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Abstract

We prove a relationship between the permanent of a rank 2 matrix and the determinants
of its Hadamard powers. The proof uses a decomposition of the determinant in terms of Schur
polynomials.

Let F be a field. For a matrix M ∈ Fn×n with entries m(i, j) and integer p, let Mp be the
matrix with

Mp(i, j) = m(i, j)p.

When M has rank at most 2 and no nonzero entries, Carlitz and Levine showed [1]:

det [M−2] = det [M−1] perm [M−1] (1)

where

perm [M ] =
∑
σ∈Sn

n∏
i=1

m(i, σ(i)) and det [M ] =
∑
σ∈Sn

(−1)|σ|
n∏
i=1

m(i, σ(i))

are the usual permanent and determinant matrix functions. The proof in [1] is elementary, using
little more than the definitions and some facts concerning the cycle structure of permutations. In
this paper we prove an identity in a similar spirit, but using an entirely different means. Our main
result (Theorem 2.5) shows that when M has rank at most 2,

(n!)2 det [Mn] = (nn) det [Mn−1] perm [M1] . (2)

The proof uses a decomposition of the determinant into Schur polynomials (Lemma 2.1).

1 Preliminaries

For a set S and a function f , we will write

aS :=
∏
i∈S

ai and f(S) = {f(i)}i∈S .

We use the customary notation that [n] = {1, 2, . . . , n} and that
([n]
k

)
denotes the collection of

subsets of [n] size k. For a permutation σ, we write |σ| to denote the number of cycles in its cycle
decomposition.
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1.1 Alternating Polynomials

We will say that a polynomial p(x1, . . . , xn) ∈ F[x1, . . . , xn] is symmetric if

p(x1, . . . xi, xi+1, . . . , xn) = p(x1, . . . xi+1, xi, . . . , xn)

and alternating if
p(x1, . . . xi, xi+1, . . . , xn) = −p(x1, . . . xi+1, xi, . . . , xn)

for all transpositions (i, i + 1). Since the set of transpositions generates the symmetric group, an
equivalent definition is (for symmetric polynomials)

p(x1, . . . , xn) = p(xσ(1), . . . , xσ(n))

and (for alternating polynomials)

p(x1, . . . , xn) = (−1)|σ|p(xσ(1), . . . , xσ(n)) (3)

for all σ ∈ Sn. In particular, (3) implies that any alternating polynomial p must be 0 whenever
xi = xj for some i 6= j. One example of an alternating polynomial is the Vandermonde polynomial

∆(x1, . . . , xn) =
∏
i<j

(xi − xj). (4)

It is easy to see that the Vandermonde polynomial is an essential part of all alternating polynomials:

Lemma 1.1. For all alternating polynomials f(x1, . . . , xn), there exists a symmetric polynomial
t(x1, . . . , xn) such that

f(x1, . . . , xn) = ∆(x1, . . . , xn)t(x1, . . . , xn).

Proof. For distinct y2, . . . , yn ∈ F, (3) implies that the univariate polynomial

g(x) = f(x, y2, . . . , yn) ∈ F[x]

satisfies g(yk) = 0 for each k = 2, . . . , n. Hence (x − yk) must be a factor of g and so (x1 − xk)
must be a factor of g. Since this is true for all k and all i (not just i = 1), every polynomial of the
form (xi − xk) must be a factor of f , and so

f(x1, . . . , xn) = ∆(x1, . . . , xn)t(x1, . . . , xn)

for some polynomial t. To see that t is symmetric, one merely needs to note that

f(x1, . . . , xn) = (−1)|σ|f(xσ(1), . . . , xσ(n))

now implies

∆(x1, . . . , xn)t(x1, . . . , xn) = (−1)|σ|∆(xσ(1), . . . , xσ(n))t(xσ(1), . . . , xσ(n))

where
∆(x1, . . . , xn) = (−1)|σ|∆(xσ(1), . . . , xσ(n))

and so
t(x1, . . . , xn) = t(xσ(1), . . . , xσ(n)).
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1.2 Young Tableaux

For a positive integer n, we will say that a sequence of nonnegative integers λ = (λ1, λ2, . . . ) is a
partition of n if

1. λi ≥ λi+1 for all i ≥ 1

2.
∑

i λi = n

and we will write |λ| = n. We will let Λn denote the collection of partitions of n and Λ∗ =
⋃
n Λn.

The length of a partition, written `(λ), is the largest k for which λk 6= 0 (it should be clear from the
definition that only a finite number of elements of λi can be nonzero, and that they must occupy
an initial interval of λ). For ease of reading, we will use the customary exponential notation: that
is, we will write the partition

(t1, . . . , t1︸ ︷︷ ︸
n1 times

, t2, . . . , t2︸ ︷︷ ︸
n2 times

, . . . )

as (tn1
1 , t

n2
2 , . . . ). The one exception will be the values of 0, which we will never include in any

presentation unless necessary (but which will always exist).
A Young diagram is a finite collection of boxes (called cells) which are arranged in left-justified

rows with nonincreasing lengths. There is a natural bijection between partitions and Young di-
agrams where the ith row of the Young diagram has λi cells in it. A Young tableau is obtained
by filling in the boxes of the Young diagram with positive integers (possibly restricted to some
ground set Ω). A tableau is called standard (resp. semistandard) if the entries in each row and
each column are strictly (resp. weakly) increasing. The sequence of integers w(T ) = {ti}∞i=1 where
ti is the number of times the integer i appears in a given tableau is called the weight sequence.

1.3 Schur Polynomials

The degree d Schur polynomials in n variables form a linear basis for the space of homogeneous
degree d symmetric polynomials in n variables, indexed by partitions λ with |λ| = d. For a partition
λ, the Schur polynomial sλ is defined as

sλ(x1, x2, . . . , xn) =
∑
T

xw(T ) =
∑
T

xt11 · · ·x
tn
n

where the summation is over all semistandard Young tableaux T of shape λ using ground set
Ω = {1, . . . , n} and where w(T ) = t1, . . . , tn is the weight sequence of T .

Jacobi gave a more direct formula for computing Schur polynomials [2]: given a partition λ,
define the functions

aλ(x1, x2, . . . , xn) = det


xλ1+n−11 xλ1+n−12 . . . xλ1+n−1n

xλ2+n−21 xλ2+n−22 . . . xλ2+n−2n
...

...
. . .

...

xλn1 xλn2 . . . xλnn

 .
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In particular, when λ = (0), the matrix involved is the well-known Vandermonde matrix, and so

a(0)(x1, x2, . . . , xn) = det


xn−11 xn−12 . . . xn−1n

xn−21 xn−22 . . . xn−2n
...

...
. . .

...
1 1 . . . 1

 = ∆(x1, . . . , xn).

where ∆ is the alternating polynomial from (4). Since determinants are alternating with respect
to transposition of columns, the polynomials aλ are alternating with respect to transposition of its
variables. Hence by Lemma 1.1, we can write

aλ(x1, . . . , xn) = a(0)(x1, . . . , xn)sλ(x1, . . . , xn) (5)

where each sλ(x1, . . . , xn) is a symmetric polynomial.

Theorem 1.2 (Jacobi). For all λ, the polynomials sλ defined in (5) are the Schur polynomials.

Of particular importance for us is that the Schur polynomials indexed by the partitions λ = (1k)
are the elementary symmetric polynomials.

Lemma 1.3. For all integers n ≥ 1 and k ≥ 0

s(1k)(x1, . . . , xn) = ek(x1, . . . , xn)

for all k. In particular, s(0)(x1, . . . , xn) = 1 (the case k = 0).

We end by noting that we will only use some of the most basic properties of Schur polynomials.
They appear naturally in a variety of settings; for example, combinatorics (as a basis for symmetric
functions), random matrix theory (as zonal spherical polynomials), and representation theory (as
characters related to representations of the general linear groups). For a more comprehensive
treatment of Schur polynomials, see [3].

2 Theorem

For this section, we fix vectors a, b ∈ Fn and define the matrices Ap with entries

Ap(i, j) = (1 + aibj)
p.

Lemma 2.1. For integer p > 0, we have

det [Ap] = ∆(a)∆(b)
∑

S⊆{0,...,p}
|S|=n

sλ(a)sλ(b)

(∏
i∈S

(
p

i

))

where λj = Sn−j+1 − n+ j.
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Proof. By definition,

det [Ap] =
∑
σ∈Sn

(−1)|σ|
n∏
j=1

Ap(j, σ(j))

=
∑
σ∈Sn

(−1)|σ|
n∏
j=1

(1 + aibσ(j))
p

=
∑
σ∈Sn

(−1)|σ|
n∏
j=1

 p∑
ij=0

(
p

ij

)
(ajbσ(j))

ij


=

p∑
i1,...,in=0

(
p

i1

)
. . .

(
p

in

)
ai11 . . . a

in
n

∑
σ∈Sn

(−1)|σ|bi1σ(1) . . . b
in
σ(n)

For a vector ~i = i1, . . . , in, let

f(~i) =
∑
σ∈Sn

(−1)|σ|bi1σ(1) . . . b
in
σ(n).

We first claim that f(~i) = 0 whenever ij = ik for some j 6= k. To see that this is true, consider the
matrix W~i(s, t) = bist . Then

det
[
W~i

]
=
∑
σ∈Sn

(−1)|σ|
n∏
s=1

W~i(s, σ(s)) =
∑
σ∈Sn

(−1)|σ|
n∏
j=1

bisσ(s) = f(~i).

But if ij = ik for j 6= k, then W has rows j and k the same (and so this determinant is 0). Hence
we have

det [Ap] =

p∑
i1 6=···6=in=0

(
p

i1

)
. . .

(
p

in

)
ai11 . . . a

in
n

∑
σ∈Sn

(−1)|σ|bi1σ(1) . . . b
in
σ(n)

=
∑
π∈Sn

∑
0≤i1<···<in≤p

(
p

i1

)
. . .

(
p

in

)
a
iπ(1)
1 . . . a

iπ(n)
n

∑
σ∈Sn

(−1)|σ|b
iπ(1)
σ(1) . . . b

iπ(n)
σ(n)

=
∑
π∈Sn

∑
0≤i1<···<in≤p

(
p

π(i1)

)
. . .

(
p

π(in)

)
ai1π(1) . . . a

in
π(n)

∑
σ∈Sn

(−1)|σ|bi1σ(π(1)) . . . b
in
σ(π(n))

=
∑

0≤i1<···<in≤p

(
p

i1

)
. . .

(
p

in

) ∑
π,σ∈Sn

(−1)|σ|+|π|ainπ(1) . . . a
i1
π(n)b

in
σ(1) . . . b

i1
σ(n)

= ∆(a)∆(b)
∑

S⊆{0,...,p}
|S|=n

sλ(a)sλ(b)

(∏
i∈S

(
p

i

))

where one can calculate that the appropriate λj = Sn−j+1 − n+ j.

Corollary 2.2.

det [An−1] = ∆(a)∆(b)

n−1∏
j=0

(
n− 1

j

)
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Proof. By Lemma 2.1, we have

det [An−1] = ∆(a)∆(b)
∑

S⊆{0,...,n−1}
|S|=n

sλ(a)sλ(b)

(∏
i∈S

(
p

i

))

but the only set satisfying the constraint in the summation is the set {0, . . . , n− 1} itself. One can
check that this leads to having λ = (0), which by Lemma 1.3 make sλ(a)sλ(b) = 1.

Lemma 2.3.

perm [A] =

n∑
k=0

k!(n− k)!ek(a)ek(b)

Proof. By definition, we have

perm [A] =
∑
σ∈Sn

n∏
i=1

(1 + aibσ(i))

where for each σ, we have
n∏
i=1

(1 + aibσ(i)) =
∑
S⊆[n]

aSbσ(S)

For fixed S with |S| = k, as σ ranges over all permutations, σ(S) will range over all sets T ∈
([n]
k

)
and any σ′ for which σ′(S) = σ(S) will give the same term. As there are a total of k!(n− k)! such
permutations, we have

perm [A] =
n∑
k=0

k!(n− k)!
∑

S∈([n]k )

∑
T∈([n]k )

aSbT =
n∑
k=0

k!(n− k)!ek(a)ek(b)

as claimed.

Corollary 2.4.
(n!)2 det [An] = (nn) det [An−1] perm [A] .

Proof. By Lemma 2.1, we have

det [An] = ∆(a)∆(b)
∑

S⊆{0,...,n}
|S|=n

sλ(a)sλ(b)

(∏
i∈S

(
n

i

))
.

Note that there are n possible subsets in the sum and that each has exactly one element from
{0, . . . , n} missing. Letting R1 =

∏n
i=0

(
n
i

)
and indexing by the missing element, we can write

det [An] = ∆(a)∆(b)

n∑
t=0

R1(
n
t

)sλ(a)sλ(b)

6



where λj = (1t). Hence by Lemma 1.3 and then Lemma 2.3, we have

det [An] = ∆(a)∆(b)
n∑
t=0

R1(
n
t

)et(a)et(b)

=
R1

n!
∆(a)∆(b) perm [A] .

Now if we write

R1 =
n∏
i=0

(
n

i

)
=

n∏
i=1

n

i

(
n− 1

i− 1

)
=
nn

n!

n−1∏
i=0

(
n− 1

i

)
then plugging in Corollary 2.2 gives the theorem.

Theorem 2.5. Let X ∈ Fn×n be any rank 2 matrix and let Xn−1, Xn ∈ Fn×n be the matrices with

Xn−1(i, j) = X(i, j)n−1 and Xn(i, j) = X(i, j)n

Then
(n!)2 det [Xn] = (nn) det [Xn−1] perm [X] .

Proof. Let ~1 ∈ Fn be the vector with ~1(k) = 1 for all k. Then Corollary 2.4 proves the theorem
when

X = abT +~1~1T .

Let Y = abT + cdT for general c, d. Then it is easy to check that the expansion of det [Yn] in terms
of monomials has the form

det [Yn] =
∑

i1,...,in,j1,...,jn

ui1,...,in,j1,...,jn
∏
k

aikk c
n−ik
k bjkk d

n−jk
k (6)

where the ui1,...,in,j1,...,jn are constants. Similarly, det [Yn−1] perm [Y ] has an expansion

det [Yn−1] perm [Y ] =
∑

i1,...,in,j1,...,jn

vi1,...,in,j1,...,jn
∏
k

aikk c
n−ik
k bjkk d

n−jk
k . (7)

Plugging in d = ~1 and c = ~1, however, does not cause any of the coefficients to combine. That is,

det [Xn] =
∑

i1,...,in,j1,...,jn

ui1,...,in,j1,...,jn
∏
k

aikk b
jk
k

and
det [Xn−1] perm [X] =

∑
i1,...,in,j1,...,jn

vi1,...,in,j1,...,jn
∏
k

aikk b
jk
k

and so by Corollary 2.4, we have

(n!)2ui1,...,in,j1,...,jn = (nn)vi1,...,in,j1,...,jn

for all indices i1, . . . , in and j1, . . . , jn. Plugging this into (6) and (7) implies equality for Y .
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