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Abstract

We examine two different models of interactive Brownian particles im-
mersed in a symmetric, periodic potential. The first model extends the
coupled Brownian motor examined in Hänggi et al. [3], differing by its
consideration of non-homogeneous noise-strength coefficients. The second
model contrasts the first in its use of an inversely proportional interaction
between particles. The observed properties include true negative conduc-
tance appearing in each of the two models with the objective of finding
the smallest system size exhibiting this property.

1 Introduction

With the contemporary push in miniaturization, a new level of importance has
been placed on the study of nanosystems and their potential roles in technology.
The concept of negative conductance, while still fairly new, has already found
its way into various scientific disciplines: biomolecular research in the form of
active transport [2], molecular chemistry as a tool in particle separation [1], and
theoretical physics accompanying the theory of Brownian motors [3]. In this
paper, we examine two models of coupled Brownian particles, utilizing Monte
Carlo simulation techniques on a periodic Langevin equation. We study the
effects of a position-dependent multiplicative noise source used in previous ex-
periments [4], a constant torque-induced velocity ω, and an interaction between
particles. Furthermore, since the stochastic and interactive forces are symmetric
in both models, ω represents the only cumulative force on the system. Thus the
flow of motion is initiated by a force moving in the opposite direction, making
the system both counterintuitive and worthy of investigation.
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2 Classical Model

The first model is an extension of Kuramoto’s model for N -particle coupled
phase oscillators (see [5] for details)

θ̇i = ω − K

N

N∑
j=1

sin(θi − θj) + ξi

with K acting as a spring constant and Ri(t) a Gaussian random number.
Kuaramoto’s choice of forces is fairly popular due to its proportional interactive
term and constant external force term. Due to its proven success, we begin by
adapting this classical model.

2.1 Developing an Extension

Previous investigations [4] considered the case

ξi =
∣∣ sin(θi/2)

∣∣Ri(t)

√
2Q

dt
, (1)

and established results for the noise-strength coefficient Q = 1. In an attempt to
decrease the number of necessary particles, as well as to provide a more realistic
basis for the system, we consider a non-homogeneous noise-strength coefficient.
Taking ξ in terms of its component values as in [6], we have

ξi = Ri(t)

√
kBT (θi)

γidt
(2)

with kB equal to Boltzmann’s constant, T the temperature, and γ the frictional
force. Assuming the particles are sufficiently small, thus having negligible mass,
we can define the frictional force in terms of a constant α (which depends on
the radius) and the coefficient of friction η, leading to the following:

ξi = Ri(t)

√
kBT (θi)
6πηαidt

(3)

=
∣∣ sin(θi/2)

∣∣Ri(t)
√

2C

αidt
(4)

where T (θi) = sin2(θi/2) as in the previous model, and C = kB

12πη . Hence we are
justified in merely substituting Q = C/αi into Eq. (1) to convert the constant
into a non-homogeneous, inversely proportional term.

2.2 Results

The non-homogeneous noise-strength coefficient model

dθi = ωdt +
∣∣ sin(θi/2)

∣∣Ri(t)
√

2C

αi
dt− K

N

N∑
j=1

sin(θi − θj)dt (5)
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underwent 2×108 iterations at a time step dt = 5×10−6 using the second order
Heun method to approximate the continuity of time.

The results of the computation were fitting for the type of situation defined
above. As Figure 1 shows, there was a fairly robust negative conductance dis-
played in the 7-particle system, far fewer than the homogeneous model would
allow [4].

One interesting occurrence is that, while the lone particle with radius α = 1
was moving against the applied force, the other six particles, radius α = 2,
moved with the system’s torque. Even as late as t = 1000, the average particle
displacement remained almost constant, as can be seen in Figure 5. This fairs
well with our chosen scenario, especially considering our assumption of negligible
mass. The properties of this system make it almost ideal for nanoscale particle
separations [2], especially considering the low number of particles involved in
the system. By applying a constant velocity, the particles moved off in separate
directions with respect to their sizes. Thus by applying a random noise source,
our system has actually lowered its own randomness!

3 Inverse Model

We now break away from the classical extension and introduce an experimentally
new model of coupled Brownian motion. Before we are able to accomplish this,
though, some computational hazards must be dealt with due to the unwanted
explosions of inversely proportional forces as particles near each other. The
difference between these models is shown in Figure 2.

3.1 Inversely Proportional Interactive Term

In order to investigate the properties of the inverse model, we define the function

g(x) =
2x− xk2 + k

√
k2x2 − 4x2 + 4
2

(6)
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Figure 1: A 7-particle system modeling Eq. (5) [K = 1.5, ω = 0.035, C = 1,
α1 = 1, α2 . . . α6 = 2].
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Figure 2: Comparison of interactive
forces
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Figure 3: Increasing levels of accu-
racy for k = π, 2π

for some scaling constant k to approximate the behavior of the inverse func-
tion 1/x, with x corresponding to the distance between particles. Eq. (6) is
chosen primarily so that

1. limk→∞ g(x) ⇒ 1
x

2. limk→∞ g′(x) ⇒ −1
x2

making it a suitable approximation for a gravitation-like potential.
Figure 3 shows that even for relatively small values of k, the accuracy of the

approximation is quite good. The value used in the computations, k = 4π, is
already too close to the line y = 1/x to be able to distinguish.

The other properties that make g(x) a desirable approximation for this sys-
tem lie in the symmetry about the lines y = x and y = −x. Furthermore,
g possesses both x− and y−intercepts, keeping the force from exploding as
particles approach each other and causing the force to disappear as particles
approach diametrically opposite positions on the circle.

Most importantly, the parameter k can be chosen so that an arbitrarily
accurate approximation for can be made. Since the greatest error naturally
occurs as x → 0, Eq. (6) can be solved for a given maximum error ε,

k ≥ 1
ε2

⇒ 1
x
− g(x) ≤ ε ∀x ≥ ε (7)

thereby providing the necessary value for k to achieve such an accuracy.

3.2 Development of the Equation

Consider a variance of the general Ginzburg-Landau equation on a periodic
system, with the interactive potential distributed over all of the particles in the
system, specifically:

θ̇i = f(θ) + h(θ)ξi(t)−
1
N

N∑
i=1

∂V (θ)
∂θi

(8)
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For the purpose of isolating the system from any outside fluctuations, we
again define f(x) to be a constant ω. For the purpose of imitating some inversely
proportional force, we choose gravity as a natural candidate, making

V (θ) =
Gm1m2

(θ1 − θ2)2
(9)

and thus
1
N

N∑
i=1

−∂V (θ)
∂θi

= G
∑
j 6=i

mimj

(θj − θi)
(10)

For the stochastic term, we turn again to Eq. (2), only this time using a
different approach. We shall still use the Stratovich interpretation of a multi-
plicative noise, only this time defining the friction force γi = µmi where µ is
the (homogeneous) coefficient of friction. Making a substitution similar to the
one in Section 2.1, we obtain the following stochastic differential equation:

θi = ωdt +
∣∣ sin(θi/2)

∣∣Ri(t)
√

2C

mi
dt− G

N

∑
j 6=i

mimjg
(
u(θj − θi)

)
dt (11)

where u(θ) is defined to be the unique real number in (−π, π] such that u(θ) =
θ + 2πn for some n ∈ Z.

3.3 Results

The model only underwent 2× 107 iterations since the attractive forces caused
the particles to converge much more quickly than in the previous model. Again
a time step of dt = 5 × 10−6 and the second order Heun method were used
to approximate the continuity of time. For the purpose of computation, G
was scaled to 3.0. In a true gravitational system, the gravitational constant
G ≈ 6.67 × 10−11 would need to be used, but for computational purposes this
has been scaled to a more reasonable value. Since C and mi are each scalable
in their own rights, the system is still theoretically realizable.

The inversely proportional model gave some surprising results, which are
clearly shown in Figure 4. The negatice conductance displayed by the five par-
ticles with m = 0.1 was extremely robust, dominating the overall displacement
of the system, evident in Figure 5. Even when the system reset, as can be seen
by the upward sloping in the smaller particles, the particles quickly realligned
and resumed Brownian motor behavior. The system, with as few as 15 particles,
formed a negative conductance that required over 50 particles in the classical
model [4].

4 Conclusions and Discussion

In regards to the effectiveness of each model, it was clear that both had potential
in their own rights. The gravitational system is extremely robust even for low
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Figure 4: A 15-particle system mod-
eling Eq. (11) [ω = 0.080, C = 2,
m1 . . .m5 = 0.1, m6 . . .m15 = 5].
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Figure 5: The downward sloping av-
erage of the new model vs. the sta-
ble average of the classical model

numbers of particles and still holds much to be explored. The non-homogeneous
classical model, on the other hand, has shown negative conductance for an
extremely small system of particles. Perhaps the only down side lies in the
inability to instantiate such systems in the physical world. The classical model’s
interactive force has no true parallel in nature, making it a purely theoretical
phenomenon. While the inversely proportional model mimics the effects of
gravity, the absurdly low value of G requires the masses and temperature to
be scaled more than 105 to obtain a large enough force to balance out any
substantial torque induced velocity. The scaling could be reduced by increasing
the radius of the system, but this in turn would cause a decrease in the system
speed. Thus a realization of this model would require a macroscale system with
a fairly substantial temperature gradient and it would still take ages to produce
a noticeable effect. As far as Brownian motors go, anything large enough to
benefit technology is purely theoretical, and yet these systems are known to
appear in nature [2], making them worthy of further research.
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[2] I. Derényi, P. Tegzes, and T. Vicsek, Collective transport in locally asym-
metric periodic structures, Chaos 8 (1998), 657–664.

6



[3] P. Hänggi, R. Kawai, P. Reimann, and C. Van den Broeck, Coupled Brownian
motors, Springer Verlag, New York, 1999.

[4] M. Kambon and R. Kawai, Finite-size effects on noise-induced negative mo-
bility in coupled phase oscillators, manuscript (1999).

[5] R. Kawai, P. Reimann, and C. Van den Broeck, Nonequilibrium noise in
coupled phase oscillators, manuscript (1999).

[6] M. Miguel and R. Toral, Instabilities and Nonequilibrium Structures, VI
(E. Tirapegui and W. Zeller, eds.), Kluwer Academic Pubs., 1997.

7


