
SPIN SYSTEMS ON RANDOM GRAPHS AND RANDOM

CONSTRAINT SATISFACTION PROBLEMS

For the second half of the course we will consider models of spin systems

on random graphs and their fascinating random of thresholds and phase

transitions. Examples of this class of models include colourings of random

graphs and the random K-SAT model. Throughout we will focus on the

example of the maximal independent set of a random regular graph. Ideas

from statistical physics describe a series of phase transitions these models

go through as the density of constraints increases.

1. Spin systems

A constraint satisfaction problem or CSP consists of a set of variables

subject to a collection of constraints. A simple example of this is a proper

q-colouring of a graph. The variables are the colours of the vertices and

the edges are the constraints, that neighbouring vertices must have differ-

ent colours. A random constraint satisfaction problem is a CSP where the

collection of constraints are chosen randomly from some distribution. The

analogue would be colourings of a random graph. We will be interested in

the question of how many constraints a random CSP can have while still be-

ing satisfiable (the satisfiability threshold), how many satisfying assignments

of the variables there are, the geometry of how the solutions are arranged

and the algorithmic question of finding solutions efficiently.

Another variant of CSPs is to find the satisfying assignment that max-

imizes some objective function. A natural example of this is the maximal

independent set question. An independent set of a graph G = (V,E) is a

subset I ⊂ V such that now two vertices of I share an edge. We will build

up towards an understanding of this problem for random d-regular graphs

when d is large.

In this theory it is often best to consider a random solution of the CSP

which leads us to the study of spin systems. These models, also called

graphical models or Markov random fields in some areas, are a broad class

of stochastic processes on networks giving a probability distribution on X V
for some (usually) discrete set X , satisfying a local Markov property. Let

us take the example of a random uniformly chosen independent set which

consider as an element σ ∈ {0, 1}V where σu is the indicator that u is in the
1
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independent set. We can write this as

P[σ] =
1

Z

∏
u∼v

I(σuσv = 0)

where the normalizing constant Z, called the partition function, is in the

case simply the number of independent sets. Of course we will be interested

in larger independent sets so it is useful to give larger weight to larger

independent sets. The Hardcore Model is a distribution over independent

sets given by

P[σ] =
1

Zλ
λ
∑
u σu

∏
u∼v

I(σuσv = 0)

This is a special case of a more general collection of models called spin

systems. These are distributions over X V of the form

µ(σ) =
1

Z

∏
u∈V

ψu(σu)
∏

(u,v)∈E

ψu,v(σu, σv) (1.1)

where {ψu}u∈V and {ψu,v}(u,v)∈E are non-negative functions on X and X 2

respectively. In most cases we will consider homogeneous spin systems where

the ψu (resp. ψu,v) do not depend on the vertex u (resp. edge (u, v)). In

each case the partition function Z is the normalizing constant to make the

distribution a probability measure. The value σu at the vertex u is called

the spin at u. We give some examples.

Example 1. The Ising model is a distribution over {−1, 1}V given by

µ(σ) =
1

Z
exp

(
β
∑
u∼v

σuσv + h
∑
u

σu

)
.

The parameter β is called the inverse temperature and h is called the ex-

ternal field. These terms come from statistical mechanics where the Ising

model originated as a model of magnetic systems such as a piece of iron. It

is called ferromagnetic when β > 0 and anti-ferromagnetic when β < 0. In

the ferromagnetic case spin configurations with neighbouring spins agreeing

tend to get more weight and the strength of these interactions are governed

by the magnitude of β. As β is the inverse temperature, high temperature

refers to small values of β and weaker interaction while low temperatures

refers to large β and strong interactions.

Example 2. A generalization of the Ising model to more spins is the q-state

Potts model which takes values in [q]V (where [k] denotes {1, . . . , q}) given

by

µ(σ) =
1

Z
exp

(
β
∑
u∼v

I(σu = σv)

)
.
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When q = 2 this is the Ising distribution but with a factor of 2 difference

in β. A special case of the anti-ferromagnetic Potts model with β = −∞
(referred to as zero temperature) corresponds to a uniform q-colouring of

the graph

µ(σ) =
1

Z

∏
u∼v

I(σu 6= σv).

In this case Z is the number of proper q-colourings.

1.1. Markov Random Field Property. Spin systems share a spatial

Markov property. If A ⊂ V we write the exterior boundary of A as

∂A := {v ∈ V \A : ∃u ∈ A, (u, v) ∈ E}.

The following lemma says that to understand the conditional distribution

of σ on A given the rest of the conriguration it is enough to know σ on ∂A.

Lemma 3. For a Markov random Field σ and A ⊂ V and any x ∈ X V ,

P[σA = xA | σAc = xAc ] = P[σA = xA | σ∂A = x∂A].

Proof. Let x′A be another configuration on A and let

yu =

{
x′u u ∈ A
xu u ∈ Ac.

Then

P[σA = x′A | σAc = xAc ]

P[σA = xA | σAc = xAc ]
=

1
Z

∏
u∈V ψu(yu)

∏
(u,v)∈E ψu,v(yu, yv)

1
Z

∏
u∈V ψu(xu)

∏
(u,v)∈E ψu,v(xu, xv)

=

∏
u∈A ψu(x′u)

∏
(u,v)∈E(A∪∂A) ψu,v(x

′
u, x
′
v)∏

u∈A ψu(xu)
∏

(u,v)∈E(A∪∂A) ψu,v(xu, xv)
.

The lemma follows from the fact that the formula does not depend on xAc

expect for x∂A. �

The distribution of σA given σ∂A = x∂A is simply the spin system on

A∪∂A with the spins on ∂A fixed to x∂A. It may be the case, for example for

colourings, that not every boundary condition gives to configurations with

positive probability. We call a spin system permissive if for every boundary

condition on ∂A, the is a configuration of A with positive probability. The

hardcore model is permissive because the empty independent set always has

positive probability.
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1.2. Infinite Graphs. So far we have only defined the model on finite

graphs and in general (1.1) only makes sense on finite graphs. But we will

want to take limits of graphs so defining spin systems on infinite graphs

is important. This is done via the conditional distribution property from

Lemma 3. On an infinite graph V with a set of weights {ψu}, {ψu,v} a

measure µ on X V is infinite a Gibbs measure for the spin system if for any

finite A ⊂ V ,

P[σA = xA | σAc = xAc ] = P[σA = xA | σ∂A = x∂A]

holds and the conditional distribution is given by (1.1) on the finite graph

A ∪ ∂A. This is called the DLR property for Dobrushin–Lanford–Ruelle.

1.2.1. Existence. For all permissive spin systems, Gibbs measures exist.

They can be constructed from taking limits of measures on finite spin sys-

tems. Let {Di}i≥1 be an increasing sequence of finite sets with Di ↑ V , let

x(i) be a sequence of boundary conditions on V \Di. This define a sequence

µi of measures on XDi given by

P[σDi | σ∂Di = d∂Di ].

We say the sequence converges if its pushforward onto XA converges for all

finite A. Note that A will be s subset of Di for all sufficiently large i. The

sequence may not converge for all choices of boundary conditions but by

compactness some subsequence will converge. This gives rise to a measure

µ on X V . As the Markov random field property holds for all finite µi, the

limit measure µ will also satisfy it and thus is a Gibbs measure.

1.2.2. Uniqueness. Given the existence of Gibbs measures, it is natural to

ask if they are unique in which case we say the spin system has uniqueness.

This, as we will see, depends on the spin system. For the ferromagnetic

Ising model on Zd with d ≥ 2 and with no external field h = 0, there is

a critical βc such that there is uniqueness for β ≤ βc and non-uniqueness

for β > βc. We will consider the case of large and small β but leave the

behaviour around the critical temperature (see [?] for more details).

Large β: At low temperature the Ising model can be shown to have

multiple Gibbs measures. We will consider the case V = Z2 where Di are

boxes or radius i and the boundary conditions are all plus. First we will

derive some monotonicity properties of the Ising model.

We say that an event B on a partially ordered set is increasing if x ∈ B
implies x′ ∈ B for all x′ ≥ x. A measure µ stochastically dominates a

measure µ′ if for all increasing sets B,

µ(B) ≥ µ′(B)
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which we denote by µ � µ′. If µ stochastically dominates µ′ then there

exists a coupling of σ ∼ µ and σ′ ∼ µ′ such that σ ≥ σ′.

Lemma 4. For the ferromagnetic Ising model, if A is a set and x ≤ x′ are

two boundary conditions on ∂A, then

P[σA ∈ · | σ∂A = x∂A] � P[σA ∈ · | σ∂A = x′∂A].

To prove this we will introduce the Glauber dynamics Markov chain. This

is a Markov chain Xt taking values in X V which can be defined for any spin

system µ and is reversible with respect to µ, giving a way to simulate the

distribution using Markov Chain Monte Carlo (MCMC) which essentially

means running the Markov chain long enough until the chain is close to its

stationary disribution. The transitions of Xt are as follows:

• Choose v ∈ V uniformly at randomly.

• Set Xt+1(u) = Xt(u) for u 6= v.

• Pick at+1 according to the measure P[σv ∈ · | v, σ∂v = Xt(∂v)] and

set Xt+1(v) = at+1.

A variant of the Glauber dynamics, which can be defined on infinite graphs,

is its continuous time version where each spin is updated at times given by

independent rate 1 Poisson clocks. In the case of the Ising model, the spin

would be set to + with probability

eh+β
∑
v∈∂AXt(v)

eh+β
∑
v∈∂AXt(v) + e−h−β

∑
v∈∂AXt(v)

(1.2)

which is an increasing function for the ferromagnetic Ising model.

Lemma 4. Let Xt and X ′t be the Ising model on A with boundary conditions

x, x′ respectively on ∂A and X0 ≥ X ′0. By equation (1.2) the probability of

updating a vertex to a plus is increasing in Xt so we can couple Xt and X ′t
so that the same vertex is chosen to be update and that Xt ≥ X ′t for all t.

Let B ⊂ XA be an increasing set, then

P[Xt ∈ B] ≥ P[X ′t ∈ B]

Xt
d→ P[σA ∈ · | σ∂A = x∂A]

X ′t
d→ P[σA ∈ · | σ∂A = x′∂A]

and so

P[σA ∈ · | σ∂A = x∂A] ≥ P[σA ∈ · | σ∂A = x′∂A]

which completes the proof. �
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It is similarly true that conditioning on more spins to be + stochastically

increases the measure so if D ⊂ D′ and if xV \D′ ≥ x′V \D′ then

P[σD ∈ · | σD′\D = +, σV \D′ = xV \D′ ] � P[σD ∈ · | σV \D′ = x′V \D′ ].

Now consider a sequence of measures µi on Di with all plus boundary con-

ditions, which we can interpret as conditioned to be all plus outside of Di.

Then µi is a stochastically decreasing set of measures and so converges to a

limit µ+, called theplus measure. The plus measure stochastically dominates

all Gibbs measures. We can construct µ− in the same way and for all Gibbs

measures

µ− � µ � µ+.
So it will be enough to check if µ− 6= µ+. We begin with the case of β small.

The dual lattice has edge set

Z2
∗ = {(x+

1

2
, y +

1

2
) : (u, v) ∈ Z2}.

and edges between vertices at distance 1. Let C be the set of closed self-

avoiding paths in Z2
∗ and let C0 be the set of such contours whose interior

contains the origin. Let Bγ be the event that σ is all plus on the exterior

boundary of γ and all minus on the interior boundary of γ.

Suppose that σ0 = − under µi. Let A = A(σ) be the set connected

component of minuses in Z2 that contains the origin and let γA be the

contour in C0 that surrounds it. Then BγA holds. Now for a configuration

x ∈ X V construct the configuration xγ where all the signs in the interior of

γ are flipped.

xγu =

{
−xu if u is in the interior of γ,

xu otherwise.

for neighbouring vertices u ∼ v the sign of σuσv only changes when one

vertex is in the interior and the other is in the exterior. When Bγ holds all

are switched from minus to plus. Thus

µi(x) = e−2β|γ|µi(x
γ)

for x ∈ Bγ . Hence

µi(Bγ) =
∑
x∈Bγ

µi(x) = e−2β|γ|
∑
x∈Bγ

µi(x
γ) ≤ e−2β|γ|

since the xγ are distinct and the sum of their probabilities is bounded by 1.

Since BγA holds,

µi(σ0 = −) ≤
∑
γ∈C0

µi(Bγ) ≤
∑
γ∈C0

e−2β|γ|.
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Any such contour is at least length 4. To count the number of contours of

length ` in C0 note that they must cross the positive x-axis within distance

` of the origin and after that edge at each step there are at most 3 choices

giving a total of at most `3`. Thus

µi(σ0 = −) ≤
∑
`≥4

`3`e−2β`

and so when β ≥ 1 we have that µi(σ0 = −) ≤ 1
3 and so µ+(σ0 = −) ≤ 1

3 .

By symmetry µ+(σ0 = −) ≥ 2
3 so µ− 6= µ+ and we have non-uniqueness.

This is called the Peierls Argument.

These two Gibbs measures are translation invariant and have different

densities of pluses and minuses. In dimension 2 the only Gibbs measures

are mixtures of µ+ and µ− but in higher dimensions there are more exotic

boundary conditions called Dobrushin states where the configuration is pre-

dominantly plus on one sides of the hyperplane y ≥ 0 and predominantly

minus on the other.

Small β: We’ll give two proofs that there is a unique Gibbs measure

when β is small. For the first we introduce the Fortuin-Kasteleyn model,

sometimes known as the random cluster model or the FK-model. The q-

state FK model is a probability distribution over percolation configurations

ξ ∈ {0, 1}E given by

P[ξ = w] =
1

Z
p
∑
e∈E we(1− p)|E|−

∑
e∈E weqC(w).

where C(w) is the number of connected components of the configuration w.

Note that the case of q = 1 corresponds to independent percolation. We will

write u↔ v to mean that there is a path of open edges in ξ from u to v.

Lemma 5. The FK-model with q > 1 is stochastically dominated by bond

percolation with probability p.

Proof. For an edge e = (u, v) we calculate

P[ξe = 1 | ξE\e] =

{
p, if u↔ vinξE\e

p
p+2(1−p) , otherwise.

In each case P[ξe = 1 | ξE\e] ≤ 1 and thus if we reveal the edges of ξ

one by one we can stochastically dominate it by Bernoulli percolation with

probability p. �

The Edwards-Sokal coupling is a joint distribution of the Ising (or Potts)

model and the FK-model. Given an FK-configuration ξ one chooses a Potts

configuration [q]V as follows. Choose an independent uniform spin sA from

[q] for each component A of the percolation cluster ξ. Assign σu = sA for all
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u ∈ A. A pair (σ, ξ) is admissible if the spins in each percolation component

are constant and let A denote the set of admissible pairs. We can calculate

P[(σ, ξ) = (x,w)] = P[ξ = w]q−C(w) =
1

Z
p
∑
e∈E we(1− p)|E|−

∑
e∈E we .

Then with β = − log(1− p),

P[σ = x] =
∑

w:(x,w)∈A

P[(σ, ξ) = (x,w)]

=
1

Z

∑
w:(x,w)∈A

p
∑
e∈E we(1− p)|E|−

∑
e∈E we

=
1

Z

∏
u∼v

(1− p)I(σu 6= σv)

=
1

Z ′

∏
u∼v

exp(−βI(σu 6= σv)) =
1

Z ′′
exp(β

∑
u∼v

I(σu = σv))

using the fact that admissability means that w(u,v) must be 0 if σu 6= σv and

can be either 0 or 1 if σu = σv. Thus the marginal σ is distributed according

to the q-state Potts model.

Now let us construct the measure µi in terms of the FK model. The all

plus boundary condition on Di corresponds to the wired boundary condition

on Di in the FK-model meaning that all the vertices of ∂Di are connected

together and the spins will be set to +. Thus

µi(σ0 = +) = µi(0↔ ∂Di) +
1

2
(1− µi(0↔ ∂Di)) =

1

2
+

1

2
µi(0↔ ∂Di)

since if 0 6↔ ∂Di then σ0 is set to + with probability 1
2 . By Lemma 5

µi(0↔ ∂Di) is bounded above by the probability of a connection from 0 to

∂Di in bond percolation. This means that there is an open path of length

at least i starting at 0 each of which has probability pi. There are at most

4i such paths so if p < 1
4 ,

µi(0↔ ∂Di) ≤ (4p)i → 0.

Hence for p < 1
4 which corresponds to β < log(43) we have that µi(σ0 =

+)→ 1
2 and so µ+(σ0 = +) = 1

2 . Similarly µ−(σ0 = +) = 1
2 . By translation

invariance this holds for al vertices in Z2. Since µ+ stochastically dominates

µ− we can find couple σ± ∼ µ± so that σ+ ≥ σ−. So

P[σ+v 6= σ−v ] = P[σ+v = 1, σ−v = −1] = P[σ+v = 1]P[σ−v = −1] = 0.

Thus σ+ ≡ σ− and so µ+ = µ− and there is a unique Gibbs measure.

In this argument we specifically used the monotonicity of the Ising model.

Many spin systems are not monotone but nonetheless if they have weak

interactions there will still be a unique Gibbs measure. Another argument
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can be given in terms of the Glauber dynamics. On the lattice Zd suppose

that

max
v,x∂v ,x

′
∂v

dTV (P[σv ∈ · | σ∂v = x∂v],P[σv ∈ · | σ′∂v = x′∂v]) ≤
1− ε
2d

. (1.3)

Note this condition can be strengthened, stronger versions include the Do-

brushin and the Dobrushin–Shlosman conditions. Let µ and µ′ be two Gibbs

measures of the spin system and Xt, X
′
t be continuous time Glauber dynam-

ics initialized with X0 ∼ µ and X ′0 ∼ µ′. The Glauber dynamics is reversible

with respect to any Gibbs measure so Xt ∼ µ and X ′t ∼ µ′ for all t. We

couple the two chains so that vertices are updated at the same time, that is

the same Poisson clocks are used. Also for each update we couple the choice

of a new spin to minimize the probability that the disagree. Condition (1.3)

ensures that when a vertex v is updated the probability of a disagreement

is never more than 1−ε
2d and if Xt(∂v) = X ′t(∂v) then we can update both

chains with the same spin. We choose α satisfying 1− ε < α < 1 and set

Dt =
∑
v∈V

αd(v,0)I(Xt(v) 6= X ′t(v))

To measure the amount of disagreement between Xt and X ′t. When a vertex

v with a disagreement is updated its disagreement is (possibly temporarily)

removed and Dt decreases by αd(v,0). But v has a disagreement and its

neighbour is updated with some probability, bounded by 1−ε
2d , the neighbour

may become disagreeing. Thus with Ft denoting the filtration generated by

the chains,

d

dt
E[Dt | Ft] ≤

∑
v∈V
−αd(v,0) +

1− ε
2d

∑
u∼v

αd(v,0) ≤ Dt((1− ε)α−1 − 1)

Since ((1− ε)α−1 − 1) and D0 ≤
∑

v∈V α
d(v,0) <∞, we have that EDt → 0

exponentially quickly. Hence for any finite A ⊂ Z2 we have that P[Xt(A) 6=
Xt(A)] → 0. But Xt and X ′t are stationary so their stationary measures

must be identical. Hence there is a unique Gibbs measure.

2. Spin systems on Trees

As tree are the local weak limits of random graphs, spin systems on trees

play a major role in understanding spin systems on random graphs. The

Markov property is particularly useful here as conditional on the spin at one

vertex, it’s neighbours are conditionally independent. This conditional inde-

pendence makes the models amenable to recursive calculations of marginals.

[Add Figure]

Let T be a finite tree rooted at ρ with children u1, . . . , ud and let T ′ be

the graph with the edges at ρ removed. We will denote PG denote the Gibbs
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measure on a graph G. We will relate the marginal of ρ in T in terms of

the marginal of the ui in the T ′ which will give a method for recursively

calculating marginal distributions.

Let Ti be the subtree rooted at ui and let mui→ρ(xi) = PTi [σui = xi]

denote the marginal of ui in Ti. In the graph T ′ subtrees Ti are discon-

nected and so their spins are independent. Then summing over all the spin

configurations on ρ and the ui,

ZT =
∑
x∈X

ψ(x)
∑

{xi}∈X d

d∏
i=1

ψ(x, xi)mui→ρ(xi)ZTi

=
∑
x∈X

ψ(x)
d∏
i=1

∑
xi∈X

ψ(x, xi)mui→ρ(xi)ZTi



and

PT [σρ = xρ] =
ψ(xρ)

∏d
i=1

(∑
xi∈X ψ(xρ, xi)mui→ρ(xi)

)∑
x′∈X ψ(x′)

∏d
i=1

(∑
xi∈X ψ(x′, xi)mui→ρ(xi)

) (2.1)

Building up from the leaves this gives an algorithm to determine the mar-

ginal at the root. We can formalize this in terms of what are called message

passing algorithms. Let
−→
E be the set of directed edges in the graph. For

(u, v) ∈
−→
E we write

mu→v(xu) := PT\(u,v)[σu = xu]

where T \(u, v) is the tree T with the edge (u, v) removed. This is interpreted

as the message from u telling v what it believes its marginal is removing the

effect of v. For u a leaf of the tree,

mu→v(xu) =
ψ(xu)∑
x′∈X ψ(x′)

.

The beliefs on internal edges can be calculated by applying the same rea-

soning as in equation (2.1),

mu→v(xu) =
ψ(xu)

∏
w∈∂u\v

(∑
xw∈X ψ(xu, xw)mw→u(xi)

)∑
x′∈X ψ(x′)

∏
w∈∂u\v

(∑
xw∈X ψ(x′, xw)mw→u(xi)

)
=: BP [{mw→u}w∈∂u\v](xu).

The function BP is called the belief propagation function. The marginal

distribution at a vertex is simply

PT [σv = xv] = BP [{mu→v}u∈∂v](xu)
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A set of messages {ru→v}(u,v)∈−→E is a BP-fixed point if

ru→v = BP [{rw→u}w∈∂u\v] (2.2)

for all (u, v) ∈
−→
E . Our construction show that on a tree this is unique.

However, on an infinite tree or a graph with cycles there may be multiple

BP-fixed points

On an infinite graph each set of BP messages {ru→v} defines a Gibbs

measure. The distribution of σA for a finite connected set A ⊂ V is given

by

µr[σA = xA] =
1

Z

∑
x∂A∈X∂A

∏
u∼v

u∈∂A,v∈A

ru→v(xu)ψ(xu, xv)
∏
v∈A

ψ(xv)
∏
v∼v′
v,v′∈A

ψ(v, v′)

which can be verified to satisfy the properties of a Gibbs measure. The effect

of the measure outside of A∪ ∂A is to change ψu with ru→v(xu) on ∂A. We

will let µr generated by the Gibbs measure from the BP-fixed point r.

A special case of a BP-fixed point in a d-regular tree is when all the

messages in the tree are constant and

m = BP [m, . . . ,m] (2.3)

for d−1 copies of m. We will call this a translation invariant BP-fixed point

or TIFP. For any homogeneous spin system there is always a TIFP by the

Brouwer fixed-point theorem and gives rise to a translation invariant Gibbs

measure.

Ising model: We calculate the TIFPs in the case of the Ferromagnetic

Ising model on a d + 1 regular tree. We parameterise the marginals by

y = mu→v(+)− 1
2 and equation (2.2) gives

y = BP [m, . . . ,m]− 1

2

=
((12 + y)eβ + (12 − y)e−β)d

((12 + y)eβ + (12 − y)e−β)d + ((12 + y)eβ + (12 − y)e−β)d
− 1

2

=
1
2(1 + 2y tanhβ)d − 1

2(1− 2y tanhβ)d

(1 + 2y tanhβ)d + (1− 2y tanhβ)d
=: f(y).

[Figure of f(y)]

The TIFP for the Ising model correspond to solutions of y = f(y). We

always have f(0) = 0 as a solution which corresponds to mu→v(±) = 1
2 , the

Gibbs measure which is symmetric between plus and minus. It is called the

free measure which corresponds to a limit of finite trees with free boundary

conditions, another way of saying no boundary conditions. Let y+ be the

largest root of y = f(y) and y− the smallest root.
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By considering a tree with plus boundary conditions at depth ` from u,

we have

mu→v(+)− 1

2
= f(f(. . . f(

1

2
) . . .)

iterated ` times. Note that since f is an increasing function, this is a de-

creasing sequence which converges to y+, the largest root of y = f(y). Now

the plus measure µ+ is a limit of these boundary conditions as ` goes to

infinity and so is a TIFP whose messages are 1
2 + y+. Similarly µ− is a

TIFP with messages 1
2 + y−.

Note that f is concave for y > 0 and convex for y < 0 so whether the are

multiple solutions is determined by the derivative at 0 which is

f ′(0) = d tanhβ.

There is a unique solution when 0 ≤ d tanhβ ≤ 1 in which case y− = 0 = y+
and so µ− = µ+ and the Gibbs measure is unique. When d tanhβ > 1 there

are three distinct solutions y− < 0 < y+ and three TIFPs corresponding to

the free measures, µ+ and µ−. These are not the only Gibbs measures, for

instance taking plus boundary conditions in some subtrees of the tree and

minus in others can produce a wide range of BP-fixed points which are close

to the plus measure in some parts of the tree and close the minus measure

in others.

In the case of the anti-ferromagnetic Ising model when β < 0 there is only

ever a single solution and so only one TIFP. But there are multiple Gibbs

measures when d tanhβ < −1. In this case there are multiple solutions to

f(f(y)) and they correspond to semi-translation invariant Gibbs measures

where even sites are more likely to be plus and odd sites are more likely

to be minus. Another way to see this is the mapping σ∗u = (−1)d(u,ρ)σu
which flips the spins of the vertices at an odd distance to the root. It can be

verified that σ∗ is distributed according to a ferromagnetic Gibbs measure

with inverse temperature −β > 0.

3. Reconstruction Threshold

The reconstruction problem asks whether distant spins provide informa-

tion about the state at the root or in its neighbourhood under some Gibbs

measure µ. We let B` be the set of vertices at distance at most ` from the

root ρ and S` = {u : d(u, ρ) = `} denote the vertices at distance exactly `.

For a finite set A ⊂ V , we write

nA,`(xA) = µ(σA = xA | σBc` ).

Since σBc` is a random variable, so is nA,`. Note that large enough ` we have

that A ⊂ B` and so by the Markov Random Field Property nA,`(xA) =
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µ(σA = xA | σS`). Furthermore, nA,` is a bounded backwards martingale so

converges almost surely,

nA,`(xA)
a.s→ nA(xA).

Taking expected values,

EnA(xA) = EnA,`(xA) = lim
`
nA,`(xA) = µ(σA = xA).

If nA(xA) were always identically equal to µ(σA = xA) then distant spins

provide no information asymptotically about σA. If this holds for all A

then we say that the reconstruction problem is non-solvable for µ. It is

also equivalent to tail-triviality of the Gibbs measure which we describe as

follows. Conversely if for some xA,

P[nA(xA) 6= µ(σA = xA)] > 0

then we say that the reconstruction problem is solvable. At the same time

we may construct a random BP-fixed point derived from σ as follows. We

set

m(0)
u→v(x) = I(σu = x)

and

m(t)
u→v(x) = BP [{m(t−1)

u′→u(x)}u′∈∂u\v],

that is m
(t)
u→v is the conditional distribution of u in the tree T \ (u, v) with a

boundary condition on at depth t from u given by σ. The joint distribution

of an edge given the spins at distance t is

1

Z
m(t)
u→v(xu)m(t)

v→u(xv)ψ(xu, xv)

Since this converges to n(u,v)(xu, xv) but m
(t)
u→v and m

(t)
v→u as t → ∞. We

denote this limit mu→v = mσ
u→v which by construction must be a BP-fixed

point. The probability nA can be constructed as

nA(XA) =
1

Z

∑
x∂A

∏
u∈A

ψ(xu)
∏
u∼v
u,v∈A

ψ(xu, xv)
∏
u∼v

u∈∂A,v∈A

mu→v(xu)ψ(xu, xv).

An equivalent formulation of solvability of the reconstruction problem is

extremality of Gibbs measures. Recall that any convex combination of Gibbs

measures is also a Gibbs measures. We say a Gibbs measure is extremal or

pure if it cannot be written as a non-trivial convex combination of other

Gibes measures. This decomposition will be important as we consider the

clustering of solutions of random constraint satisfaction problems. The next

lemma shows the equivalence of these two ideas.

Lemma 6. A Gibbs measure µ is extremal if and only if the reconstruction

problem is solvable. The set of measures
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Proof. Let ν be the measure over BP-fixed points mσ induced by µ. The

reconstruction problem being non-solvable is equivalent to the n being de-

terministic which is equivalent to m being deterministic and ν being a point

mass. If ν is not a point mass then µ =
∫
µmν(dm) is a non-trivial con-

vex combination of Gibbs measures so µ is not extremal. Conversely if

µ can be written as a non-trivial convex combination of Gibbs measures

µ = pµ′ + (1− p)µ′′ then we can write ν = pν ′ + (1− p)ν ′′ and so ν cannot

be a point mass since ν ′ 6= ν ′′. �

Clearly in the case of a unique Gibbs measure, it is extremal. But they

are not equivalent, we will see that reconstruction is a strictly stronger

property than non-uniqueness. Let us consider the Ising model and when

its TIFP’s are extremal. The measures µ+ and µ− are extremal as they

are the maximal and minimal measures respectively. This can be seen as

follows, suppose that µ+ = pµ′ + (1− p)µ′′. For any increasing set B,

µ+(B) = pµ′(B) + (1− p)µ′′(B), µ+(B) ≥ µ′(B), µ′′(B)

and so µ+(B) = µ′(B) = µ′′(B). As any I(σA = xA) can be written as

a linear combination of indicators of increasing functions it follows that

µ = µ′ = µ′′ and so µ+ is extremal and similarly µ−.

Now consider the case of the symmetric TIFP where m ≡ 1
2 . This is the

called the free measure as it arises as a limit for free boundary conditions

meaning no spins or interactions on ∂A.

A broadcast model is a random spin configuration on the tree given by the

following Markov model. Let M be a X × X -Markov transition matrix M ,

reversible with respect to π. Then the broadcast model on T given by M

chooses the state of the root σρ according to π and then the state of children

is assigned as P[σu = y | σu+ = x] = Mxy where u+ is the parent of u. Thus

along each path in the tree, the states are given by the Markov chain with

transition M in stationarity. Reversibility means that the distribution does

not depend on the location of the root.

All TIFP are given by broadcast models. This follows from the fact that

if T ′ is the component of T \ (u, u+) containing u+ then by the Markov

random field property,

P[σu = y | σT ] = P[σu = y | σu+ ]

and the transition probability is

Mxy = P[σu = y | σu+ = x] =
ψ(x, y)mu→u+(y)∑

y′∈X ψ(x, y′)mu→u+(y′)
.
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In the case of the free measure

M =

(
1
2 + 1

2θ
1
2 −

1
2θ

1
2 −

1
2θ

1
2 + 1

2θ

)
where θ = tanhβ. The eigenvalues of M are 1 and θ. An alternative

description of the Markov transition is that with probability θ the child has

the same spin as the parent and with probability 1−θ it has an independent

spin. Then for u, v ∈ T ,

Eσuσv = P[σu = σv]− P[σu 6= σv] = 2P[σu = σv]− 1,

and

P[σu = σv] = θd(u,v) +
1

2
(1− θd(u,v)) =

1

2
+

1

2
θd(u,v)

taking them as equal if in each step along the path the child copied the

parent and otherwise the states are independent. Together we have that

Eσuσv = Cov(σu, σv) = θd(u,v).

3.1. Reconstruction and the Kesten-Stigum Bound. If θ is the second

eigenvalue of the broadcast channel the reconstruction problem is always

solvable on the (d + 1)-regular tree or d-ary tree when dθ2 > 1. This was

established by Kesten and Stigum in the context of multi-type branching

processes. Reconstruction is done simply by using only the information on

the number of spins of each type in level ` without using the information of

how those spins are arranged. We will prove this for the free Ising model on

the d-ary tree.

Let

Y` = (dθ)−`
∑
u∈S`

σu.

Then

E[Y` | σρ = 1] = E[Y`σρ] = (dθ)−`d`θ` = 1.

Computing its variance using the fact that each leaf of the tree has (d −
1)dk−1 other leaves at distance 2k,

VarY` = (dθ)−2`
∑
u,v∈S`

Cov(σu, σv)

= (dθ)−2`d`

(
1 +

∑̀
k=1

(d− 1)dk−1θ2k

)

= d`θ−2`
(

1 + (d− 1)θ2
(dθ2)`−1 − 1

dθ2 − 1

)
.

= O(1).



16 ALLAN SLY

where the last equality used the fact that dθ2 > 1. Since E[σu | F`] = θσu+ ,

E[Y`+1 | F`] = (dθ)−`−1
∑

u∈S`+1

E[σu | F`] = (dθ)−`−1
∑
u∈S`

dθσu = Y`

and so Y` is an L2-bounded martingale. Hence Y` converges in L2 to Y such

that

EY, E[Y σρ = 1] = 1, Var(Y ) = O(1).

Since Y is measurably with respect to the tail event σ-algebra but is cor-

related with σρ the reconstruction problem is solvable. For any broadcast

process there is a generalization of this argument proving reconstruction.

3.2. Non-reconstruction for the Ising model. Since there is non-reconstruction

when uniqueness holds we are left with the case of 1
d < θ ≤ 1√

d
.

Theorem 7. When 0 ≤ tanhβ ≤ 1√
d

the reconstruction problem is non-

solvable on the d-ary tree.

Proof. Let ρ be the root of the tree with children u1, . . . , ud. Let mρ,n =

P[σρ = + | σS` ] and let mui,n = m
(n)
ui→ρ(+). We will write E+[·] for E[· |

σρ = +]. Let

xn = E+[mρ,n]− 1

2
.

We will show that xn controls the variance of mρ,n.

Claim 8. The conditional probability satisfies

E[(mρ,n −
1

2
)2] = E+[(mρ,n −

1

2
)2] =

1

2
xn

Proof. The first equality holds by symmetry in plus and minus. Then

xn +
1

2
= E[mρ,n | σρ = +]

=
∑

B∈XS`

P[σρ = + | σS` = B]P[σS` = B | σρ = +]

=
∑

B∈XS`

P[σρ = + | σS` = B]
P[σρ = + | σS` = B]P[σS` = B]

P[σρ = +]

= 2
∑

B∈XS`

P[σρ = + | σS` = B]2P[σS` = B]

= 2E[(mρ,n)2] = 2E[(mρ,n −
1

2
)2] +

1

2
.

�
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Thus showing that xn → 0 will imply that mρ,n converges in probability to
1
2 and there is non-reconstruction. We proceed by analysing xn recursively.

Conditional on the spin at the root, the mui,n are conditionally indepen-

dent and so

E+[mui,n −
1

2
] = (

1

2
+ θ)E[mui,n −

1

2
| σui = +] + (

1

2
− θ)E[mui,n −

1

2
| σui = −]

= θE[mui,n −
1

2
| σui = +] = θxn−1.

We also have that

E+[(mui,n−
1

2
)2] = (1+θ)E[(mui,n−

1

2
)2 | θui = +]+(1−θ)E[(mui,n−

1

2
)2 | θui = −] =

xn−1
2

Then the BP equation gives that

mρ,n =

∏d
i=1

(
1 + 2θ(mui,n − 1

2)
)∏d

i=1

(
1 + 2θ(mui,n − 1

2)
)

+
∏d
i=1

(
1− 2θ(mui,n − 1

2)
) =

Z+

Z+ + Z−
.

where Z± =
∏d
i=1

(
1± 2θ(mui,n − 1

2)
)
. We now evaluate the moments of

Z±. First

E+[Z±] = (1± 2θE+[mui,n −
1

2
])d = (1± 2θxn−1)

d.

For the second moments

E+[Z2
+] =

(
E+[1 + 2θ(mui,n −

1

2
)]2
)d

=

(
1 + 4θE+[mui,n −

1

2
] + 4θ2E+[(mui,n −

1

2
)2]

)d
=
(
1 + 4θ2xn−1 + 4θ2 · xn−1/2

)d
=
(
1 + 6θ2xn−1

)d
.

Similarly

E+[Z2
−] =

(
1− 2θ2xn−1

)d
, E+[Z+Z−] =

(
1− 2θ2xn−1

)d
Using the equality

1

a+ b
=

1

a
− b

a2
+
b2

a2
1

a+ b
,

we have that

mρ,n −
1

2
= =

Z+

Z+ + Z−
− 1

2

=
Z+

2
− Z+(Z+ + Z− − 2)

4
+

(Z+ + Z− − 2)2

4
· Z+

Z+ + Z−
− 1

2

=
Z+

2
− Z+(Z+ + Z− − 2)

4
+

(Z+ + Z− − 2)2

4
− 1

2

=
1

2
+
Z+Z− + Z2

− − 4Z−
4

.
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Taking expected values and using the fact that (1− x)d ≥ 1− xd,

xn ≤ E+

[
1

2
+
Z+Z− + Z2

− − 4Z−
4

]
=

1

2
− 1

2
(1− 2θ2xn−1)

d

≤ 1

2
− 1

2
(1− 2θ2dxn−1)

= dθ2xn−1.

Thus if dθ2 < 1 then xn → 0. In the case dθ2 = 1 a more careful analysis

of the above equation, going to a higher order Taylor Series expansion gives

xn ≤ xn−1−cx2n−1 and so again xn → 0. Thus mρ,n converges in probability

to 1
2 and there the reconstruction problem is non-solvable. �

Thus for the Ising model the Kesten-Stigum bound is in fact tight.

3.3. Freezing and reconstruction for the colouring model. The Kesten-

Stigum bound is not tight for all spin systems as we will prove in the case

of the q-state colouring model, at least for large values of q. In this case

the transition matrix of the broadcast model is Mxy = 1
q−1I(x 6= y) which

has second eigenvalue θ = − 1
(q−1)2 . So the Kesten-Stigum bound implies

reconstruction when d > (q − 1)2.

In the colouring model it is sometimes the case that the boundary con-

dition exactly determines the value at the root which is called freezing. At

depth one this would correspond to all the other colours appearing among

the children of the root leaving the colour of the root as the only possibility.

We write p` for the depth ` freezing probability,

pn := P[mρ→ρ+(x) = 1 | σρ = x],

with p0 = 1. Given a boundary condition at depth `, then Bin(d, pn−1) of

the children of ρ can be determined exactly.

Having all colours appear among the children is an instance of the coupon

collector problem. Let f(n,m) denote the probability that after m IID

samples drawn uniformly from n possible ’coupons’ that all n have appeared

at least once. The well known theorem for the coupon collector problem is

that for any δ > 0,

f(n, (1 + δ)n log n)→ 1, f(n, (1− δ)n log n)→ 0

as n→∞. If m of the children of the root are known exactly, then the root

is known with probability f(q − 1,m). Thus

pn = E[f (q − 1,Bin(d, pn−1))]
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If d ≥ (1 + ε)q log q then for large enough q and δ > 0 sufficiently small,

P[Bin(d, 1− δ) ≥ (1 + ε/2)q log q] ≥ 1− δ/2,

and

f (q − 1, (1 + ε/2)q log q) ≥ 1− δ
1− δ/2

.

Thus if pn−1 ≥ 1− δ then

pn ≥ E[f (q − 1,Bin(d, 1− δ))] ≥ 1− δ,

and inf pn ≥ 1 − δ which implies the reconstruction problem is solvable

since the root is frozen with probability bounded away from 0. Conversely

if d ≤ q log q it can be shown that there is non-reconstruction for large q so

q log q gives the correct asymptotics, much smaller that (q − 1)2 from the

Kesten-Stigum bound.

4. Free Energy and the Ising model on Random Graphs

A key quantity in the analysis of spin systems and random CSPs is the

free energy, the normalized log-partition funciton

Φ = lim
n→∞

1

n
logZn

assuming the limit exists. We will consider three methods for evaluating the

free energy, the cavity method, interpolation and moments. We will begin

with the cavity method which is a non-rigourous method from statistical

mechanics but is can be made rigorous in some cases.

A sequence of graphs Gn is locally treelike if for all `,

1

n
#{v : B`(v) is a tree} → 1.

We will consider methods for evaluating the free energy of a d-regular locally

treelike sequence of graphs which have the infinite d-regular tree as the local

weak limit. The classic example is of such a sequence are the random d-

regular graphs. Consider the following operation for removing two vertices

of the graph. Start with the graph G = Gn, pick two vertices ρ, ρ′ uniformly

at random and remove them to form the graph G− with n − 2 vertices, 2d

of which have degree d − 1 (note we are removing two vertices in case d is

odd). Choosing a uniform perfect matching of these vertices we add d edges

to form Gn−2, a d-regular graph on n− 2 vertices. If Gn is chosen from the

configuration model, the so if Gn−2. If we only assume that Gn is locally

treelike then the following lemma show that after many iterations of this

operation, it remains locally treelike.
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Lemma 9. For all δ, ` > 0 and 0 < α < 1, there exists δ′, `′ > 0 such

1

n
#{v ∈ Gn : B`′(v) is a tree in Gn} ≥ 1− δ′.

then for all k ∈ [0, 1−α2 n] with Gn−2k

1

n
#{v ∈ Gn−2k : B`(v) is a tree in Gn−2k} ≥ 1− δ.

Now suppose that the local weak limit of the graph Gn and a configuration

σ from the spin system ψ was a Gibbs measure µ on the infinite d-regular tree

given by an extremal TIFP with message m. If u1, . . . , ud are the neighbours

of ρ then for large `, then extremality means that the distribution of σρ∪∂ρ
is almost independent of σS`(ρ) and

P[σρ∪∂ρ = xρ∪∂ρ | S`(ρ)] ≈
ψ(xρ)

∏d
i=1 (ψ(xρ, xi)m(xui))∑

x′∈X ψ(x′ρ)
∏d
i=1

(∑
x′ui∈X

ψ(x′ρ, xi)m(xu′i)
) .

Then provided d(ρ, ρ′) > 2`+ 2,

P[σρ∪∂ρ = xρ∪∂ρ, σρ′∪∂ρ′ = x′ρ′∪∂ρ′ ]

= EP[σρ∪∂ρ = xρ∪∂ρ, σρ′∪∂ρ′ = x′ρ′∪∂ρ′ | S`(ρ), S`(ρ
′)]

= EP[σρ∪∂ρ = xρ∪∂ρ | S`(ρ)]P[σρ′∪∂ρ′ = x′ρ′∪∂ρ′ | S`(ρ′)]
≈ P[σρ∪∂ρ = xρ∪∂ρ]P[σρ′∪∂ρ′ = x′ρ′∪∂ρ′ ]

where the second inequality used the Markov Random Field property. Thus

the distribution in the local negibourhoods of ρ and ρ′ are asymptotically

independent and we can calculate the effect of the change in the partition

function from Gn to Gn−2. First note that since

PGn [σρ∪∂ρ = xρ∪∂ρ] ∝ ψ(xρ)
d∏
i=1

(ψ(xρ, xi)m(xui))

we have that

PG− [σ∂ρ = x∂ρ] =

d∏
i=1

m(xui).

Then we define the effect on the partition function of removing a vertex

from a tree with messages m as

Φvertex(m) := log
∑
x∈X

ψ(xρ)

d∏
i=1

 ∑
xui∈X

ψ(xρ, xi)m(xui)


Applying this to the neighbourhood of ρ and ρ′ and the fact thatt they are

approximately independent we have that

log
Gn
Z−

= 2Φvertex(m) + o(1)
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Similarly the effect of removing an edge,

Φedge(m) := log
∑

x,x′∈X
ψ(x, x′)m(x)m(x′),

and so removing d edges from Gn−2 to form G− we have that

log
Gn
Z−

= dΦedge(m) + o(1).

Together we get that

logZGn − logZGn−2 = 2Φvertex − dΦedge.

Writing this as a telescoping sum, and using the fact that Gn−2k remain

locally treelike,

logZGn = logZαn +

1−α
2
n∑

k=1

logZGn−2(k−1)
− logZGn−2k

= logZαn +
1− α

2
n (2Φvertex − dΦedge) + o(n).

The partition function of logZαn is O(αn) as it is a sum of |X |αn terms each

of which has magnitude eO(αn). Thus taking α→ 1 the free energy is given

by

Φ = lim
n

1

n
logZGn = Φvertex(m)− d

2
Φedge(m). (4.1)

When there is a unique Gibbs measure this formula determines the free

energy. But what if there are multiple Gibbs measures, which one is the

right one? In general there is no recipe to decide but in some cases such as

the Ferromagnetic Ising model it is known.

4.1. Ferromagnetic Ising Model Free Energy. On the d-regular tree

we saw that there was a unique Gibbs measure when 0 ≤ (d− 1) tanhβ ≤ 1

in which case the TIFP has message m(x) ≡ 1
2 . Then

Φvertex(m) = log
∑

x∈{−1,1}

d∏
i=1

 ∑
xui∈{−1,1}

exp(βxρxi)
1

2

 = 2 coshd β,

and

Φedge(m) = log
∑

x,x′∈{−1,1}

exp(βxx′)
1

2
= coshβ,

the free energy is

Φ = log 2 +
d

2
log coshβ.

One can interpret this as log 2 for the free energy if there were no interaction

plus log coshβ for each of the dn
2 edges of the graph.



22 ALLAN SLY

We will consider the Ising model with a positive external field h as in

this case we will be able to determine the local weak limit of σ directly. To

evaluate the free energy when h = 0 we will then take a limit as h → 0.

An equivalent way to add an external field to a grpah is to add an addition

vertex v∗, set a boundary condition of + on v∗ and connect each edge to

v∗ with inverse temperature βu,v∗ = h. We can then use the Edwards-Sokal

coupling with the cluster of v∗ set to plus.

Like the Ising mode, the FK-model satisfies monotonicity in its parame-

ters so if p, p′ ∈ [0, 1]E and p ≤ p′ then

µp(ξ ∈ ·) � µp′(ξ ∈ ·),

which can be verified by the Glauber dynamics coupling argument similarly

to Lemma 4. For some large `, construct Ĝ by setting pu,v∗ = 1 for v ∈
S` which is equivalent to placing a plus boundary condition on S`. Also

construct (̃G) by removing the edges between S` and S`+1 or equivalently

setting p to 0 on these edges. Then

µG̃(ξ ∈ ·) � µG(ξ ∈ ·) � µĜ(ξ ∈ ·)

and so in effect we have sandwiched the measure on G between B` with free

and plus boundary conditions. The latter will converge to the plus measure.

If there were no external field the former would converge to the free measure

but with a positive external field we will check that it instead converges to

the plus measure. Let mt be a BP message at a vertex t levels above the

boundary to its parent. Then by the BP equations mt = f(mt−1) where

f(m) =
eh(meβ + (1−m)e−β)d−1

eh(meβ + (1−m)e−β)d−1 + e−h(me−β + (1−m)eβ)d−1

=
eh(1 + 2(m− 1

2) tanhβ)d−1

eh(1 + 2(m− 1
2) tanhβ)d−1 + e−h(1− 2(m− 1

2) tanhβ)d−1

Starting from plus boundary condition corresponds to m0 = 1 we will have

mt ↓ m+ the largest fixed point of f(m) = m. Starting from free boundary

conditions, m0 = 1
2 , we have mt ↑ m+. So both µG̃ and µĜ converge to the

plus measure around ρ. Since G is sandwiched between G̃ and Ĝ we have

that

µG(σρ = +) =
1

2
+

1

2
µG(ρ↔ v∗) = µ+(σρ = +) + o(1)

as ` → ∞. It follows that the local weak limit of µG is µ+. As this is an

extremal measure we can apply (4.1) and get that

Φβ,h = log
(

(m+e
β + (1−m+)e−β)d + (m+e

−β + (1−m+)eβ)d
)

− d

2
log
(

(m2
+ + (1−m+)2)eβ + 2m+(1−m+)e−β

)
.


