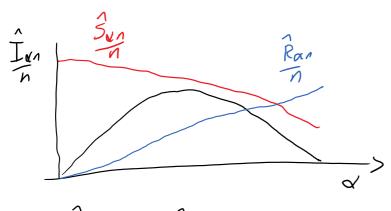
Infection models

Tuesday, February 27, 2018 10:07 PM

· SIS and SIR

- · Susceptible, in fected, suceptible/removed
 - Each infected infects a susceptible at rate & (or each neighbour n.p. p).
 - A susceptible becomes suceptible / removed at rate 1.
- Well mixed population (complete graph).
 infection rate >/n
- · What happens?
 - Write S_{k} , I_{k} , R_{t} # at time 6. \hat{S}_{λ} , \hat{I}_{λ} , \hat{R}_{λ} # a Fax n— In change $|PC\hat{I}_{\lambda}| = \hat{I}_{n} + |1| = \frac{\lambda \hat{S}_{k}}{\lambda \hat{S}_{\lambda} + n}$ $|PC\hat{I}_{\lambda}| = \hat{I}_{n} + |1| = \frac{\lambda \hat{S}_{k}}{\lambda \hat{S}_{\lambda} + n}$ $|PC\hat{I}_{\lambda}| = \hat{I}_{n} + |1| = \frac{\lambda \hat{S}_{k}}{\lambda \hat{S}_{\lambda} + n}$



$$\hat{J}_{k} + 2\hat{R}_{k} = k$$

$$\hat{S}_{k} + \hat{J}_{k} + \hat{R}_{k} = n, \quad \hat{S}_{k} = n - \hat{J}_{k} - (k - I_{k})/2$$

$$\hat{S}_{k} = n + \frac{4}{2} - \frac{3}{2}\hat{J}_{k}$$

$$\mathbb{E}\left(\hat{J}_{k+1}-\hat{J}_{h}\mid\hat{J}_{h}\right)=\frac{\lambda\hat{S}_{k}}{\lambda\hat{S}_{h}+n}-\frac{n}{\lambda\hat{S}_{h}+n}$$

$$f(\alpha) = \frac{1}{2} \ln \ln \beta$$
 $\int_{\alpha n} \ln \pi \left(n + \frac{\alpha}{2}\right) - \frac{3}{2} f(\alpha)$

$$f'(\alpha) = \frac{\lambda(1+\frac{\alpha}{2})-\frac{3}{2}f(\alpha)-1}{\lambda(1+\frac{\alpha}{2})-\frac{3}{2}f(\alpha)+1}$$

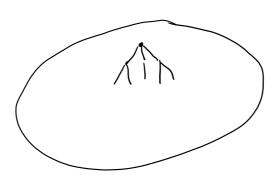
Total time O(logn).

On a rundous graph:

In fect each neighborr w.p. p.

· Bond percolation on a

- keep each edge w.p.p.



- · Set of infected vertices is the same distribution as bond percolation cluster.
 - For edge u, u present of 1st verter infected infects other vertex.
- In a random graph with degree distribution $dv \sim V$ does intention intect a linear trackion?
- Consider the B.P., offspring dist v*.
 after percolation Er; = p Ed,*
- · Yas iff <u>ED(D-1)P</u> >1.
- What about is fection rate)?

Let $S_{n,t}$, $I_{n,t}$ be the

number of degree & vertices at time 6.

• At rule
$$\lambda A_{\epsilon}$$
 · $\frac{h S_{n,\epsilon}}{A_{\epsilon} + B_{\epsilon} - 1}$ $S_{k,\epsilon} \rightarrow S_{n,\epsilon} - 1$
 $I_{k-1,\epsilon} \rightarrow I_{k-1,\epsilon} + 1$

$$\frac{1}{D}\mathbb{E}\left[A_{\epsilon+\Delta} - A_{t} \mid J_{t}\right] = \frac{\lambda A_{\epsilon}}{A_{\epsilon} + \beta_{\epsilon} - 1} - \lambda A_{\epsilon}$$

$$\frac{1}{2} \mathbb{E} \left[A_{t+\Delta} - A_{t} \mid S_{t} \right] \approx A_{t} \left[\lambda \frac{\mathbb{E} d_{s}(d_{v}-1)}{\mathbb{E} d_{v}} - \lambda - 1 \right]$$

Positive growth if
$$\lambda > \frac{1}{Ed_v^+ - 1}$$

Alternative Formulation

before u is removed.

Branching rule
$$\frac{\lambda}{1+\lambda} \mathbb{E} dv^* > 1$$

$$= 7 \lambda > \frac{1}{\mathbb{E} dv^* - 1}.$$

Contact Process / 515

- · Infected become susceptible again.
- Stochasticalled dominates SIP.
- . Start with infinite d-regular tree.

A Upper bound

Branching random walk HE

Branching random walk HE
- purticles branch to neighbowing site
at rate 1.

 $\frac{1}{S} \mathbb{E} \left[A_{\xi+S\xi} - A_{\xi} | S_{\xi} \right] = -A_{\xi} + d\lambda A_{\xi}$ $= (d\lambda - 1) A_{\xi}$ Critical values is $\lambda = V_{d}$.

Let $W_{\varepsilon} = \sum_{x \in X_{\varepsilon}} \alpha^{-d(x,p)}$

 $\frac{1}{5} E[W_{S+\epsilon} - W_{t} | S_{t}) \leq W_{t} (-1 + \lambda (\alpha + (d-1)\alpha^{-1}))$ $EW_{t} = e^{\frac{3}{5}} \text{ where } 3 = [-1 + \lambda (\alpha + (d-1)\alpha^{-1})]$

Set $\alpha = \sqrt{d}$ $-1 + 2\sqrt{d} \lambda$ So $EW_{\epsilon} \Rightarrow 0$ if $\lambda < \frac{1}{2\sqrt{d}}$

For $\frac{1}{a} < \lambda < \frac{1}{2\sqrt{a}}$, $\mathbb{E}A_{\varepsilon} \Rightarrow \infty$, $\mathbb{E}W_{\varepsilon} \Rightarrow 0$.

Second Moment Method

EW= EWt + E Z Z Z d(x,p)-d(x,p)

-11. -E

$$= \mathbb{E}W_{\epsilon} + \int_{0}^{t} e^{23(t-s)} e^{3t} \cdot \lambda ds$$

$$= O(e^{23t}) = O(\mathbb{E}W_{\epsilon}^{2})$$

Theorem: Permantle 192

· Two thresholds

(a) \ \ × // Infection survives

(b) hr & Ta Root infacted infinitely often.

Question: Which determines the behaviour or random regular graph?

Proof of Theorem:

- Upper bound by BRW.

· If u & T, d(u,p) = h with purent c.let

Xu be the event

· infection on (u,u) for to[k-1,k]

· No removal at u for t ∈ [h-1, h+1]

[[[Xu] = (1-e-λ)·e-2 ≈ λe-2 5mall λ.

If Pour,..., un = u is paths

from p to u,

if Xu,..., Xun hold then

u intected at time k.

Intinite component of Xu=1=> breation survives

d \(2^2 \, 7 \)

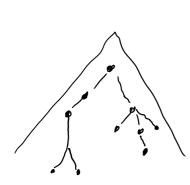
- Check intection up the tree

- Check infection up the tree

Proof of thi: On d-ary tree.

Let $Z_{k} = Z_{k} \times \mathcal{E}(u)$. Let $A = \{S_{n-1}, res\}$. P(A) = p. $P(Z_{n+1} \cap Z_{k} \leq L) \geq e^{-cL}$.

 $\mathbb{E} Z_n \supset (P - P(Z_n \leq L)) \cdot L \supset L$ so $\mathbb{E} Z_n \supset \infty$.



Let $I \subset T_d$, $|I| < \infty$ and $F(I) = \{v : dG, I\} = 1$, $T_d \cap I = \emptyset$ }

· u is an I-child of v if VEI is the first element of I on puty from u to p. So |F(I)| \(\sum \(\text{I} \) \(\text{I} \) \(\text{V} \ightarrow \(\text{I} \) \(\text{V} \

= (d-2)[I].

Choose T so that EZ_T-, >>1.

After time T set of expected size $R = \lambda e^{-2} \ell Z_{T-1}$ in facted with distinct subtrees. $\ell = Z_{k,T} > R^{2}$.

On the graph:

Claim: For all dz3, 3 5 >0 s.t. Vr 3 & s.t.

or a random regular graph, w.h.p.

YIEV, IIIS En,

A= * {v: BueI, d(u,v)=r3, 1A12 & d(d-1) -1 | I).

Theorem: Lalley - Sn '15.

On randon d-regular, let T = time intection ends.

- · \< \c P[T> Claya | Xo = I] > 6.
- · \> \ [[T>e" ||X0 = 1] > 8 > 0.

Proof: (a) $\lambda < \lambda_c$, $E Z_h \in \Sigma$.

Percolation is suballitie so

Percolation is suballities so
$$\mathbb{E}[Z_{t+k} \mid X_t = B] \leq \sum_{n \in B} \mathbb{E}[Z_{t+k} \mid X_t = n]$$

$$\leq \frac{1}{2}|B| = \frac{1}{2}|X_t|.$$
So $\mathbb{E}[Z_{nk}] \leq \sum_{n \in B} n$.

$$\mathbb{E}_{7}\left[\sum_{u:dy,p)\geq h^{2}}\chi_{k}(a)\left[\chi_{0}=I_{p}\right]=o(1)$$

So IP[
$$X_{\nu}(a) = 1 \mid X_{o} = I_{p}] \neq \frac{2}{8} (d(d-1)^{r-1})^{-1}$$
.
for $d(p, a) = r$

With A as in the claim,
$$E\left(\frac{Z}{u \in A(I)} \times_{E+n} | X_{E} = I\right) > |A(I)| \frac{2}{5} \left(d(d-1)^{r-1}\right)^{-1}$$

$$> 2 |I|.$$

Non-homogeneous graphy

Stur graph

Lemma: For any \$20,] =20 s.t.

if at least 8h children infected at time 0,

IP[T > e^{ch}] > 1-e^{-ch}.

• Fix E70 small, assume 32h intacted at time 0.

IP[min W, 72k] = e-cek
05651

since each initially intected gets no removal w.p 1/e > 1/3.

Let 5 = 5, X 6 (0) dp.

Sequence of unintected times

Ti-Ti-1 & Exp(Eh)

· IP[= Exp(sh) > \frac{1}{2}] se-ch

P(* recoveries of p >, k \(\) \\ Pois(1)

So IP(53 2) > 1-e-c1.

· Number of verties in feetal N Bin $(1-3\epsilon k, (1-e^{-t/2}) \cdot e^{-t})$ $\frac{k}{10} \quad \text{w.p.} \quad 1-e^{-ck}.$

So IP(W1 > 3 Eh) > 1 - e-ck

BP tree with offspring dist $IP[dv = k] \sim k^{-\alpha}.$

Lemma On BP tree $\lambda_c = 0$.

Prost:

Suppose we can find V_1, V_2, \dots with V_1, V_2, \dots with V_2, V_3, \dots V_3, V_4, \dots V_4, V_5, \dots V_5, V_5, \dots V_5, V_5, \dots V_7, V_7, \dots V_7, \dots

• B; event V_j remains infected in the sense that EZ^j neighbours infected to time $exp(c2^j)$.

to time exp(c2).

P(B;] >, 1 - exp(-c2)

• A; event v_{j+1} in fectal within time e^{C_j} of v_s in fectal $P[A; |B;] > 1 - e^{-C_j}$

Then IP((3) (A; 1) B;)] > 0 For all \ \ > 0.

· On the random graph.

Maximum degree ~ n'

hreation time of at least exp (n').

Actually w.h.p. infection lasts time
 - Fix large L.

· Let V2 = vertices of degree 7/6.

. V,uel ne write vn_a if d(v,u)≤√L

Claim: Graph GL is a good expander.

Theorem: For all $\lambda >0$, $\exists c_{\lambda} >0$, in fection survives for time e^{cn} u.h.p.