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Abstract

This paper examines the extremal problem of how many 1-entries an
n × n 0–1 matrix can have that avoids a certain fixed submatrix P . For
any permutation matrix P we prove a linear bound, settling a conjecture
of Zoltán Füredi and Péter Hajnal [8]. Due to the work of Martin Klazar
[12], this also settles the conjecture of Stanley and Wilf on the number of
n-permutations avoiding a fixed permutation and a related conjecture of
Alon and Friedgut [1].

1 Introduction

This paper settles three related conjectures concerning pattern avoidance. To
state the conjectures we define the term “avoiding” in several contexts.

Definition. Let A and P be 0–1 matrices. We say that A contains the k × l
matrix P = (pij) if there exists a k × l submatrix D = (dij) of A with dij = 1
whenever pij = 1. Otherwise we say that A avoids P . Notice that we can delete
rows and columns of A to obtain the submatrix D but we cannot permute the
remaining rows and columns. If A contains P we identify the 1-entries of the
matrix A corresponding to the entries dij of D with pij = 1 and say that these
entries of A represent P .

Let [n] = {1, 2, . . . , n}. A permutation of [n] is called an n-permutation. We
say that an n-permutation σ contains a k-permutation π if there exist integers
1 ≤ x1 < x2 < . . . < xk ≤ n such that for 1 ≤ i, j ≤ k we have

σ(xi) < σ(xj) if and only if π(i) < π(j).

Otherwise we say that σ avoids π.
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The set of finite sequences (words) over [n] is denoted by [n]∗. A sequence
a = a1a2 . . . al ∈ [n]∗ contains the sequence b = b1b2 . . . bk ∈ [m]∗ if there exist
indices 1 ≤ x1 < x2 < . . . < xk ≤ l such that for 1 ≤ i, j ≤ k we have

axi
< axj

if and only if bi < bj .

Otherwise we say that a avoids b.

Note that these notions are intimately related. It is easy to see that the
word σ(1)σ(2) . . . σ(n) contains the word π(1)π(2) . . . π(k) if and only if the n-
permutation σ contains the k-permutation π, which happens if and only if the
permutation matrix of σ contains the permutation matrix of π.

Definition. For a 0–1 matrix P let f(n, P ) be the maximum number of 1-entries
in an n× n 0–1 matrix avoiding P .

For a permutation π let Sn(π) be the number of n-permutations avoiding π.
A sequence a1a2 . . . an is considered k-sparse if i < j, ai = aj implies j− i ≥

k. For a sequence b ∈ [m]∗ and k ≥ m let lk(b, n) be the maximum length of a
k-sparse word in [n]∗ avoiding b.

The main result of this paper is the following theorem proving the Füredi–
Hajnal conjecture (originally posed in [8]).

Theorem 1. For all permutation matrices P we have f(n, P ) = O(n).

By a result of Martin Klazar [12] (which we reproduce in Section 3) the above
result proves the Stanley–Wilf conjecture (stated here as Corollary 2) and also
the Alon–Friedgut conjecture (stated here as Corollary 3), which was originally
posed in [1]. The Stanley–Wilf conjecture was formulated by Richard Stanley
and Herbert Wilf around 1992 but it is hard to find an exact reference. An even
earlier source is the PhD thesis of Julian West [17] of 1990 where he asks about
the growth rate of Sn(π). His question 3.4.3 is more specific; he asks if Sn(π) and
Sn(π′) are asymptotically equal for k-permutations π and π′. Miklós Bóna [4]
showed that this conjecture was too strong, however, by finding 4-permutations
π and π′ with Sn(π) and Sn(π′) displaying different growth rates. Nevertheless,
it shows a direct interest in asymptotic enumerations of this kind.

Corollary 2. For all permutations π there exists a constant c = cπ such that
Sn(π) ≤ cn.

Corollary 3. For a k-permutation σ and the word a = σ(1)σ(2) . . . σ(k) we
have lk(a, n) = O(n).

Several special cases of the above conjectures have already been established.
Bóna [5] proved the Stanley–Wilf conjecture for layered permutations π, that
is, for permutations consisting of an arbitrary number of increasing blocks with
all elements of a block smaller than the elements of the previous block. Alon
and Friedgut [1] proved the conjecture for permutations consisting of an increas-
ing sequence followed by a decreasing one or vice versa. Approximate versions
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of these conjectures have also been established. Using a result of Klazar [9] on
generalized Davenport–Schinzel sequences Alon and Friedgut [1] showed approx-
imate versions of their own conjecture and the Stanley–Wilf conjecture where
the linear and exponential bounds were replaced by O(nγ(n)) and 2O(nγ(n)),
respectively, with an extremely slow growing function γ related to the inverse
Ackermann function.

In Section 2 we give a surprisingly simple and straightforward proof of The-
orem 1. For the reader’s convenience we reproduce Klazar’s argument on how
this result implies the Stanley–Wilf conjecture in Section 3. In Section 4 we
discuss further consequences of our main theorem as well as related problems
that are still open.

2 Proof of the Füredi–Hajnal conjecture

Theorem 1 is proved by establishing a linear recursion for f(n, P ) in Lemma 7,
that in turn is based on three rather simple lemmas. We partition the larger
matrix into blocks. This idea appears in several related papers, e. g. in [12], but
we use larger blocks than were previously considered.

Throughout these lemmas, we let P be a fixed k × k permutation matrix
and A be an n × n matrix with f(n, P ) 1-entries which avoids P . We assume
k2 divides n. We define Sij to be the square submatrix of A consisting of the
entries ai′j′ with i′ ∈ [k2(i−1)+1, k2i], j′ ∈ [k2(j−1)+1, k2j]. We let B = (bij)
be the (n/k2) × (n/k2) 0–1 matrix with bij = 0 if and only if all entries of Sij

are zero. We say that a block is wide (respectively tall) if it contains 1-entries
in at least k different columns (respectively rows).

Lemma 4. B avoids P .

Proof. Assume not and consider the k 1-entries of B representing P . Choose
an arbitrary 1-entry from the k corresponding blocks of A. They represent P ,
contradicting the fact that A avoids P .

Lemma 5. Consider the set (column) of blocks Cj = {Sij : i = 1, . . . , n
k2 }. The

number of blocks in Cj that are wide is less than k
(
k2

k

)
.

Proof. Assume not. By the pigeonhole principle, there exist k blocks in Cj that
have a 1-entry in the same columns c1 < c2 < . . . < ck. Let Sd1j , . . . , Sdkj be
these blocks with 1 ≤ d1 < d2 < . . . < dk ≤ n/k2. For each 1-entry prs, pick any
1-entry in column cs of Sdrj . These entries of A represent P , a contradiction.

Lemma 6. Consider the set (row) of blocks Ri = {Sij : j = 1, . . . , n
k2 }. The

number of blocks in Ri that are tall is less than k
(
k2

k

)
.

Proof. The same proof applies as for Lemma 5.

With these tools, the main lemma follows:

3



Lemma 7. For a k × k permutation matrix P and n divisible by k2 we have

f(n, P ) ≤ (k − 1)2f
( n

k2
, P

)
+ 2k3

(
k2

k

)
n.

Proof. We consider three types of blocks:

• X1 = { blocks that are wide }.

|X1| ≤ n
k2 k

(
k2

k

)
by Lemma 5.

• X2 = { blocks that are tall }.

|X2| ≤ n
k2 k

(
k2

k

)
by Lemma 6.

• X3 = { nonempty blocks that are neither wide nor tall }.
|X3| ≤ f( n

k2 , P ) by Lemma 4.

This includes all of the nonempty blocks. We bound f(n, P ), the number of ones
in A, by summing estimates of the number of ones in these three categories of
blocks. Any block contains at most k4 1-entries and a block of X3 contains at
most (k − 1)2 1-entries. Thus,

f(n, P ) ≤ k4|X1|+ k4|X2|+ (k − 1)2|X3|

≤ 2k3

(
k2

k

)
n + (k − 1)2f

( n

k2
, P

)
.

Solving the above linear recursion gives the following Theorem and also
Theorem 1. We did not optimize for the constant factor here.

Theorem 8. For a k × k permutation matrix P we have

f(n, P ) ≤ 2k4

(
k2

k

)
n.

Proof. We proceed by induction on n. The base cases (when n ≤ k2) are
trivial. Now assume the hypothesis to be true for all n < n0 and consider the
case n = n0. We let n′ be the largest integer less than or equal to n which is
divisible by k2. Then by Lemma 7, we have:

f(n, P ) ≤ f(n′, P ) + 2k2n

≤ (k − 1)2f
( n′

k2
, P

)
+ 2k3

(
k2

k

)
n′ + 2k2n

≤ (k − 1)2
[
2k4

(
k2

k

)
n′

k2

]
+ 2k3

(
k2

k

)
n′ + 2k2n

≤ 2k2
(
(k − 1)2 + k + 1

)(k2

k

)
n

≤ 2k4

(
k2

k

)
n

where the last inequality is true for all k ≥ 2.
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3 Deduction of the Stanley–Wilf conjecture

For the reader’s convenience (and to show the similarities of the two proofs) we
sketch here Klazar’s argument [12] that the Füredi–Hajnal conjecture implies
the Stanley–Wilf conjecture.

Definition. For a 0–1 matrix P let Tn(P ) be the set of n × n matrices which
avoid P .

As we noted in Section 1, a permutation σ avoids another permutation π if
and only if the permutation matrix corresponding to σ avoids the permutation
matrix corresponding to π. Thus if P is the permutation matrix of the permu-
tation π, then Tn(P ) contains the permutation matrices of all n-permutations
avoiding π. In particular we have |Tn(p)| ≥ Sn(π).

Assuming the Füredi–Hajnal conjecture, Klazar proves the following state-
ment, which in turn implies Corollary 2:

Theorem 9. For any permutation matrix P there exists a constant c = cP such
that |Tn(P )| ≤ cn.

Proof. Using f(n, P ) = O(n) the statement of the theorem follows from the
following simple recursion:

|T2n(P )| ≤ |Tn(P )|15f(n,P ).

To prove the recursion we map T2n(P ) to Tn(P ) by partitioning any matrix
A ∈ T2n(P ) into 2 × 2 blocks and replacing each all-zero block by a 0-entry
and all other blocks by 1-entries. As we saw in Lemma 4 the resulting n × n
matrix B avoids P . Any matrix B ∈ Tn(P ) is the image of at most 15w matrices
of T2n(P ) under this mapping where w is the number of 1-entries in B. Here
w ≤ f(n, P ) so the recursion and the Theorem follow.

The reduction also provides a nice characterization in the theory of excluded
matrices:

Corollary 10. For any 0–1 matrix P , we have log(|Tn(P )|) = O(n) if and only
if P has at most a single 1-entry in each row and column.

Proof. The matrices in the characterization are the submatrices of permutation
matrices. For these matrices log(|Tn(P )|) = O(n) follows from Theorem 9. For
other matrices P , Tn(P ) contains all of the n×n permutation matrices (a total
of n!), so log(|Tn(P )|) = Ω(n log n).

4 Generalizations and open problems

The problem of estimating the extremal function f(n, P ) for 0–1 matrices P was
considered first for some special patterns P in [3, 7]. Later [8] systematically
treated all patterns P with at most four 1-entries and established the order of
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magnitude of f(n, P ) for almost all of them. For the missing few such patterns
see [16], where certain sets of avoided patterns are also considered. We restate
the following question of [8]:

Problem 1. (Füredi–Hajnal) What are the matrices P with f(n, P ) = O(n)?

This problem seems to be much harder than the corresponding enumerative
problem settled by Corollary 10. A characterization will probably be based
on excluded submatrices. We therefore define P to be minimally nonlinear if
f(n, P ) is nonlinear but replacing any 1-entry in P with 0 yields a pattern P ′

with f(n, P ′) = O(n). We can also exclude patterns containing an empty row or
column. As any 0–1 matrix with three 1-entries has a linear extremal function
any pattern P containing four 1-entries with f(n, P ) nonlinear is minimally
nonlinear. These patterns are all known, but no other minimally nonlinear
patterns are known. We pose the following problem:

Problem 2. Find any minimally nonlinear patterns P with more than four
1-entries.

Consider bipartite graphs with a fixed bipartition and separate linear orders
on both sets of vertices. Notice that the ordered bipartite graph G1 contains
another ordered bipartite graph G2 exactly if, for their (bipartite) adjacency
matrices M1 and M2, M1 contains M2. Thus one can interpret f(n, P ) as the
maximum number of edges of an ordered bipartite graph on n+n vertices which
does not contain a certain (ordered bipartite) subgraph. This interpretation
makes the study of f(n, P ) the ordered bipartite version of the Turán-type
extremal graph theory. In this interpretation our theorem states that (ordered
bipartite) matchings have linear extremal functions. One can also study general
graphs on an ordered vertex set. See more on the relation between ordered
graphs and excluded matrices in [14]. Peter Brass, Gyula Károlyi and Pavel
Valtr [6] studied the extremal theory of graphs with a cyclically ordered vertex
set. In the unordered case the problem of finding the minimally nonlinear
(bipartite) graphs is easy: they are the (even) cycles. The ordered problem
seems to be far more complex. Several works of Klazar [13, 10, 11] consider the
generalization to ordered hypergraphs. Among other results one can find far
reaching hypergraph consequences of the Füredi–Hajnal conjecture there. For
the sake of brevity, we do not state these interesting enumerative and extremal
hypergraph results here.

All papers on the Stanley–Wilf conjecture mention the original and stronger
form of the conjecture: Is it true that for any permutation σ the numbers
(Sn(σ))1/n tend to a finite limit cσ as n goes to infinity? By the result of Richard
Arratia [2] the two forms of the Stanley–Wilf conjecture are equivalent, so now
we have that cσ < ∞ exists. Working out the bounds for a k-permutation σ in

Theorem 8 one finds an explicit bound cσ ≤ 152k4(k2

k ). This doubly exponential
bound is very far from the one conjectured by Richard Arratia [2].

Problem 3. (Arratia) cσ ≤ (k − 1)2.
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Note that Regev’s asymptotic formula for Sn(Idk) [15] implies cIdk
= (k−1)2

for the identity k-permutation Idk.
With respect to the Alon–Friedgut conjecture we can ask the following ques-

tion:

Problem 4. What are the words a ∈ [k]∗ with lk(a, n) = O(n)?

This problem turns out to be an interesting special case of Problem 1. For
a word a = a1a2 . . . al ∈ [k]∗ we have lk(a, n) = O(n) if and only if f(n, Pa) =
O(n) for the k × l 0–1 matrix P = (pij) where pij = 1 exactly if aj = i.
This equivalence can be proved along the lines of [12]. Notice that f(n, Pa)
is nonlinear for many words a, e. g. for a = 1212 or even for a = 1213, but
it is linear for seemingly similar other words like a = 1312. One may try to
prove linearity of f(n, Pa) for certain words a using techniques similar to those
presented in Section 2, but Lemma 4 holds only for (submatrices of) permutation
matrices.
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