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1 Introduction

Figure 1: Planar grid of regular hexagons.

The problem of channel assignments has become increasingly relevant today due to the surge
in wireless communications in all facets of life. With the ability to connect to the internet
via cellular phone and with advanced technologies in wireless data transfer, the importance
of an unhindered connection is more crucial than in the previous days of phone conversations
and walkie-talkies. What was once an annoying static could now be a complete corruption of
uncountable amounts of data. With this in mind, the ability to manage a network of radio
frequencies without interference is clearly a necessity. Unfortunately, nature has limited the
width of frequencies that machines can safely transmit (biologically), and so the management of
these complex networks has come to include the problem of maximizing the number of possible
frequencies while still allowing a large enough gap to prevent interference.

This of course would be an easy task (mathematically) if it were not for the ever-plaguing
existence of friction. The strength of a signal slowly dies as the signal increases in distance from
the source, and this allows frequencies to be used more than once over certain distances and
makes wireless communication an easier task (realistically). Fortunate for the mathematician,
this presents a new and interesting combinatorial problem: squeezing the maximum number
of frequencies into a worldwide network with just enough space between transmitters so as to
avoid any interference.

For this paper, we consider the generalized case of assigning frequencies to transmitters
placed uniformly in a hexagonal grid. Each hexagon is given a positive integer value that
corresponds to a given frequency, and the goal is to optimize the width of frequencies used for
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various situations. Hence, given initial constraints, we aim to cover any hexagonal region with
positive integers so that the maximum integer used remains as small as possible. Since natural
boundaries, changes in altitude, and even the curvature of the Earth aid in weakening radio
signals (thus making distances of transmission smaller), we chose to stick to a 2-dimensional
model(as in Figure 1) so as to create an effective upper bound for the real-life interpretation
of this problem. This way we create a minimal upper bound for any region, given initial
constraints on frequency distribution and signal strength.

The paper will be organized as follows: an introduction followed by a statement of the
problem, definitions, the solutions, and a conclusion. The appendix contains proofs of theorems
and lemmas we considered too lengthy for the body of the paper.

2 The Problem

Let s denote the length of a side of one of the hexagons in Figure 1. Then the distance from
the center of one hexagon to the center of an adjacent hexagon is sv/3.

For this paper, we concentrate on two levels of interference, which give us two respective
constraints for the problem.

e If two transmitters are within a distance of 2s of each other, then their channels must
differ by at least k.

e If two transmitters are within a distance of 4s of each other, then their channels must
differ by at least ko,

Under these constraints, what is the minimum width of the interval in the frequency spectrum
that is needed to assign channels? We acheive this by a concept of a span. Span is the minimum
of the largest channel assignments that satisfy the constraints. Lastly, it is not required to use
every channel smaller than the span when determining the assignment.

3 Definitions

First, we will need to define several of the terms that we will be using in our paper. The
following definitions are necessary for consistency throughout the paper.

Definition 1. Let a region be a collection of hexagons, finite or otherwise.

Definition 2. Let u and v be hexagons in a region X. Let D(u,v) be the minimum number
of hexagons (including the beginning but not including the ending) that one must pass through
in order to move from u to v in region X. Let D(u,u) = 0.

So, for example, the stipulation in the problem that any two different transmitters (in
hexagons u and v respectively) are within distance 2s is equivalent to saying D(u,v) < 1.
Similarly, it is worth noting that two hexagons are within distance 4s if and only if D(u,v) < 2.

5 of 22



Control Number: 441

Figure 2: Region T

Definition 3. Define T to be the the portion of a plane which is one hexagon, u, along with
all hexagons, v such that D(u,v) < 3 (see Figure 2).

Definition 4. Define R to be an arbitrary planar hexagonal grid which contains T.
Definition 5. Let k; be the minimum allowed difference in channels of two hexagons, u and v
in a region R, with D(u,v) = i.

For example, if k&; = 2 and ky = 1, then any two transmitters in hexagons v and v which are
adjacent to each other must have channels that differ by at least 2. If the two transmitters in
hexagons v and v are two hexagons apart(i.e., D(u,v) = 2), then their channels must not be
the same.

Definition 6. Let C be a function of the heragons in a region, R, to the posilive integers.
Given a set of constraints, call C' a channel assignment to R under those constraints if C'
maps the hezxagons to an allowed set of frequencies. Then, let C(u) denote the frequency of the
hezxagon, wu.

Definition 7. The width of the interval of the frequency spectrum in region R is the largest
channel used. The minimum width over all channel assignments of a region R is called a span.

Definition 8. Let the function S(l1,ls,... ,l,) of a region R be the span under the restrictions
that k; = 1; for all @ from 1 to n.

Definition 9. For a given k; > 4, define the set Ny = {1,2,3,k+ 3,k + 4,k + 5,2k + 5,2k +
6,2k + 7} as the channel assignment set. That is, for a region R, C(R) C N.

With these definitions, we are now able to provide our results.
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4 Solution

In this section, we are concerned with planar regions that expand out in every direction in-
finitely, or that are finite. First we are going to need to prove some general results.

Lemma 1. Let M be any positive integer. If S(ki, ko, ..., k,) = L then

L
S(ki,koy. . ki1, ki + M, kivq, ... k) <L+ M([k—1 -1)
(3
Proof. Let C; be an assignment of channels on the region R with span L and satisfying the given
constraints. We will construct an assignment on the region which satisfies the new constraints,
with the desired largest channel used. To do so, define a new channel arrangement, C;, as
follows:

Calw) =€) + MR 1),

To see that the new set of constraints are satisfied, notice that
|Ca(u) — Ca(v)| > |Ci(u) — Ci(v))]
and so all the constraints for k;, j # 7 are still satisfied. Furthermore, if
C1(u) = Ci(v)] > ki
then

|Ca(u) = Ca(v)] = |Ci(u) = Ci(v)[ + M.

This is because if |C;(u) — Ci(v)| > k; then [Clk(l“)] # [C}C(i”)]. This demonstrates that our
constraint for the new value of k; is now satisfied. Thus, the only channels that are used are
of the form

[ 7

Cy (u) + M([Clk(“)1 ~1) <L+ M([%} —1)

Therefore, the channel assignment we have constructed is valid, and furthermore we have shown
that

Sl ks ksr, i+ M, kiyr, - k) < L+ M((kﬂi} _ 1)
as desired. ]
Lemma 2. On region any R containing T (see Figure 2), S(4,1) > 14.
The proof of this Lemma is given in Appendix A.

Lemma 3. On region any R containing T, S(2,1) > 8 and S(3,1) > 11.
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Proof. 1f S(3,1) = L < 11 then by Lemma 1 we know that
L 11
S(4,1) < L+ [51 —-1<11+ [31 -1=14
which is a contradiction to Lemma 2. Similarly, if S(2,1) = L < 8 then by Lemma 1
L 8
S(3,1) < L+ [51 -1<8+ [51 —-1=11

violates the first half of our lemma. O
Lemma 4. Ifl > 4 then for region T, S(I,1) > (21 + 6).

The proof for this lemma is in Appendix B. It should be noted that proving this lower bound
for T also works for R, in particularly this works for infinite and finite region (as in Figure 1).

4.1 k=1

For any two hexagons u and v, if D(u,v) = 1 then their channels differ by at least k (k; = k)
for any positive integer k, and ko, = 1. With this generalization, we would like to see how the
span relates to k.

Lemma 5. For ki > 4, a width of the interval of the frequency spectrum in region R is less
than or equal to 2k, + 7.

Proof. We will prove by induction. We will also use the set defined in Definition 9. First we
will show that k; = 4 satisfies Lemma 5. If k; = 4, then for all u,v such that D(u,v) < 1
we know that |C(u) — C(v)| > 4 by definition. By Lemma 2 we know that S(4,1) > 14.
To see that for k; = 4 a frequency width is 2(4) + 7 = 15, use the channel assignment set
Ny =1{1,2,3,7,8,9,13,14,15}. As shown in Figure 3, the channel assignment set satisfies the
constraints. Also, by further examination of Figure 3, we can see that the channel assignments
tessellate, and the resulting tessellated pattern always meets the constraints. To see this,
translate the channel assignments in figure 3 from A to B. After translation we have a repeated
pattern with no gaps, and the constraints still hold. Now instead translate from A to C, and
again we have a repeated pattern with no gaps while keeping to all constraints. Since these
are the only two possible kinds of translation, we have shown that the pattern is a tessellation.
We are able to tessellate this pattern to cover all of region R. Since the maximum channel
assigned is 15, the width of the frequency spectrum is 15 = 2(4) + 7.

Next, let k& be any integer such that £ > 4, assume that Lemma 5 holds true for k; = £ with
channel assignment set Aj. This generates a tessellation as illustrated in Figure 4. It is easy
to see that this pattern tessellates and meets the constraints.

Now we need to prove that Lemma 5 holds for £, = £ 4+ 1. To do this we need to generate a
tessellation pattern from N, in region R that satisfies the constraints. From our hypothesis
that Lemma 5 holds for k£, we can replace all £ with £ + 1 in Figure 4. The results is the
tessellation in Figure 5. It is clear that in Figure 5 the tessellation meets all the constraints.
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Figure 3: Channel Assignment for k; = 4.

Also, we can see that the maximum frequency used is 2k +9 = 2(k + 1) + 7. That is, for k + 1
the width of the interval of the frequency spectrum is 2(k + 1) + 7. Since this matches our
inductive hypothesis for £ + 1 we have proven the lemma. O

Lemma 5 is a very nice result. We now have a way of constructing a tessellation under the
constraints that k&1 > 4 and k; = 1, and we can make this pattern using the channel assignment
set NVy,. Most importantly, we can assign the channels with a frequency width of 2k; +7. Next
we will prove that this width is a lower bound for any k; > 4.

Theorem 1. Let ky > 4, then S(k1,1) of a region R is 2k; + 7.

We have decided to insert the proof in the Appendix C.

With Theorem 1 and Lemma 5 we know how to form a repeating pattern for the given
constraints, and we also know the span over the region R. A very nice outcome from these
results is that for any k; > 4, we can choose nine connected hexagons and produce a channel
assignment with S(ki,1) = 2k; + 7. By looking at Figure 4 we can see that for large k values
we are going to have a larger spread in frequencies. That is, for larger £; we will have a more
efficient system of transmitters in terms of interference because the frequency width is large.
Its now time to attend to the two cases we have not talked about, we will look at k1 = 2 and
]Cl = 3

Theorem 2. For k; = 2 the channel assignment set is No = {1,2,3,4,5,6,7,8,9} with
S(2,1) = 9. For k; = 3 the channel assignment set is N3 = {1,2,3,4,5,6,7,8,9,10,11,12}
with S(3,1) = 12.
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Figure 4: Channel Assignment for k; = k.

Figure 5: Channel Assignment for £y = k£ + 1.
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Figure 7: Channel Assignment for k; = 3.
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Figure 8: Channel Assignment for k&, = k£ and ky = 0.

Proof. By Lemma 3 we know that S(2,1) > 8 and S(3,1) > 11. In Figure 6 we have constructed
a tessellation pattern for k; = 2 with channel assignment set as Cy. By inspection, S(2,1) =9,
the lowest possible value. For k; = 3 we have a similar argument, only we use the channel
assignment set Cs. By inspection of Figure 7, S(3,1) = 12, the lowest possible value. 0

4.2 ki=kand k=0

For this case, we just made a channel assignment by inspection. This can be seen in Figure 8.
The values in the illustration meet the constraints clearly. Therefore the span over a region R
for this case is 2k+1. To see this, try for k—1, then the channel assignment set is {1, k, 2k —1},
but £ and 1 must be at least k£ apart. Hence 2k + 1 is the span.

4.3 ki=k =k

Again, we have developed a general channel assignment by inspection. This is illustrated in
Figure 9 where all values meet the constraint. Hence, the span over a region R is 6k + 1. To
see this, as above try for £ — 1, then we have a contradiction in Figure 8 with the hexagon
containing 1 and (k — 1) + 1 = k. Therefore 2k + 1 is the span.

4.4 General Case

For this section we have that k; and k5 can be any positive integer.

Theorem 3. Given a region, R, that contains region T. As long as ki > 4ks then
A) if ky divides ky then S(ky, ko) = 2k1 + 6ka+ 1,

B) if ky > 6ko + 1 then S(ki, ko) = 2k; + 6ko + 1.

The proof of this theorem is inserted in Appendix D.
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Figure 9: Channel Assignment for k; = ko = k

Theorem 4. Let 3k < ki < 4ky. Then
S(k1, ko) < 3ky + 2k + 1.

Proof. We will prove by construction. Consider the tiling given in Figure 10. As long as
3ky < ki < 4k,y, the channel assignment holds. Then by construction,

S(ky, ko) < 3ky + 2ks + 1.

As shown by the hi-lighted tiles in Figure 10, this tiling only works if 2k + 1 and k; + 1 differ
by at least ko(by definition of ks). It follows that

(k1 +1)— (2ka +1) > ko,
ki —2ky > ko,
ki > 3ko.

Yet we know from Theorem 3 that for k; > 4ks we have a strict lower bound, therefore we
must have a strict upper bound, that is

ki < 4ks.

Hence we have that if 3k, < k; < 4ko then S(kq, ko) < 3k; + 2ko + 1. O

5 Conclusion

The results are summarized in Tables 1 and 2. In Table 1 we have tabulated some of the results
that we have proven, as well as other cases that we have proven but whose proofs have not been
included in this report. For the cases ko = 2, and k; equal to 9, 11 or 13, we were unable to
determine S(k1, k2). However, we were able to find bounds for those values by Lemma 2. We
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7
9
12
15
17
21+ 7
13
17
17
21
23
26
29
30, 31 or 32
33
34, 35 or 36
37
39 or 40
21 4+ 13

Table 2: General Results for k; and ky Values

Constraints Span
Anykl,kgz() 2]€1+1
ki = ko 6k + 1
ki=2,ky=1 9
kh=3,k =1 12
k>4, k=1 2k, + 7
ky > 4k, < 2ky + 6ky + 1
3ky < ky <4dky | <3ki1+2ky+1
k1>4,k2:1 >2k1+6
3ky > 2k 4k + 3ko
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k2K, +1

kgt 2Kat1

Figure 10: Channel Assignment for Theorem 4.

have proven that S(9,2) = 30,31 or 32, S(11,2) = 34,35 or 36 and lastly that S(13,2) = 39
or 40.

In Table 2 we have our general results. It should be noted that the last row in Table 2
was not proven by us; Mark Shepherd [1] proved this in his thesis. For selected values of k;
and k, we have proven that the span over an arbitrarily sized planar hexagonal region which
includes T'. In general, for all combinations we can find a pattern that repeats, that is we can
find a tessellation of frequencies. This is a major result because we know how to construct a

frequency assignment based on the values of k; and ks through a simple formula, as shown in
Figure 4 for k; > 4 and ky = 1.
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A Proof of Lemma 2

Lemma 6. On region ,R, which contains T (see Figure 2), S(4,1) > 14.

Figure 11: Region R for Lemma 2

Proof. For this proof, we will be need to be able to succinctly refer to several hexagons. Thus,
we will star about half the hexagons as shown in figure 11. We will prove this by showing that
there can not be a channel assignment which has a largest frequency used < 14. We will do
so by method of contradiction. We will assume that there is a channel assignment obeying
constraints k; = 4 and ky, = 1 with largest channel < 14. Next, we will show that none of the
starred hexagons can have a frequency of four. Then, by the same method, we will show there
are other frequencies that cannot be used, and finally we will be able to conclude that there is
no such channel assignment.

First, assume there one of the starred hexagons has frequency = 4. Then, the 6 hexagons
adjacent to it have to have frequencies between 8 and 14 inclusive, and at most one of those
frequencies may not be used. However, none of the hexagons can have frequency 12 or 13.
This is because with either frequency, there is only one legal frequency for a hexagon to have
which is adjacent to both that hexagon and the hexagon of frequency 4 (frequency 8 and 9
respectively). Therefore, one cannot assign frequencies to the 6 surrounding hexagons if one
of the starred hexagons has frequency 4. This also implies that none of the starred hexagons
can have frequency 11. If there were, then you could change the channel assignments of the
hexagons by the map C'(u) — (15 — C'(u)) and obtain a legal channel assignment with one of
the starred hexagons with channel assignment 4.
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If one of the starred hexagons had frequency 5, then the 6 surrounding hexagons would have
to have frequencies from the set {1,9, 10, 12,13, 14} (there cannot be one of channel 11 by our
above argument). However, if one of those has channel 12, then there is only one legal channel
assignment for the two hexagons which are adjacent to that one and the one of frequency 5.
Thus, the channels cannot be assigned legally, and so none of the starred hexagons can have a
frequency 5, or consequently 15— 5 = 10. The exact same logic shows that none of the starred
hexagons can have channel assignment of 6 or 9.

This only allows a channel assignment set of {1,2,3,7,8,12,13,14} to the starred hexagons.
However, no hexagon which is u, or is adjacent to u, can have channel assignment set of
{1,2,3,12,13, 14} because if it did, then there would not be six more legal channel assignments
for the other starred hexagons which are adjacent to that one. This leaves us with the only legal
channel assignment for the hexagons adjacent to to u are 7 and 8. However, such an assignment
is not possible since each hexagon has to have a different channel assignment. Thus, this shows
that there cannot be a legal channel assignment to the region 7', and consequently to any region
containing T', with k; =4 and ky = 1.

O
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B Proof for Lemma 4

Lemma 7. Ifl > 4 then for region T, S(I,1) > (2] + 6).

Proof. We will prove this by showing that there can not be a channel assignment which has
a largest frequency used of < 2/ + 6. We will do so by method of contradiction. We will
assume that there is such a channel assignment. Then, we will show that none of the starred
hexagons (see Figure 11) can have a frequency of four. We will extend this idea and then show
that none of the starred hexagons can have channels assignments from [4,...,] + 2] or from
l+5,...,2l+3].

First, assume that one of the starred hexagons, w, has frequency = 4. There cannot be any
hexagons adjacent to that one with channel assignment between [ + 6 and 2/ + 4. If there were
a hexagon, v, with such a channel assignment, then it would not be possible to assign channels
to the two hexagons which are adjacent to both v and w without going over our allowed largest
frequency of 2/ + 6. However, this only leaves three allowed frequencies, so it cannot be done.

This exact same argument shows that none of the starred hexagons can have a frequency
of anything from [4, ... ,l]. Now, assume one of the starred hexagons, w, has frequency [ + 1.
Of the hexagons bordering w, can have frequency 1, and at most three of the other ones can
have frequencies between 2/ + 1 and 3/ (since two of those channels cannot be adjacent to each
other). That means that there have to be two hexagons adjacent to w which have channels
larger than 3/. The smallest such channel that can be used is 3/ + 1, and so there has to be a
hexagon with channel at least 3/ 4+ 2 used. However, since [ > 5 this channel is larger than our
allowed maximum of 2/ + 7.

Similarly, if there is a hexagon, w which has a channel of [ + 2, then of the six adjacent
hexagons, two can have channels of either 1 or 2, and three more can have channels between
2l + 2 and 3/ + 1. This still leaves one hexagon which must have a channel which is at least
3l + 2 which is not allowed. Thus, we have shown that none of the starred hexagons can have
a channel which is from [4,...,]+ 2]. This also shows that none of the starred hexagons can
have a channel assignment from [[+5, ... , 2[4 3]. This is because if there were such a hexagon,
then we could remap the channels of all the hexagons by mapping channel C' — (21 4+ 7 — C)
and then we would have a hexagon with an unallowed channel assignment.

Thus, now we have shown that the only allowed frequencies for the starred hexagons are 1,
2,3,1+3,1+4,2l+4, 2l+5, and 2/ +6. Now, assume for the sake of contradiction that either
hexagon u or a hexagon that is adjacent to has channel 2. If that is the case, then none of the
hexagons which are adjacent to it can have channel 1, 2, or 3 since adjacent channels have to
differ by at least I. However, this leaves only five different channels for the 6 adjacent hexagons
which is not sufficient since ks = 1 forces those hexagons to have different channels. The exact
same argument shows that neither u or any of the hexagons adjacent to u can have channel
1,2, 3,2l +4, 2l +5 or 2l + 6. However, this leaves only two allowed channel assignments
(I +3 and [ + 4) for those 7 hexagons, which is not possible since they have to have distinct
channels. Thus, we have shown that there cannot be a legal channel assignment to region 7°
which satisfies £y = and ks = 1 and has width < 2/ + 6, and hence for any region containing
T. Ergo, we have shown that S(I,1) > 2l + 7 as desired.

O
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C Proof of Theorem 1

Theorem 5. Let ky > 4, then S(k1,1) of a region R is 2k; + 7.

Figure 12: For a; not adjacent to a; but both are adjacent to 5.

Proof. We will prove this by contradiction. First, we have shown from Lemma 2 and from the
proof of Lemma 5 that 2k, + 7 is the span for k&1 = 4 and ky = 1. Then, for this we proof will
prove for ki > 5.

Let [ be the smallest number such that there is a channel assignment with k1 = [ and ky =1
such that S(ki,1) < 2l + 6. Assume that five is a channel assignment. Then let a; and as
be the smallest and next smallest channel adjacent to five respectively. We know then that
ap >1l+5and ay > 1+ 6.

Case 1

If a; is not adjacent to as, as in Figure 12, then there has to be two channels larger than a;
next to ag, that is 2/ + 6 and 20 + 7. But this contradicts our assumption that S(I,1) = 21+ 6.

Figure 13: For a; adjacent to a; with both adjacent to 5.
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Case 2

Let a; be adjacent to as, as in Figure 13. Since a5 is adjacent to a;, we know that the channel
in ay is at least 2] + 5. However, there are still four other hexagons which are adjacent to the
one with channel five which have to have larger channels that as’s. Thus, one of those has to
have a channel larger than 2/ + 6. That would contradict our assumption that S(I,1) = 2/ +6.
Thus, if there is such a channel assignment, then there cannot be any hexagon with channel 5.

Let a3, as and a5 be as illustrated in Figure 13. Then we have that a3 > 2/ 4 5 which implies
that ay > 31+ 5 and a5 > 2] + 6. This contradicts our assumption that S(l,1) = 2[ + 6.

We have shown that there cannot be a channel assignment of five, which was also illustrated
in Lemma 2. This also implies that there cannot be a channel assignment of 2/ + 2, since if
there is a channel assignment of 2/ + 2 then we can come up with a new channel assignment
by changing the channel used by each hexagon according to the map C' — 21+ 7 — C'. Thus, if
there is a channel assignment which has a channel of 2/ + 2, then you can construct a channel
assignment which uses channel five which we showed is impossible.

Define a channel assignment with k&, = [ — 1 by changing the channels by the following

mapping

r : zell,... 4]
x—=< z—1 : z€[5,...,20+2]
xr—2 : z€20+2,...,21+6].

To finish our induction, we need to show that this assignment of the channels satisfies the
constraints k; = [ — 1 and k; = 1. Let S) = [1,...,4], S = [6,...,2l + 1] and S;3 =
21+ 3,...,20 4 6]. It is easy to see that ky = 1 is still satisfied because if two hexagons had
different channels assignments originally, they still have different channels. This is because the
only way for u and v to go from different assignments to the same assignment would be if their
channels differed by one, and one was subtracted from the channel of one of the hexagons, but
not the other. This would imply they were in different S sets, but then their original channels
can not have differed by exactly one.

Now we will show that the new bound for k; = [ —1 is satisfied. If you examine two adjacent
hexagons, v and v, then we know that their original assignments differed by at least . If they
differed by at least {41 then we know that our new bound of k£, = [ —1 is still satisfied since the
difference in the amount their channels were changed by is at most 2. If the channels of u and
v differed by exactly [, then it is not possible for one of their channels to have originally been
in S; and the other originally been in S (since the smallest difference that can be obtained
from one element of S3 and one element of S; is (20 +3) —4 = 2/ — 1 > [.) Therefore, the
difference in the amounts that the channel assignments changed by is at most 1, and therefore,
our new value of k; = — 1 is valid. Therefore S(I —1,1) =2/ +6 —2 =2(l — 1) + 6 which is
a contradiction by our choice of /. O
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D Proof of Theorem 3

Theorem 6. Given a region, R, that contains region T. As long as ki > 4ky then
A) if ky divides ky then S(ki, ko) = 2ky + 6ka+ 1,
B) Zf k1 > 6ko + 1 then S(kl, ]fg) = 2k, + 6k + 1.

Proof. To prove part A, we will first construct a channel assignment on R with that span, then
show that no better channel assignment can be made. Let ’lz—; = [. We know from Theorem
1 that S(I,1) = 21 + 7. Let C; be a channel assignment which demonstrates that span is
achievable. In order to get show our new span is attainable, on the region R, define a new
channel assignment, Cy by Cy(u) = (k2)(Ci(u) — 1) + 1. The largest channel that this new
assignment uses is (k9)(20+7—1)+1 = 2kyl+6ko+1 = 2k, +6ky+1 as desired. If two hexagons,
u and v, are adjacent, then their channel assignments from C; differed by at least [, and so
their new channel assignments differ by at least lky = k;. Similarly, if D(u,v) = 2, then we
know that they had different channel assignments in C', and so in C5 their channel assignments
differ by at least ky. Thus, this channel assignment shows that S(ki, k2) < 2k; + 6ky + 1.

Now, assume for the sake of contraction, there is a channel assignment, Cy, on R that obeys
those constraints, but has no channel > 2k; 4+ 6ks + 1 used. Now, define a new channel
arrangement, C; by Cy(u) = [C2(u)] Let u and v be two hexagons. Without loss of generality,
assume that C)(u) > Cy(v). We know that if D(u,v) = 1 then Cy(u) — Cy(v) > ky. This
implies that

CQ( ) 02(’1)) ]i'l
ko ky T ko

Ci(u) — Ci(v) =

Similarly, if D(u,v) = 2, then Cy(u) — Cy(v) > ko. Which means that

02( ) CQ(U) k‘g .
ko ko k2

Ci(u) = Ca(v) = =1
Thus, we have shown that C; is a legal channel assignment with no adjacent hexagons having
channels differing by less than [ and no hexagons with D(u,v) = 2 having the same channel.
However, the largest channel used here is [ 2kLt6k2 ,j 6k27 = 2/4-6, and this is a contradiction according
to Theorem 1 which showed S(/,1) = 20 + 7. Thus, we have shown that if ks divides k; then
S(kl, kg) = 2k‘1 + 6k2 +1 as wanted.

Part B follows easily from Part A. First, let [ = [:—;J, and m = k; —lky. Then, apply Lemma,
1 with M = m to our solution in Part A, and, using the fact that k; > 6ky + 1, we can obtain

Sk k
S(kl,kg) S S(kl—m,k2)+m([—(k_m 2)]—1)
6ky + 1
= 2(ky —m)+6ks+1+2m+m| 2 I
kl—m

= 2ky + 6ky + 1.
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Now, let m’ = (I4+1)ky—k;. Assume for the sake of contradiction that S(ki, ko) < 2k; +6ky+1.

If that is true, then we can apply Theorem 1 with M = m' and using the fact that k; > 6k +1
and find that

S(kl +m',/€2) S S(kl,kg) +ml(|rw—l - ].)

6k, + 1
< 2(ky) + 6ky + 1 +2m' +m'[ "}j 1-1
1

2k; + 6ky +m' +1
= 2(k; +m') + 6ky + 1.

which contradicts our results in part A. Thus, S(k1, k2) is not less than 2k; + 6ks + 1. Since we

have already shown that S(k;, ko) < 2k; 4+ 6ky+ 1 we know have that S(kq, ko) = 2k; + 6ko + 1.
Therefore, we have proven our theorem O
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