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Motivation

Recently, I have been interested in self-adjoint linear operators.

Algebraically, think: real, square, symmetric, matrices.

Geometrically, think: image of the unit ball is an ellipse.

The λ are called eigenvalues and the v their associated eigenvectors.
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Eigenvalues

Theorem (Spectral Decomposition)

Any d × d real symmetric matrix A can be decomposed as

A =
d∑

i=1

λiviv
T
i

where the vi are orthonormal and each pair (λi , vi ) is an eigenpair.

In particular, if λmax is the largest eigenvalue (in absolute value), then

max
x :‖x‖=1

‖Ax‖ = λmax

and if λmin is the smallest (in absolute value)

min
x :‖x‖=1

‖Ax‖ = λmin

Introduction 5/56



Polynomials and (finite) free probability A. W. Marcus/Princeton

Eigenvalues

Theorem (Spectral Decomposition)

Any d × d real symmetric matrix A can be decomposed as

A =
d∑

i=1

λiviv
T
i

where the vi are orthonormal and each pair (λi , vi ) is an eigenpair.

In particular, if λmax is the largest eigenvalue (in absolute value), then

max
x :‖x‖=1

‖Ax‖ = λmax

and if λmin is the smallest (in absolute value)

min
x :‖x‖=1

‖Ax‖ = λmin

Introduction 5/56



Polynomials and (finite) free probability A. W. Marcus/Princeton

Frames

The number of non-zero eigenvalues of A is called the rank.

The spectral decomposition is a rank-1 decomposition. General rank-1
decompositions V =

∑
i viv

T
i are called frames.

When the v̂i are random vectors, then V̂ =
∑

i v̂i v̂
T
i is a random matrix.

Example

If ûT ∈ {[1, 0], [1, 1]} and v̂T ∈ {[0, 1], [1, 1]} with independent uniform
distributions, then

ûûT + v̂ v̂T ∈
{(

1 0
0 1

)
,

(
2 1
1 1

)
,

(
1 1
1 2

)
,

(
2 2
2 2

)}
each with probability 1/4.
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Known tools
Well-known techniques exist for bounding eigenvalues of random frames.

Theorem (Matrix Chernoff)

Let v̂1, . . . , v̂n be independent random vectors with ‖v̂i‖ ≤ 1 and∑
i v̂i v̂

T
i = V̂ . Then

P
[
λmax(V̂ ) ≤ θ

]
≥ 1− d · e−nD(θ‖λmax (EbV ))

Similar inequalities by Rudelson (1999), Ahlswede–Winter (2002).

All such inequalities have two things in common:

1 They give results with high probability

2 The bounds depend on the dimension

This will always be true — tight concentration (in this respect) depends
on the dimension (consider n/d copies of basis vectors).
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New method
MSS developed a new technique for getting eigenvalue bounds called the
method of interlacing polynomials.

Theorem (MSS; 13)

Let V̂ =
∑

i v̂i v̂
T
i be a random frame where all v̂i have finite support and

are mutually independent. Now let

p(x) = E
{

det
[
xI − V̂

]}
be its expected characteristic polynomial. Then

1 p has all real roots r1 ≤ · · · ≤ rm,

2 For all 0 ≤ k ≤ m, we have

P
[
λk(V̂ ) ≤ rk

]
> 0 and P

[
λk(V̂ ) ≥ rk

]
> 0
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And it works

By trading “high probability” for “nonzero probability”, the method is able
to prove bounds independent of dimension.

Applications have included:

1 Ramanujan graphs:
I Of all degrees, using 2-lifts (MSS; 13)
I Of all degrees, using k-lifts (Hall, Puder, Sawin; 14)
I Of all degrees and sizes, using matchings (MSS; 15)

2 Functional Analysis:
I Kadison–Singer (and equivalents) (MSS; 13)
I Lyapunov theorems (Akemann, Weaver; 14)

3 Approximation algorithms:
I Asymmetric Traveling Salesman (Anari, Oveis-Gharan; 15)

Numerous applications of Kadison–Singer and paving bounds as well.
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Big question
Inquiring minds want to know:

WHY?
Why should any of this work? Why are all of these polynomials real
rooted?

Why would the expected characteristic polynomial (of all things) provide
decent bounds on anything worth bounding?

Finally, is there some way to know when the “method of interlacing
polynomials” could work?

This talk: introduce a new theory that answers these questions (and more).
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Expected characteristic polynomials

“Prior to the work of [MSS], I think it is safe to say that the conventional
wisdom in random matrix theory was that the representation

‖A‖op = maxroot (det [xI − A])

was not particularly useful, due to the highly non-linear nature of both the
characteristic polynomial map A 7→ det [xI − A] and the maximum root
map p 7→ maxroot(p).”

“For instance, a fact as basic as the triangle inequality

‖A + B‖op ≤ ‖A‖op + ‖B‖op

is extremely difficult to establish [using characteristic polynomials].”

Both are legitimate problems, but for different reasons.
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The characteristic map

The problem with A 7→ det [xI − A] is that it loses information (the
rotation of A).

So instead consider a rotation invariant operation:

Definition

For m ×m symmetric matrices A and B with characteristic polynomials

p(x) = det [xI − A] and q(x) = det [xI − B] ,

the symmetric additive convolution of p and q is defined as

[p �m q](x) = EQ

{
det
[
xI − A− QBQT

]}
where the expectation is taken over orthonormal matrices Q distributed
uniformly (via the Haar measure).

Polynomial Convolutions 13/56
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Some properties
For degree m polynomials p, q, we have

[p �m q](x + y) =
m∑

i=0

p(i)(x)q(m−i)(y).

So symmetric and linear!

For any linear differential operator R =
∑

i αi∂
i , we have

R{[p �m q]} = [R{p}�m q] = [p �m R{q}]

So the algebra (C≤m[x ],�m) is isomorphic to (C[∂] mod [∂m+1],×).

Lemma (Borcea, Brändén)

If p and q have all real roots, then [p �m q] has all real roots.

So (when real rooted), we get an easy triangle inequality.
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If p and q have all real roots, then [p �m q] has all real roots.

So (when real rooted), we get an easy triangle inequality.

Polynomial Convolutions 14/56



Polynomials and (finite) free probability A. W. Marcus/Princeton

Some properties
For degree m polynomials p, q, we have

[p �m q](x + y) =
m∑

i=0

p(i)(x)q(m−i)(y).

So symmetric and linear!

For any linear differential operator R =
∑

i αi∂
i , we have

R{[p �m q]} = [R{p}�m q] = [p �m R{q}]

So the algebra (C≤m[x ],�m) is isomorphic to (C[∂] mod [∂m+1],×).

Lemma (Borcea, Brändén)
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Max roots

The second issue is the maximum root — this time the problem lies in
stability.

Let p(x) = xm−1(x − 1) and q(x) = x(x − 1)m−1. So

maxroot (p) = maxroot (q) = 1.

But then

1 maxroot ([p mp]) = 1 +
√

1/m

2 maxroot ([p mq]) = 1 +
√

1− 1/m

The triangle inequality says it can be at most 2.
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Max roots

Solution: use smoother version of the maxroot () function.

Definition

For a real rooted polynomial p, we define

αmax (p) = maxroot
(
p − αp′

)
.

So α = 0 is the usual maxroot () function (and grows with α).

Can we understand the αmax () function?
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Brief aside

If you recall the barrier function of Batson, Spielman, Srivastava.

Φp(x) = ∂ log p(x) =
p′(x)

p(x)

defined for x above the largest root of (real rooted) p.

αmax (p) = x ⇐⇒ maxroot
(
p − αp′

)
= x

⇐⇒ p(x)− αp′(x) = 0

⇐⇒ p′(x)

p(x)
=

1

α

⇐⇒ Φp(x) =
1

α

That is, we are implicitly studying the barrier function.
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Some max root results

If p is a degree m, real rooted polynomial, µp the average of its roots:

Lemma

1 ≤ ∂
∂ααmax (p) ≤ 1 + m−2

m+2

Proof uses implicit differentiation and Newton inequalities.

Lemma

αmax (p′) ≤ αmax (p)− α

Proof uses concavity of p/p′ for x ≥ maxroot (p).

Corollary

µp ≤ αmax (p)−mα ≤ maxroot (p)

Iterate the previous lemma (m − 1) times.

Polynomial Convolutions 18/56
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Main inequality

Theorem

Let p and q be degree m real rooted polynomials. Then

αmax (p �m q) ≤ αmax (p) + αmax (q)−mα

with equality if and only if p or q has a single distinct root.

Proof uses previous lemmas, induction on m, and “pinching”.

Applying this to p(x) = xm−1(x − 1) and q(x) = x(x − 1)m−1 gives

maxroot (·) best α in Theorem

[p mp] 1 + 1/
√

m ≈ 1 + 2/
√

m

[p mq] 1 +
√

1− 1/m 2
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Quick Review
We want to be able to work with expected characteristic polynomials, and
had three concerns:

1 the real rootedness
2 the behavior of the map A 7→ det [xI − A]
3 the behavior of the map p 7→ maxroot (p).

We addressed the first two by introducing a new convolution which is
rotation independent and preserves real rootedness.

We addressed the third by using a smooth version of the maximum root
function.

On the other hand, we have more explaining to do:

−3 + 2 =
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Outline

1 Introduction

2 Polynomial Convolutions
The issue with the characteristic map
The issue with maximum roots

3 Free probability

4 The Intersection
General ideas
Connecting polynomials and free probability

5 Application: Restricted Invertibility
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Definition

A von Neumann algebra M on a Hilbert space H is a unital subalgebra of
the space B(H) of bounded operators so that

1 T ∈ M → T ∗ ∈ M

2 Ti ∈ M, 〈Tiu, v〉 → 〈Tu, v〉 for all u, v implies T ∈ M (closed on
weak operator topology).

We will designate a linear functional τ : M → C that is
1 continuous in the weak operator topology
2 unital: τ(1) = 1
3 positive: τ(T ∗T ) ≥ 0
4 tracial: τ(ST ) = τ(TS) for all S ,T ∈ M.

to be the special trace function (we assume at least one exists).

Example

1 M = L∞(X , µ), with τ(T ) =
∫

Tdµ (= Eµ{T})
2 M = Mn×n with τ(T ) = 1

nTr [T ]

Free probability 22/56
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Random variables

Each operator T ∈ (M, τ) defines a probability distribution µT on C by

µT (U) = τ(δU(T ))

for each Borel set U ⊆ C (δU is a WOT limit of polynomials, so
δU(T ) ∈ M).

When T is self adjoint, µT is a measure on the real line.

We will think of T is (some sort of) noncommutative random variable.

This generalizes the idea of a (classical) random variable.

Free probability 23/56
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Examples

Classic random variables:

M = L∞(X , µ)

τ(T ) =
∫

Tdµ (= E{T})
µT = T∗µ (the usual notion of a distribution on T )

Nonrandom matrices:

M = Mn×n

τ(T ) = 1
nTr [T ]

µT = 1
n

∑
i δλi (T )

Random matrices:

M = L∞ ⊗Mn×n

τ(T ) = 1
n E{Tr [T ]}

µT = 1
n E
{∑

i δλi (T )

}
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Independence

Independence is a special joint distribution that allows one to reduce
mixed traces to simpler ones.

Definition

T and S are independent if

1 TS = ST

2 τ(p(T )q(S)) = τ(p(T ))τ(q(S)) for all polynomials p, q

Example

For τ = E{} and X ,Y independent classical random variables,

1 τ(X 2Y 2) = τ(X 2)τ(Y 2)

2 τ(XYXY ) = τ(X 2)τ(Y 2)

What’s the point of being noncommutative!?!

Free probability 25/56
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Free Independence

Definition

T and S are called freely independent if

τ(p1(T )q1(S)p2(T )q2(S) . . . pm(T )qm(S)) = 0

whenever τ(pj(T )) = τ(qj(S)) = 0 for all j .

Example

For S ,T freely independent,

1 τ(T 2S2) = τ(T 2)τ(S2)

2 τ(TSTS) = τ(T 2)τ(S)2 + τ(S2)τ(T )2 − τ(S)2τ(T )2

Proof:
Let S0 = S − τ(S)1 and T0 = T − τ(T )1, so τ(S0) = τ(T0) = 0.

By free independence, τ(T0S0T0S0) = 0, now substitute and use linearity.
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Convolutions

Given r.v. A ∼ µA and B ∼ µB , what is distribution of A + B?

Ill defined question (regardless of commutativity)!

Requires knowing the joint distribution!

However, we know two “special” joint distributions:

Definition

Let µ and ρ be probability distributions with X ∼ µ and Y ∼ ρ. The

1 additive convolution µ⊕ ρ is the distribution of X + Y in the case
that X ,Y are independent.

2 free additive convolution µ� ρ is the distribution of X + Y in the
case that X ,Y are freely independent.

Now how can we compute such things?
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Computation

To compute the (classical) additive convolution, one uses the moment
generating function

Mµ(t) = EX∼µ

{
etX
}

to form the cumulant generating function

Kµ(t) = log Mµ(t)

and then adds them

Kµ⊕ρ(t) = Kµ(t) + Kρ(t)

and then reverses
Mµ⊕ρ(t) = eKµ⊕ρ(t).

Only computable up to moments!

Free probability 28/56
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Free Computation

To compute the free additive convolution, one uses the Cauchy transform

GµA
(t) =

∫
µA(x)

t − x
dx = τ

(
(t1− A)−1

)

to form the R-transform

RµA
(t) = G−1

µA
(t)− 1

t

and then adds them

RµA�µB
(t) = RµA

(t) +RµB
(t)

and reverses.

Note 1
t = G−1

µ0
(t).
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Free probability

Voiculescu developed an entire theory (constructed all of the spaces,
showed everything converges, etc) which he called free probability.

Furthermore, he showed a link between classical and free independence.

Theorem

Let {An} and {Bn} be sequences of n × n random matrices where each
entry in each matrix is drawn independently from a standard normal
distribution. Then there exist operators A and B such that

µAn → µA and µBn → µB and µAn+Bn → µA � µB

in the weak operator topology.

The sequences {An} and {Bn} are called asymptotically free.

Many examples of random matrices now known to be asymptotically free.
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Quick Review

In free probability, one thinks of probability distributions µA and µB living
on the spectrum of self adjoint operators A and B.

Then one wants to try to understand µA+B (for example).

Free independence is a “special” joint distribution that allows one to
compute the moments µA+B from the moments of µA and µB (which we
know).

In particular, functions of freely independent random variables are rotation
independent!!

This captures “Dysonian” behavior — independence on entries (often)
translates to freeness in the spectrum.

Hence it can then be applied to random matrices, but only asymptotically.
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Legendre transform

Definition

Let f be a function that is convex on an interval X ⊆ R. The Legendre
transform is

f ∗(s) = sup
x∈X
{xs − f (x)}

Lemma

f ′(x) and f ∗′(s) are inverses: that is, f ′(f ∗′(x)) = x

Recall that the R-transform is achieved by inverting the Cauchy transform.

This allows us to achieve it via a sup.
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Lp norm

Definition

The Lp norm of a function f on a measure space (X , µ) is

‖f ‖Lp(X ) =

(∫
X
|f |p dµ

)1/p

Lemma

If f is nonnegative and continuous on X and µ is absolutely continuous
with respect to Lebesguese measure, then

lim
p→∞

‖f ‖Lp(X ) = sup{f (x) : x ∈ X}

This will be our method of convergence.
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Fuglede–Kadison determinants
For n × n positive definite matrix A, recall

det [A] = exp Tr [log A] .

This idea can be extended to von Neumann algebras:

Definition

Given a von Neumann algebra M and trace function τ , the
Fuglede–Kadison determinant is defined by

∆ (T ) = exp τ(log |T |) = exp

∫
log t dµ|T |

where |T | = (T ∗T )1/2.

Example

For T positive semidefinite in Mn×n, ∆ (T ) = (det [T ])1/n
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U Transform

Let S be a multiset of complex numbers.

Claim: there exists a unique multiset T with |S | = |T | such that∏
si∈S

(x − si ) =
1

|T |
∑
ti∈T

(x − ti )
m.

Called the U transform.

Proof: Coefficient of xk is a constraint on
∑

i tk
i (so |T | constraints).

Newton identities: power sums ⇐⇒ elementary symmetric polynomials

Unique solution by fundamental theorm of algebra.
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Finite transforms

Let A be an m ×m real, symmetric matrix with maximum eigenvalue ρA.

Definition

The m-finite K-transform of µA

Km
µA

(s) = − ∂

∂s
ln
∥∥e−xs∆ (xI − A)

∥∥
Lm(X )

= − 1

m

∂

∂s
ln

∫
X

e−mxs∆ (xI − A)m dx

where X = (ρA,∞).
The m-finite R-transform is

Rm
µA

(s) = Km
µA

(s)−Km
µ0

(s)

where µ0 is the constant 0 distribution.
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The connection

Theorem

For all noncommutative random variables A with compact support, we
have

lim
m→∞

Rm
µA

(s) = RµA
(s)

Proof uses Legendre transform and convergence of Lp norm. Works for
other measures?

Theorem

Let A and B be m ×m real symmetric matrices. Then the following are
equivalent:

1 Rm
µA

(s) +Rm
µB

(s) ≡ Rm
µC

(s) mod [sm]

2 det [xI − A] �m det [xI − B] = det [xI − C ]

Proof uses U transform.
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Proof sketch
U transform turns polynomial convolutions into classical probability:

Lemma

If Y and Z are independent random variables, then

E{(x − Y )m}�m E{(x − Z )m} = E{(x − Y − Z )m} .

So Rm
µA

(s) must become (linear function of) classical CGF.

Lemma

If A is an m ×m matrix and Y is uniformly distributed over the
U transform of λ(A), then

Rm
µA

(s) ≡
(

1

m

∂

∂s
log E

{
emYs

})
mod [sm]
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The connection, ctd.

Theorem

Let A,B,C be m ×m real, symmetric matrices such that

Rm
µA

(s) +Rm
µB

(s) ≡ Rm
µC

(s) mod [sm].

Then for all w,
RµC

(w) ≤ RµA�µB
(w)

with equality if and only if A or B is a multiple of the identity.

Follows from “smoothed” triangle inequality:

RµA

(
1

mα

)
= αmax (p)−mα.

when p(x) = det [xI − A].

Implies support of finite convolution lies inside support of free convolution.
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Answers

Random matrices

Free probability

concentration of measure

Expected characteristic polynomials

moments

??

Expected characteristic polynomials are a finite approximation of an
asymptotic approximation of random matrices.
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Remarks
So “method of interlacing polynomials” is transferring an asymptotic
bound to a finite one.

We should expect the finite case to do better than the asymptotics (at
least when it comes to maximum eigenvalues).

Similar results for multiplicative convolution.

Other (known) finite analogues:

1 Limit theorems (Central, Poisson)

2 Dyson Brownian motion

3 Entropy, Fisher information, Cramer–Rao (for one r.v.)

Open directions:

1 Bivariate polynomials (second order freeness?)

2 Entropy (and friends) for joint distributions
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Conjecture
Relation to β-ensembles? Let A,B be m ×m matrices with

a1 = tr [A] and a2 = tr
[
A2
]

and same for B.

If A and B are freely independent, one gets

tr
[
(AB)2

]
= a2b2

1 + b2a2
1 − a2

1b2
1 (∗)

If A and B are finite freely independent, one gets

tr
[
(AB)2

]
= (∗) +

1

m − 1
(a2 − a2

1)(b2 − b2
1) (∗∗)

And for β-ensembles, one gets (courtesy of Alan Edelman):

EQ

{
tr
[
(AQT BQ)2

]}
= (∗∗)− 2m

(m − 1)(mβ + 2)
(a2 − a2

1)(b2 − b2
1)
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Giving back
Also potential applications:

1 Connes embedding conjecture?

Asks how well vN algebras can be approximated by finite matrices.

Likely requires one of the “open directions.”

2 Random matrix universality?

Universality can often be achieved by studying the asymptotic
distribution of roots of certain polynomials.

Which polynomials? Here is a recipe:

Random matrix
→ free probability
→ free convolutions
→ finite free convolutions
→ polynomial

The Intersection 44/56
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An application

Example: Restricted invertibility (special case)

Theorem

If v1, . . . , vn ∈ Cm are vectors with

‖vi‖2 =
m

n
and

n∑
i=1

viv
∗
i = I ,

then for all k < n, there exists a set S ⊂ [n] with |S | = k such that

λk

(∑
i∈S

viv
∗
i

)
≥

(
1−

√
k

m

)2 (m

n

)
.

First proved by Bourgain and Tzafriri (in more generality, worse constants).
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Translation

Translate to random matrices:

Given a random m ×m rotation matrix R, and a random set S of size k ,
what do you expect the eigenvalue distribution of

R[S , ·]R[S , ·]∗

to look like?

Similar ensembles are studied in random matrix theory, where they are
called Wishart matrices.

Let’s see what random matrix theory has to say.
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Wishart matrices

Let X be an M × N random matrix whose entries are i.i.d. with mean 0
and variance σ2. Set

YN =
1

N
XX ∗

If M,N →∞ in such a way that M/N → λ ∈ (0,∞), then the asymptotic
eigenvalue distribution of the resulting sequence of matrices has density
function

dν(x) =
1

2πσ2

√
(λ+ − x)(x − λ−)

λx
1[λ−,λ+] dx

where λ± = σ2(1±
√
λ)2.

Called the Marchenko–Pastur distribution.
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Lower bound

In particular, we have the lower edge of the spectrum σ2(1−
√
λ)2.

Already suggests the optimal bound to try for. But how?

If this is going to work, it is because the random matrix acts
(asymptotically) like a free distribution.

If it acts like a free distribution, it should act like our polynomial
convolutions.

Application: Restricted Invertibility 49/56
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To polynomials!

Translate to finite free probability: if

p(x) = det [xI − vv∗] = xm − m

n
xm−1

then
[p �m p �m · · ·�m p︸ ︷︷ ︸

k times

] = m!(−n)−mLk−m
m (nx)

where L
(α)
m (x) is the (very well studied) Laguerre polynomial.

In particular, the smallest nonzero root is (asymptotically)(
1−

√
k

m

)2 (m

n

)
.

Same bound can be calculated using αmax () (and picking optimal α).
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Interlacing family
Still need to build an interlacing family.

Suffices to find distribution on v1, . . . , vn so that

1 Each choice of a vector is independent

2 expected polynomial after k vectors has same roots as Lk−m
m (nx)

This would imply the probability that one of the polynomials has a larger
kth root.

Hence we want to find a (generic) discrete sum that equals the (generic)
integral (for some subset of “generic”).

Not possible in general, but is possible if we restrict to degree m matrices
(since integral becomes a fixed degree polynomial).

Formulas of this type are known as quadrature rules.
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Quadrature

For special case, choosing uniformly suffices:

Lemma

If A is an m ×m matrix and {vi}ni=1 ⊆ Cm are vectors with

‖vi‖2 =
m

n
and

∑
i

viv
∗
i = I

then
1

n

∑
i

det [A + viv
∗
i ] = EQ

{
det
[
A + Qv1v∗1 QT

]}

For full Bourgain-Tzafriri result, need to be more clever.

Application: Restricted Invertibility 52/56



Polynomials and (finite) free probability A. W. Marcus/Princeton

Quadrature

For special case, choosing uniformly suffices:

Lemma

If A is an m ×m matrix and {vi}ni=1 ⊆ Cm are vectors with

‖vi‖2 =
m

n
and

∑
i

viv
∗
i = I

then
1

n

∑
i

det [A + viv
∗
i ] = EQ

{
det
[
A + Qv1v∗1 QT

]}

For full Bourgain-Tzafriri result, need to be more clever.

Application: Restricted Invertibility 52/56



Polynomials and (finite) free probability A. W. Marcus/Princeton

Quadrature in general

Quadrature rules exist for more general sums as well.

The larger the domain of possible integrals, the more nodes required:

Theorem

For all m ×m matrices A and B,

EP

{
det
[
A + P̂BP̂T

]}
= EQ

{
det
[
A + QBQT

]}
where

Q is an orthogonal matrix, distributed uniformly (via Haar measure)

P̂ is a signed permutation matrix, distributed uniformly (2nn! total)
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More connections

Recall the recipe for understanding random matrix distributions:

Random matrix
→ free probability
→ free convolutions
→ finite free convolutions
→ polynomial

The free probability distribution is the free Poisson distribution.

The polynomials one studies to learn about Marchenko–Pastur
distributions is precisely the collection of Laguerre polynomials we found.
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Ramanujan Graphs

Application: existence of Ramanujan graphs of any size and degree.

Build from random matchings:

(x − 1)m/2(x + 1)m/2

Free probability distribution is Kesten–McKay law.

Details are far more complicated:

1 generalization of characteristic polynomials to determinant-like
polynomials.

2 special quadrature formula for Laplacian matrices

3 new convolution for asymmetric matrices
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Thanks

Thank you to the organizers for providing me the opportunity to speak to
you today.

And thank you for your attention!

Application: Restricted Invertibility 56/56


	Introduction
	Polynomial Convolutions
	The issue with the characteristic map
	The issue with maximum roots

	Free probability
	The Intersection
	General ideas
	Connecting polynomials and free probability

	Application: Restricted Invertibility

