Gaussian processes

Sunday, November 26, 2017 11:19 PM

collection of random variables {X; } ight is A jointly Gaussian / Normal or a Gaussian process if VSEA, S Finite, V{a; }ies, Za; X; is normal. IF A is Finite X is a Gaussian vector. Lemma: If X is a Gaussium vector and Xi are uncorrelated (i.e. (or (Xi, Xi)=1) than Xi are independent. Proof: Lot $M := \mathbb{E}X_i$, $\sigma_i^2 = Var(X_i)$ Let Y: be independent, EY:= M; Var (Y:)=0;? Multi-dimensional Characturistic Function 4,(6) = Eei <0, x> For BER Inversion formular so enoygh to prove $\forall \theta, Ee^{i \langle \theta, X \rangle} = Ee^{i \langle \theta, Y \rangle}$ $\langle 0, Y \rangle = \sum_{i} G_{i} Y_{i} \sim N(\Xi G_{i}M_{i}, \Xi G_{i}^{2}\sigma_{i}^{2})$

$$E < 0, X_{2} = \neq E 0, X_{1} = \geq 0, M$$

$$Var < 0, X_{2} = Var (\Xi 0; X_{1}) = \sum_{i,j} (ar (0; X_{i}, 0; Y_{i}))$$

$$= \neq 0,^{2} (ar (X_{i}, X_{j})) = \sum_{i} 0,^{2} \sigma_{i}^{2}$$

$$=> < 0, X_{2} = N (E \ge 0, M_{1}, \Xi 0,^{2} \sigma_{i}^{2}) \stackrel{d}{=} < 0, Y_{2}$$

$$=> < 0, X_{2} = N (E \ge 0, M_{1}, \Xi 0,^{2} \sigma_{i}^{2}) \stackrel{d}{=} < 0, Y_{2}$$

$$=> < 0, X_{2} = N (E \ge 0, M_{1}, \Xi 0,^{2} \sigma_{i}^{2}) \stackrel{d}{=} < 0, Y_{2}$$

$$=> < 0, X_{2} = N (E \ge 0, M_{1}, \Xi 0,^{2} \sigma_{i}^{2}) \stackrel{d}{=} < 0, Y_{2}$$

$$=> < 0, X_{2} = (Y_{1} 0).$$

$$Hance X \stackrel{d}{=} Y \qquad S \qquad X_{i} \quad ure \qquad in dypen deal.$$

$$A dvd \qquad matrix \quad V \quad is \qquad non-negative \qquad sem i - de finite$$

$$if \quad \forall D \in \mathbb{R}^{d}, \quad 0^{T} V = \neq 0.$$

$$V = (V_{ij}) \qquad V_{ij} = (ar (X_{ij}, X_{j}) + than$$

$$V \quad is \qquad symmetric \qquad non-negative \qquad sem i - de finite.$$

$$Lot \quad Y = \Xi 0; X_{i}. \qquad Than$$

$$0 \le Var(Y) = \sum_{ij} (ar (0; X_{ij}, 0; X_{j})) = \sum_{ij} 0: V_{ij} 0;$$

$$= 0^{T} V 0.$$

Theorem For each $M \in \mathbb{R}^d$, $V \, dvd \, NSD \, Matrix$ thene is a Unique Gaussium Vector distribution distribution $N_d(M, V)$ such that for $Y \sim N_d(M, V)$, EY = M, $Cov(Y_i, Y_i) = V_{ij}$

In particlular a Gaussian vector is
determined by its mean and co-variance
If V he full rank it has a dasity

$$f_{y}(b) = \int_{(2\pi)}^{1} \int_{D_{c}+V}^{D_{c}} exp(-\frac{1}{2}(b-n)^{T}V^{T}(b-n))$$
.
Prof:
If V, \hat{Y} have the same mean, covariance then
 $e \theta$, Y_{2} , $e \theta$, $\hat{Y}_{2} \stackrel{d}{=} N(\overline{z} \theta; n; \theta^{T}V\theta)$
 $S = \Psi_{y}(\theta) = \Psi_{\overline{y}}(\theta)$.
(construction of Y given M.V.
Let $\overline{z} = (\overline{z}_{1}, ..., \overline{z}_{d})$ be an IID value of $N(\underline{e}_{1})$.
If V is NSD there exists U orthonorm, $U^{T}U = \overline{I}$,
and D diagonal such that
 $V = U^{T} D^{T} U$.
Let $A = DU$, $Y = A^{T}\overline{z} + M$, $EY = M$.
 $(\omega(Y_{1}, Y_{1}) = E[(\overline{z} A^{T}\overline{z}z_{1})(\overline{z}, A^{T}\overline{z}z_{1}\overline{z}_{2})]$
 $= E[\overline{z} A^{T}\overline{z} A^{T}\overline{z}z_{1}]$
If V is full rank, So is D and so is A.
A is invertible transform and have a density.
If V is not full rank then $\exists \theta \neq 0$ such that

Proof a) Lindebergs Method b) Charactaristic Fundions () Tightness:

A family
$$\Gamma = \{M_n\}$$
 or probability measures is
relatively compact if for any $M_1, M_2, \dots \in \Gamma$
exists subsequence N_n such that
 $M_{N_n} \longrightarrow V$ concerges weakly
 $(V may not be in \Gamma.).$

_

.

We will do case of IR.

If
$$\Gamma$$
 not tight, $\exists z > 0$ and M_n
such that $M_n(B_n) \leq 1 - \epsilon$.
If $M_n \xrightarrow{m} M$, $\exists M$ such that
 $M(B_m) > 1 - \frac{z}{2}$ contradiction.
The does exist a sub-probability measure limit.

Choose
$$q_1, q_2, ...$$
 an enumeration of Q_1 .
For each q_1 , $F_n(q_1) \subseteq [0,1]$ must have accomplation points.

Find a subsequence
$$n_{k}^{(1)}$$
 such that
 $F_{n_{k}^{(1)}}(q_{1}) \rightarrow H(q_{1}).$
Find a Further subsequence $n_{k}^{(2)}$ such that
 $F_{n_{k}^{(2)}}(q_{2}) \rightarrow H(q_{2}).$
 $h_{k}^{\alpha_{1}} \leq n_{k}^{(1)}$
 $n_{1}^{(2)} = n_{1}^{(1)}$

Lentinue SD THM The Satisfies,
•
$$F_{N_{k}}^{(i)}(q_{i}) \rightarrow H(q_{i})$$

• $n_{k}^{(i)} \leq n_{k}^{(i-1)}$
• $n_{j}^{(i)} = n_{j}^{(i-1)}$ for $1 \leq j \leq i$.
Let $n_{k} = n_{k}^{(i)}$. Then $n_{k} \leq n_{k}^{(i)}$ for all j
so $F_{n_{k}}(q_{i}) \rightarrow H(q_{i})$
where $H: Q \rightarrow Co, IJ$ is non-decreasing.
Set $H: R \rightarrow Co, IJ$ is non-decreasing.
Set $H: R \rightarrow Co, IJ$ as
• $\tilde{H}(z) = inf \leq H(q): q > z \geq z$.
Then $\tilde{H}(z)$ is
a) non-decreasing
b) right continuous since if $\tilde{H}(z) < h$
 $H_{n} = q_{TX}$ with $H_{CQ} > h$ so
 $\tilde{H}(y) < h$ for all $z \leq y < q$.
c) If z is a continuity point of $\tilde{H}(z)$
then $F_{n_{k}}(z) \rightarrow \tilde{H}(z)$.
 $\forall z > o, \exists \delta$ such that $\tilde{H}(y) \in (H(z_{1}-z, H(z_{1}+z))$
 $for $y \in I \ge z < z + \delta = I$.
If $q \in Qn$ $(z - \delta, z + \delta)$ the
 $F_{n_{1}} \rightarrow H_{n} < F_{n_{1}} < z < J$$

Lemma: If every subsequence $N_{\mathbf{k}}$ has a further subsequence $n'_{\mathbf{k}} \subseteq n_{\mathbf{k}}$ such that $M_{n'_{\mathbf{k}}} \longrightarrow M$ then $M_{\mathbf{n}} \longrightarrow M$.

Proof: If
$$f \in C_B$$
, need to show $S f dm_n \rightarrow S f dm$.
take n_n such that
linsup $S f dm_n = \lim S f dm_{n_n}$
 $Also = \lim S f dm_{n_n'} = S f dm$
so $\limsup S f dm_n = S f dm$
 $Similarly \liminf S f dm_n = S f dm$.
Hence $Mn \xrightarrow{n} M$.

Back to
$$(LT:$$

• Let M_n be the law of $\sum_{i=1}^{n} (li \cdot M) / Vn$.
• By Chebysher's hequality M_n are tight.
• Let N_n be a subsequence
 $-B_3$ Prohorow $\exists n_n' \in N_n$ such that
 $M_{n_n'} \xrightarrow{W} V$ for some V .
We will show that $V \sim N_d(O, V)$.
Let $Z_n \sim M_n$ and $Z \sim V$.
For any $\Theta \in \mathbb{R}^d$, $(\Theta, Z_n) \xrightarrow{d} N(O, \Theta^T V \Theta)$
by regular CLT .

)f $f \in C_{B}(IR)$ then $g: IR^{d} \rightarrow IR$ $g(z) = f(z_{0,z}) \in C_{B}(IR^{d})$ so $\mathbb{E} g(Z_{n_{a}^{+}}) \rightarrow \mathbb{E} g(Z) = \mathbb{E} f(z_{0}, Z_{2})$ $= \mathbb{E} f(z_{0}, Z_{n_{a}^{+}}) \rightarrow \mathbb{E} f(N(0, 0^{T}V0))$ Hence $0^{T}Z \stackrel{d}{=} N(0, 0^{T}V0)$. So Z is Gaussian (all linear combinations are Gaussian) and must be $N(0, 0^{T}V0)$. Hence $M_{n} \stackrel{d}{\rightarrow} N_{d}(0, V)$.