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Abstract

We study rank 1 perturbations of matrices where the perturbation vectors are drawn
uniformly from the unit ball associated with a general β ensemble. To do this, we use
distributions on the unit ball in Rn derived from the Dirichlet distribution to mimic
the behavior of a unit vector drawn uniformly from a general β regime. Our main tool
is an identity that expresses certain functions of these random vectors in terms of the
Jack symmetric functions. Using this, we extend several properties of random matrices
that are well known in the β = {1, 2, 4} case to general β. We then study the effect
of additive rank 1 perturbations drawn from these general β distributions and present
some open problems.

1 Introduction

In one of Dyson’s most influential papers, he showed that the eigenvalues of random matrices
behaved in a way similar to log gases from statistical physics [5]. These gases take on different
characteristics as one varies a parameter β which is proportional to the inverse temperature.
Dyson showed that he could emulate three particular settings of β using matrix models
over different algebraic fields: real symmetric matrices (β = 1), complex Hermitian matrices
(β = 2), and quaternion self dual matrices (β = 4), an observation that he called the
“threefold way” [6]. Dyson noted that the eigenvalue density functions that he derived from
these models generalized naturally to any β > 0, even without any corresponding matrix
models.

Since then, various advances have linked these more general β distributions to various
other matrix models, including a collection of tridiagonal models introduced by Edelman et
al. [3]. Edelman also suggested a computational scheme he called β-ghosts and conjectured
that various properties of random matrices known to exist in the β = {1, 2, 4} case would
also hold in this new scheme [7]. The goal of this paper is to apply a method first introduced
by Forrester and Rains [9] to study rank 1 perturbations of random matrices in the general β
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regime. In [9], Forrester and Rains observed that when a random real vector was drawn using
a Dirichlet distribution, it behaved as though it were drawn from a uniform distribution in
the general β regime (in certain circumstances). Using this idea, we show that a number of
properties of random matrices that are known to exist in the β = {1, 2, 4} cases extend to
the general β case, providing evidence for some of Edelman’s conjectures.

Our main analytic tool for studying these Dirichlet weighted random vectors (Theo-
rem 3.5) is an expression of certain weighted moments in terms of the Jack symmetric
functions, a collection of symmetric functions with deep connections to random matrices in
the β = {1, 2, 4} regime (see Section 2.4). In particular, we show that an identity that char-
acterizes the Haar distribution in the β = {1, 2, 4} cases holds in general for these Dirichlet
weighted random vectors [11]. We then use this tool to study the effect of rank 1 (additive)
perturbations of matrices when the perturbation is drawn from a general β distribution.

1.1 Organization

The paper is organized as follows: we introduce some of the preliminary notions that we
will use in the paper in Section 2, including a short review of the Dirichlet distribution
(Section 2.3) and Jack symmetric functions (Section 2.4). In Section 3, we introduce the
measures from [9] based on the Dirichlet distribution and show that they extend some fun-
damental identities (in the β = {1, 2, 4} regimes) involving the Jack symmetric functions to
general β. In Section 3.2, we move onto the situation of rank 1 perturbations of matrices.
We prove two formulas concerning the structure of the expansions of rank 1 perturbations
of matrices in terms of Jack symmetric functions. We also give some evidence (placed in
an appendix, due to its unnecessary amount of computation) that the formulas are unique
to these distributions (as far as sufficiently symmetric distributions are concerned). We end
with a discussion of further research directions and open problems.

2 Preliminaries

2.1 Abuse of notation

The majority of this paper will be concerned with the evaluation of symmetric functions on
the eigenvalues of matrices. Accordingly, we will abuse notation: for a symmetric function
f and an n × n matrix A, we will simply write f(A) to denote the function f evaluated at
the eigenvalues of A. We will maintain the convention of using capital letters for matrices
and lower case letters for vectors. In other words, for a matrix A, the translation

f(A) := f(eigen(A))

will hold throughout this paper.
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2.2 Generalized binomials

For r ∈ R and k ∈ N, the generalized binomial coefficients are defined as(
r

k

)
=

Γ (r + 1)

Γ (r − k + 1) k!

where

Γ (x) =

∫ ∞
0

e−ttx−1dt (1)

is the usual Gamma function. We will make frequent use of two well known identities. The
first is sometimes known as the generalized binomial theorem:

(1 + x)r =
∞∑
i=0

(
r

i

)
xi. (2)

and the second follows directly from the definition:(
−r
k

)
= (−1)k

(
r + k − 1

k

)
. (3)

For nonnegative integers t1, . . . , tn with
∑n

i=1 ti = k, the multinomial coefficients are
defined as (

k

t1, . . . , tn

)
=

k!

t1!t2! . . . tn!
.

To avoid notational confusion, we will only use real numbers in the binomial case (that is,
when n = 2). In all other cases, we will use only nonnegative integers, and so standard
factorials can be used.

2.3 Dirichlet distributions

For real numbers a1, . . . , an > 0, the Dirichlet distribution Dir (a1, . . . , an) is the multivariate
distribution with density function (with respect to Lebesgue measure)

f(x1, . . . , xn; a1, . . . , an) ∝ xa1−1
1 xa2−1

2 . . . xan−1
n

which has support on the n-dimensional simplex

∆n =

{
(x1, . . . , xn) ∈ Rn : xi ≥ 0,

∑
i

xi = 1

}
.

Because it is supported on the simplex, one can think of the vector (x1, . . . , xn) as being a
discrete probability distribution; the Dirichlet distribution then acts as a “distribution on
distributions.” Because of this, the Dirichlet distribution is widely used in Bayesian inference
as a prior distribution [1]. In such a scenario, the parameters a1, . . . , an are typically known as
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“concentration” parameters, since large parameters result in the inferred distribution being
spread out among the n possibilities whereas small parameters tends to create distributions
that are concentrated over a small subset of the possibilities.

For our purposes, much of the utility of the distribution will lie in its normalization,
which we denote B(a1, . . . , an):

B(a1, . . . , an) =

∫
∆n

xa1−1
1 xa2−1

2 . . . xan−1
n d~x =

Γ (a1) Γ (a2) . . .Γ (an)

Γ (a1 + · · ·+ an)
. (4)

Note that (4) can be seen as a generalization of the Beta function

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt =
Γ (x) Γ (y)

Γ (x+ y)

to larger dimensions (and is the reason for our use of the letter B for the normalization).

2.4 Jack symmetric functions

To introduce the Jack symmetric functions, we must first introduce some notions from the
theory of partitions.

2.4.1 Partitions

For a positive integer n, we will say that a sequence of nonnegative integers λ = (λ1, λ2, . . . )
is a partition of n if

1. λi ≥ λi+1 for all i ≥ 1

2.
∑

i λi = n

and we will write |λ| = n. We will let Λn denote the collection of partitions of n and
Λ∗ =

⋃
n Λn. The length of a partition, written `(λ), is the largest k for which λk 6= 0

(it should be clear from the definition that only a finite number of elements of λi can be
nonzero, and that they must occupy an initial interval of λ). For ease of reading, we will use
the customary exponential notation: that is, we will write the partition

(t1, . . . , t1︸ ︷︷ ︸
n1times

, t2, . . . , t2︸ ︷︷ ︸
n2times

, . . . )

as (tn1
1 , t

n2
2 , . . . ). The one exception will be the values of 0, which we will never include in

any presentation unless necessary (but which will always exist).
Given two partitions of n, (say λ and µ), we say that µ dominates λ, written λ � µ, if

k∑
i=1

λi ≤
k∑
i=1

µi (5)

4



for all integers k. In the case that (5) holds for partitions λ, µ with |λ| < |µ|, we will write
λ �w µ and say µ weakly dominates λ. Both domination and weak domination define partial
orders on the collection of partitions known as the dominance ordering and weak dominance
ordering, respectively.

Remark 2.1. The name “weak dominance” comes from the fact that when |λ| = |µ|,
the inequality in (5) will become an equality for all k > max{`(λ), `(µ)} and is therefore
considered to be a “stronger” condition.

Recall that a Young diagram is a finite collection of boxes (called cells) which are ar-
ranged in left-justified rows with nonincreasing lengths. There is a natural bijection between
partitions and Young diagrams where the ith row of the Young diagram has λi cells in it.
There is a natural conjugation operation on Young diagram which entails switching the rows
and columns (similar to a matrix transpose). The corresponding partition is known as the
conjugate partition and will be denoted λ′. Letting Ni(λ) denote the number of times that
i appears in λ, one can equivalently define λ′ as

λ′i =
∑
t≥i

Nt(λ).

One straightforward lemma we will use is that the conjugate operation is order reversing
with respect to the dominance order [2]:

Lemma 2.2. For all partitions λ, µ with |λ| = |µ|, we have

λ � µ ⇐⇒ µ′ � λ′ (6)

We warn that the analogous version of (6) for weak dominance is not true in general, as
can be seen by the simple counterexample λ = (1) and µ = (22), as λ �w µ and both λ and
µ are self-conjugate.

2.4.2 Jack Symmetric Functions

Let ~x = x1, x2, . . . be a sequence of formal variables. A function p(~x) is called symmetric
if it is invariant under permutation of its variables. It is called homogeneous of degree n if
p(c~x) = cnp(~x). Given a finite collection of variables y1, . . . , yn, we will write p(y1, . . . , yn)
to denote the evaluation of p on the sequence (y1, . . . , yn, 0, 0, . . . ). The restriction of a
symmetric, homogeneous function to a finite number of nonzero entries is a (multivariate)
polynomial in its nonzero entries. Therefore, one does not need to worry about convergence
in such situations (which will be the only situations treated in this paper).

Because partitions represent all ways to total a given integer, they are a natural indexing
set for symmetric homogeneous functions. There are well-known collections of functions,
indexed by partitions, that form a basis for the space of the symmetric functions. We will
utilize two such bases, the first of which are the power-sum functions

pλ(~x) =

`(λ)∏
i=1

(∑
j

xλij

)
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and the second of which are the monomial symmetric functions, defined as the sum of all
monomials whose exponents (when put into increasing order) form the partition λ. In both
cases, we find examples to be more easily understood than the definitions:

Example 2.3. For variables (w, x, y, z, . . . ), we have

• p(2,12)(w, x, y, z, . . . ) = (w + x+ y + z + . . . )2(w2 + x2 + y2 + z2 + . . . )

• m(2,12)(w, x, y, z, . . . ) = wxy2 + wxz2 + w2xy + w2xz + wyz2 + wx2z + . . .

The power-sum and monomial symmetric functions are connected in a natural way by multi-
nomial expansions:

p(1k)(~x) =

(∑
i

xi

)k

=
∑
|λ|=k

(
k

λ1, . . . , λn

)
mλ(~x) (7)

where (
k

λ1, . . . , λn

)
=

k!

λ1! . . . λn!

is a multinomial coefficient defined in Section 2.2.
Since the power-sum functions form a basis, one can define an inner product on the

space of symmetric functions simply by defining its values on these elements (and extending
linearly). One such inner product can be seen as a weighted version of the Hall inner product
[11]: for α > 0,

〈pλ(~x), pµ(~x)〉α = δλµα
`(λ)

∞∏
i=1

iNi(λ)Ni(λ)! (8)

where δλ,µ is 1 whenever λ = µ and 0 otherwise (the functionNi(λ) is defined in Section 2.4.1).
A fundamental result of Macdonald [11] gives a second explicit orthogonal basis for each such
inner product:

Theorem 2.4. For any α > 0, there exists a unique collection of symmetric functions
{Jλ(~x;α)}λ∈Λ that satisfy the following conditions:

Orthogonality: 〈Jλ(~x;α), Jµ(~x;α)〉α = 0 whenever λ 6= µ,

Triangularity: There exist coefficients vλ,µ(α) such that

Jλ(~x;α) =
∑

µ:|µ|=|λ|
µ�λ

vλ,µ(α)mµ(~x),

Normalization: vλ,1n(α) = n! whenever |λ| = n.

The functions Jλ(~x;α) satisfying Theorem 2.4 are known as the Jack symmetric functions.
We make two remarks:
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Remark 2.5.

1. Since the triangularity property only includes terms with |µ| = |λ|, Jλ(~x;α) is a sym-
metric, homogeneous function of degree |λ|.

2. It is easy to see that mλ(y1, . . . , yn) = 0 whenever n < `(λ). Since µ � λ requires
`(µ) ≥ `(λ), the triangularity property implies that Jλ(y1, . . . , yn;α) = 0 whenever
n < `(λ).

A number of different normalizations for the Jack symmetric functions appear in the
literature (for example, the C and P normalizations [4]). Rather than describe these nor-
malizations, we will define our own (which is easily obtained from any of the others): for a
partition λ, we define

Ĵλ(x1, . . . , xn;α) =

{
Jλ(x1,...,xn;α)
Jλ(1n;α)

for `(λ) ≤ n

0 otherwise.
(9)

One of the first papers to treat the combinatorial properties of Jack symmetric functions
was due to Stanley [13]. We end the section by recalling two results from this paper. The
first gives an explicit formulas for the Jack symmetric functions when the partition has the
special form λ = (k):

Lemma 2.6. For α > 0,

(−α)k

k!
J(k)(~x; 1/α) =

∑
|λ|=k

(∏
i

(
−α
λi

))
mλ(~x). (10)

In particular,
(−α)k

k!
J(k)(1

n; 1/α) =

(
−nα
k

)
. (11)

The second result gives a generating function for Jack symmetric functions of the same
type. Since the normalization used here differs from [13], we include a short proof:

Lemma 2.7. For all n× n matrices Y and all α > 0, we have

det [I + Y ]−α =
∑
k

(
−nα
k

)
Ĵ(k)(Y ; 1/α)

Proof. Let Y have eigenvalues y1, . . . , yn. Then

det [I + Y ]α =
∏
i

(1 + yi)
−α (2)

=
∏
i

∑
ji

(
−α
ji

)
yjii =

∑
j1,...,jn

(
−α
j1

)
. . .

(
−α
jn

)
yj11 . . . yjnn .
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where, if we group the monomials by the partition formed by their exponents, we get

=
∑
j1,...,jn

(
−α
j1

)
. . .

(
−α
jn

)
yj11 . . . yjnn . =

∑
k

∑
|λ|=k

`(λ)∏
i=1

(
−α
λi

)mλ(Y ).

On the other hand, Lemma 2.6 implies

(
−nα
k

)
Ĵ(k)(Y ; 1/α)

(11)
=

(−α)k

k!
J(k)(Y ; 1/α)

(10)
=
∑
|λ|=k

`(λ)∏
i=1

(
−α
λi

)mλ(Y )

and so the result follows by summing over k.

We will discuss further properties of the Jack symmetric functions (in particular, as they
apply to random matrices) in Section 3.1. We refer the interested reader to [11] and [13] for
more comprehensive and combinatorial introductions (respectively).

3 Dirichlet-weighted random vectors

Definition 3.1. We will call the distribution on unit vectors (x1, . . . , xn) ∈ Rn with proba-
bility density function

f(x1, . . . , xn) ∝ |x1x2 . . . xn|α−1 (12)

the unit α distribution, written µαn.

The µαn distribution can be directly related to the Dirichlet distribution (see Section 2.3)
by a simple change of variables:

Lemma 3.2. Let s1, . . . sn be nonnegative integers and let t1, . . . , tn be positive real numbers.
Then ∫

Sn−1

xs11 . . . xsnn |x
t1−1
1 . . . xtn−1

n |d~x =

{
B
(
s1+t1

2
, . . . , sn+tn

2

)
if all si are even

0 otherwise

Proof. The case when any si is odd is easy to see, since then the values at (x1, . . . , xi, . . . , xn)
and (x1, . . . ,−xi, . . . , xn) will cancel each other out. For the case when all si are even, each of
the 2n orthants will give the same values and so we can restrict the integral to the nonnegative
orthant and multiply the result by 2n. Hence we have∫

Sn−1

xs11 . . . xsnn |x
t1−1
1 . . . xtn−1

n |d~x = 2n
∫
Sn−1
+

xs1+t1−1
1 . . . xsn+tn−1

n d~x

8



where Sn−1
+ = {(x1, . . . , xn) ∈ Rn : xi ≥ 0,

∑
x2
i = 1}. Now we make the substitution

ui = x2
i so that 2xidxi = dui, or equivalently, dxi = 1

2
(ui)

−1/2dui. Hence we get

2n
∫
Sn−1
+

xs11 . . . xsnn |x
t1
1 . . . x

tn
n |d~x =

∫
∆n

u
(s1+t1−1)/2
1 . . . u(sn+tn−1)/2

n (u1u2 . . . un)−1/2d~u

=

∫
∆n

u
(s1+t1)/2−1
1 . . . u(sn+tn)/2−1

n d~u

= B

(
s1 + t1

2
, . . . ,

sn + tn
2

)
with the last equality coming from (4).

In particular, Lemma 3.2 implies that the normalization factor in (12) is∫
Sn−1

|x1x2 . . . xn|α−1d~x = B(α/2, . . . , α/2).

Similar to the Dirichlet distribution, we can think of the parameter α as determining how
“concentrated” the mass of the vector will be in a few coordinates. For example,

1. µ1
n is the Haar measure on Sn−1.

2. µ0
n is the discrete measure on the collection {±ei} (where ei are the standard basis

vectors)

3. µ∞n is the discrete measure on the collection { 1√
n
(±1,±1, . . . ,±1)}.

Calculations related to these distributions inevitably entail an application of Lemma 3.2:

Corollary 3.3. Let p(~x) = xs11 . . . xsnn be a monomial and let v ∼ µ2α
n . Then

Ev {p(v)} =
B
(
α + s1

2
, . . . , α + sn

2

)
B (α, . . . , α)

when all si are even (and 0 otherwise).

3.1 Jack Formulas

In this section, we prove our main technical tool (Theorem 3.5) and then show that the
distribution µαn defined in the previous section satsifies an important relationship between
Jack symmetric functions and random matrices (Corollary 3.7). We begin by recording an
observation that will be used multiple times in the forthcoming proofs:

Lemma 3.4. Let X be an n× n matrix with rank 1. Then

Ĵλ(X; 1/α) =

Tr
[
Xk
] (−αk )

(−nαk )
for λ = (k)

0 otherwise
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Proof. We first note that, since X has only one nonzero eigenvalue, Remark 2.5 implies that
Ĵλ(X : 1/α) = 0 whenever `(λ) > 1, and so it remains to prove the case λ = (k). Let w be
the single nonzero eigenvalue. Since Jλ is homogeneous, we have

Ĵ(k)(X; 1/α) = wkĴ(k)(1; 1/α) = Tr
[
Xk
]
Ĵλ(1; 1/α).

Hence it suffices to prove the lemma in the case when w = 1, for which we have

Ĵλ(1; 1/α) =
J(k)(1; 1/α)

J(k)(1n; 1/α)

(11)
=

(−α
k

)(−nα
k

)
by Lemma 2.6.

We now prove our main technical tool, which we state as a theorem:

Theorem 3.5. If A is a diagonal matrix and v ∼ µ2α
n then

Ev

{
(vTAv)k

}
= Ĵ(k)(A; 1/α)

for all integers k.

Proof. Let a1, . . . , an be the diagonal entries of A. Since A is diagonal, we have vTAv =∑
i v

2
i ai and so by (7), we can write

Ev

{
(vTAv)k

}
=
∑
|λ|=k

(
k

λ1, . . . , λn

)
Ev

{
mλ(v

2
1a1, . . . , v

2
nan)

}
.

We now use Corollary 3.3: since B(~x) is a symmetric function, each monomial in a fixed mλ

is going to give the same value under the expectation. Hence Corollary 3.3 implies

Ev

{
mλ(v

2
1a1, . . . , v

2
nan)

}
= mλ(a1, . . . , an)

B(α + λ1, α + λ2, . . . , α + λn)

B(α, . . . , α)

and so we get

Ev

{
(vTAv)k

}
=
∑
|λ|=k

(
k

λ1, . . . , λn

)
B(α + λ1, α + λ2, . . . , α + λn)

B(α, . . . , α)
mλ(a1, . . . an)

=
∑
|λ|=k

(
k

λ1, . . . , λn

)
Γ (nα)

Γ (nα + k)

`(λ)∏
i=1

Γ (α + λi)

Γ (α)

mλ(a1, . . . an)

(3)
=

1(−nα
k

) ∑
|λ|=k

`(λ)∏
i=1

(
−α
λi

)mλ(a1, . . . an)

(10)
= Ĵ(k)(A; 1/α)

where the last identity comes from Lemma 2.6.
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The Jack symmetric functions have an intimate relationship with classical β ensembles
due to their role as zonal polynomials [8, Section 13.4.3].

Lemma 3.6. For β ∈ {1, 2, 4}, let A and B be real (β = 1), complex (β = 2) or quaternionic
(β = 4) matrices and let U be a uniformly distributed unitary matrix over the same field (and
† the corresponding adjoint operator). Then

E

{
Ĵλ(AU

†BU ; 2/β)
}

= Ĵλ(A; 2/β)Ĵλ(B; 2/β)

for all partitions λ.

One of the issues with extending Lemma 3.6 to the case of general β is the lack of an
obvious analogue for a “uniformly distributed unitary matrix” (though various proposals
have been made, e.g. [7]). Our first application of Theorem 3.5 shows that, at least as far
as random vectors are concerned, the µ2α

n distribution gives the appropriate generalization
of Lemma 3.6.

Corollary 3.7. If A is a diagonal matrix and v ∼ µ2α
n , then

Ev

{
Ĵλ(Avv

T ; 1/α)
}

= Ĵλ(A; 1/α)Ĵλ(e1e
T
1 ; 1/α)

for all partitions λ.

Before giving the proof, we remark that, by Lemma 3.4, the value of Ĵλ(ww
T ; 1/α) is a

function of ‖w‖ only (not the direction), and so the use of the vector e1 in the statement
of Corollary 3.7 is arbitrary (any unit vector would be equivalent). One could, in fact, use

Ĵλ(vv
T ; 1/α), but we chose to use a fixed unit vector so as to avoid any confusion as to what

is truly “random”.

Proof. We start by noticing that if `(λ) > 1, then by Lemma 3.4,

Ĵλ(Avv
T ; 1/α) = Ĵλ(e1e

T
1 ; 1/α) = 0

since both AvvT and vvT have rank 1. It then remains to prove the case when λ = (k) for
some integer k > 0. For a general vector w, Lemma 3.4 implies

Ĵλ(Aww
T ; 1/α) = Tr

[
(AwwT )k

] (−α
k

)(−nα
k

) = (wTAw)kĴ(e1e
T
1 ).

Taking the expectation over v and applying Theorem 3.5 then completes the proof.

We end this section with two applications of Theorem 3.5 that will prove useful in sub-
sequent sections. The first application is to the generating function in Lemma 2.7:

Corollary 3.8. If Y is a diagonal n× n matrix and v ∼ µ2α
n , then

det [Y ]−α = Ev
{

(vTY v)−nα
}

11



Proof. By Lemma 2.7 and Theorem 3.5, we have

det [Y ]−α =
∑
k

(
−nα
k

)
Ĵ(k)(Y − I; 1/α) =

∑
k

(
−nα
k

)
Ev

{(
vT (Y − I)v

)k}
where∑

k

(
−nα
k

)
Ev

{(
vT (Y − I)v

)k}
= Ev

{
(1 + vT (Y − I)v)−nα

} (2)
= Ev

{
(vTY v)−nα

}
.

The second application is an identity:

Corollary 3.9. Let w ∼ µ2α
n . Then

(1− s)−α = Ew
{

(1− swT eeTw)−nα
}

Proof. Note that, by (2) we have

(1− s)−α =
∑
i

(
−α
i

)
(−s)i

and

Ew

{
(1− swT eeTw)−nα

}
=
∑
i

(
−nα
i

)
Ew

{
(wT eeTw)i

}
(−s)i.

Plugging in

Ew

{
(wT eeTw)i

}
=

(−α
i

)(−nα
i

) ,
which follows from Theorem 3.5, finishes the lemma.

3.2 Rank 1 perturbations

The goal of this section is to establish formulas for rank 1 perturbations of matrices when
the perturbing vectors have the µ2α

n distribution. We start by establishing a technical lemma
that will do much of the work for us. For this section we will use e to denote an (arbitrary)
standard basis vector.

Lemma 3.10. Let u, v, w ∼ µ2α
n be independent for α > 0. Then

Ev

{
det
[
I − A− tvvT

]−α}
= Ew,u

{
(1− twteeTw − uTAu)−nα

}
holds for all n× n diagonal matrices A.
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Proof. We first show the case when I − A is invertible. Recall that the matrix determinant
lemma [10] asserts that

det
[
I − A− tvvT

]−α
= det [I − A]−α

(
1− tvT (I − A)−1v

)−α
.

and applying Corollary 3.9 with s = tvT (I − A)−1v then gives

Ev

{
det
[
I − A− tvvT

]−α}
= det [I − A]−αEw,v

{(
1− (twT eeTw)vT (I − A)−1v

)−nα}
.

where, since I − (twT eeTw)(I − A)−1 is diagonal,

Ev

{(
1− (twT eeTw)vT (I − A)−1v

)−nα}
= det

[
I − (twT eeTw)(I − A)−1

]−α
by Corollary 3.8. Hence we have

Ev

{
det
[
I − A− tvvT

]−α}
= det [I − A]−αEw

{
det
[
I − (twT eeTw)(I − A)−1

]−α}
= Ew

{
det
[
(1− twT eeTw)I − A

]−α}
.

Now since (1 − twT eeTw)I − A is diagonal (for any w), we can use Corollary 3.8 yet again
to write

det
[
(1− twT eeTw)I − A

]−α
= Eu

{(
uT
(
(1− twT eeTw)I − A

)
u
)−nα}

= Eu
{

(1− twT eeTw − uTAu)−nα
}
,

proving the lemma whenever I − A is invertible. Now for the case when I − A is not
invertible, we simply apply the previous argument to the (cofinite) collection of points x for
which I − xA is invertible and extend by continuity.

The proof of Lemma 3.10 shows the utility of identities like the one in Corollary 3.8
(and, in turn, Theorem 3.5). By replacing a determinant with an expected power, one gains
some amount of flexibility that is not obvious in the original determinant. We can now use
Lemma 3.10 to derive an identity for the probability distributions of rank 1 perturbations.

Theorem 3.11. Let A be an n × n diagonal matrix, and let v, w ∼ µ2α
n be independent

random vectors. For t ∈ R, let B(A, v, t) be the (random) diagonal matrix with entries that
are the (random) eigenvalues of A+ tvvT . Then

wTB(A, v, t)w and wTAw + tvT eeTv

have the same distributions.

Proof. Consider the generating functions

pA,t(x) =
∑
k

(
−nα
k

)
(−x)kEw,v

{
(wTB(A, v, t)w)k

}
13



and

qA,t(x) =
∑
k

(
−nα
k

)
(−x)kEw,v

{
(wTAw + tvT eeTv)k

}
.

Then we can write

pA,t(x) =
∑
k

(
−nα
k

)
(−x)kEw,v

{
(wTB(A, v, t)w)k

}
=
∑
k

(
−nα
k

)
(−x)kEv

{
Ĵ(k)(B(a, v, t); 1/α)

}
(Theorem 3.5)

= Ev
{

det [I − xB(a, v, t)]−α
}

(Lemma 2.7)

= Ev

{
det
[
I − x(A− tvvT )

]−α}
(∗)

= Ew,v
{

(1− xtwteeTw − xvTAv)−nα
}

(Lemma 3.10)

(2)
=
∑
k

(
−nα
k

)
(−x)kEw,v

{
(twteeTw + vTAv)k

}
= qA,t(x)

where the step marked (∗) is due to the unitary invariance of the determinant. Since two
power series are the same if and only if they have the same coefficients, this implies

Ew,v

{
(twteeTw + vTAv)k

}
= Ew,v

{
(wTB(A, v, t)w)k

}
for all k. Since two distributions that have equal (and finite) moments are the same, this
implies the theorem.

We note that Theorem 3.11 is (by Theorem 3.5) equivalent to the statement

Ev

{
Ĵ(k)(A+ vvT ; 1/α)

}
=

k∑
i=0

(
k

i

)
Ĵ(i)(ee

T ; 1/α)Ĵ(k−i)(A; 1/α) (13)

for v ∼ µ2α
n . One might ask if a similar identity holds for more general partitions λ (of length

longer than 1). To investigate this, we employ yet another result of Stanley showing that
the collection of products of the Jack symmetric functions with partitions of length 1 form
a basis for the symmetric functions [13].

Definition 3.12. For a partition λ, let Jλ(~x, α) be the symmetric function

Jλ(~x;α) =

`(λ)∏
i=1

J(λi)(A).

In [13], Stanley showed the following relationship:

14



Theorem 3.13. For all partitions λ with |λ| = k,

Jλ(~x;α) =
∑
|µ|=k

vµ,λ
αk
∏

i λi!

jλ
Jµ(~x;α)

where the coefficients vs,t are the same as the ones in Theorem 2.4 and

jλ = 〈Jλ(x;α), Jλ(x;α)〉α

is the normalization constant from the inner product defined in (8).

Note that, although the coefficients vs,t are the same as those in Theorem 2.4, the usage
in Theorem 3.13 is somewhat different — if we let V be the matrix with V (λ, µ) = vλ,µ, then
Theorem 3.13 asserts that the transformation between the J functions and the normal Jack
functions uses the matrix V T . In particular, since V is upper triangular, the transforma-
tion in Theorem 3.13 will be lower triangular. This leads to the following observation (see
Section 2.4.1 for the definitions of the dominance orderings):

Theorem 3.14. Let A be a diagonal matrix and let v ∼ µ
2/α
n . Then

Ev

{〈
Jλ(A+ vvT ;α), Jλ(A;α)

〉
α

}
6= 0 (14)

implies τ ′ �w λ′.

Proof. Let U = V −1 where V = V (λ, µ) is the matrix defined above. Then by Theorem 3.11,
we have

Ev

{
Jλ(A+ vvT ;α)

}
= jλ

∑
µ

uµ,λ
∏
i

J(µi)(I;α)Ev

{
Ĵ(µi)(A+ vvT ;α)

}
αµiµi!

= jλ
∑
µ

uµ,λ
∏
i

J(µi)(I;α)

αµiµi!

µi∑
ki=0

(
µi
ki

)
Ĵ(ki)(A;α)Ĵ(µi−ki)(ee

T ;α)

= jλ
∑
µ

uµ,λ

µ1∑
k1=0

· · ·
µn∑
kn=0

ck1,...,kn,µ1,...,µn
∏
i

J(ki)(A;α)

= jλ
∑
µ

uµ,λ

µ1∑
k1=0

· · ·
µn∑
kn=0

ck1,...,kn,µ1,...,µn
∑
τ

vτ,π(~k)

α|τ |
∏

i τi!

jπ(~k)

Jτ (~x;α)

where ck1,...,kn,µ1,...,µn is a nonzero constant and π(~k) denotes the partition formed that results

from ordering the elements of the vector ~k in nonincreasing order.
By Theorem 2.4, we have that uµ,λ 6= 0 implies λ � µ, which, by Lemma 2.2, is equivalent

to having µ′ � λ′. Similar is true whenever vτ,π(~k) 6= 0. Furthermore, the only partitions π(k)
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and µ for which ck1,...,kn,µ1,...,µn 6= 0 is when the Young Tableaux of π(~k) is a sub-Tableaux of
µ. Hence in particular, we must have

π(~k)′i ≤ µ′i

for all i (which in turn implies weak majorization). Hence (14) implies

τ ′ � π(~k)′ �w µ′ � λ′

which, by transitivity, implies the lemma.

Note that, since Jτ (A;α) is an orthogonal basis, (14) is equivalent to saying that the
expansion of E

{
Jλ(A+ vvT ;α)

}
as a linear combination of the basis elements Jτ (A;α)

contains only terms which have τ ′ �w λ′. As a sanity check, we note that when λ = (k), we
have λ′ = (1k), and the only partitions that are weakly majorized by (1k) are of the form
(1j) for 0 ≤ j ≤ k. Hence the guarantee in Theorem 3.14 agrees with (13).

4 Open problems

We remark that the formula in (14) seems to be a property of the µαn distributions rather
than some superset of them. We conjecture the following:

Conjecture 4.1. For all α, the distribution µ
2/α
n is the only distribution which has equal

marginals on its coordinates that satisfies (14).

In the Appendix, we show some support for this conjecture — namely, that µ
2/α′
n satisfies

(14) if and only if α′ = α. This is in sharp contrast to a number of other properties of µαn
that are invariant under changes in α (for example, the characteristic polynomial of A+ vvT

[12]). Certainly, an exact formula for (14) in the general case would also be interesting.
The other obvious open problems that is left by our work is one we find very interesting:

finding constructions for producing other “uniformly distributed” objects in the general β
case. Of particular interest (at least to the authors) is in the ability to satisfy Corollary 3.7.
For example,

Problem 4.2. Find a joint probability on pairs of unit vectors (u1, u2) such that

• u1 and u2 are orthogonal almost surely

• for all diagonal matrices A, the (random) matrix B = su1u
T
1 + tu2u

T
2 satisfies

EB

{
Ĵλ(AB;α)

}
= Ĵλ(A;α)Ĵλ(B;α)

for all partitions λ (and all α > 0).
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Comments in [8] suggest that such a distribution would likely need to depend on s and t as
well as (possibly) A.

We are not so bold as to declare the distribution µαn to mimic “the true” uniform distribu-
tion on the β = 2/α unit sphere, despite the compelling evidence provided by Corollary 3.7.
While it is known that the collection of identities provided by Lemma 3.6 characterizes the
Haar measure for β = {1, 2, 4}, Corollary 3.7 is only able to assert such an identity for the
case when one of the matrices has rank 1. As this is our primary justification of treating
these distributions as candidates for such a role, it would be interesting to know whether any
other distributions satisfied the same identity (thereby providing another reasonable candi-
date), or whether the identities established by Corollary 3.7 were sufficient for characterizing
the Haar measure for general β.
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6 Appendix

In this appendix, we show that the conclusion of Theorem 3.14 seems to be a characteristic
of the distributions µ

2/α
n and not some superset of them. For what follows, let µ be any

distribution on unit vectors of length 2 for which

Ev

{
v2

1

}
= Ev

{
v2

2

}
. (15)

Note that simply having equal marginals on the coordinates satisfies the condition. We also
fix α = 1.

Lemma 6.1. If A is a 2× 2 diagonal matrix and v ∼ µ, then

Ev

{〈
Ĵ4(A+ vvT ; 1), Ĵ12(A; 1)

〉
1

=
3

5
Ev

{
|v1|2|v2|2

}}
− 1

10

Proof. Let

A =

[
a 0
0 b

]
and v =

[
cos(t)
sin(t)

]
.

Then one can calculate that

Ĵ4(A+ vvT ; 1) = p(a, b) + q(a, b) cos(2t) + r(a, b) cos(4t)

where

p(a, b) = Ĵ4(A; 1) + 2Ĵ3(A; 1) + 2Ĵ2(A; 1) + Ĵ1(A; 1) +
1

5
+

1

120
(a− b)2
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and

r(a, b) =
1

40
(a− b)2.

We now note that the property of µ having equal marginals implies∫ 2π

0

v2
1 dµ(v) =

∫ 2π

0

v2
2 dµ(v) = 0

and so cos(2t) will become 0 in expectation. So by the orthogonality property in Theorem 2.4,
we get

Ev

{〈
Ĵ4(A+ vvT ; 1), Ĵ12(A; 1)

〉
1

}
= Ev

{〈
p(a, b) + r(a, b) cos(4t), Ĵ12(A; 1)

〉
1

}
= Ev

{
1 + 3 cos(4t)

120

}〈
(a− b)2, Ĵ12(A; 1)

〉
1

and using the fact that cos(4t) = 1− 8 cos(t)2 sin(t)2, we get that

1− 3 cos(4t) = 4− 24 cos(t)2 sin(t)2 = 4(1− 6|v1|2|v2|2).

Now it is easy to calculate that

(a− b)2 = 3Ĵ2(A; 1)− 3Ĵ12(A; 1)

and so the claim follows by another application of Theorem 2.4.

Lemma 6.1 places a significant constraint on any µ which one might hope satisfies (14),

and this is only one such constraint. In particular, in the case that µ = µ
2/α′

2 , we get by
Corollary 3.3 and

Ev

{
|v1|2|v2|2

}
=
B(α′ + 1, α′ + 1)

B(α′, α′)

(4)
=

Γ (α′ + 1)2

Γ (2α′ + 2)

Γ (2α′)

Γ (α′)2 =
α′

4α′ + 2
.

That is, α′ = α = 1 is the only value of α′ for which (14) can hold. In particular, when

α = 2, the distribution µ
2/α
n is the Haar measure on the unit sphere of Rn, which one would

expect would exhibit any properties that were due to symmetries.
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