A determinantal identity for the permanent of a rank 2 matrix

Adam W. Marcus^{*} Princeton University

August 30, 2016

Abstract

We prove a relationship between the permanent of a rank 2 matrix and the determinants of its Hadamard powers. The proof uses a decomposition of the determinant in terms of Schur polynomials.

Let \mathbb{F} be a field. For a matrix $M \in \mathbb{F}^{n \times n}$ with entries m(i, j) and integer p, let M_p be the matrix with

$$M_p(i,j) = m(i,j)^p.$$

When M has rank at most 2 and no nonzero entries, Carlitz and Levine showed [1]:

$$\det [M_{-2}] = \det [M_{-1}] \text{ perm} [M_{-1}]$$
(1)

where

perm
$$[M] = \sum_{\sigma \in S_n} \prod_{i=1}^n m(i, \sigma(i))$$
 and $\det[M] = \sum_{\sigma \in S_n} (-1)^{|\sigma|} \prod_{i=1}^n m(i, \sigma(i))$

are the usual *permanent* and *determinant* matrix functions. The proof in [1] is elementary, using little more than the definitions and some facts concerning the cycle structure of permutations. In this paper we prove an identity in a similar spirit, but using an entirely different means. Our main result (Theorem 2.5) shows that when M has rank at most 2,

$$(n!)^{2} \det [M_{n}] = (n^{n}) \det [M_{n-1}] \text{ perm} [M_{1}].$$
(2)

The proof uses a decomposition of the determinant into Schur polynomials (Lemma 2.1).

1 Preliminaries

For a set S and a function f, we will write

$$a^S := \prod_{i \in S} a_i$$
 and $f(S) = \{f(i)\}_{i \in S}$

We use the customary notation that $[n] = \{1, 2, ..., n\}$ and that $\binom{[n]}{k}$ denotes the collection of subsets of [n] size k. For a permutation σ , we write $|\sigma|$ to denote the number of cycles in its cycle decomposition.

^{*}Research supported by NSF CAREER grant 1552520.

1.1 Alternating Polynomials

We will say that a polynomial $p(x_1, \ldots, x_n) \in \mathbb{F}[x_1, \ldots, x_n]$ is symmetric if

$$p(x_1, \dots, x_i, x_{i+1}, \dots, x_n) = p(x_1, \dots, x_{i+1}, x_i, \dots, x_n)$$

and *alternating* if

$$p(x_1, \dots, x_i, x_{i+1}, \dots, x_n) = -p(x_1, \dots, x_{i+1}, x_i, \dots, x_n)$$

for all transpositions (i, i + 1). Since the set of transpositions generates the symmetric group, an equivalent definition is (for symmetric polynomials)

$$p(x_1,\ldots,x_n)=p(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

and (for alternating polynomials)

$$p(x_1, \dots, x_n) = (-1)^{|\sigma|} p(x_{\sigma(1)}, \dots, x_{\sigma(n)})$$
(3)

for all $\sigma \in S_n$. In particular, (3) implies that any alternating polynomial p must be 0 whenever $x_i = x_j$ for some $i \neq j$. One example of an alternating polynomial is the Vandermonde polynomial

$$\Delta(x_1, \dots, x_n) = \prod_{i < j} (x_i - x_j).$$
(4)

It is easy to see that the Vandermonde polynomial is an essential part of all alternating polynomials:

Lemma 1.1. For all alternating polynomials $f(x_1, \ldots, x_n)$, there exists a symmetric polynomial $t(x_1, \ldots, x_n)$ such that

$$f(x_1,\ldots,x_n) = \Delta(x_1,\ldots,x_n)t(x_1,\ldots,x_n).$$

Proof. For distinct $y_2, \ldots, y_n \in \mathbb{F}$, (3) implies that the univariate polynomial

$$g(x) = f(x, y_2, \dots, y_n) \in \mathbb{F}[x]$$

satisfies $g(y_k) = 0$ for each k = 2, ..., n. Hence $(x - y_k)$ must be a factor of g and so $(x_1 - x_k)$ must be a factor of g. Since this is true for all k and all i (not just i = 1), every polynomial of the form $(x_i - x_k)$ must be a factor of f, and so

$$f(x_1,\ldots,x_n) = \Delta(x_1,\ldots,x_n)t(x_1,\ldots,x_n)$$

for some polynomial t. To see that t is symmetric, one merely needs to note that

$$f(x_1,\ldots,x_n) = (-1)^{|\sigma|} f(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

now implies

$$\Delta(x_1,\ldots,x_n)t(x_1,\ldots,x_n) = (-1)^{|\sigma|}\Delta(x_{\sigma(1)},\ldots,x_{\sigma(n)})t(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

where

$$\Delta(x_1,\ldots,x_n) = (-1)^{|\sigma|} \Delta(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

and so

$$t(x_1,\ldots,x_n)=t(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

1.2 Young Tableaux

For a positive integer n, we will say that a sequence of nonnegative integers $\lambda = (\lambda_1, \lambda_2, ...)$ is a *partition of n* if

1. $\lambda_i \geq \lambda_{i+1}$ for all $i \geq 1$

2.
$$\sum_i \lambda_i = n$$

and we will write $|\lambda| = n$. We will let Λ_n denote the collection of partitions of n and $\Lambda_* = \bigcup_n \Lambda_n$. The *length* of a partition, written $\ell(\lambda)$, is the largest k for which $\lambda_k \neq 0$ (it should be clear from the definition that only a finite number of elements of λ_i can be nonzero, and that they must occupy an initial interval of λ). For ease of reading, we will use the customary exponential notation: that is, we will write the partition

$$(\underbrace{t_1,\ldots,t_1}_{n_1 \text{ times}},\underbrace{t_2,\ldots,t_2}_{n_2 \text{ times}},\ldots)$$

as $(t_1^{n_1}, t_2^{n_2}, ...)$. The one exception will be the values of 0, which we will never include in any presentation unless necessary (but which will always exist).

A Young diagram is a finite collection of boxes (called cells) which are arranged in left-justified rows with nonincreasing lengths. There is a natural bijection between partitions and Young diagrams where the *i*th row of the Young diagram has λ_i cells in it. A Young tableau is obtained by filling in the boxes of the Young diagram with positive integers (possibly restricted to some ground set Ω). A tableau is called standard (resp. semistandard) if the entries in each row and each column are strictly (resp. weakly) increasing. The sequence of integers $w(T) = \{t_i\}_{i=1}^{\infty}$ where t_i is the number of times the integer *i* appears in a given tableau is called the weight sequence.

1.3 Schur Polynomials

The degree d Schur polynomials in n variables form a linear basis for the space of homogeneous degree d symmetric polynomials in n variables, indexed by partitions λ with $|\lambda| = d$. For a partition λ , the Schur polynomial s_{λ} is defined as

$$s_{\lambda}(x_1, x_2, \dots, x_n) = \sum_T x^{w(T)} = \sum_T x_1^{t_1} \cdots x_n^{t_n}$$

where the summation is over all semistandard Young tableaux T of shape λ using ground set $\Omega = \{1, \ldots, n\}$ and where $w(T) = t_1, \ldots, t_n$ is the weight sequence of T.

Jacobi gave a more direct formula for computing Schur polynomials [2]: given a partition λ , define the functions

$$a_{\lambda}(x_1, x_2, \dots, x_n) = \det \begin{bmatrix} x_1^{\lambda_1 + n - 1} & x_2^{\lambda_1 + n - 1} & \dots & x_n^{\lambda_1 + n - 1} \\ x_1^{\lambda_2 + n - 2} & x_2^{\lambda_2 + n - 2} & \dots & x_n^{\lambda_2 + n - 2} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{\lambda_n} & x_2^{\lambda_n} & \dots & x_n^{\lambda_n} \end{bmatrix}$$

In particular, when $\lambda = (0)$, the matrix involved is the well-known Vandermonde matrix, and so

$$a_{(0)}(x_1, x_2, \dots, x_n) = \det \begin{bmatrix} x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \\ x_1^{n-2} & x_2^{n-2} & \dots & x_n^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \dots & 1 \end{bmatrix} = \Delta(x_1, \dots, x_n).$$

where Δ is the alternating polynomial from (4). Since determinants are alternating with respect to transposition of columns, the polynomials a_{λ} are alternating with respect to transposition of its variables. Hence by Lemma 1.1, we can write

$$a_{\lambda}(x_1,\ldots,x_n) = a_{(0)}(x_1,\ldots,x_n)s_{\lambda}(x_1,\ldots,x_n)$$
(5)

where each $s_{\lambda}(x_1, \ldots, x_n)$ is a symmetric polynomial.

Theorem 1.2 (Jacobi). For all λ , the polynomials s_{λ} defined in (5) are the Schur polynomials.

Of particular importance for us is that the Schur polynomials indexed by the partitions $\lambda = (1^k)$ are the elementary symmetric polynomials.

Lemma 1.3. For all integers $n \ge 1$ and $k \ge 0$

$$s_{(1^k)}(x_1,\ldots,x_n) = e_k(x_1,\ldots,x_n)$$

for all k. In particular, $s_{(0)}(x_1, \ldots, x_n) = 1$ (the case k = 0).

We end by noting that we will only use some of the most basic properties of Schur polynomials. They appear naturally in a variety of settings; for example, combinatorics (as a basis for symmetric functions), random matrix theory (as zonal spherical polynomials), and representation theory (as characters related to representations of the general linear groups). For a more comprehensive treatment of Schur polynomials, see [3].

2 Theorem

For this section, we fix vectors $a, b \in \mathbb{F}^n$ and define the matrices A_p with entries

$$A_p(i,j) = (1+a_ib_j)^p.$$

Lemma 2.1. For integer p > 0, we have

$$\det [A_p] = \Delta(a)\Delta(b) \sum_{\substack{S \subseteq \{0, \dots, p\} \\ |S|=n}} s_{\lambda}(a)s_{\lambda}(b) \left(\prod_{i \in S} \binom{p}{i}\right)$$

where $\lambda_j = S_{n-j+1} - n + j$.

Proof. By definition,

$$\det [A_p] = \sum_{\sigma \in S_n} (-1)^{|\sigma|} \prod_{j=1}^n A_p(j, \sigma(j))$$

= $\sum_{\sigma \in S_n} (-1)^{|\sigma|} \prod_{j=1}^n (1 + a_i b_{\sigma(j)})^p$
= $\sum_{\sigma \in S_n} (-1)^{|\sigma|} \prod_{j=1}^n \left(\sum_{i_j=0}^p {p \choose i_j} (a_j b_{\sigma(j)})^{i_j} \right)$
= $\sum_{i_1, \dots, i_n=0}^p {p \choose i_1} \dots {p \choose i_n} a_1^{i_1} \dots a_n^{i_n} \sum_{\sigma \in S_n} (-1)^{|\sigma|} b_{\sigma(1)}^{i_1} \dots b_{\sigma(n)}^{i_n}$

For a vector $\vec{i} = i_1, \ldots, i_n$, let

$$f(\vec{i}) = \sum_{\sigma \in S_n} (-1)^{|\sigma|} b^{i_1}_{\sigma(1)} \dots b^{i_n}_{\sigma(n)}.$$

We first claim that $f(\vec{i}) = 0$ whenever $i_j = i_k$ for some $j \neq k$. To see that this is true, consider the matrix $W_{\vec{i}}(s,t) = b_t^{i_s}$. Then

$$\det \left[W_{\vec{i}} \right] = \sum_{\sigma \in S_n} (-1)^{|\sigma|} \prod_{s=1}^n W_{\vec{i}}(s, \sigma(s)) = \sum_{\sigma \in S_n} (-1)^{|\sigma|} \prod_{j=1}^n b_{\sigma(s)}^{i_s} = f(\vec{i}).$$

But if $i_j = i_k$ for $j \neq k$, then W has rows j and k the same (and so this determinant is 0). Hence we have

$$\begin{aligned} \det \left[A_{p}\right] &= \sum_{i_{1} \neq \dots \neq i_{n}=0}^{p} \binom{p}{i_{1}} \dots \binom{p}{i_{n}} a_{1}^{i_{1}} \dots a_{n}^{i_{n}} \sum_{\sigma \in S_{n}} (-1)^{|\sigma|} b_{\sigma(1)}^{i_{1}} \dots b_{\sigma(n)}^{i_{n}} \\ &= \sum_{\pi \in S_{n}} \sum_{0 \leq i_{1} < \dots < i_{n} \leq p} \binom{p}{i_{1}} \dots \binom{p}{i_{n}} a_{1}^{i_{\pi(1)}} \dots a_{n}^{i_{\pi(n)}} \sum_{\sigma \in S_{n}} (-1)^{|\sigma|} b_{\sigma(1)}^{i_{\pi(1)}} \dots b_{\sigma(n)}^{i_{\pi(n)}} \\ &= \sum_{\pi \in S_{n}} \sum_{0 \leq i_{1} < \dots < i_{n} \leq p} \binom{p}{\pi(i_{1})} \dots \binom{p}{\pi(i_{n})} a_{\pi(1)}^{i_{1}} \dots a_{\pi(n)}^{i_{n}} \sum_{\sigma \in S_{n}} (-1)^{|\sigma|} b_{\sigma(\pi(1))}^{i_{1}} \dots b_{\sigma(\pi(n))}^{i_{n}} \\ &= \sum_{0 \leq i_{1} < \dots < i_{n} \leq p} \binom{p}{i_{1}} \dots \binom{p}{i_{n}} \sum_{\pi, \sigma \in S_{n}} (-1)^{|\sigma| + |\pi|} a_{\pi(1)}^{i_{n}} \dots a_{\pi(n)}^{i_{1}} b_{\sigma(1)}^{i_{n}} \dots b_{\sigma(n)}^{i_{1}} \\ &= \Delta(a) \Delta(b) \sum_{\substack{S \subseteq \{0, \dots, p\} \\ |S| = n}} s_{\lambda}(a) s_{\lambda}(b) \left(\prod_{i \in S} \binom{p}{i}\right) \end{aligned}$$

where one can calculate that the appropriate $\lambda_j = S_{n-j+1} - n + j$.

Corollary 2.2.

$$\det [A_{n-1}] = \Delta(a)\Delta(b) \left(\prod_{j=0}^{n-1} \binom{n-1}{j}\right)$$

Proof. By Lemma 2.1, we have

$$\det [A_{n-1}] = \Delta(a)\Delta(b) \sum_{\substack{S \subseteq \{0,\dots,n-1\}\\|S|=n}} s_{\lambda}(a)s_{\lambda}(b) \left(\prod_{i \in S} \binom{p}{i}\right)$$

,

、

but the only set satisfying the constraint in the summation is the set $\{0, \ldots, n-1\}$ itself. One can check that this leads to having $\lambda = (0)$, which by Lemma 1.3 make $s_{\lambda}(a)s_{\lambda}(b) = 1$.

Lemma 2.3.

perm
$$[A] = \sum_{k=0}^{n} k! (n-k)! e_k(a) e_k(b)$$

Proof. By definition, we have

perm
$$[A] = \sum_{\sigma \in S_n} \prod_{i=1}^n (1 + a_i b_{\sigma(i)})$$

where for each σ , we have

$$\prod_{i=1}^{n} (1 + a_i b_{\sigma(i)}) = \sum_{S \subseteq [n]} a^S b^{\sigma(S)}$$

For fixed S with |S| = k, as σ ranges over all permutations, $\sigma(S)$ will range over all sets $T \in {[n] \choose k}$ and any σ' for which $\sigma'(S) = \sigma(S)$ will give the same term. As there are a total of k!(n-k)! such permutations, we have

perm
$$[A] = \sum_{k=0}^{n} k!(n-k)! \sum_{S \in \binom{[n]}{k}} \sum_{T \in \binom{[n]}{k}} a^{S} b^{T} = \sum_{k=0}^{n} k!(n-k)! e_{k}(a) e_{k}(b)$$

as claimed.

Corollary 2.4.

$$(n!)^2 \det [A_n] = (n^n) \det [A_{n-1}] \text{ perm} [A]$$

Proof. By Lemma 2.1, we have

$$\det [A_n] = \Delta(a)\Delta(b) \sum_{\substack{S \subseteq \{0, \dots, n\} \\ |S|=n}} s_\lambda(a) s_\lambda(b) \left(\prod_{i \in S} \binom{n}{i}\right).$$

Note that there are *n* possible subsets in the sum and that each has exactly one element from $\{0, \ldots, n\}$ missing. Letting $R_1 = \prod_{i=0}^n {n \choose i}$ and indexing by the missing element, we can write

$$\det [A_n] = \Delta(a)\Delta(b) \sum_{t=0}^n \frac{R_1}{\binom{n}{t}} s_\lambda(a) s_\lambda(b)$$

where $\lambda_j = (1^t)$. Hence by Lemma 1.3 and then Lemma 2.3, we have

$$\det [A_n] = \Delta(a)\Delta(b) \sum_{t=0}^n \frac{R_1}{\binom{n}{t}} e_t(a) e_t(b)$$
$$= \frac{R_1}{n!} \Delta(a)\Delta(b) \text{ perm } [A].$$

Now if we write

$$R_{1} = \prod_{i=0}^{n} \binom{n}{i} = \prod_{i=1}^{n} \frac{n}{i} \binom{n-1}{i-1} = \frac{n^{n}}{n!} \prod_{i=0}^{n-1} \binom{n-1}{i}$$

then plugging in Corollary 2.2 gives the theorem.

Theorem 2.5. Let $X \in \mathbb{F}^{n \times n}$ be any rank 2 matrix and let $X_{n-1}, X_n \in \mathbb{F}^{n \times n}$ be the matrices with

$$X_{n-1}(i,j) = X(i,j)^{n-1}$$
 and $X_n(i,j) = X(i,j)^n$

Then

$$(n!)^2 \det [X_n] = (n^n) \det [X_{n-1}] \text{ perm} [X].$$

Proof. Let $\vec{1} \in \mathbb{F}^n$ be the vector with $\vec{1}(k) = 1$ for all k. Then Corollary 2.4 proves the theorem when

$$X = ab^T + \vec{1}\vec{1}^T.$$

Let $Y = ab^T + cd^T$ for general c, d. Then it is easy to check that the expansion of det $[Y_n]$ in terms of monomials has the form

$$\det [Y_n] = \sum_{i_1, \dots, i_n, j_1, \dots, j_n} u_{i_1, \dots, i_n, j_1, \dots, j_n} \prod_k a_k^{i_k} c_k^{n-i_k} b_k^{j_k} d_k^{n-j_k}$$
(6)

where the $u_{i_1,\ldots,i_n,j_1,\ldots,j_n}$ are constants. Similarly, det $[Y_{n-1}]$ perm [Y] has an expansion

$$\det [Y_{n-1}] \text{ perm} [Y] = \sum_{i_1,\dots,i_n,j_1,\dots,j_n} v_{i_1,\dots,i_n,j_1,\dots,j_n} \prod_k a_k^{i_k} c_k^{n-i_k} b_k^{j_k} d_k^{n-j_k}.$$
 (7)

Plugging in $d = \vec{1}$ and $c = \vec{1}$, however, does not cause any of the coefficients to combine. That is,

$$\det [X_n] = \sum_{i_1, \dots, i_n, j_1, \dots, j_n} u_{i_1, \dots, i_n, j_1, \dots, j_n} \prod_k a_k^{i_k} b_k^{j_k}$$

and

det
$$[X_{n-1}]$$
 perm $[X] = \sum_{i_1,\dots,i_n,j_1,\dots,j_n} v_{i_1,\dots,i_n,j_1,\dots,j_n} \prod_k a_k^{i_k} b_k^{j_k}$

and so by Corollary 2.4, we have

$$(n!)^2 u_{i_1,\dots,i_n,j_1,\dots,j_n} = (n^n) v_{i_1,\dots,i_n,j_1,\dots,j_n}$$

for all indices i_1, \ldots, i_n and j_1, \ldots, j_n . Plugging this into (6) and (7) implies equality for Y. \Box

References

- L. Carlitz and J. Levine. An identity of Cayley. The American Mathematical Monthly, 67(6):571– 573, 1960.
- [2] C. G. J. Jacobi. De functionibus alternantibus earumque divisione per productum e differentiis elementorum conflatum. *Journal für die reine und angewandte Mathematik*, 22:360–371, 1841.
- [3] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford university press, 1998.