*Introduction

Thursday, August 31, 2017

3:07 PM

Probability Space (so, 5,10) [KS Sec 1.1]

I is sample or outcome space
- Ex Roll 3 dice \$1,..., 63

b)
$$\bigcap_{i=1}^{\infty} C_i = \left(\bigcap_{i=1}^{\infty} C_i^{i}\right)^{c} \in \mathcal{F}$$

c)
$$C_1 \setminus C_2 = C_1 \cap C_2 \in S_1$$

- · We write o(t) smallest o-algebra
 containing t.
 - · Bord σ -algebra B(S)is the smallest σ -algebra of all open sets of S.

 Write B for B(R)

A measure M on
$$(N, 5)$$
 is a function $M: 5 \rightarrow Co, \infty)$

Such that for $C_1, ...$ disjoint $M(\bigcup_{i=1}^{\infty} C_i) = \sum_{i=1}^{\infty} M(C_i)$ (countable additivity)

It is a probability measure if $M(SL) = 1$.

Properties: i)
$$M(\emptyset) = 0$$
 P. f $M(A \cup \emptyset) = M(A) + M(\emptyset)$
ii) If $A \subset B = 7$ $M(A) \leq M(B)$
iii) Subadditive $P(\bigcup_{i=1}^{\infty} C_i) \leq \sum_{i=1}^{\infty} M(C_i)$
iv) If $C: \supset C$ then $M(C_i) \supset M(C_i)$ if $M(C_i) \leq 0$.
 V If $C: \nearrow C$ then $M(C_i) \nearrow M(C_i)$
 $P(F: iv)$ $M(C_m) = M(C_i) + \sum_{i=1}^{\infty} M(C_i) \cdot C_{i+1}$

A probability space is a tripled (D2, 5, IP)
where I is a or-algebra and
IP is a probability measure.

Examples of measures:

Countable discrete set: $M(A) = \sum_{v \in A} p(v)$, $\Omega = \{1,...,63, p(w) = \frac{1}{6}\}$

Caratheodom's Theorem. [KS Sec 3.4]

If A is a <u>semi-algebra</u> and m is a Signal-additive Conction $m(UA_i) = \sum_{i=1}^{\infty} m(A_i)$ A; disjoint

then I measure is on o(Al such that MAI=mAI

A is a Semi-algebra if

- i) DEA
 - ii) C, C'EX => Cn C'EX
- iii) If CCC' then $\exists A_1,...,A_n \in A$ disjoint, $C \cap A_i = \emptyset$, $C' = C \vee A_i \vee U... \vee A_n$

Lebesgue measure on R.

· Define M((a, b]) = b-a.

Extension of m to 1B by

Properties of Lebesgue measure

- . Defined on B
- · M((a,b)) = M([a,b]) b-a.
- · M({x}]=0
- · M(A+oc) = M(A) translation invariance.

Lebesgue measure on [0,1].

([0,1], B(0,13), n) is a probability space.

Non-measurable Sets

Vitali set.

Equivalence Class Xmy if X-y \in Q

E.h. Q, {12+q:q<63, Q+y

Ac[0,1] consists of one point in each equivalence class.

Clain: A is not measurable

V = V $q \in Q \cap C - L \mid 3$

[0,1] C V C [-1,2]

 $\leq M(V) \leq 3$

If M(A) = 0 then M(V) = 0.

If M(A) 70 than M(V) = 00. Contradition

Banach - Tarsh: Paradox

A ball in R3 can be decomposed into 5 pieces and re-arranged into 2 balls!