IMPORTANT PROBABILITY FACTS AND IDEAS:

A **probability space** is a triple $(\Omega, \mathcal{F}, \mathbb{P})$ where Ω is the sample space, \mathcal{F} is a set of subsets of Ω (forming a σ -algebra) and $\mathbb{P} : \mathcal{F} \to \mathbb{R}$ is a **probability measure** satisfying:

- $\mathbb{P}[\Omega] = 1$
- $\mathbb{P}[A^c] = 1 \mathbb{P}[A]$ for $A \in \mathcal{F}$.
- If A_1, \ldots is countable sequence of disjoints element of \mathcal{F} then

$$\mathbb{P}[\bigcup_{i} A_{i}] = \sum_{i} \mathbb{P}[A_{i}].$$

A random variable is a function $X : \Omega \to \mathbb{R}$ (that is \mathcal{F} measurable). Two random variables X, Y are equal in distribution or identically distributed if for all $A \subset \mathbb{R}$ (measurable)

$$\mathbb{P}[X \in A] = \mathbb{P}[Y \in A].$$

The **expectation** of X is denoted $\mathbb{E}[X]$ and satisfies

- Linear $\mathbb{E}[cX + dY] = c\mathbb{E}[X] + d\mathbb{E}[Y]$ for $c, d \in \mathbb{R}$.
- If $0 \le X \le M$ then $0 \le \mathbb{E}[X] \le M$.
- For $c \in \mathbb{R}$, $\mathbb{E}[c] = c$.
- If $X \leq Y$ then $\mathbb{E}[X] \leq \mathbb{E}[Y]$.
- $\mathbb{E}[|X|] \ge |\mathbb{E}[X]|$.
- If ϕ is convex then $\mathbb{E}[\phi(X)] \ge \phi(\mathbb{E}[x])$.
- If X and Y are independent then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$.

A sequence of random variables X_n converges in probability to X if for all $\epsilon > 0$

$$\mathbb{P}[|X_n - X| > \epsilon] \to 0.$$

It converges almost surely to X if

$$\mathbb{P}[\{\omega: X_n(\omega) \to X(\omega)\}] = 1.$$

We say X_n converges weakly or converges in distribution to X if for all bounded continuous functions f(x),

$$\mathbb{E}[f(X_n)] \to \mathbb{E}[f(X)].$$

Equivalently (in dimension 1)

$$\mathbb{P}[X_n \le x] \to \mathbb{P}[X \le x]$$

for all continuity points of $F(x) = \mathbb{P}[X \leq x]$, that x with $\mathbb{P}[X = x] = 0$.

The Weak Law of Large Numbers says that if X_n are independent and identically distributed (IID) with $\mathbb{E}[|X_i|] < \infty$ and $\mathbb{E}[X_i] = \mu$ then $\frac{1}{n} \sum_{i=1}^n X_i \to \mu$ in probability. The Strong Law of Large Numbers is the same but for almost sure convergence.

The Central Limit Theorem says that if X_i are IID with mean μ and variance $\mathbb{E}[X_i^2] = \sigma^2 < \infty$ then

$$\frac{\sum_{i=1}^{n} X_i - \mu n}{\sigma \sqrt{n}} \to N(0,1)$$

where the convergence is in distribution.

For a random variable X the **conditional expectation with respect** to an event A is

$$\mathbb{E}[X|A] := \frac{\mathbb{E}[XI(A)]}{\mathbb{P}[A]}$$

The conditional expectation with respect to a random variable Y (if Y is a discrete random variable) is

$$\mathbb{E}[X|Y] := \psi(Y), \qquad \psi(y) = \mathbb{E}[X|Y = y].$$

The conditional expectation with respect to a σ -algebra \mathcal{G} is the \mathcal{G} -measurable random variable such that for all $A \in \mathcal{G}$,

$$\mathbb{E}[XI(B)] = \mathbb{E}[\mathbb{E}[X|\mathcal{G}]I(B)].$$

It has the following properties

- Linear $\mathbb{E}[cX + dY] = c\mathbb{E}[X] + d\mathbb{E}[Y]$ for $c, d \in \mathbb{R}$.
- Tower Property: If $\mathcal{G} \subset \mathcal{H}$ then

$$\mathbb{E}[\mathbb{E}[X \mid \mathcal{H}] \mid \mathcal{G}] = \mathbb{E}[X \mid \mathcal{H}].$$

• When \mathcal{G} is the trivial σ -algebra we have that

$$\mathbb{E}[\mathbb{E}[X \mid \mathcal{H}]] = \mathbb{E}[X].$$

- If X is \mathcal{G} measurable then $\mathbb{E}[X \mid \mathcal{G}] = X$ and $\mathbb{E}[XY \mid \mathcal{G}] = X\mathbb{E}[Y \mid \mathcal{G}]$.
- If X is independent of \mathcal{G} then $\mathbb{E}[X \mid \mathcal{G}] = \mathbb{E}[X]$.

A filtration is a sequence of increasing σ -algebras $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots$ This represents an increasing amount of information. A sequence X_n is a martingale with respect to \mathcal{F}_n if each X_n is \mathcal{F}_n measurable and for all n,

$$\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] = X_n.$$

Often the filtration will be the generated by X_1, \ldots, X_n and then the definition is

$$\mathbb{E}[X_{n+1} \mid X_1, \dots, X_n] = X_n.$$

For all n > m, $\mathbb{E}[X_n \mid \mathcal{F}_m] = X_m$ and $\mathbb{E}[X_n] = \mathbb{E}[X_0]$. For a continuous family X_t it is a martingale if $\mathbb{E}[X_t \mid \mathcal{F}_s] = X_s$ for all $0 \le s < t$.