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Abstract. We study the renormalized volume of a conformally compact Einstein

manifold. In even dimenions, we derive the analogue of the Chern-Gauss-Bonnet

formula incorporating the renormalized volume. When the dimension is odd, we

relate the renormalized volume to the conformal primitive of the Q-curvature.

0. Introduction

Recently, there is a series of work ([GZ],[FG-2] and [FH]) exploring the connection
between scattering theory on asymptotically hyperbolic manifolds, the Q-curvature
in conformal geometry and the ”renormalized volume” of conformally compact Ein-
stein manifolds. In particular, in [FG-2], a notion of Q-curvature was introduced for
an odd-dimensional manifold as the boundary of a conformally compact Einstein
manifold of even-dimension. In this note, in section 2 below, we will clarify the
relation between the work of [FG-2] and the notion of Q-curvature in our earlier
work [CQ] for the special case when the manifold is of dimension three. We then
explore this relation to give a different proof of a result of Anderson [A] writing the
Chern-Gauss-Bonnet formula for conformally compact Einstein 4-manifold with the
renormalized volume. Our proof makes use of the special exhaustion function intro-
duced in [FG-2] that yields remarkable simplification in computing the Q curvature.
In section 3, using some recent result of Alexakis on Q-curvature, we generalize the
Chern-Gauss-Bonnet formula involving the renormalized volume to all even dimen-
sional conformally compact Einstein manifolds. The formula includes as special
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2 RENORMALIZED VOLUME

case the formula of Epstein (appendix A in [E]) for conformally compact hyperbolic
manifolds. The formula also shows that the renormalized volume is a conformal
invariant of the conformally compact structure when the dimension is odd. Finally
in section 4, we obtain a formula similar to that in [FG-2] expressing the renor-
malized volume of a odd dimensional conformally compact Einstein manifold as the
conformal primitive of the Q curvature, and in terms of the data of the scattering
matrix.

1. Conformally compact Einstein

manifolds and renormalized volumes

In this section, we will first recall some basic definitions and facts of conformally
compact Einstein manifolds. We then state the main result in [FG-2].

Given a smooth manifold Xn+1 of dimension n+1 with smooth boundary ∂X =
Mn. Let x be a defining function for Mn in Xn+1 as follows:

x > 0 in X;

x = 0 on M ;

dx 6= 0 on M.

A Riemannian metric g on X is conformally compact if (X, x2g) is a compact
Riemannian manifold with boundary. Conformally compact manifold (Xn+1, g)
carries a well-defined conformal structure [ĝ] on the boundary Mn; where each ĝ
is the restriction of x2g for a defining function x. We call (Mn, [ĝ]) the conformal
infinity of the conformally compact manifold (Xn+1, g). If, in addition, g satisfies
Ricg = −ng, where Ricg denotes the Ricci tensor of the metric g, then we call
(Xn+1, g) a conformally compact Einstein manifold.

A conformally compact metric is said to be asymptotically hyperbolic if its sec-
tional curvature approach −1 at ∂X = M . It was shown ([FG-1], [GL]) that if g
is an asymptotically hyperbolic metric on X, then a choice of metric ĝ in [ĝ] on
M uniquely determines a defining function x near the boundary M and an identi-
fication of a neighborhood of M in X with M × (0, ε) such that g has the normal
form

(1.1) g = x−2(dx2 + gx)

where gx is a 1-parameter family of metrics on M .
As a conformally compact Einstein metric g is clearly asymptotically hyperbolic,

we have, as computed in [G-1] by Graham,

(1.2) gx = ĝ + g(2)x2 + (even powers of x) + g(n−1)xn−1 + g(n)xn + · · · ,
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when n is odd, and

(1.3) gx = ĝ + g(2)x2 + (even powers of x) + g(n)xn + hxn log x + · · · ,

when n is even. Where ĝ = x2g|x=0, g(2i) are determined by ĝ for 2i < n. The trace
part of g(n) is zero when n is odd; the trace part of g(n) is determined by ĝ and h
is traceless and determined by ĝ too when n is even.

As a realization of the holography principle proposed in physics, one considers
the asymptotic of the volume of a conformally compact Einstein manifold (Xn+1, g).
Namely, if denote by x the defining function associated with a choice of a metric
ĝ ∈ [ĝ], we have

(1.4) Volg({x > ε}) = c0ε
−n + c2ε

−n+2 + · · ·+ cn−1ε
−1 + V + o(1)

for n odd, and

(1.5) Volg({x > ε}) = c0ε
−n + c2ε

−n+2 + · · ·+ cn−2ε
−2 + L log

1

ε
+ V + o(1)

for n even. We call the constant term V in all dimensions the renormalized volume
for (Xn+1, g). We recall that V in odd dimension and L in even dimension are
independent of the choice ĝ in the class [ĝ] (cf. [HS] [G-1]).

Based on the work of [GZ], Fefferman and Graham [FG-2] introduced the fol-
lowing formula to calculate the renormalized volume V for a conformally compact
Einstein manifold. Here we will quote a special case of their result. For odd n,
upon a choice of a special defining function x, one sets

v = − d

ds
|s=n℘(s)1,

where ℘(s) denotes the Possion operator (see [GZ] or section 4 below for the defi-
nition of the operator) on Xn+1. The v solves

(1.6) −∆v = n in Xn+1,

and has the asymptotic behavior

(1.7) v = log x + A + Bxn

in a neighborhood of Mn, where A, B are functions even in x, and A|x=0 = 0. Then
Fefferman and Graham in [FG-2] defined

(1.8) (Qn)(g,ĝ) = knB|x=0

where kn = 2n Γ( n

2 )

Γ(− n

2 ) .
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Theorem 1.1. ([FG-2]) When n is odd,

(1.9) V (Xn+1, g) =
1

kn

∫

M

(Qn)(g,ĝ)dvĝ.

In section 2 and 3 below, we will apply Theorem 1.1 to identify the renormalized
volume as part of the integral in the Gauss-Bonnet formula for (Xn+1, Mn, g) when
n is odd. In section 4, we recall the work in [GZ] and [FG-2] relating the Q-curvature
to data of scattering matrix on the asymptotically hyperbolic manifold Xn+1 and
derive a similar formula for the renormalized volume when n is even.

2. Chern-Gauss-Bonnet formula for n = 3

To motivate our discussions in this section we first recall some works in [CQ].
First we recall that the Paneitz operator defined on 4-manifold as:

(2.1) P4/2 = ∆2 + δ{2

3
Rg − 2Ric}d,

where R is the scalar curvature, Ric is the Ricci curvature. There are two important
properties of the Paneitz operator:

(P4/2)gw
= e−4w(P4/2)g.

(2.2) (P4/2)gw + (Q4)g = (Q4)gw
e4w,

for any smooth function w defined on the 4-manifold, and where gw = e2wg and
where Q is the curvature function

Q4 =
1

6
(−∆R + |R|2 − 3|Ric|2).

In [CQ], on a compact Riemannian 4-manifold (X4, g) with boundary, a third
order boundary operator Pb and a third order boundary curvature T were introduced
as follows:

(2.3) (Pb)g = −1

2

∂

∂n
∆g +∆̃

∂

∂n
+

2

3
H∆̃+Lαβ∇̃α∇̃β +

1

3
∇̃αH · ∇̃α − (F − 1

3
R)

∂

∂n

and

(2.4) Tg =
1

12

∂R

∂n
+

1

6
RH − RαNβNLαβ +

1

9
H3 − 1

3
TrL3 − 1

3
∆̃H,
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where ∂
∂n is the outer normal derivative, ∆̃ is the trace of the Hessian of the metric

on the boundary, ∇̃ is the derivative in the boundary, L is the second fundamental
form of boundary, H = TrL, F = RαNαN , and R is the scalar curvature all with
respect to the metric g. Pb and T transform under conformal change of metric on
the boundary of X4 similar to that of P4/2 and Q4 on X4 as follows:

(2.5)
(Pb)gw

= e−3w(Pb)g

(Pb)gw + Tg = Tgw
e3w

We remark that (Pb)g and Tg thus defined depend on the metric g on (X4, g), and
are not intrinsic quantities on the boundary of X4.

In [CQ], we have also re-organized the terms in the integrand of Gauss-Bonnet
formula for 4-manifolds with boundary into the following form:

(2.6)
1

8π2

∫

X4

(|W|2 + Q)dv +
1

4π2

∫

∂X

(L + T )dσ = χ(X),

where

(2.7) L =
1

3
RH − FH + RαNβNLαβ − RαγβγLαβ +

2

9
H3 − H|L|2 + TrL3.

We remark that the Weyl curvature W is a point-wise conformal invariant term on
the 4-manifold, while L is a point-wise conformal invariant term on the boundary
of the manifold.

We also remark that when the boundary is totally geodesic, the expressions of
(Pb)g and Tg in (2.3) and (2.4) above become very simple;

(Pb)g = −1

2

∂

∂n
∆g + ∆̃

∂

∂n
− (F − 1

3
R)

∂

∂n
, Tg =

1

12

∂R

∂n
,

and in this case L vanishes.
Given a conformally compact Einstein manifold (Xn+1, g) and a choice of metric

ĝ in the conformal infinity (M, [ĝ]), we consider the compactification (Xn+1, e2vg),
where v is the function which satisfies (1.6) and (1.7). We observe that

Lemma 2.1. When n is odd, (Qn+1)e2vg = 0.

Proof. The proof follows an observation made by Graham ([G-2], see also [Br])
that the Paneitz operator P n+1

2
on an Einstein manifold is a polynomial of the

Laplacian P(∆) and the polynomial P on the Einstein manifold is the same as the
one on the constant curvature space with the constant the same as the constant
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of the scalar curvature of the Einstein manifold. Meanwhile the Q-curvature Qn+1

of an Einstein manifold is the same as the one on the constant curvature space.
Therefore (P n+1

2
)g = P(∆g) if (Pn+1

2
)gH

= P(∆gH
), and (Qn+1)g = (Qn+1)gH

,

where (Hn+1, gH) is the hyperbolic space.

(2.8) (Pn+1
2

)g
Hn+1 =

n+1
2

∏

l=1

(−∆Hn+1 − Cl)

where Cl = (n+1
2 + l − 1)(n+1

2 − l). Therefore

(2.9) (Pn+1
2

)g =

n+1
2

∑

l=2

(−1)
n+1

2 −lBl(∆g)
l − (−1)

n−1
2 (n − 1)!∆g.

Meanwhile (Qn+1)Hn+1 = (−1)
n+1
2 n!. Thus

(2.10) (Qn+1)g = (−1)
n+1

2 n!.

Thus if v satisfies the equation (1.6), we have

(2.11) (P n+1
2

)gv + (Qn+1)g = 0.

It thus follows from equation (2.2) that (Qn+1)e2vg = 0.

We will now combine the above observation to Theorem 1.1 of [FG-2] to give
an alternative proof of a result of Anderson [A] (Theorem 2.3 below) for conformal
compact Einstein 4-manifold (X4, g). We first relate our curvature T to that of Q3

as defined in (1.8).

Lemma 2.2.

(2.12) Te2vg = 3B|x=0 = (Q3)(g,ĝ).

Proof. By the scalar curvature equation we have

1

12
Re2vg =

1

2
(−∆ge

v +
1

6
Rge

v)e−3v.

Therefore for v satisfies equation (1.6), we have

1

12
Re2vg =

1

2
((e−v)2 − |∇e−v|2).
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We now apply the asymptotic expansion of v in (1.7) and write

e−2v =
1

x2
− 2A2 − 2B0x + O(x2)

|∇e−v|2 =
1

x2
+ 2A2 + 4B0x + O(x2),

where A2 is the coefficient of x2 of A and B0 = B|x=0. We get

Te2vg = − 1

12

∂

∂x
Re2vg|x=0 = 3B0 = Q(g,ĝ).

This finishes the proof of the lemma.

Theorem 2.3. [A] Suppose that (X4, g) is a conformally compact Einstein mani-
fold. Then

(2.13)
1

8π2

∫

X4

|W|2gdvg +
3

4π2
V (X4, g) = χ(X4).

Proof. Apply Lemma 2.1 to (2.6), we have

1

8π2

∫

X4

|W|e2vg dve2vg +
1

4π2

∫

M

(L + T )(e2vg,ĝ) dvĝ = χ(X4).

We now observe that as the boundary of M of X4 is umbilical, L(e2vg,ĝ) = 0.

Apply Lemma 2.2 and Theorem 1.1. we obtain (2.13) for the metric e2vg. We
then observe that once the formula (2.13) holds for the metric e2vg, it holds for any
metric g̃ ∈ [g] with (Xn+1, g̃) a conformally compact manifold as the term of the
renormalized volume V is conformally invariant.

3. Chern-Gauss-Bonnet formula in higher dimensions

In higher dimensions when n = 2k+1 > 3 we wish to determine the analogous for-
mula for the Euler characteristic. We continue to consider the metric (Xn+1, e2vg)
where v satisfies the equations (1.6) and (1.7). We will find that the parity condi-
tions imposed in (1.7) makes it possible to determine the local boundary invariants
of order n for the compact manifold (Xn+1, e2vg). According to (1.1) and (1.7) we
have the expansion of the metric e2vg.

(3.1)
e2vg = H2dx2 + ĝ + c(2)x2 + even powers in x

+ c(n−1)xn−1 + (2B0ĝ + g(n))xn + · · ·
where

H = eA+Bxn

= 1 + e2x
2 + even powers in x + en−1x

n−1 + B0x
n + · · ·

and c(2i) for 1 ≤ i ≤ (n − 1)/2 are local invariants of ĝ. We remark that it is easy
to see that the boundary of (Xn+1, e2vg) is totally geodesic.
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Lemma 3.1.

(3.2) (∂x∆
n−3

2 R)e2vg|x=0 = −2nn!B0.

Proof. We have

∆e2vg =
1

H
√

det gx
∂α(H

√

det gxgαβ
x ∂β)

= Q
(2)
2 ∂2

x + Q
(1)
2 ∂x + Q

(0)
2

where the coefficients Q(i) have the following properties: Q
(2)
2 is a zeroth order

differential operator, having an asymptotic expansion in powers of x in which the

first nonzero odd power term is xn. Q
(1)
2 is a zeroth order differential operator,

having an expansion in which the first nonzero even degree term is xn−1. Q
(0)
2 is

differential operator of order 2 of purely tangential differentiations with coefficients
which have expansion in powers of x in which the first nonzero odd term is xn.
Inductively, we see that, for k ≤ n−3

2 ,

(3.3) ∆k = Q
(2k)
2k ∂2k

x + Q
(2k−1)
2k ∂2k−1

x + · · ·+ Q
(1)
2k ∂x + Q

(0)
2k

where Q
(i)
2k (i 6= 0) is a differential operator of order 2k − i of purely tangential

differentiations with coefficients having expansions in powers of x in which the
first nonzero even terms are xn−(2k−i) if i is odd, and the first nonzero odd terms

are xn−(2k−i) if i is even, and Q
(0)
2k is a differential operator of order 2k of purely

tangential differentiations with coefficients whose expansions in x have the first
nonzero odd terms xn−2k+2. Thus

(3.4) ∂x∆k = F (2k+1)∂2k+1
x + F (2k)∂2k

x + · · · + F (1)∂x + F (0)

where F (2k+1) = Q(2k), F (i) (0 < i < 2k + 1) is a differential operator of order
2k − i + 1 of purely tangential differentiations with coefficients whose expansions
in x have the first nonzero even terms are xn−(2k−i)−1 if i is even, and the first
nonzero odd terms are xn−(2k−i)−1 if i is odd, and F (0) is a differential operator of
order 2k of purely tangential differentiations with coefficients whose expansions in
x have the first nonzero even terms xn−2k+1.

On the other hand, we have

(3.5) Re2vg = −2n2(n − 1)B0x
n−2 + even powers of x terms + o(xn−2).

Keeping track of the parity, we obtain (3.2).
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Next we deal with all other boundary terms, these are contractions of one or
more factors consisting of curvatures, covariant derivatives of curvatures, except

∂n−2
x R which is accounted in the above term ∂x∆

n−3
2 R. Since n is odd, and ∂x is

the normal direction, each such term must contain at least one x index. In fact,
the total number of x indices appearing in each of such terms must be odd. Thus
one finds that each of such terms always contains a factor which is a covariant
derivatives of curvature and in which x index appears odd number of times. Such
factors, if we insist on taking ∇x first, must appear as one of the following three
different types

(I) ∇♠ · · ·∇♠∇2k+1
x R♠♠♠♠

where ♠ stands for indices other than x, in other words, tangential.

(II) ∇♠ · · ·∇♠∇2k
x Rx♠♠♠

and

(III) ∇♠ · · ·∇♠∇2k−1
x Rx♠x♠.

Note that in all three types 1 ≤ 2k + 1 ≤ n − 2. Since the boundary is totally
geodesic, we only need

Lemma 3.2. All three types of boundary terms

∇2k+1
x R♠♠♠♠, ∇2k

x Rx♠♠♠, ∇2k−1
x Rx♠x♠

vanish at the boundary for 1 ≤ 2k + 1 ≤ n − 2.

Proof. We consider a point at the boundary and choose a normal coordinate on the
boundary Mn in the special coordinates for Xn+1. Recall

Rαβγδ =
1

2
(−∂β∂δgαγ − ∂α∂γgβδ + ∂β∂γgαδ + ∂α∂δgβγ)

− gηλ([αγ, η][βδ, λ]− [βγ, η][αδ, λ]),

and

∇xTαβ···δ = ∂xTαβ···δ − Γλ
α xTλβ···δ − Γλ

β xTαλ···δ − · · · − Γλ
δ xTαβ···λ

where
Γα

βγ = gαδ[βγ, δ]
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and

[αβ, γ] =
1

2
(∂αgβγ + ∂βgαγ − ∂γgαβ).

For the simplicity of the notation we will use g to stand for e2vg if no confusion can
arise. Each of the three types is a sum of products of factors that are of the form:

∂α∂β · · ·∂γgλµ

or
∂α∂β · · ·∂γgλµ.

We claim that each summand must has a factor that is one of the following

∂♠ · · ·∂♠∂2k+1
x g♠♠,

∂♠ · · ·∂♠∂2k−1
x gxx,

∂♠ · · ·∂♠∂2k+1
x g♠♠.

and
∂♠ · · ·∂♠∂2k−1

x gxx.

where 1 ≤ 2k +1 ≤ n−2. To verify the claim, one needs to observe that, in writing
the three types in local coordinates, the number of times the index x appears in
each summand increases only when one sees

Γx
♠ xTαβ··· x···δ,

where the number of x increases by 2. Thus, in the end, the total number of index
x in each summand is still odd. Therefore one of the factors must have odd number
of x. Finally one observes that for any individual factor arising here the number of
x can not exceed n − 1. So the proof is complete.

We now apply above results to derive a formula analogous to that of Theorem
2.3 for the renormalized volume on (Xn+1, g) for n = 5. In this case, we recall the
formula of Graham [G-1]:

(3.6) Q6 = 64π3e − 1

6
J +

1

10
∆2R + Div(T )

where e is the Euler class density whose integral over a compact 6-manifold gives
its Euler number,

J = −3I + 7W ab
ij W pq

ab W ij
pq + 4WijklW

iakbW j l
a b,
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I = |V |2 − 16W i
jklCjkl,i + 16P imWijklW

jkl
m + 16|C|2,

Vijklm = Wijkl,m + gimCjkl − gjmCikl + gkmClij − glmCkij ,

Cijk = Pij,k − Pik,j ,

Pij =
1

4
(Rij −

R

10
gij),

Wijkl is the Weyl curvature, Rij is the Ricci curvature, R is the scalar curvature,
and Div(T ) are divergence terms other than ∆2R. Q6 in this form is organized
so that it is a sum of three types of terms: Euler class density, local conformal
invariants, and divergence terms. G

Theorem 3.3. For n = 5, we have

(3.7) χ(X6) =
1

128π3

∫

X6

(J )gdvg −
15

8π3
V (X6, g),

where

J = −|∇W |2 + 8|W |2 +
7

3
W ab

ij W pq
ab W ij

pq +
4

3
WijklW

iakbW j l
a b

Proof. As a consequence of above lemmas, we have

(3.8) χ(X6) =
1

128π3

∫

X6

(
1

3
Je2vg)dve2vg −

15

8π3
V (X6, g).

Since J is a local conformal invariant and g is an Einstein metric, we obtain (3.7)
directly from (3.8).

We can find a general formula for all higher dimensions. We recall a recent result
of S. Alexakis [Al].

Theorem 3.4. [Alexakis] On any compact Einstein m-dimensional manifold with
m even, we have

(3.9) Qm = ame + J + Div(Tm).

where e is the Euler class density, J is a conformal invariant, and Div(Tm) is a
divergence term and am is some dimensional constant.

We also recall a fact we learned from Tom Branson [Br]:
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Proposition 3.5. On any compact m-dimensional manifold for m even, suppose
Qm is the curvature in the construction of [GJMS] and [GZ], [FG-2], then

(3.10) Qm = bm∆
m−2

2 R + lower order terms,

where

bm = (−1)
m−2

2
2m−1(m

2 )!Γ(m+1
2 )√

π(m − 1)m!
.

Theorem 3.6. When n is odd, we have

(3.11)

∫

Xn+1

(Wn+1)gdvg + (−1)
n+1
2

Γ(n+2
2 )

π
n+2
2

V (Xn+1, g) = χ(Xn+1)

for some curvature invariant Wn+1, which is a sum of contractions of Weyl curva-
tures and/or its covariant derivatives in an Einstein metric.

Proof. We first establish that equation (3.9) remains valid on a conformally Einstein
manifold (Xn+1, g). Let gw = e2wg be such a metric, then it follows from the Paneitz
equation that for m = n + 1,

(3.9’)

(Qm)gw
ev = (Pm)gv + (Qm)g

= ameg + Jg + Div(T ′)

= amegw
+ Jgw

+ Div(T ′′)

the second equation follows from the fact that the Paneitz operator Pm is a diver-
gence and Theorem 3.4. The third equation follows from the fact that the Pfaffians
of any two Riemannian metrics on the same manifold differs by a divergence term
and J is a conforaml invariant.

In order to apply this formula, we need to observe that the leading order term

∆
m−2

2 R in formula (3.10) cannot appear in the conformally invariant term J . In
order to see this, we first recall that the J is a linear combination of terms of the
form Tr(∇I1R

⊗

∇I2R...
⊗

∇IkR) of weight m where Tr denotes a suitably cho-
sen pairwise contraction over all the indices. Observe that the conformal variation

δw(∆
m−2

2 )R, where δw denotes the variation of the metric g to gw is of the form

∆
m

2 w + lower order terms. Thus if ∆
m−2

2 R does appear as a term in J , its con-
formal variation must be cancelled by the conformal variations of the other terms
in the linear combination, but it is clear that the conformal variations of the other
possibilities of the curvature R other than the scalar curvature R cannot have order
m in the number of derivatives of w and of the form ∆

m

2 w.
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We can now apply the formula (3.9’) to the metric gv = e2vg where v is as in
Lemma 2.1., thus by Lemma 2.1 the left hand side of (3.9’) is identically zero, and
we find

amχ(Xn+1) =

∫

Xn+1

(Jgv
− Div(T ′′))dvgv

.

Among the divergence terms in Div(T ′′), only the leading order term bm∆
m−2

2 R
has a non-zero contribution according to Lemma 3.2. The computation in Lemma
3.1 determines the precise contribution of this term as a mutiple of the renormalized
volume. We also note that as g is an Einstein metric, we may assume that the terms
which appear in the conformal invariant J are contractions of the Weyl curvature
together with its covariant derivatives. We have thus finished the proof of Theorem
3.6.

Corollary 3.5. When (Xn+1, g) is conformally compact hyperbolic, we have

(3.12) V (Xn+1, g) =
(−1)

n+1
2 π

n+2
2

Γ(n+2
2

)
χ(X).

One may compare (3.12) to a formula for renormalized volume given by Epstein
in [E], where he has

(3.13) V (Xn+1, g) =
(−1)m22mm!

(2m)!
χ(X)

for n = 2m − 1.

4. Scattering theory and the renormalized volume

We now recall the connection between the renormalized volume and scattering
theory introduced in [GZ]. Suppose that (Xn+1, g) is a conformally compact Einstein
manifold and (Mn, [ĝ]) is its associated conformal infinity. And suppose that x is
a defining function associated with a choice of metric ĝ ∈ [ĝ] on M as before. One
considers the asymptotic Dirichlet problem at infinity for the Poisson equation

(4.1) (−∆g − s(n − s))u = 0.

Based on earlier works on the resolvents, Graham and Zworski in [GZ] proved that
there is a meromorphic family of solutions u(s) = ℘(s)f such that

(4.2) ℘(s)f = Fxn−s + Gxs if s /∈ n/2 + N
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where F, G,∈ C∞(X), F |M = f , and F, G mod O(xn) are even in x. Also if n/2−s
is not an integer, then G|M is globally determined by f and g. The scattering
operator is defined as:

(4.3) S(s)f = G|M .

Thus the function v satisfying (1.6) and (1.7) studied in [FG-2] is defined as:

(4.4) v = − d

ds
|s=n℘(s)1.

Therefore when n is odd, we may rewrite (1.8) in Theorem 1.1 as

(4.5) V (Xn+1, g) = −
∫

M

(
d

ds
|s=nS(s)1) dvĝ.

We will now point out that formula similar to that (4.5) holds also when n is
even. To do so, we first establish some notations.

When n is even and (Xn+1, g) conformal Einstein. For each s < n and close to
n, we consider the solution of the Possion equation ℘(s)1 = u(s) as in (4.1). Then

(4.6) u(s) = xn−sF (x, s) + xsG(x, s)

for functions F, G which are even in x. We denote the asymptotic expansion of F
near boundary as

(4.7) F (x, s) = 1 + a2(s)x
2 + a4(s)x

4 + · + an(s)xn + ·.

Denote a′
k = d

ds |s=nak(s). We have the following formula.

Theorem 4.1. Suppose that (Xn+1, g) is a conformally compact Einstein manifold
with even n. For a choice of metric ĝ ∈ [ĝ] of the conformal infinity (M, [ĝ]), the
renormalized volume is

(4.8)

V (Xn+1, g, ĝ) = −
∫

M

(
d

ds
|s=nS(s)1) dvĝ

− 1

n

∫

M

2a′
2v

(n−2)dvĝ − · · · − 1

n

∫

M

(n − 2)a′
n−2v

(2)dvĝ −
∫

M

a′
ndvĝ.

Proof. Using the notations as set in (4.6) and (4.7), we have

v = − d

ds
|s=nu(s) = F (x, n) logx − F ′ − xnG′ + G(x, n)xn log x.
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Since
F (x, n) = 1 − c n

2
Qnxn + O(xn+1),

and
G(x, n)|M = c n

2
Qn = lim

s→n
S(s)1,

where ck = (−1)k(22kk!(k − 1)!)−1, and

F ′ =
dF

ds
|s=n, and G′ =

dG

ds
|s=n.

We get
v = log x − F ′ − xnG′ − 2cn

2
Qnxn log x + O(xn+1 log x).

Recall the expansion of the volume element

dvgε
=

√

det gε

det ĝ
dvĝ =

√

det(ĝ−1gε)dvĝ

= (1 + v(2)ε2 + v(4)ε4 + · · · )dvĝ

where v(2), · · · , v(n) are determined by ĝ. We have

vol({x > ε}) =
1

n

∫

x>ε

−∆vdvg =
1

n

∫

x=ε

− ∂v

∂n
dσgε

=
1

n
ε−n+1

∫

M

∂v

∂x
|x=εdvgε

where
∂v

∂x
=

1

x
− · · · − na′

nxn−1 − n(
d

ds
|s=nS(s)1)xn−1

− 2cn

2
Qnxn−1 − 2ncn

2
Qnxn−1 log x + o(xn−1).

Thus

vol({x > ε}) = · · ·+ 1

n

∫

M

(v(n) − 2a′
2v

(n−2) − · · · − (n − 2)v(2)a′
n−2

− na′
n − n

d

ds
|s=nS(s)1 − 2c n

2
Qn)dvĝ + · · ·

and the renormalized volume for (Xn+1, g) is

V (Xn+1, g, ĝ) = − 1

n

∫

M

2a′
2v

(n−2)dvĝ − · · · − 1

n

∫

M

(n − 2)a′
n−2v

(2)dvĝ

−
∫

M

a′
ndvĝ −

∫

M

(
d

ds
|s=nS(s)1) dvĝ.

We have thus established the formula (4.8).

We remark that the coefficients a′
k for k ≤ n in formula (4.8) can be explicitly

computed and are curvatures of the metric of ĝ of the conformal infinity (M, ĝ). In
the following, we write down the formula for the cases n = 2 and n = 4.
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Proposition 4.2. Suppose that (Xn+1, g) is a conformally compact Einstein man-
ifold with even n. For a choice of metric ĝ ∈ [ĝ] of the conformal infinity (M, [ĝ]),
we have

(4.9) V (X3, g, ĝ) = −
∫

M2

(
d

ds
|s=2S(s)1) dvĝ, for n = 2

and

(4.10) V (X5, g, ĝ) = − 1

32 · 36

∫

M4

R2
ĝdvĝ −

∫

M4

(
d

ds
|s=4S(s)1) dvĝ, for n = 4

where Rĝ is the scalar curvature for (M 4, ĝ).

Proof. For n = 2, one may calculate and obtain

a2(s) = 2Kĝ,

where Kĝ is the Gaussian curvature of (M 2, ĝ), thus a′
2 = 0, and (4.9) follows

directly from (4.8). For n = 4, one calculate and obtain

a2(s) = − 4 − s

4(3 − s)
Trg(2),

thus

(4.11) a′
2 = −1

4
Trg(2)

and

a4 = − 1

8(4 − s)
((4 − s)(2Trg(4) − |g(2)|2)

− (4 − s)(6 − s)

4(3 − s)
(Trg(2))2 − (4 − s)

8(3 − s)
∆̂Trg(2))

= −1

8
(2Trg(4) − |g(2)|2 − (6 − s)

4(3 − s)
(Trg(2))2 − 1

4(3 − s)
∆̂Trg(2))

where

(4.12) g(2) = −1

2
(Ricĝ −

1

6
Rĝĝ),

(4.13) Trg(4) =
1

4
|g(2)|2ĝ.
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Thus

(4.14) a′
4 =

1

32
(3(Trg(2))2 + ∆̂Trg(2))

Insert (4.11) and (4.12) and (4.14) to (4.8) and recall that when n = 4, v(2) =
1
2
Trg(2), we obtain (4.10).

We end the section by deriving a variational formula, which indicates that when
n is even, the scattering term in the renormalized volume is a conformal anomaly
and is a conformal primitive of the Q-curvature Qn. Namely,

Theorem 4.3. Suppose that (Xn+1, g) is a conformally compact Einstein manifold
with conformal infinity (M, [ĝ]), and that n is even. Then

(4.15)
d

dα
|α=0

∫

M

Se2αw ĝ dve2αw ĝ = −2cn

2

∫

M

w (Qn)ĝ dvĝ

where Sĝ = d
ds
|s=nS(g,ĝ)(s)1; and S(g,ĝ) is the scattering operator as defined in (4.3).

To prove the theorem, we first list some elementary properties of scattering ma-
trix under conformal change of metrics, we assume the same setting as in Theorem
4.3.

Lemma 4.4. Denote S(s) = S ĝ = S(g,ĝ)(s) the scattering matrix, and ĝw = e2wĝ
a metric conformal to ĝ. Then
(a)

(4.16) Sĝw
(s) = e−swS(s)e(n−s)w.

(b) S(s) has a simple pole at s = n and its residue is −c n

2
Pn

2
, i.e.

(4.17) S(s) = −
cn

2
Pn

2

s − n
+ T (s)

where where T (s) is the regular part of the scattering matrix near s = n and P n

2
is

the Paneitz operator.
(c)

(4.18) S(n)1 = lim
s→n

S(s)1 = T (n)1 = c n

2
Qn.

(d)

(4.19)

enwSĝw
(n)1 = enw lim

s→n
e−swS(s)e(n−s)w

= lim
s→n

(−
cn

2
Pn

2
e(n−s)w

s − n
+ T (s)e(n−s)w)

= cn

2
Pn

2
w + S(n)1.
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Proof.
(a) is a simple consequence of the definition of the scattering matrix. (b) and (c)
follow from the work of [GZ]. (d) is a consequence of the equation

(Pn

2
)ĝw + (Qn)ĝ = (Qn)ĝw

enw

relating the Paneitz operator to Q -curvature on even dimensional manifolds.

We now compute the variation of
∫

M

d

ds
|s=nS(g,ĝ)(s)1dvĝ

under the conformal change of metrics in [ĝ]. Denote by Sĝ = d
ds
|s=nS(g,ĝ)(s)1 with

respect to the metric ĝ on M .

Lemma 4.5.

(4.20)

∫

M

(Se2w ĝe
nw − Sĝ)dvĝ = −cn

2

∫

M

(w (Pn

2
)ĝw + 2w(Qn)ĝ) dvĝ.

Proof. By definition we have

(4.21) Sĝe2wenw = lim
s→n

(
Se2w ĝ(s)1 − Se2w ĝ(n)1

s − n
)enw.

Apply (4.16) and (4.19), denote P n

2
= (Pn

2
)ĝ, Q = Qn = (Qn)ĝ and T = T(g,ĝ), we

obtain

(4.22)

enw Se2w ĝ(s)1 − Se2w ĝ(n)1

s − n
=

e(n−s)wS(s)e(n−s)w − cn

2
Pn

2
w − cn

2
Qĝ

s − n

=
(e(n−s)w − 1)S(s)e(n−s)w + S(s)e(n−s)w − cn

2
Pn

2
w − cn

2
Qĝ

s − n

=
e(n−s)w − 1

s − n
S(s)e(n−s)w +

S(s)e(n−s)w − cn

2
Pn

2
w − cn

2
Qĝ

s − n
.

We now claim that after taking limit we have

(4.23) Se2w ĝe
nw − Sĝ = −cn

2
(wPn

2
w + wQĝ −

1

2
Pn

2
w2) − T (n)w.

To see the claim we observe that

(4.24) lim
s→n

e(n−s)w − 1

s − n
= −w,
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(4.25)
lim
s→n

S(s)e(n−s)w = lim
s→n

(−
cn

2
Pn

2
e(n−s)w

s − n
+ T (s)e(n−s)w)

= cn

2
Pn

2
w + cn

2
Qn,

(4.26)

lim
s→n

S(s)e(n−s)w − cn

2
Pn

2
w − cn

2
Qĝ

s − n

= lim
s→n

(
S(s)(e(n−s)w − 1) − cn

2
Pn

2
w

s − n
+

S(s)1 − S(n)1

s − n
)

= lim
s→n

S(s)(e(n−s)w − 1) − cn

2
Pn

2
w

s − n
+ Sĝ,

and

(4.27)

lim
s→n

S(s)(e(n−s)w − 1) − cn

2
Pn

2
w

s − n

= lim
s→n

−c n

2
P n

2
(e(n−s)w

−1)

s−n + T (s)(e(n−s)w − 1) − cn

2
Pn

2
w

s − n

= lim
s→n

−cn

2
Pn

2

e(n−s)w − 1 − (n − s)w

(s − n)2
+ lim

s→n
T (s)

e(n−s)w − 1

s − n

= − 1

2
cn

2
Pn

2
w2 − T (n)w.

Thus the claim (4.23) follows from the formulas (4.24) to (4.27).
Due to the fact that both operators P n

2
and T (n) are self-adjoint, we have

∫

M

Pn

2
w2dvĝ =

∫

M

w2Pn

2
1dvĝ = 0

and
∫

M

T (n)wdvĝ =

∫

M

wT (n)1dvĝ = cn

2

∫

M

wQndvĝ.

Thus integrating (4.23), we get

∫

M

Se2w ĝdve2w ĝ −
∫

M

Sĝdvĝ = −cn

2

∫

M

(wPn

2
w + 2wQn)dvĝ.

This is the desired formula (4.15).
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Theorem 4.3 follows from Lemma 4.5 by a simple integration.

We remark that (4.10) and (4.15) give another proof of the fact observed in [HS]
and [G-1] that when n = 2, V (X3, g) is the conformal primitive of the Gaussian
curvature Kĝ on (M2, ĝ); while for n = 4, V (X5, g) is the conformal primitive of
1
16

σ2(ĝ) on (M4, ĝ), where

σ2(ĝ) =
1

6
(R2

ĝ − 3|Ric|2ĝ)

and the relation of σ2(ĝ) to (Q4)ĝ is given by

(4.28) (Q4)ĝ =
1

6
(−∆R + R2 − 3|Ric|2)ĝ = σ2(ĝ) − 1

6
∆ĝRĝ,

where ∆ =
∑

∂2

∂x2
i

for the Euclidean metric. We remark that the term σ2 plays an

important role in some recent work [CGY] in conformal geometry, where the sign of
∫

M
(σ2)ĝdvĝ is used to study existence of metrics with positive Ricci curvature on

compact, closed manifolds of dimension 4; also the relation (4.28) between σ2 and
Q4 plays a crucial role in the proof of the results in [CGY].
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