 6.7 for the decomposition of the U(1, 1)-representations [ (:l:%, £2). By [KS97,
Proposition 6.4],
ker(My™(=3,€%) = R(0,€),  Tm(Mg¥(-35,£%) = R(V}").

Since x is nontrivial, @VO+(X§) = 0, and therefore Z(—%,x§,§2)]R(VO+) = 0. On the other

hand, Z(— 2,)(5 €%) is a nonzero functional, and therefore one can find F € I(—3,£?) such that
MQI;R(—l %)(F) # 0. By Theorem 6.7(iv), it follows that Z(1,¢y, 52)‘}% ) # 0. O

6.4. Unramified local theta lifts from GU(1) to GU(1,1). For convenience of notation, in
this subsection we drop the subscript v. We denote by x the image of x € E under the nontrivial
involution of E/F.
Consider the 2-dimensional E-space V' = V{ + VJ with skew-Hermitian form
((@1,22), (Y1,92)) = T1y2 + Tapn

for (z1,22), (y1,y2) € V{ + V3. Then

GU(V')=GU(1,1) ={g € GLa(E) : 3" (% §) g =v(g) (% §) for some v(g) € F*}.
The upper-triangular matrices in GU(V’) form a parabolic subgroup

P:={(¢va) € GLy(E):a€c EX,ve F*,V/ € F}.

Let Pp denote the Borel subgroup of GLy(F') consisting of upper-triangular matrices in GLa(F').
Observe that there are natural inclusions GLy(F') — GU(V’ ) and E* < GU(V") given by

GLo(F)={(2%) e GU(V") :a,b,c,de F}, E*={(*,)eGU(V'):ac E*}.
We have GU(V") = (GLy(F) x EX)/F* and P = (P x EX)/FX.
Endow E with the Hermitian form (z,y) = 27 so that GU(F) = GU(1) = E*. Note that the

similitude character on GU(FE), which we also denote by v, is given by the norm map E* — F*.
Now consider the group

R:={(h,g) € EX x GU(V') : v(g9) = v(h)}.
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Endow the 4-dimensional F-space V' = Respg, (V') with the symplectic form (v, w)) = 1 Trp /e (v, w)).
There is a natural map
t: R — Sp(V), (h,g) — (v hlvg).
The decomposition V] 4+ V4 of V' into isotropic subspaces induces a polarization of V’ given by
V=X +Y, where X' = Resg/p(V]) and Y’ = Resg,p(V3).
Choose a basis e1, eq, €, €5 of V/ such that
X' = Fe; + Fey, Y' = Fe} + Fe}, (ei, e})) = dij.
Now assume that we have a splitting 3: R — C! of zy/. Then

R— Mp(V)y, g~ (u(9),8(9)

is a group homomorphism and the Weil representation wy, on Mp(V’)ys pulls back to a representation
of R, which we also denote by wy.
Abusing notation, define

B:E* = C',  hw B(h,d(v(h))).
Observe that this defines a character since for any h € E*, t(h,d(v(h))) stabilizes Y. Define
L(h)$(x) = wy(h,d(v(h)$(x) = B(h)|[A = *d(xh™")
for h € E* and ¢ € S(X'). Then for any (h,g) € R,
wy(h, 9)(x) = L(h)wy (d(v(g)~")g)(x) = B(A)[A 7/ (wy(d(v(9) " g)¢)(zh ™). (6.12)
Consider the semidirect product E* x U(V') with multiplication
(h1,91) * (h2,g2) = (h1ha, d(v(h2))g1d(v(hs)~')g2),  where h € E* and g € U(V').

This defines a group multiplication since the map d is multiplicative and v is a group homomorphism
to F*, an abelian group. It is easy to show:

Lemma 6.8. The Weil representation wy, on R extends to a representation of E* x U(V') defined
by
wy(h,g) = L(hwy(g),  heEX, geUWV).

In particular, the Weil representation on the quotient
oW (triv) := S(X)/ ﬂ ker(a)
acHom g1 (S(X),triv)

extends to a representation of GU(V')T = {d(v) : v € Nm(E*)} x U(V') satisfying
(d

wy (d(v )) L(h),
where h € E* is any element such that v(h

) =

Definition 6.9. For any character n9: F* — C and any ¢ € S(X'), define

Fom: GUV) =T, g w(g)| " no(v(9) " (wy(dv(9))g)$)(0).
The following is straightforward:
Lemma 6.10. For any p= (2}) € GU(V'),

Fome(pg) = lal'*|d| ™" 2o (@d) ™" B(a) ™ Fino (9)
for all g € GU(V') so that

Fomo € Inng(V/)(ﬁo), where 1 ( ) = np(ad)” IB( )



PERIODS IDENTITIES OF CM FORMS ON QUATERNION ALGEBRAS 33

In particular, .Fd),nO]GSp(Q) is an element of the (normalized) principal series representation

Indy; ™ (g 157 @ g ).
Lemma 6.11. We have a nonzero R-equivariant map
(@ SX')) = Indp" (7o) @ (o(Nm) - ), &= Fp.
The right-hand side is irreducible and we have an isomorphism
GU(V’ ~ GL — — —_
md " (1) = g " @ (0 - 8)7) @ (mo(Nm) - 8) 7,

where the right-hand side is a representation of GLo(F) x E* that descends to the quotient
(GL2(F) x E*)/F* =2 GU(V").

Proof. 1t is clear by definition that the map is nonzero. For R-equivariance:
Foswgomo(9) = ()| 2m0(v(9) ™ (wy (d(v(9)")g) LR wy (d(v(g)~")g")#)(0)
= ()™ ?n0(v(9)) " (LW )wy (d(v(99') " )9g')$)(0)
= [v(9)[no(w(9) (B T2 B(R ) (wy (d(v(9g') " )gg"))(0)
B o (v(W)|v(99")| ™ *mo(v(99') " (wu(d(v(9g') " )ag')$)(0)
zﬁ( o (v(R') Fone(99")-
The last assertion in the lemma holds since P 2 (Pp x E*)/F* and GU(V/) > (GLy(F)x EX)/F*.

2(F)(

The representation Ind no) is irreducible since the character 7, 13=1py = =1 is not || or

|- |~L. It follows that IndGU( )( o) is irreducible. O

The map defined in Lemma 6.11 factors through
o (B) := S(X')/ N ker a,

acHom 1 (S(X),5)

the largest quotient of S(X') such that E' acts by 3. Note that by construction, 6(1)([3), as a
representation of U(V”), is the local theta lift of 8 to U(V").

There are many extensions of @) (B) to a representation of E* x GU(V’)™, but specifying an
action of E* determines such an extension. Explicitly, define Oy, (5 - 70(Nm)) to be the unique
representation of GU(V’)™ such that for g = (3 9) € GU(V')™,

Our (8 - no(Nm))(g) := no(Nm(h)) ™" - ©M(8)(n, g),
where h € E* is any element such that v(h) = v(g) = v.
Theorem 6.12 (Rallis). The R-equivariant map in Lemma 6.11 factors through © . g(3 - 1o(Nm))

and induces an injective map:

(wy, S(X')) —— mdS" Y (7)

l /

@ur,,@ (5 Mo (Nm))
Moreover,
Ours(8 - mo(Nm) = Tndp, " (ng ey @ 15™) @ (0 (Nm) ™ - 871,

where the right-hand side is viewed as a representation of GLy(F') x E* that descends to the
quotient (GLo(F) x EX)/F* = GU(V’).
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Proof. This is due to Rallis [R84, Theorem II.1.1]. By the injectivity of

GU(V’)(

Our,s(8 - no(Nm)) — Indp 7o)
and the irreducibility of Inng(V/)(ﬁo), by Lemma 6.11, we have an isomorphism

Our5(B - o (Nm)) = Ind 5" (1 871 @ g ) © (mo(Nm) ™" - 7).

Finally, by Lemma 5.17, the restriction of 3 to F'* is exactly the quadratic character g, and
this completes the proof. O

6.5. Proof of Theorem 6.1. In this section, we use the calculations in the preceding sections to
prove Theorem 6.1, the main theorem of this section.

Let x and x’ be Hecke characters of E*. Recall from Section 6.1 that for every Schwartz function
¢ € S(X(A)) we have automorphic forms 6,(x) and 6;,(x’) on the adelic groups H(A) = B and
H'(A) = ((B))* x Aj)/AF, respectively. Let ©(x) denote the automorphic representation of H(A)
generated by 0, (x) for all ¢ € S(X(A)) and let ©'(x’) denote the automorphic representation of
H'(A) generated by 0,(x') for all ¢ € S(X(A)).

Proposition 6.13. If 7'(')]? # 0, then ©(x - &) # 0. Analogously, if 775 # 0, then ©'(x' - &) #0.

Proof. Recall that ﬂf # 0 if and only if x,[g1 # 1 for every place v where B, is nonsplit. Let v
such a place, i.e. B, is nonsplit and x,|g1 # 1. By Lemma 6.5(a), we have ©,(x»&») # 0, and
by Proposition 6.6, we have ZU(%, —, Xv&€v) # 0. Now let v be a place such that B, is split. By
Lemma 6.5(b), we have ©,(xy&y) # 0, and by Theorem 6.7(c), we have Z,(3, —, xv&) # 0. By
Rallis inner product formula (Proposition 6.3), ©(x -§) # 0 if and only if all the local zeta integrals

Zv(%, —, Xv&v) # 0, and hence we have shown that ©(y - &) # 0. O

Lemma 6.14. If x,x’ are Hecke characters of Ay, whose restriction to A}E 1s montrivial, then
O(x - &) is a cuspidal automorphic representation of By and ©'(x'-¢') is a cuspidal automorphic
representation of B) <.

Proof. If B # Ms(F), then the statement holds trivially. Now assume B = My(F'). We would like
to prove that for any Schwartz function ¢ € S(X(A)),

b
/F L BOmOI) =0, where n(h) = (0 1). (6.13)

Observe that if g ¢ GLJ (Ag), then n(b)g ¢ GLJ (Ar), and hence the integrand in (6.13) is
identically zero. Now assume g € GLj (Ar) and pick o € A} with Nm(a) = det(g). Then by
definition

0s(x)(n(b)g) = O, (a.g)6 () (1(D)),
and therefore it remains only to show

[ vaom@yas=o.
F\Ap

Recall that if B is split, then the 2-dimensional E-space Wy is a split Hermitian space and
one has a decomposition Wy = W71 4+ Wy into isotropic subspaces of dimension 1. This induces a
complete polarization V = X' + Y’ given by X' = Resp,p(Vo ® W1) and Y’ = Resg/p(Vo ® Wa).
Then AL C U(Vp) stabilizes X’ and Y’, and so for o € AL, b € Ap, and ¢/ € S(X'(A)),

wy(a,n(b))¢'(z) = () - ¥ (3baz’) - ¢ (za).
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We have

E zeX/( F
-/ [ €@ v () - wa) - (@) dbda
ENAE pexi(p) Y F\AF
[ €M@00) - (@@)da=60) [ Aa)yda=0. O
ENAL ENAL
Theorem 6.15. Let x, X' be Hecke characters of A}, whose restriction to A}; s nontrivial.
(a) If O(x - &) is nonzero, then
O(x &) =my.
(b) If ©'(x' - &~1) is nonzero, then
@I(X/ . §/—1)\/ ~ 7Tf// Q (X/ . 5/71)7
where the right-hand side is viewed as a representation of H'(A) = ((By)™ x AF)/A%
descended from the (B))* x A}, representation written above.

Proof. We prove (a) first. By our normalization (compare the local definition in Section 3.3 to the
global definition in Section 6.1), at a place v, the local representation corresponding to the global
theta lift of x - ¢ is the local theta lift of (x, - &,)~!. That is,

@(X ' g)v = ev((Xv ! &))71) = ev(X;1 ' f;l)
Theorem 6.12 gives a description of the right-hand side for every place v such that
- v splits completely in E, or
- v lies under a single place w of E and x,,: E,; — C* factors through Nm: E — F*.
For each such place v, by Lemma 5.17, we have

s(a, d(v(a))) = &(a) 7L, for all « € ES.
Writing x, = xv,0(Nm), we have

O, 6 = 0,1 (66 = Ind5 2 (e, /1, @ x00):

and therefore by Jacquet—Langlands, we have that ©(y - ) = wf .

The proof of (b) is very similar. In this case, because we complex-conjugate the theta kernel in
the definition of the global theta lift ©' (see Section 6.1), we have

(- €7 = 0u((x, - &7 = 0u(x, - €)
At every place v of F' where everything is unramified, by Lemma 5.22,
s'(d(v(a)),a) = £ (a), for all « € E,S.
Writing x;, = X;,o(Nm) at each such place, Theorem 6.12 implies
Ou(, ™€) 2 Ourg, (X, 71+ €) = Ind 52 (4, 08, © X)0) ® (oo - €71
Since 51/)|va = €, /F,, therefore by Jacquet-Langlands, ©'(x’-&'~1)Y = 7Tf,/ ® ('~ ¢). O
Theorem 6.1 now follows from Proposition 6.13 and Theorem 6.15.

Proof of Theorem 6.1. If ©(x-£) = 0, then by Proposition 6.13 we must have Wf = (0 and therefore
O(x &) = ﬂf. If O(x - &) # 0, then by Theorem 6.15 we must have O(x - §) = 7r)]<3. The same

argument holds to conclude the desired isomorphism for ©'(x/ - &'—1). O
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6.6. Period identities of CM forms. We are now ready to prove an identity of toric integrals
of automorphic forms in 72 and 7rf,/. We use the seesaw

X
H GUg(ResV) GUp(W™) ((B")* x E*)/F* B*
<= > =
G’ GUp(V)° GUg(W) EX E*

Recall from Proposition 5.14 that our choice of splittings
s: Goxm(A) — Ch s": Garwpm (A) — C!
enjoys the property that for (o, 8) € Gaxar (A),
s'(o, B) = &(a) - £'(B) - s(cv, B).
Theorem 6.16. For any Hecke characters x and X' of E,
(B¢ €)X ) = (X, 0,(x - €7 1)a-

Proof. Unwinding definitions and using Proposition 5.14, we have

(0.0x ). X)e :/ 0 (x - €)(9) - X'(¢') dg
/ - o(x - &)(919:) - X' (9190) dgy de
// - O (wy(919c, 9190)9) - X(919¢) - £(919¢) - X' (dh92) dgr dg de
//Gl]/’ X(919¢)0 (wy, (9196, 9190) @) - € (9190) " - X' (919¢) dgh dgn de

//G] glgc 9/( é”/ 1)(9196) dgl de

= <Xa @(X '6/ 1)>G- ]
Combining Theorems 6.15 and 6.16, we obtain the following result:
Theorem 6.17. Let x, X' be Hecke characters of E and let p € S(X(A)). Then

f=0s(c-9eny,  fF =0, -E ) eny,

/ f(g)-X'(9)dg = / x(9) - f(g) dg.
AREX\A AREX\A

7. SPECIAL VECTORS IN THE WEIL REPRESENTATION

Recall that F' is a totally real field and E = F(i) is a CM extension of F. We choose the
trace-free element i € E so that u = i®> € F has the property that for any finite place v of F,

vl (0) = {o if E,/F, is unramified

and we have

1 if E,/F, is ramified.

For the rest of the paper, we take ¢ to be the standard additive character of F\Ap (see Section
2.1). Recall that if v is a finite place of F, then v, is trivial on 79 O, but nontrivial on 7, %~10,.
Furthermore, recall that we let dz be the additive Haar measure on A self-dual with respect to v

and that vol(Op,, dx,) = qu S w2,
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In this section, we will explicitly realize the positive-weight Hecke eigenforms as theta lifts.
More precisely, we will specify Schwartz functions ¢ for | € Zx¢ such that if yoo(2) = z7% on C!,
then the theta lift 0# (x§) is a Hecke eigenform of weight |k| + 1 4 2{. Note that by construction
(Section 6.1), negative-weight Hecke eigenforms are not theta lifts since they are not supported on
GLo(F) GL2(Ap)T.

Fix a place v of F. In this section, we work place by place, and drop the subscript v throughout.
Let W be a 2-dimensional E-vector space endowed with the skew-Hermitian form

<(5C1a r2), (Y1,%2)) = T1y2 — T2yt

with respect to a fixed basis wq, wo of W. Let V be a 1-dimensional E-vector space endowed with
the Hermitian form (o, 8) = af. Setting W; = spang(w;) for i = 1,2, we have a decomposition
W = W; + W, of W into maximal isotropic subspaces, and this induces a complete polarization
of V given by

V=X+Y, X' =V ®W, Y =V ® Wa.
Fix a splitting
s: G(U(V) x U(W)) - C!
of the cocycle zy, with respect to the map
t: G(U(V) x U(W)) = Sp(V), (h,9) —~ (v@w— h™ v @ wg).
This determines a homomorphism
L: G(U(V) X U(W)) — MP(V)Y’a (hag) = (L(h,g),S(h,g))

Recall from Equation (6.12) and Lemma 5.17 that for ¢ € S(X’) and (h, g) € G(U(V) x UW)),

wy(h, 9)d(x) = € (M)A (wy(d(v(9)"1)g)e) (wh ™). (7.1)

One can choose a basis of X’ and Y’ so that

)= (" )owan= () = (L0 ).
() [ :

By the computations of Section 5.6 and Equations (3.1), (3.2), and (3.3),

wu(1, D(a)) () = E(a) ™ - | det a] - p(ar) (72)
wp(1,U())p(w) = & (3 Tegyla'a)) - o) (73)
oL W) (@) = (=1 e 50 [ e (5 Tepeam) dy (74)

If v is a finite place, let ¢(m,) be the conductor of 7, and let K{(N) be the compact open
subgroup as defined in Section 2.2. Writing d(v) = (} %) € GLy(F') for v € F*, define

K{(N) if F' has odd residue characteristic,

Ko(N) = {d(Q)K(’)(N)d(l/2) if F' has even residue characteristic.

7.1. Schwartz functions. In this section, we introduce Schwartz functions that transform nicely
under the Weil representation. These functions have been considered in various places before. At
the finite places, they have appeared for example in [P06, Proposition 2.5.1], [X07, N1]. At the
infinite places, our choice is constructed from a confluent hypergeometric function 1Fj(a,b,t) of
the first type. This is related to the role of hypergeometric functions in matrix coefficients of
representations of SLo(R) (see for example [X07, Appendix|, [VK91, Chapters 6, 7]).
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7.1.1. Infinite places. In this section, let v be an infinite place of F'.
Definition 7.1. For k € Z and | € Z>¢, define
Hoile) i {1F1( ILk+ 1,4ﬂzf)fke:2”iz ) %f k>0,
VFi(=1, —k 4+ 1,4m27) 2 %27 if k <0,
where 1 F(a,b,t) is the Kummer confluent hypergeometric function for constants a, b

1
1F1(a,b,t) ZZ——' where (a)o :=1, and (a); :==a(a+1)(a+2)---(a+j—1).
7=0

Observe that 1 Fi(a,b,t) is entire in ¢ so long as b ¢ Z<o, so that in particular, ¢} , is entire for all
kEZandZEZZO.

The following lemma is well known.

Lemma 7.2. (a) The function 1Fi(a,b,t) is a solution to the differential equation

tf' () + (b =) f'(t) —af(t) =
(b) If Re(a) > 0 and Re(c) > 0, then

o0
/ tafleictlFl (a/7 b7 _t) dt - c*ar(a)2F1 (a7 a’ b’ _%) ’
0

(@); 1 <_1)j
=0 by N\ <)

where

oFy(a,a, b, — io:

1 [ cos(0) sin(6)
Lemma 7.3. For a € C' and r(0) = (—sin(e) COS(9)> € SO(2),

wy(a, 7(0))df,, = E(a)aFelIHTIF0 4

Proof. We follow a similar proof strategy to [X07, Proposition 2.2.5]. We compute on the Lie
algebra slp(R). It is well known that for X = (§§), X_ = (99),

o 1 0 /[0
wy (X 4)o = 2mizZe, wy(X_)p = ~579, <8z¢> .

We first handle the case k > 0. For any doubly differentiable function f satisfying the differential
equation

tf"(t) + (k+1-0)f'(t) = —1f (1),
we have, following from a long calculus computation,
wp(Xs — X_)(f (4m2)7he 25
=i [(k+1)f(4n2Z) — 2((k + 1 — 472%) f/(472Z) + dnzZf" (4n27))] ZFe 2772
=ik +1+20)f(4r2z)zre 2

By Lemma 7.2(a), 1 F1(—I,k + 1,t) is such an f(¢) and hence the desired conclusion follows.
Now assume k < 0. For any doubly differentiable function f satisfying the differential equation

tf'(t) + (=k+1—1)f(t) = —1f(2),
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we have
we (X4 — X_)(f(4mzz)z ke 2m2%)
=i [(—k+1)f(4722) — 2((—k + 1 — 4m22) f' (472Z) + Am2zf" (4727))] z R 2mEE
= i(—k+ 1+ 20) f(4m2z)z ke 2™,
By Lemma 7.2(a), 1 F1(—Il, —k + 1,¢) is such an f(t¢), and so the desired conclusion follows.
Finally, it is easy to see that wy(a, 1)¢} ; = f(oz_l)a_kgbh, and it follows that

wipla,r(0)) ey = & o ke (20040 -

)

The following lemma is useful in understanding the relationship between the qﬁfk,l with respect
to the Maass—Shimura operator on modular forms.

Lemma 7.4. Write z =z +yi € C. Fory # 0, we have

TITVU 1/ kl+1 - TITVU 1/
5\lk\+1 (91/262 ¢k,0(”\/§)> = W : (?J /22 ¢k,l(U\/@> .

Proof. This amounts to showing

9 |kl +1+2
<+|\++

B |k:|+1+l.
0z z—Z a ]

) [yfl+1/2e2ﬂimvﬁ¢;€’0(v\/§):| Hee <y7171+1/2€2mmv¢2,l+1(v\/@)'

Unwinding definitions, this amounts to showing

0 k + 1+ 2l _ — WUz
(2 L) (i )

0z z—Z
kl+141 -
= H+2+ . <y*l*11F1(—l —1,|k| + 1,47rv@y)62m””z> .
i
Verifying this is a straightforward calculation. For example, the coefficient of y~'=1 on the left-hand
side is equal to (g—f + |k‘+21i+21> - 2™%% " and this agrees with the right-hand side. ([l

7.1.2. Finite nonsplit places. In this section, let v be a finite nonsplit place of F' lying under a
single prime w of E. Then E,, is a field and E,,/F, is either unramified or ramified. Assume that
FE., F, have odd residue characteristic. We drop the subscripts w and v throughout this section.

Definition 7.5. Define
, Lo, (x) if y is unramified,
¢'(z) = -
x(z) Ilog (x) otherwise.

Lemma 7.6. Let ¢/ be an unramified nontrivial additive character of F. For h € OF and
g=(9%) € Ko:= Ko(c(py)) such that Nm(h) = det(g), we have

wyr (b, 9)¢" = (x€) ™' () - (xer/r)(a) - ¢'.
Proof. See [X07, Proposition 2.2.4], [P06, Proposition 2.5.1], [Ch18, Lemma 8.6]. O
Lemma 7.7. For h € OF and g = (2Y) such that Nm(h) = det(g), we have
wi(hy d(8) L gd(8)) = (x€) () - (xeryr)(a) - &'

Proof. Since 1) has conductor ¢, ¢'(x) := ¢ (dx) is an unramified nontrivial additive character of
F'. The conclusion follows by Equation (3.4) and Lemma 7.6. O
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7.1.3. Finite split places. In this section we let v be a finite split place of F'. Then E, 2 F, & F,.
We drop the subscript v throughout this section.

Definition 7.8. For a character y = x1 ® x2: F* x F* — C*, define

1o, (x1)lo,(x2) if y is unramified,

¢/(951a 582) = {

X(21,22)1 5y (21)1Hx (z2) otherwise.
F F

Lemma 7.9. Let ¢’ be an unramified nontrivial additive character of F. For h € Oy x Oy and
g=(9%) € Ko with Nm(h) = det(g), we have

wyr(h,9)¢" = (x€) "' (h) - x1(a)x2(a) - ¢
Proof. See [X07, Proposition 2.2.4], [P06, Proposition 2.5.1], [Ch18, Lemma 8.9]. O

By the same argument as in Lemma 7.7,

Lemma 7.10. For h € O x OF and g = (¢Y) € Ko with Nm(h) = det(g), we have

wy (h,d(6)~gd(6))¢" = (x&) " (h) - x1(a)x2(a) - ¢'.

7.2. Local zeta integrals. In this section, we calculate the local zeta integrals Z(%, Dy, xy) for
the Siegel-Weil section @, = <I>1(,)’Sp(5(¢); ® @) (see Section 6.2).

7.2.1. Infinite nonsplit places. Let v be an infinite nonsplit place. We say that y, has infinity type
(k1, ko) if

k15—k2

X X —K1—=
Xv: C* = C~ zr 2z

Assume that x,(z) = 2* for z € C!, so that either y, is of type (—k + j, ) or (—j,k — j) for some
integer j. Pick an integer [ € Z>( and take
VP (=1 k4 1,4n27) 7k e 2777 if k>0,

/ Y — _
Py (2) 1= Pp(2) {1F1(—l, —k+ 1,4m22)2 ke 2™ if k< 0.

Lemma 7.11. Let v be an infinite nonsplit place. Then

s Lt
Zy(3,®,, x0) = vol(CH)(¢', ¢') = AR IRHT (1 (K[

Proof. By Lemma 7.3, wy(a, 1)@, = £(a™1)a"¢!. Thus

Zv(%,q)vaXv) = /(Cl <W¢(g, 1)¢;7¢;>(X’U£v)(9) dg = VOI(CI)<¢;7¢L> = 7T_1<¢”U7¢;J>'
We have

<¢;,¢;>:/ClFl(—z,|ky+1,4mz)2-(zz)lki-e4mdzdz

2m oo
= Fu(—1, k| +1,8)% -tk et gt
4#)(4ﬂ)kA 1 1( 7‘ ’+ ) ) (&

(
oo2m (RN 20 (R .
CAm)EFL (LR (4R (sz\‘k\)'
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7.2.2. Finite nonsplit places. Recall from Section 7 that we set

{ILOEU () if y, is unramified,

/ —
¢y () = Xv(x)ﬂogv (x) if xy is ramified.

Lemma 7.12. Let v be a finite nonsplit place. If E,/F, is unramified, then
—dy/2

Qv if Ey/Fy is unramified and x., is unramified,
—dy _ . . . . .
Zv(%, By xy) = Qv /_2d(1/2— 4, %) if Ey/F, is unramified and x, is ramified,
g™ if E,/F, is ramified and x, is unramified,

q;lq;d”/Z(l —q; 1) if Ey/F, is ramified and X, is ramified.

Proof. By Lemma 7.7, for g € E}, we have wy(g,1)¢’ = (xv&) 1(g) - ¢'. This implies that

Zy(%, Pus Xv) =V01(E$,d1:vfam)/ (wy(g, )¢, @'Y (xév)w(g) dg

E;

= vol(EL, d'a ™) ¢!, o) = {

vol(E}, d*zl*™)2vol(Op,,dr,) if x, is unram,
vol(E}, d'z;*™)?vol(Oy; ,dx,) otherwise.

The desired conclusion now follows from the measures in Section (2.1). O

7.2.3. Finite split places. Let v be a finite split place and write x, = x1,0 ® X2,0: F, X F — C*.
Recall that
Loy, (z1)1og, (72) if v, is unramified,

¢ (x1,x2) = {

Xy(xl,xg)]loé (wl)IO; (x2) otherwise.

Lemma 7.13. Let v be a finite split place and assume that x, is unramified. Then
say/2 Lo(LX10 ® Xa.w) Lo(1 X1, © X20)
Lv(27€E/F)
Proof. In this setting, E} = {(a,a™!) € F* x F)X}. By Lemma 5.17,
wy ((a, ail), 1)¢’(x1, x2) = & (a, ail)flqﬁ/(azla*l, x2a) = & (a, ail)flﬂa@FU (ﬂfl)la—lopu (x2).
Hence
<w1/1((a’7 ail)ﬂ 1)¢/7 ¢/> = - fv(a, ail)illaol«‘v (xl)ﬂa—l(QFv (xQ)ILOFU (.Tl)]lon (1"2) dry dzy
=&(a,a” ) vol(aOp, N O, , dx,) vol(a ™ Op, N OF,, dz,)

= & (a, a_l)_lm vol(Op, , dz,)? = &,(a, a_l)_lmqv_d“

Zv(%v (I>v7Xv) =qy

We therefore have, writing m = m, for a uniformizer of F,,

23 @un) = [ twolaa™)o )6 (0,0~ () da

= / (wy(7"a, 7 "a 1)L, @) (T"a, 7 " a ) xy (e, 7 "0 ) da
nez ;‘v
_ o2 1-¢°
’ (1= xo(mh m) (1 = g ' xo(m, 7))
B q_gd”/Q . L'U(17 X1p ® XE,}))LU(L Xiql; & X2,v)
! LU(27€E/F)

. 0
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Lemma 7.14. Let v be a finite split place and assume that x, is ramified. Then
Zo(%, oy x0) = ¢, 2" (1 - ¢, 1)

Proof. We have wy((a,a™t),1)¢' (21, 22) = &,(a,a‘l)_lxv(a,a_l)_lﬂaO; (xl)lla_lo; (z2) so that

(wy((a,a™), )¢, ¢') = &(a,a)  xwla,a™) 7 vol(OF  dzy)* 1o (a).

Thus ZU(%7 Dy, xv) = V01<OI>;U’ dmv)2 VOI(O;U’ dlxgam)_ 0

8. AN EXPLICIT RALLIS INNER PRODUCT FORMULA

Let F' be a totally real number field and let E/F be a CM extension. Let ni,...,n, be the
real embeddings of F. Let x: EX\A} — C* be a Hecke character of infinity type (k + j, j) where
k= (ki,...,kn),j = (J1,---,Jn) € Z". Assume that B = My(F) and let Wy = Resp,p B =
W1 + Wy be a decomposition of the E-space Wy into totally isotropic subspaces. Set X' =
Resp/p(E®W1),Y = Resg/p(E ® Wa), and define a Schwartz function ¢’ = ®,¢}, € S(X'(A)) as
in Section 7:

VB (=1 ke + 1,4 22)Zr e 2777 if v=m;|oc0and k>0,
VB (=i, —ki + 1,4722) 2 %e 2% if y = 9; | 0o and k < 0,
, log, (2) if v is nonsplit and x, is unramified,
P10(2) = Xv(z)]log (2) if v is nonsplit and x, is ramified,
log, (zl)]l@Fu (22) if v splits and x, is unramified,
Xo(21, zQ)_l]lO;v (21)HO§U (22) if v splits and 1y, is ramified.
Define
Yy = {v : xv is unramified}, Y5 := {v : Xu is unramified}.

For each place v of I, define

@m? (kD2

AR LR+ 1 l(zli+|ki\)! ifv=m;|oo
g™ if v ¢ Xy, v ¢ Eg, v unram
qu”/Q(l —q;?) if v € ¥y, v ¢ Xg, v unram
q;d”/2 if v e X, v e g, vunram
o q{jvquv_i(l — q€2)*1(1 __yw_(ww)q;i) i ?f v Xy, vé¢ Xy, vram
g " g (1= g, (1 = ¢,%) 7M1 = Xo(mo)gy !)  if v € By, v ¢ By, v ram
(I;d”/zqv_l(l—qv_l)(l—quQ)_1 if v € Xy, v € Xy, v ram
gy /2 if v Xy, v¢Xg, vsplit
qv—3dv/2(1_(Xl,vxzj;)(Wv)‘l(vl—l’—)q(;l_)(xl,zl)xlv)(WU)Qv Y ifue S, vé Sy, v split
qU—de/z(l — (1 +qgH if v € Xy, v € Xg, v split

\

Theorem 8.1. The Petersson inner product of the theta lift 04 (x§) is

_pr L(1,X)
(0g (x€), s (x€)) = 72 O Hc

where C, =1 at all but finitely many places. In particular, 0y (§x) # 0 if x is nontrivial on A}E.



PERIODS IDENTITIES OF CM FORMS ON QUATERNION ALGEBRAS 43

Proof. By the results of Section 7.2, it is a straightforward comparison to see that
Ly(1,X)
G(2)

Since all but finitely many places simultaneously satisfy the conditions d, = 0, v & X, v & Xg,
and v is split or unramified, we see that C,, = 1 for all but finitely many places, and the desured
equation now follows from the doubling method. Observe that the factor pr/pp comes from the
fact definition of the Tamagawa measure on A}, and the local measures on E! (Section 2.1).
Finally, since C, # 0 for all v, it follows that 64 (x§) # 0 if and only if L(1,X) # 0. But

L(1,X) # 0 if and only if x is trivial on AL, so the final assertion holds. O

Z(%, Dy, xw) =Cy - for all places v of F.

The Shimura—Maass differential operator

P omi\oz T 22

maps real analytic modular forms of weight k£ to real analytic modular forms of weight k + 2.
Define the composite operator

52 = 5k+2[ o--+0 5k+2 ] 5k (81)

mapping real analytic modular forms of weight k to real analytic modular forms of weight k + 2I.

Let f, be the normalized newform of weight |k| +1 = (|ki| + 1,...,|ks| + 1) in m,. For
I=(l1,...,ly), let F. denote the automorphic form on GLy(AF) corresponding to 6‘lk‘+1fx.

Theorem 8.2. If x does not factor through the norm map Ay, — A}, we have
04 (x§) = Dy - F)l(, for some D; # 0.

Proof. First recall that by Theorem 6.15(a), the theta lift 64 (x£) is an automorphic form in the
automorphic induction m, to GLa2(Ap). If f is a Hecke eigenform of weight |k| + 1 + 2 in 7y,
then it must satisfy that for all 7(0) := r(61)---7(6,) with r(6;) € SO(2) and ko = (24) € Ky :=
[Tore0 Ko with det(ko) = 1, we have

n

F(gr(0)d(d) " kod(d) H k2005 (e p) (@) f(g)  for all g € GLa(Ap).  (8.2)

By Casselman’s theorem [Ca73, Theorem 1], the dimension of automorphic forms satisfying (8.2)
must have dimension 1. Therefore to see that 64 (x§) is a (possibly zero!) multiple of F)l<7 we need
only see that it satisfies (8.2).

We first recall the definition of the theta lift 64 (x§) on GLa(Ap). If g € GLo(Ap)T :={g €
GLa(AF) : det(g) € Nm(A%)}, then for any h € Aj, such that det(g) = Nm(h),

b (X€)(g / 0wy (hh1, 9)8) - (x)(hhy) dhi.

We define 0y (x€) on GLa(F) GLy(Ap)t = {g € GLa(Ap) : det(g9) € F* Nm(A%)} by

0y (xE)(79) = 0y (xE)(g9),  for v € GL2(F),g € GL2(Ap)™.
Note that GLy(F) GL2(Ap)™ is an index-2 subgroup of GLa(Ap). We define 04 (x£) on GLa(Ap)
by extending by 0 outside GL2(F') GLa(Af). Define Ky := [[, Ko, where Ko, C GL2(OF,) as
defined in Section 7. Note that Ky C GLy(F)GLa(Ar)™. By Lemmas 7.3, 7.7, and 7.10, for
r(0) = r(01) - --r(6,) with 7(6;) € SO(2) and ko = (¢4) € Ko N GLa2(Ap)*,
wy(ho, 7(0)d(2) " kod ()¢ = [ [ e 1HIHH200% (x€) = (o) (xep ) (a)¢1;

j=1
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where hg € A} is such that Nm(hg) = det(ko). This implies that for any g € GLy(Ar)' and any
h € A}, with Nm(h) = det(g),

05 (x€) (gr(0)d(2) " kod(2))
O (wy (hhiho, gr(0)d(d) ' kod(0))d7) - (X&) (hhiho) dhy

—

(E1]

/[El}@w(hhl, )p) - /T (x€) 7 (o) - (xepyr) (@) - (X€) (hhho) dha

<
Il
-

I I

IR R20% (e ) ) - /[Eq Owy(hh1, 9)}) - () (hhy) dhy

<
Il
-

I

!0 (e ) (@) - B (x€) (9)- -

<
I
—

In the next result, we give an exact formula (up to C!) for the constant D; in the case that
F = Q. One can do this for the general case by comparing Theorem 8.1 to known formulas for the
Petersson inner product of Hilbert modular forms, but the formula for D; will be more complicated.
In the following, we use [S76, Equation (2.5)], [H81, Section 5] together with the factors at bad
places as determined in [Col8, Section 4.2].

Let g be a twist of f, which is twist-minimal by x,. Let N, N4, be the levels of f,, g, and let
N, 4 be the conductor of x,. For every prime p, let p"s be the exact power of p dividing V4, and
p"™s be the exact power of p dividing Ny ,. We denote by L(s,ad, fy) the adjoint L-function of f,.
Define
( ifpt N,
14+1/p)Ly(ad, f,1) ifptNgandp|N,
1+1/p) if p || Ngand p || N,
1+1/p)(1—1/p*)" ifp|| Ny and p* | N,
1+1/p) if rg =7y, >1andp" || N,
1—1—1/]3)(1—1/]3)’1 ifrg:rxg > 1 and p"ot! | N,

ifrg >2and r> Txg-

EN
I
—_ o~~~ =

\

Note that, comparing to [Col8, Section 4.2], the last case comes from the fact that m, =
Tx ® det(sE/F)

Theorem 8.3. Assume F' = Q and let Ko is any mazimal compact subgroup of GLa(Ag fin)
containing K :=[],, Kov(cv(ﬂ'x)) (Sections 2.2, 7). Then

(27i)1(2d)!

_ (Ko : K] (4m)lkIH1
(Jk| + 1) v HC (2 '

%.[PSLQ(Z):H(N)]' |K|! 'pep'

D2 = }

In particular, |D;| ~ ©* and, up to an element of C", 9%()(5) is an algebraic holomorphic Hecke
eigenform of weight k 4+ 1 and level c(x).

Proof. By Lemma 7.4, we have

i)t (26
Og;(x§) = ((2]k\)+(21)) 5\k\+1 (%g (Xf)) -

It therefore suffices to calculate |Do|? = (Og;, (X€), 04, (XE)) /(Fx, Fy).
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Following [[P16a, Lemmas 6.1, 6.3], we have
1 6 4
(Fy, Fy) = (2m) - ((2)71 271 [Ko - K70 S [PSLa(Z) : Ta(N)] - (fys f),
where (fy, fy) is normalized as in [S76, Eq. (2.1)]: for any cusp form f of weight x and level I, set

1 o pdxdy
)= oy ) F TG it S5t

By [S76, Eq. (2.5)], [H81, Section 5], [Col8, Section 4.2],
_ k! _
(b =@ i TTt5" 0. 1)

We have L(1,ad, fy) = L(1,X) - L(1,eg/r) = L(1,X) - pe. Therefore, by Theorem 8.1,

. _ Ky : K] (4r)lkl+1
Dol2=022.T1cC. -c(2).-(27)° 1. 2. [ . . )
Since E is CM by construction so that pp ~ 7 and since Cso ~ 772/77"“‘“, we see:

D2~ 72?2t e Q O

9. AN EXAMPLE: THE CANONICAL HECKE CHARACTER FOR Q(+/—7)

Let F'=Q and let E = Q(v/—7). Then E has class number 1 and there is a unique canonical
character xl.,, in the sense of Rohrlich [Ro80] (see also [Y95, Page 52]). Explicitly, xL,, can be
described as follows. First consider the character

€: Op/(WV=T1)=ZL)TL @ {£1}.
Then ¢(—1) = —1 and hence the map on principal ideals
P(V/-7) ={a0Og : a« € E* is relatively prime to 7} — E*, aOg — e(a)a

is a well-defined homomorphism. Since E has class number 1, then P(v/—7) = I(1/—7), and the
above defines a Hecke character of E*. We define Xcan ‘= Xean * || - HX; to be the normalized
unitary Hecke character of E*. It’s easy to see that for n > 0:

(a) Xgan has oo—type (TL, 0)

(b) x&., has conductor /—7Op if n is odd and conductor Of if n is even.

(C) Xcan|AI>; = €E/F'

9.1. Two quaternion algebras. We now compute the local epsilon factors €,(BC(myn ) ® X{ay,)-
At v = 00, this calculation depends on whether n + 1 > m or n + 1 < m. At the local places, this
can be calculated using [T83, Section 1]. The interesting finite place is v = 7.

(a) Momentarily let v be a real place of a number field F', take f to be any automorphic form
of GLg of weight k at v and let © be a Hecke character of E such that Q,(z) = 217’2,
Then

+1 if k<l —lo,
eu(f,€2) - wy(—-1) = {_1 ifk>10 -1

Since myn  has weight n + 1, this implies that

+1 ifn+1<m,

€0o(BC(myn,, ) @ Xean) " Woo(—1) = {_1 if n+1>m.
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(b) Since Xcan» factors through Nm for all v { 7, the representation Indxz (Xcan,v) is decom-

posable. By [T83, Proposition 1.6], for any Hecke character €2, we have
€v(BC(Typn) ® Q) - wy(—1) = +1 for all v17.

(c) First observe that Resyy,, Indxg (x) = x® X" for any character x of Wg. Since base change
on the GLo side corresponds to restriction on the Galois side, we have

€1(BC(yeu,) © ©) = er(Resyy, Indyy () © Q) = er(Xean2)er (Xan®),

where the last equality holds because local e-factors change direct sums to products. By
[Y95, Lemma 3.2], we have

67(XC&HQ) = - (%) \/jl = 67(XganQ)'

Since Xcan|px = €g/p, the automorphic representation 7can has trivial central character
and hence the above calculation shows e7(BC(my,,,) ® Q)w7(—1) = —1. By the above
argument,

+1 if n is even,

e7(BC(myz,,) @ Xcan) - wr(=1) = {1 if n is odd

We can now discuss the possibilities for the quaternion algebra determined by the pair of Hecke
characters X¢,, and X¢,,. First observe that the central character condition X¢y, Xcan€E/F = 1 0n
A* implies that n and m must have different parity. We now have two cases:

(i) If n is odd, then €,(BC(myn ) ® xtan) = —1 if and only if v = 7. This implies that if
L(BC(myn ) ® XM, 5) # 0, then necessarily n+ 1 > m so that ex(BC(myn )@ xm,) = —1
and hence Xr ,, ym = {7,00}.

(ii) If n is even, then €,(BC(myn ) ® xgan) = —+1 for all finite v. This implies that if
L(BC(myn ) ® XMy, 5) # 0, then necessarily n+ 1 < m so that ex(BC(myn, ) ®x1,) = +1
and hence Eﬂxgmxgén = Q.

Summarizing, take n, m to have opposite parity, we have the chart

n+1>m n+1<m
€co = —1 €co = +1
n odd, m even n even, m odd
e=+1 er=—1 €7 =+1 (9.1)
(definite, ramified at 7,00) | (indefinite—in fact, split!)
n even, m odd n odd, m even
e=—1
er = +1 e =—1

Waldspurger’s formula is in the setting of € = +1, and our main theorem (Theorem 6.17) gives an
identity between the two ¢ = +1 boxes, taking B = Ma(F) and B’ = By7 3. In Sections 7 and 8,
we constructed a family of Schwartz functions such that their theta lifts realize the newform and
its images under iterates of the Shimura—Maass operator. We recall this construction next.

9.2. Torus periods of a weight-(3 4+ 2]) CM form. Take the special case n = 2 and let
m = 3+ 2l, where [ > 0. As in Section 7.1, we take ¢} := ®v¢;7v where

(;SE (Z) — 1F1(_l73,477'22)22€—27r22 lf . | .
,U ]]-OFU (Z].) . :H-OFU (ZQ) if’U 1’00‘
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If we set £ = Xcan,

(2m)? 14 _ 1
437t (+2)! T 2(1+2)(I+1)n2

Cy=11 if v#7,
11-49H -7 =41 ifv=T,
so that by Theorem 6.15(b) and Theorem 8.2, the theta lift 9¢2(X2an§) is a Hecke eigenform on
GL2(Ag) in myz . Furthermore, again by Theorem 8.1,

if v | 00,

2

1 L( 7%(233.11)

-1
ﬁz) 16-(1+2)-( 1w ((2)

(07 (Xean&): Oy (Xean$)) = <

And as before, by Theorem 6.16,

/[EX} ed);(Xgan ’ g)(g) ' ngjfl(g) dg - /[EX] Xgan(g) ) 9:132 (X:é;;?l ' 5/_1)(9) dg7

where by Theorem 6.15(b) the theta lift 9;2 (h2 - €=1) is an automorphic form in WB:C%_DQZ.
9.3. Nonvanishing torus periods. Recall that by Theorem 8.2, 0¢; (x%.,€) is a nonzero Hecke
eigenform of weight 3 + 2/ in w2 . Choose a basis 1,1, ], ij for the split quaternion algebra M>(Q)

such that i2 = u = —7, j2> = —1/7. Then our torus embedding is
BX < GLy(Q),  a+birr (g o)

In particular, for any finite place p of Q, the induced embedding E) < GL2(Q,) makes the
compact open subgroup

“PTN(9) € GLy(Zy) € TZ7)} ifp=T,

into an optimal compact open subgroup (in the sense of Gross [G88, Proposition 3.2]) with respect
to x2+2! which is unramified at v { 7 and has conductor 1 at v | 7. By [GP91], a Hecke eigenform
with respect to the above compact open subgroup of GLa(Ag) is locally (up to a scalar) the
Gross—Prasad test vector. Therefore,

/[ 5] Oy (Xzan€)(9) - Xeahn (9) dg # 0

and combining this with Theorems 6.17, 8.2, and 8.3, we obtain:

Corollary 9.1. Let B’ = By o denote the definite quaternion algebra over Q ramified at exactly
7 and co. Define

! / R —————
f;(g)an = 9(75; (Xgang)a fXBg;ran = 0;); (ng;?lf/)'

Then:
(a) 7t ff(? is an algebraic Hecke eigenform of weight 3 + 21 in m

2 .
Xcan

(b) fé}ﬁl is an automorphic form in the Jacquet—Langlands transfer Wféﬂu

can

(c) there is an identity of nonzero torus periods

07 J e 12 (9) - Xeanl9) dg = /{Ex}xian(g) f5a(g) dg.
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