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ALGORITHMIC RESULTS FOR SPARSE APPROXIMATION

JOEL A. TROPP

Abstract. This article presents new results on using a greedy algorithm, Orthogonal Matching
Pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries. It contains
a single sufficient condition under which both OMP and Donoho’s Basis Pursuit paradigm (BP) can
recover an exactly sparse signal. It leverages this theory to show that both OMP and BP can recover
all exactly sparse signals from a wide class of dictionaries. These quasi-incoherent dictionaries offer
a natural generalization of incoherent dictionaries, and the Babel function is introduced to quantify
the level of incoherence. Indeed, this analysis unifies all the recent results on BP and extends them
to OMP. Furthermore, the paper develops a sufficient condition under which OMP can retrieve the
common atoms from all optimal representations of a nonsparse signal. From there, it argues that
Orthogonal Matching Pursuit is an approximation algorithm for the sparse problem over a quasi-
incoherent dictionary. That is, for every input signal, OMP can calculate a sparse approximant
whose error is only a small factor worse than the optimal error which can be attained with the same
number of terms.

1. Introduction

They were never meant to be together. Some signals just cannot be represented efficiently in an
orthonormal basis. For example, neither impulses nor sinusoids adequately express the behavior
of an intermixture of impulses and sinusoids. In this case, two types of structures appear in the
signal, but they look so radically different that neither one can effectively mimic the other. Although
orthonormal bases and orthogonal transformations have a distinguished service record, examples
like this have led researchers to enlist more complicated techniques.

The most basic instrument of approximation is to project each signal onto a fixed m-dimensional
linear subspace. A familiar example is interpolation by means of fixed-knot, polynomial splines.
For some functions, this elementary procedure works quite well. Later, various nonlinear methods
were developed. One fundamental technique is to project each signal onto the best linear subspace
induced by m elements of a fixed orthonormal basis. This type of approximation is quite easy to
perform due to the rigid structure of an orthonormal system. It yields tremendous gains over the
linear method, especially when the input signals are compatible with the basis [DeV98, Tem02].
But, as noted, some functions fit into an orthonormal basis like a square peg fits a round hole. To
deal with this problem, researchers have spent the last fifteen years developing redundant systems,
called dictionaries, for analyzing and representing complicated functions. A Gabor dictionary, for
example, consists of complex exponentials at different frequencies which are localized to short time
intervals. It is used for joint time-frequency analysis [Grö01].

Redundant systems raise the awkward question of how to use them effectively for approxima-
tion. The problem of representing a signal with the best linear combination of m elements from a
dictionary is called sparse approximation or highly nonlinear approximation. The core algorithmic
question:
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For a given class of dictionaries, how does one design a fast algorithm which provably
calculates a nearly-optimal sparse representation of an arbitrary input signal?

Unfortunately, it is quite difficult to answer. At present, there are two major approaches, called
Orthogonal Matching Pursuit (OMP) and Basis Pursuit (BP). OMP is an iterative greedy algorithm
that selects at each step the dictionary element best correlated with the residual part of the signal.
Then it produces a new approximant by projecting the signal onto those elements which have
already been selected. This technique just extends the trivial greedy algorithm which succeeds for
an orthonormal system. Basis Pursuit is a more sophisticated approach, which replaces the original
sparse approximation problem by a linear programming problem. Empirical evidence suggests that
BP is more powerful than OMP [CDS99]. Meanwhile, the major advantage of Orthogonal Matching
Pursuit is that it has simple, fast implementations [DMA97, GMS03].

1.1. Major Results. I have developed theory for two distinct sparse approximation problems.
The Exact-Sparse problem is to recover an exact superposition

x =
m∑

k=1

bk ϕk

of m elements (called atoms) from a redundant dictionary. To state the first theorem, I define
a matrix Φopt whose columns are the m atoms that comprise the signal and write Φ

+
opt for its

pseudo-inverse.

Theorem A. Suppose that x is a signal which can be expressed as a linear combination the m atoms

in Φopt. Both Orthogonal Matching Pursuit and Basis Pursuit recover the m-term representation

of x whenever

max
ψ

∥∥Φ+
optψ

∥∥
1

< 1, (1.1)

where the maximization occurs over all atoms ψ which do not participate in the m-term represen-

tation.

This result is essentially the best possible for OMP, and it is also the best possible for BP in
certain cases. It is remarkable that (1.1) is a natural sufficient condition for such disparate tech-
niques to resolve sparse signals. This fact suggests that Exact-Sparse has tremendous structure.
Now, Theorem A would not be very useful without a technique for checking when the condition
holds. To that end, I define the Babel function, µ1(m), of a dictionary, which equals the maximum
absolute sum of inner products between a fixed atom and m other atoms. The Babel function pro-
vides a natural generalization of the cumulative coherence µm, where µ is the maximum absolute
inner product between two atoms. If the Babel function grows slowly, we say that the dictionary
is quasi-incoherent.

Theorem B. The condition (1.1) holds for every superposition of m atoms from a dictionary

whenever

m < 1
2 (µ−1 + 1)

or, more generally, whenever

µ1(m − 1) + µ1(m) < 1.

If the dictionary consists of J concatenated orthonormal bases, (1.1) is in force whenever

m <

[√
2 − 1 +

1

2 (J − 1)

]
µ−1.

Together, Theorems A and B unify all of the recent results for Basis Pursuit [EB02, DE02, GN02]
and extend them to Orthogonal Matching Pursuit as well.

The second problem, Sparse, requests the optimal m-term approximation of a general signal.
Although Exact-Sparse and Sparse are related, the latter is much harder to solve. Nevertheless,
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Orthogonal Matching Pursuit is a provably good approximation algorithm for the sparse prob-
lem over a quasi-incoherent dictionary. To be precise, suppose that aopt is an optimal m-term
approximant of the signal x, and let ak denote the k-th approximant produced by OMP.

Theorem C. Orthogonal Matching Pursuit will recover an atom from the optimal m-term repre-

sentation of an arbitrary signal x whenever

‖x− ak‖2 >

√
1 +

m (1 − µ1(m))

(1 − 2µ1(m))2
‖x− aopt‖2 .

Taking µ1(m) ≤ 1
3 , it follows that Orthogonal Matching Pursuit will calculate an m-term approxi-

mant am that satisfies

‖x− am‖2 ≤
√

1 + 6m ‖x− aopt‖2 .

This theorem extends work of Gilbert, Muthukrishnan and Strauss [GMS03]. No comparable
results are available for the Basis Pursuit paradigm.

2. Background

2.1. Sparse Approximation Problems. The standard sparse approximation problem1 is set in
the Hilbert space C

d. A dictionary for C
d is a finite collection D of unit-norm vectors which spans

the whole space. The elements of the dictionary are called atoms, and they are denoted by ϕω,
where the parameter ω is drawn from an index set Ω. The indices may have an interpretation, such
as the time-frequency or time-scale localization of an atom, or they may simply be labels without
an underlying metaphysics. The whole dictionary structure is written as

D = {ϕω : ω ∈ Ω} .

The letter N will indicate the size of the dictionary.
The problem is to approximate a given signal x ∈ C

d using a linear combination of m atoms
from the dictionary. Since m is taken to be much smaller than the dimension, the approximant is
sparse. Specifically, we seek a solution to the minimization problem

min
|Λ|=m

min
b

∥∥∥∥∥x−
∑

λ∈Λ

bλϕλ

∥∥∥∥∥
2

, (2.1)

where the index set Λ ⊂ Ω and b is a list of complex-valued coefficients. For a fixed Λ, the
inner minimization of (2.1) can be accomplished with the usual least-squares techniques. The real
difficulty lies in the optimal selection of Λ, since the näıve strategy would involve sifting through
all
(
N
m

)
possibilities.

The computational problem that I have outlined will be called (D ,m)-Sparse. Note that it
is posed for an arbitrary vector with respect to a fixed dictionary and sparsity level. One reason
for posing the problem with respect to a specific dictionary is to reduce the time complexity of
the problem. If the dictionary were an input parameter, then an algorithm would have to process
the entire dictionary as one of its computational duties. It is better to transfer this burden to a
preprocessing stage, since we are likely to use the same dictionary for many approximations. A
second reason is that Davis, Mallat and Avellaneda have shown that solving or even approximating
the solution of (2.1) is NP-hard if the dictionary is unrestricted [DMA97]. Nevertheless, it is not
quixotic to seek algorithms for the sparse problem over a particular dictionary.

We shall also consider a second problem called (D ,m)-Exact-Sparse, where the input signal is
restricted to be a linear combination of m atoms or fewer from D . There are several motivations.
Although natural signals are not perfectly sparse, one might imagine applications in which a sparse

1We work in a finite-dimensional space because infinite-dimensional vectors do not fit inside a computer. Nonethe-
less, the theory carries over with appropriate modifications to an infinite-dimensional setting.
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signal is constructed and transmitted without error. Exact-Sparse models just this situation.
Second, analysis of the simpler problem can provide lower bounds on the computational complexity
of Sparse; if the first problem is NP-hard, the second one is too. Finally, we might hope that
understanding Exact-Sparse will lead to insights on the more general case.

2.1.1. Synthesis and Analysis. Associated with each dictionary is the d × N synthesis matrix Φ

whose columns are atoms. The column order does not matter, so long as it is fixed. That is,

Φ
def
=
[
ϕω1

ϕω2
. . . ϕωN

]
.

The synthesis matrix generates a superposition x from a vector b of coefficients: x = Φ b. The
redundancy of the dictionary permits the same signal to be synthesized from an infinite number
of distinct coefficient vectors. The conjugate transpose Φ∗ of the synthesis matrix is called the
analysis matrix. It maps a vector to a list of inner products with the dictionary: b′ = Φ∗x. In
general, nota bene that Φ (Φ∗x) 6= x unless the dictionary is an orthonormal basis!

2.1.2. Related Problems. (D ,m)-Sparse exemplifies a large class of linear sparse approximation
problems [GMS03]. We shall continue to draw signals from C

d, but now we measure the approxi-
mation error with a general norm ‖·‖. Fix a dictionary D consisting of N unit-norm vectors which
span C

d, and associate with D the linear synthesis operator Φ : C
N → C

d. Then let ‖·‖sp be a
function which measures the sparsity of a coefficient vector. The sparsity function does not need
to be a norm, in spite of the notation.

The primal sparse approximation problem requests the best approximation to a signal x subject
to the condition that the coefficients in the approximation have sparsity less than m. That is,

min
b∈CN

‖x− Φ b‖ subject to ‖b‖sp ≤ m. (2.2)

Interchanging the objective function and the constraint yields the dual sparse approximation prob-

lem: Find the sparsest set of coefficients that approximates the signal within a tolerance of ε.

min
b∈CN

‖b‖sp subject to ‖x− Φ b‖ ≤ ε. (2.3)

The standard problem, (D ,m)-Sparse, is a primal sparse approximation problem which measures
error with the `2 norm and sparsity with the `0 quasi-norm2.

2.2. Dictionary Analysis.

2.2.1. Coherence. The most fundamental quantity associated with a dictionary is the coherence

parameter µ. It equals the maximum absolute inner product between two distinct vectors in the
dictionary:

µ
def
= max

j 6=k

∣∣〈ϕωj
,ϕωk

〉∣∣ = max
j 6=k

|(Φ∗
Φ)jk| .

Roughly speaking, this number measures how much two vectors in the dictionary can look alike.
Coherence is a blunt instrument since it only reflects the most extreme correlations in the dictionary.
Nevertheless, it is easy to calculate, and it captures well the behavior of uniform dictionaries.
Informally, we say that a dictionary is incoherent when we judge that µ is small.

It is obvious that every orthonormal basis has coherence µ = 0. A union of two orthonormal bases
has coherence µ ≥ d−1/2. This bound is attained, for example, by the Dirac-Fourier dictionary,
which consists of impulses and complex exponentials. A dictionary of concatenated orthonormal
bases is called a multi-ONB. For some d, it is possible to build a multi-ONB which contains d or

2The `0 quasi-norm of a vector equals the number of nonzero components.



GREED IS GOOD 5

even (d + 1) bases yet retains the minimal coherence µ = d−1/2 possible [HSP02]. For general
dictionaries, a lower bound on the coherence is

µ ≥
√

N − d

d (N − 1)
.

If each atomic inner product meets this bound, the dictionary is called an optimal Grassmannian

frame. See [SH02, ST03] for more details.
The idea of using the coherence parameter to summarize a dictionary has a distinguished pedi-

gree. Mallat and Zhang introduced it as a quantity of heuristic interest for Matching Pursuit [MZ93].
The first theoretical developments appeared in Donoho and Huo’s paper [DH01]. Stronger results
for Basis Pursuit, phrased in terms of coherence, were provided in [EB02, DE02, GN02]. Most re-
cently, Gilbert, Muthukrishnan and Strauss have exhibited an approximation algorithm for sparse
problems over suitably incoherent dictionaries [GMS03].

2.2.2. The Babel Function. The coherence parameter does not offer a very subtle description of a
dictionary since it only reflects the most extreme correlations between atoms. When most of the
inner products are tiny, the coherence can be downright misleading. A wavelet packet dictionary
exhibits this type of behavior. To that end, I introduce the Babel function, which measures the
maximum total coherence between a fixed atom and a collection of other atoms. In a sense, the
Babel function indicates how much the atoms are “speaking the same language.” It’s much simpler
to distinguish Russian from English than it is to distinguish Russian from Ukrainian. Likewise,
if the vectors in the dictionary are foreign to each other, they are much easier to tell apart. The
Babel function will arise naturally in my analysis. Although it is more difficult to compute than
the coherence, it is a sharper scalpel. Donoho and Elad have defined a similar notion of generalized
incoherence, but they did not develop it sufficiently for present purposes [DE02].

Formally, the Babel function is defined by

µ1(m)
def
= max

|Λ|=m
max
ψ

∑

Λ

|〈ψ,ϕλ〉| , (2.4)

where the vector ψ ranges over the atoms indexed by Ω \ Λ. The subscript in the notation serves
to distinguish the Babel function from the coherence and to remind us that it is an absolute sum.
A close examination of the formula shows that µ1(1) = µ and that µ1 is a non-decreasing function
of m. Place the convention that µ1(0) = 0. When the Babel function of a dictionary grows slowly,
we say informally that the dictionary is quasi-incoherent.

The next proposition shows that the Babel function is a direct generalization of the cumulative
coherence.

Proposition 2.1. If a dictionary has coherence µ, then µ1(m) ≤ µm.

Proof. Calculate that

µ1(m) = max
|Λ|=m

max
ψ

∑

Λ

|〈ψ,ϕλ〉| ≤ max
|Λ|=m

∑

Λ

µ = µm.

�

2.2.3. An Example. For a realistic dictionary where the atoms have analytic definitions, the Babel
function is not too difficult to compute. As a simple example, consider a dictionary of decaying
pulses. To streamline the calculations, we work in the infinite-dimensional Hilbert space `2 of
square-summable, complex-valued sequences.

Fix a parameter β < 1. For each index k ≥ 0, define the sequence

ϕk(t) =

{
0, 0 ≤ t < k,

βt−k
√

1 − β2, k ≤ t.
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Figure 1. In captivity, a pulse at k = 6 with β = 0.75.

A specimen appears in Figure 1. It can be shown that the pulses span `2, so they form a dictionary.
The absolute inner product between two atoms is

|〈ϕk,ϕj〉| = β|k−j|.

In particular, each pulse has unit norm. It also follows that the coherence µ = β. Now, here is the
calculation of the Babel function in lurid detail:

µ1(m) = max
|Λ|=m

max
ψ

∑

Λ

|〈ψ,ϕλ〉| = max
|Λ|=m

max
k/∈Λ

∑

j∈Λ

|〈ϕk,ϕj〉|

= max
|Λ|=m

max
k/∈Λ

∑

j∈Λ

β|k−j|.

The maximum occurs, for example, when Λ = {0, 1, 2, . . . , bm2 c − 1, bm2 c + 1, . . . ,m − 1,m} and
k = bm2 c. The symbolic form of the Babel function depends on the parity of m.

µ1(m) =





2β (1 − βm/2)

1 − β
for m even, and

2β (1 − β(m−1)/2)

1 − β
+ β(m+1)/2 for m odd.

Notice that µ1(m) < 2β/(1−β) for all m. On the other hand, the cumulative coherence µm grows
without bound. Later, I will return to this example to demonstrate how much the Babel function
improves on the coherence parameter.

2.2.4. Spark. The spark of a matrix is the least number of columns that form a linearly dependent
set. Compare this against the matrix rank, which is the greatest number of linearly independent

columns [DE02]. In coding theory, the spark of a codebook would be called the distance of the
code. The following theorem is fundamental.

Theorem 2.2 (Donoho-Elad, Gribonval-Nielsen [DE02, GN02]). All sparse representations over

m atoms are unique if and only if m < 1
2 sparkΦ.

We can use the Babel function and the coherence parameter to develop lower bounds on the
spark of a dictionary. First, let Φm be a matrix whose columns are m distinct atoms. The following
lemma and its proof are essentially due to Donoho and Elad [DE02].

Lemma 2.3. The squared singular values of Φm exceed (1 − µ1(m − 1)).
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Proof. Consider the Gram matrix G
def
= (Φ∗

m Φm). The Geršgorin Disc Theorem [HJ85] states that
every eigenvalue of G lies in one of the m discs

∆k =

{
z : |Gkk − z| ≤

∑

j 6=k
|Gjk|

}
.

The normalization of the atoms implies that Gkk ≡ 1. The sum is bounded above by
∑

j 6=k |Gjk| =∑
j 6=k

∣∣〈ϕλk
,ϕλj

〉∣∣ ≤ µ1(m − 1). The result follows since the eigenvalues of G equal the squared
singular values of Φm. �

If the singular values of Φm are nonzero, then the m atoms which comprise the matrix are linearly
independent, whence

Theorem 2.4 (Donoho-Elad [DE02]). Lower bounds on the spark of a dictionary are

sparkΦ ≥ min{m : µ1(m − 1) ≥ 1}, and

sparkΦ ≥ µ−1 + 1.

The coherence result also appears in [GN02]. For structured dictionaries, better estimates are
possible. For example,

Theorem 2.5 (Gribonval-Nielsen [GN02]). If D is a µ-coherent dictionary consisting of L or-

thonormal bases,

sparkΦ ≥
[
1 +

1

L − 1

]
µ−1.

2.3. Greedy Algorithms. If the dictionary is an orthonormal basis, the sparse approximation
problem has a straightforward solution. It is possible to build the approximation one term at a
time by selecting at each step the atom which correlates most strongly with the residual signal.
Greedy techniques for sparse approximation extend this idea to more general dictionaries.

2.3.1. Matching Pursuit. The simplest of the greedy procedures is Matching Pursuit (MP), which
Mallat and Zhang introduced to the signal processing community [MZ93]. Matching Pursuit begins
by setting the initial residual equal to the signal and making a trivial initial approximation. That
is,

r0
def
= x, and a0

def
= 0.

At step k, MP chooses an atom ϕλk
that solves the easy optimization problem

λk
def
= arg max

ω
|〈rk−1,ϕω〉| . (2.5)

Then, the procedure calculates a new approximation and a new residual:

ak
def
= ak−1 + 〈rk−1,ϕλk

〉 ϕλk
, and

rk
def
= rk−1 − 〈rk−1,ϕλk

〉 ϕλk
.

(2.6)

The residual can also be expressed as rk = x− ak. If the dictionary is an orthonormal basis, the
approximant am is always an optimal m-term representation of the signal. For general dictionaries,
Jones has shown that the norm of the residual converges to zero [Jon87]. In fact, this convergence
is exponential [DMA97].

Greedy techniques for sparse approximation were developed in the statistics community under
the name Projection Pursuit Regression [FS81]. In the approximation communitity, MP is known
as the Pure Greedy Algorithm [Tem02]. Qian and Chen [QC94] suggested the same algorithm
for time-frequency analysis independently of Mallat and Zhang. For more history, theory and an
comprehensive list of references, see Temlyakov’s monograph [Tem02].
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2.3.2. Orthogonal Matching Pursuit. Orthogonal Matching Pursuit (OMP) adds a least-squares
minimization at each step to obtain the best approximation of the signal over the atoms which
have already been chosen. This revision significantly improves the rate of convergence.

At each step of OMP, an atom is selected according to the same rule as MP, via (2.5). But the

approximations are calculated differently. Let Λk
def
= {λ1, . . . , λk} list the atoms which have been

selected at step k. Then the k-th approximant is

ak
def
= arg min

a
‖x− a‖2 , a ∈ span {ϕλ : λ ∈ Λk}. (2.7)

This minimization can be performed incrementally with standard least-squares techniques. As

before, the residual is calculated as rk
def
= x−ak. It is not difficult to check that the residual equals

zero after d steps.
Orthogonal Matching Pursuit was developed independently by many researchers. The earliest

reference appears to be a 1989 paper of Chen, Billings and Luo [CBL89]. The first signal processing
papers on OMP arrived around 1993 [PRK93, DMZ94].

2.3.3. OMP and the Sparse Problem. Gilbert, Muthukrishnan and Strauss have shown that Or-
thogonal Matching Pursuit is an approximation algorithm for (D ,m)-Sparse when the dictionary
is suitably incoherent [GMS03]. One version of their result is

Theorem 2.6 (Gilbert-Muthukrishnan-Strauss [GMS03]). Let D have coherence µ, and assume

that m < 1
8
√

2
µ−1−1. For an arbitrary signal x, Orthogonal Matching Pursuit generates an m-term

approximant am which satisfies

‖x− am‖2 ≤ 8
√

m ‖x− aopt‖2 ,

where aopt is an optimal m-term approximation of x.

This theorem is a progenitor of the results in the current paper, although the techniques differ
significantly.

2.3.4. Weak Greedy Algorithms. Orthogonal Matching Pursuit has a cousin called Weak Orthogonal
Matching Pursuit (WOMP) that makes a cameo appearance in this article. Instead of selecting the
optimal atom at each step, WOMP settles for one which is nearly-optimal. Specifically, it finds an
index λk so that

|〈rk−1,ϕλk
〉| ≥ α max

ω
|〈rk−1,ϕω〉| , (2.8)

where α ∈ (0, 1] is a fixed weakness parameter. Once the new atom is chosen, the approximation
is calculated as before, via (2.7). WOMP(α) has essentially the same convergence properties as
OMP [Tem02].

2.4. Other Related Work. This section contains a brief survey of other major results on sparse
approximation, without making any claims to be comprehensive. I am particularly interested in
theory about whether or not each algorithm is provably correct.

2.4.1. Structured Dictionaries. Early computational techniques for sparse approximation concen-
trated on specific dictionaries. For example, Coifman and Wickerhauser designed the Best Or-
thogonal Basis (BOB) algorithm to calculate sparse approximations over wavelet packet and cosine
packet dictionaries, which have a natural tree structure. BOB minimizes a certain objective func-
tion over a subclass of the orthogonal bases contained in the dictionary. Then it performs the
best m-term approximation with respect to the selected basis [CW92]. Although BOB frequently
produces good results, it does not offer any guarantees on the quality of approximation. Later,
Villemoes developed an algorithm for the Haar wavelet packet dictionary, that produces provably
good approximations with a low time cost [Vil97]. Villemoes’ result is a serious coup, even though
Haar wavelets have limited applicability.
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2.4.2. Basis Pursuit. The other major approach to sparse approximation is the Basis Pursuit (BP)
paradigm, developed by Chen, Donoho and Saunders. Strictly speaking, BP is not an algorithm
but a principle. The key idea is to replace the original primal problem,

min
b

‖x− Φ b‖2 subject to ‖b‖0 = m,

by a variant of the dual problem,

min
b

‖b‖1 subject to Φ b = x,

and hope that the solutions coincide [CDS99].
At least two algorithms have been proposed for solving the Basis Pursuit problem. The original

paper advocates interior-point methods of linear programming [CDS99]. More recently, Sardy,
Bruce and Tseng have suggested another procedure called Block Coordinate Relaxation [SBT00].
Both techniques are computationally intensive.

At present, the Basis Pursuit paradigm offers no approximation guarantees for the general sparse
approximation problem. There is, however, a sequence of intriguing results for (D ,m)-Exact-
Sparse. In their seminal paper [DH01], Donoho and Huo established a connection between uncer-
tainty principles and sparse approximation. In particular, they proved

Theorem 2.7 (Donoho-Huo [DH01]). Let D be a union of two orthonormal bases with coherence

µ. If m < 1
2(µ−1 + 1), then Basis Pursuit can recover any superposition of m atoms from the

dictionary.

In [EB02], Elad and Bruckstein made some improvements to the bound on m, which turn out
to be optimal [FN]. More recently, the theorem of Donoho and Huo has been extended to multi-
ONBs and arbitrary incoherent dictionaries [DE02, GN02]. Donoho and Elad have also developed
a generalized notion of incoherence that is equivalent to the Babel function defined in this article.
I discuss these results elsewhere in the text.

3. Recovering Sparse Signals

In this section, I consider the restricted problem (D ,m)-Exact-Sparse. The major result is a
single sufficient condition under which both Orthogonal Matching Pursuit and Basis Pursuit recover
a given linear combination of m atoms from the dictionary. Then, I show how to check when this
condition is in force for an arbitrary m-term superposition. Together, these results prove that OMP
and BP are both correct algorithms for Exact-Sparse over quasi-incoherent dictionaries.

3.1. The Exact Recovery Condition. Imagine that a given signal x has a representation over
m atoms, say

x =
∑

Λopt

bλϕλ,

where Λopt ⊂ Ω is an index set of size m. Without loss of generality, assume that the atoms in
Λopt are linearly independent and that the coefficients bλ are nonzero. Otherwise, the signal has
an exact representation using fewer than m atoms.

From the dictionary synthesis matrix, extract the d × m matrix Φopt whose columns are the
atoms listed in Λopt:

Φopt
def
=
[
ϕλ1

ϕλ2
. . . ϕλm

]
,

where λk ranges over Λopt. Then, the signal can also be expressed as

x = Φoptbopt

for a vector of m complex coefficients, bopt. Since the optimal atoms are linearly independent, Φopt

has full column-rank. Define a second matrix Ψopt whose columns are the (N −m) atoms indexed
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by Ω \Λopt. Then Ψopt contains the atoms which do not participate in the optimal representation.
Using this notation, I state

Theorem 3.1 (Exact Recovery for OMP). A sufficient condition for Orthogonal Matching Pursuit

to resolve x completely in m steps is that

max
ψ

∥∥Φ+
optψ

∥∥
1

< 1, (3.1)

where ψ ranges over the columns of Ψopt.

A fortiori, Orthogonal Matching Pursuit is a correct algorithm for (D ,m)-Exact-Sparse when-

ever the condition (3.1) holds for every superposition of m atoms from D .

I call (3.1) the Exact Recovery Condition. It guarantees that no spurious atom can masquerade
as part of the signal well enough to fool Orthogonal Matching Pursuit. Theorem 3.10 of the sequel
shows that (3.1) is essentially the best possible for OMP. Incredibly, (3.1) also provides a natural
sufficient condition for Basis Pursuit to recover a sparse signal, which I prove in Section 3.2.

Proof. After the first k steps, suppose that Orthogonal Matching Pursuit has recovered an approx-
imant ak which is a linear combination of k atoms listed in Λopt. We would like to develop a
condition which can guarantee that the next atom is also optimal.

Observe that the vector Φ∗
optrk lists the inner products between rk and the optimal atoms.

So the number
∥∥Φ∗

optrk
∥∥
∞ equals the largest of these inner products in magnitude. Similarly,∥∥Ψ∗

optrk
∥∥
∞ expresses the largest inner product between the residual and any non-optimal atom. In

consequence, to see whether the largest inner product occurs at an optimal atom, we just need to
examine the quotient

ρ(rk)
def
=

∥∥Ψ∗
optrk

∥∥
∞∥∥Φ∗

optrk
∥∥
∞

. (3.2)

On account of the selection criterion (2.5), we see that a greedy choice3 will recover another one of
the optimal atoms if and only if ρ(rk) < 1.

Notice that the ratio (3.2) bears a suspicious resemblance to an induced matrix norm. Before we
can apply the usual norm bound, the term Φ∗

optrk must appear in the numerator. By assumption,

rk = x − ak lies in the column span of Φopt, and the matrix (Φ+
opt)

∗Φ∗
opt is a projection onto the

column span of Φopt. Therefore,

ρ(rk) =

∥∥Ψ∗
optrk

∥∥
∞∥∥Φ∗

optrk
∥∥
∞

=

∥∥Ψ∗
opt(Φ

+
opt)

∗Φ∗
optrk

∥∥
∞∥∥Φ∗

optrk
∥∥
∞

≤
∥∥Ψ∗

opt(Φ
+
opt)

∗∥∥
∞,∞ .

3In the case that ρ(rk) = 1, an optimal atom and a non-optimal atom both attain the maximal inner product.
The algorithm has no provision for determining which one to select. In the sequel, I make the pessimistic assumption
that a greedy procedure never chooses an optimal atom when a non-optimal atom also satisfies the selection criterion.
This convention forces greedy techniques to fail for borderline cases, which is appropriate for analyzing algorithmic
correctness.
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I use ‖·‖p,p to denote the norm for linear operators mapping (Cd, ‖·‖p) onto itself. Since ‖·‖∞,∞
equals the maximum absolute row sum of its argument and ‖·‖1,1 equals the maximum absolute
column sum of its argument, we can take a conjugate transpose and switch norms.

ρ(rk) ≤
∥∥Ψ∗

opt(Φ
+
opt)

∗∥∥
∞,∞

=
∥∥Φ+

optΨopt

∥∥
1,1

= max
ψ

∥∥Φ+
optψ

∥∥
1
,

where the maximimation occurs over the columns of Ψopt.
Assuming that rk lies in the column span of Φopt, the relation ρ(rk) < 1 will obtain whenever

max
ψ

∥∥Φ+
optψ

∥∥
1

< 1. (3.3)

Suppose that (3.3) holds. Since the initial residual r0 lies in the column span of Φopt, a greedy
selection recovers an optimal atom at each step. Each residual is orthogonal to the atoms which
have already been selected, so OMP will never choose the same atom twice. It follows that m steps
of OMP will retrieve all m atoms which comprise x. Therefore, am = x. �

An immediate consequence of the proof technique is a result for Weak Orthogonal Matching
Pursuit.

Corollary 3.2. A sufficient condition for WOMP (α) to resolve x completely in m steps is that

max
ψ

∥∥Φ+
optψ

∥∥
1

< α, (3.4)

where ψ ranges over the columns of Ψopt.

3.2. Recovery via Basis Pursuit. It is even easier to prove that the Exact Recovery Condition
is sufficient for Basis Pursuit to recover a sparse signal. This theorem will allow me to unify all the
recent results about BP.

Theorem 3.3 (Exact Recovery for BP). A sufficient condition for Basis Pursuit to recover the

optimal representation of a sparse signal x = Φoptbopt is that

max
ψ

∥∥Φ+
optψ

∥∥
1

< 1, (3.5)

where ψ ranges over the atoms which do not participate in Φopt.

A fortiori, Basis Pursuit is a correct algorithm for (D ,m)-Exact-Sparse whenever the condition

(3.5) holds for every superposition of m atoms from D .

The proof requires a simple lemma about `1 norms.

Lemma 3.4. Suppose that v is a vector with nonzero components and that A is a matrix whose

columns {Ak} do not have identical `1 norms. Then ‖Av‖1 < ‖A‖1,1 ‖v‖1.

Proof. Calculate that

‖Av‖1 ≤
∑

j,k

|Ajk| |vk| =
∑

k

‖Ak‖1 |vk|

< max
k

‖Ak‖1

∑

k

|vk| = ‖A‖1,1 ‖v‖1 .

�
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Proof of Theorem 3.3. Suppose that the optimal representation of a signal is x = Φoptbopt, and
assume that the Exact Recovery Condition (3.5) holds for this signal x.

Now, let x = Φaltbalt be a different representation of the signal with nonzero coefficients. It
follows that Φalt contains at least one atom ψ0 which does not appear in Φopt. According to (3.5),∥∥Φ+

optψ0

∥∥
1

< 1. Meanwhile,
∥∥Φ+

optϕ
∥∥

1
≤ 1 for every other atom ϕ, optimal or non-optimal.

First, assume that the columns of Φ
+
optΦalt do not have identical `1 norms. We may use the

lemma to calculate that

‖bopt‖1 =
∥∥Φ+

optΦoptbopt

∥∥
1

=
∥∥Φ+

optx
∥∥

1
=
∥∥Φ+

optΦaltbalt

∥∥
1

<
∥∥Φ+

optΦalt

∥∥
1,1

‖balt‖1

≤ ‖balt‖1 .

If perchance the columns of Φ
+
optΦalt all have the same `1 norm, that norm must equal

∥∥Φ+
optψ0

∥∥
1

<
1. Repeat the calculation. Although the first inequality is no longer strict, the second inequality
becomes strict in compensation. We reach the same conclusion.

In words, any set of non-optimal coefficients for representing the signal has strictly larger `1 norm
than the optimal coefficients. Therefore, Basis Pursuit will recover the optimal representation. �

3.3. Babel Function Estimates. Since we are unlikely to know the optimal atoms a priori,
Theorems 3.1 and 3.3 may initially seem useless. But for many dictionaries, the Exact Recovery
Condition holds for every m-term superposition, so long as m is not too large.

Theorem 3.5. Suppose that µ1 is the Babel function of D . The Exact Recovery Condition holds

whenever

µ1(m − 1) + µ1(m) < 1. (3.6)

Thus, Orthogonal Matching Pursuit and Basis Pursuit are correct algorithms for (D ,m)-Sparse
whenever (3.6) is in force. In other words, this condition guarantees that either procedure will

recover an arbitrary superposition of m atoms from D .

One interpretation of this theorem is that the Exact Recovery Condition holds for quasi-incoherent
dictionaries. The result for Basis Pursuit is slightly stronger than the most general theorem in
[DE02], which is equivalent to Corollary 3.6 of the sequel.

Proof. Begin the calculation by expanding the pseudo-inverse and applying a norm bound.

max
ψ

∥∥Φ+
optψ

∥∥
1

= max
ψ

∥∥(Φ∗
opt Φopt)

−1
Φ

∗
optψ

∥∥
1

≤
∥∥(Φ∗

opt Φopt)
−1
∥∥

1,1
max
ψ

∥∥Φ∗
optψ

∥∥
1
.

(3.7)

The Babel function offers a tailor-made estimate of the second term of (3.7);

max
ψ

∥∥Φ∗
optψ

∥∥
1

= max
ψ

∑

Λopt

|〈ψ,ϕλ〉| ≤ µ1(m). (3.8)

Bounding the first term of (3.7) requires more sophistication. We develop the inverse as a von
Neumann series and use Banach algebra methods to estimate its norm. First, notice that (Φ ∗

opt Φopt)
has a unit diagonal because all atoms are normalized. So the off-diagonal part A satisfies

Φ
∗
opt Φopt = Im + A.

Each column of A lists the inner products between one atom of Φopt and the remaining (m − 1)
atoms. By definition of the Babel function,

‖A‖1,1 = max
k

∑

j 6=k

∣∣〈ϕλk
,ϕλj

〉∣∣ ≤ µ1(m − 1).
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Whenever ‖A‖1,1 < 1, the von Neumann series
∑

(−A)k converges to the inverse (Im+A)−1 [Kre89].
In this case, we may compute

∥∥(Φ∗
opt Φopt)

−1
∥∥

1,1
=
∥∥(Im + A)−1

∥∥
1,1

=

∥∥∥∥∥

∞∑

k=0

(−A)k

∥∥∥∥∥
1,1

≤
∞∑

k=0

‖A‖k1,1 =
1

1 − ‖A‖1,1

≤ 1

1 − µ1(m − 1)
.

(3.9)

Introduce the estimates (3.8) and (3.9) into inequality (3.7) to obtain

max
ψ

∥∥Φ+
optψ

∥∥
1
≤ µ1(m)

1 − µ1(m − 1)
.

We reach the result by applying Theorems 3.1 and 3.3. �

A corollary follows directly from basic facts about the Babel function.

Corollary 3.6. Orthogonal Matching Pursuit and Basis Pursuit both recover every superposition

of m atoms from D whenever one of the following conditions is satisfied:

m < 1
2(µ−1 + 1), or, more generally, (3.10)

µ1(m) < 1
2 . (3.11)

The incoherence condition is the best possible. It would fail for any d 1
2(µ−1 + 1)e atoms chosen

from an optimal Grassmannian frame with N = d + 1 vectors. The bound (3.10) appears in
both [DE02, GN02] with reference to Basis Pursuit. The second bound also appears in [DE02].

To see the difference between the two conditions in Corollary 3.6, let us return to the dictionary
of decaying pulses from Section 2.2.3. Recall that

µ = β and µ1(m) <
2β

1 − β
.

Set β = 1
5 . Then the incoherence condition (3.10) requires that m < 3. On the other hand,

µ1(m) < 1
2 for every m. Therefore, (3.11) shows that OMP or BP can recover any (finite) linear

combination of pulses!

3.4. Structured Dictionaries. If the dictionary has special form, better estimates are possible.

Theorem 3.7. Suppose that D consists of J concatenated orthonormal bases with overall coherence

µ. Let x be a superposition of pj atoms from the j-th basis, j = 1, . . . , J . Without loss of generality,

assume that 0 < p1 ≤ p2 ≤ · · · ≤ pJ . The Exact Recovery Condition holds whenever

J∑

j=2

µpj
1 + µpj

<
1

2 (1 + µp1)
. (3.12)

In which case both Orthogonal Matching Pursuit and Basis Pursuit recover the sparse representa-

tion.

The major theorem of Gribonval and Nielsen’s paper [GN02] is that (3.12) is a sufficient condition
for Basis Pursuit to succeed in this setting. When J = 2, we retrieve the major theorem of Elad
and Bruckstein’s paper [EB02]:
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Corollary 3.8. Suppose that D consist of two orthonormal bases with coherence µ, and let x be a

signal consisting of p atoms from the first basis and q atoms from the second basis, where p ≤ q.
The Exact Recovery Condition holds whenever

2µ2 pq + µq < 1. (3.13)

Feuer and Nemirovsky have shown that the bound (3.13) is the best possible for BP [FN]. It
follows by contraposition that the present result on the Exact Recovery Condition is the best
possible for a two-ONB. For an arbitrary m-term superposition from a multi-ONB, revisit the
calculations of Gribonval and Nielsen [GN02] to discover

Corollary 3.9. If D is a µ-coherent dictionary comprised of J orthonormal bases, the condition

m <

[√
2 − 1 +

1

2 (J − 1)

]
µ−1

is sufficient to ensure that the Exact Recovery Condition holds for all m-term superpositions.

The proof of Theorem 3.7 could be used to torture prisoners, so it is cordoned off in Appendix A
where it won’t hurt anyone.

3.5. Uniqueness and Recovery. Theorem 3.1 has another important consequence. If the Exact
Recovery Condition holds for every linear combination of m atoms, then all m-term superpositions
are unique. Otherwise, the Exact Recovery Theorem states that OMP would simultaneously recover
two distinct m-term representations of the same signal, a reductio ad absurdem. Therefore, the
conditions of Theorem 3.5, Corollary 3.6 and Corollary 3.9 guarantee that m-term representations
are unique. On the other hand, Theorem 2.2 shows that the Exact Recovery Condition must fail
for some linear combination of m atoms whenever m ≥ 1

2 sparkΦ.
Uniqueness does not prove that the Exact Recovery Condition holds. For a union of two orthonor-

mal bases, Theorem 2.5 implies that all m-term representations are unique whenever m < µ−1.
But the discussion in the last section demonstrates that the Exact Recovery Condition may fail for
m ≥ (

√
2 − 1

2 )µ−1. Within this pocket4 lie uniquely determined signals which cannot be recovered
by Orthogonal Matching Pursuit, as this partial converse of Theorem 3.1 shows.

Theorem 3.10 (Exact Recovery Converse for OMP). Assume that m-term superpositions are

unique but that the Exact Recovery Condition (3.1) fails for a given signal x with optimal synthesis

matrix Φopt. Then there are signals in the column span of Φopt which Orthogonal Matching Pursuit

cannot recover.

Proof. If the Exact Recovery Condition fails, then

max
ψ

∥∥Φ+
optψ

∥∥
1
≥ 1. (3.14)

Now, notice that every signal x which has a representation over the atoms in Φopt yields the same
two matrices Φopt and Ψopt by the uniqueness of m-term representations. Next, choose ybad ∈ C

m

to be a vector for which equality holds in the estimate
∥∥Ψ∗

opt(Φ
+
opt)

∗y
∥∥
∞

‖y‖∞
≤
∥∥Ψ∗

opt(Φ
+
opt)

∗∥∥
∞,∞ .

Optimal synthesis matrices have full column rank, so Φ∗
opt maps the column span of Φopt onto

C
m. Therefore, we can find a signal xbad in the column span of Φopt for which Φ∗

optxbad = ybad.
Working backward from (3.14) through the proof of the Exact Recovery Theorem, we discover that
ρ(xbad) ≥ 1. In conclusion, if we run Orthogonal Matching Pursuit with xbad as input, it chooses a

4See the article of Elad and Bruckstein [EB02] for a very enlightening graph that delineates the regions of unique-
ness and recovery for two-ONB dictionaries.
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non-optimal atom in the first step. Since Φopt provides the unique m-term representation of xbad,
the initial incorrect selection damns OMP from obtaining the m-term representation of xbad. �

4. Recovering General Signals

The usual goal of sparse approximation is the analysis or compression of natural signals. But the
assumption that a signal has an exact, sparse representation must be regarded as Platonic because
these signals do not exist in the wild.

Proposition 4.1. If m < d, the collection of signals which have an exact representation using m
atoms forms a set of measure zero in C

d.

Proof. The signals which lie in the span of m distinct atoms form an m-dimensional hyperplane,
which has measure zero. There are

(N
m

)
ways to choose m atoms, so the collection of signals that

have a representation over m atoms is a finite union of m-dimensional hyperplanes. This union has
measure zero in C

d. �

It follows that a generic signal does not have an exact, sparse representation. Even worse,
the optimal m-term approximant is a discontinuous, multivalent function of the input signal. In
consequence, proving that an algorithm succeeds for (D ,m)-Exact-Sparse is very different from
proving that it succeeds for (D ,m)-Sparse. Nevertheless, the analysis in Section 3.1 suggests that
Orthogonal Matching Pursuit may be able to recover vectors from the optimal representation even
when the signal is not perfectly sparse.

4.1. OMP as an Approximation Algorithm. Let x be an arbitrary signal, and suppose that
aopt is an optimal m-term approximation to x. That is, aopt is a solution to the minimization
(2.1). Note that aopt may not be unique. We write

aopt =
∑

Λopt

bλϕλ

for an index set Λopt of size m. Once again, denote by Φopt the d × m matrix whose columns
are the atoms listed in Λopt. We may assume that the atoms in Λopt form a linearly independent
set because any atom which is linearly dependent on the others could be replaced by a linearly
independent atom to improve the quality of the approximation. Let Ψopt be the matrix whose
columns are the (N − m) remaining atoms.

Now I formulate a condition under which Orthogonal Matching Pursuit recovers optimal atoms.

Theorem 4.2 (General Recovery). Assume that µ1(m) < 1
2 , and suppose that ak consists only of

atoms from an optimal representation aopt of the signal x. At step (k + 1), Orthogonal Matching

Pursuit will recover another atom from aopt whenever

‖x− ak‖2 >

√
1 +

m (1 − µ1(m))

(1 − 2µ1(m))2
‖x− aopt‖2 . (4.1)

I call (4.1) the General Recovery Condition. It says that a greedy algorithm makes absolute
progress whenever the current k-term approximant compares unfavorably with an optimal m-term
approximant. Theorem 4.2 has an important structural implication: every optimal representation
of a signal contains the same kernel of atoms. This fact follows from the observation that OMP
selects the same atoms irrespective of which optimal approximation appears in the calculation.
But the principal corollary of Theorem 4.2 is that OMP is an approximation algorithm for (D ,m)-
Sparse.
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Corollary 4.3. Assume that µ1(m) < 1
2 , and let x be a completely arbitrary signal. Orthogonal

Matching Pursuit produces an m-term approximant am which satisfies

‖x− am‖2 ≤
√

1 + C(D ,m) ‖x− aopt‖2 , (4.2)

where aopt is the optimal m-term approximant. We may estimate the constant as

C(D ,m) ≤ m (1 − µ1(m))

(1 − 2µ1(m))2
.

Proof. At step (K + 1), imagine that (4.1) fails. Then, we have an upper bound on the K-term
approximation error as a function of the optimal m-term approximation error. If we continue to
apply OMP even after k exceeds K, the approximation error will only continue to decrease. �

Although OMP may not recover an optimal approximant aopt, it always constructs an approxi-
mant whose error lies within a constant factor of optimal. One might argue that an approximation
algorithm has the potential to inflate a moderate error into a large error. But a moderate error
indicates that the signal does not have a good sparse representation over the dictionary, and so
sparse approximation may not be an appropriate tool. In practice, if it is easy to find a nearly
optimal solution, there is no reason to waste a lot of time and resources to reach the ne plus ultra.
As Voltaire said, “The best is the enemy of the good.”

Placing a restriction on the Babel function leads to a simpler statement of the result, which
generalizes and improves the work in [GMS03].

Corollary 4.4. Assume that m ≤ 1
3µ−1 or, more generally, that µ1(m) ≤ 1

3 . Then OMP generates

m-term approximants which satisfy

‖x− ak‖2 ≤
√

1 + 6m ‖x− aopt‖2 . (4.3)

The constant here is not small, so it is better to regard this as a qualitative theorem on the
performance of OMP. See [GMST03] for another greedy algorithm with a much better constant of
approximation. At present, Basis Pursuit offers no approximation guarantees.

Let us return again to the example of Section 2.2.3. This time, set β = 1
7 . The coherence

condition of Corollary 4.4 suggests that we can achieve the approximation constant
√

1 + 6m only
if m = 1, 2. But the Babel function condition demonstrates that the approximation constant is
never more than

√
1 + 6m.

Another consequence of the analysis is a corollary for Weak Orthogonal Matching Pursuit.

Corollary 4.5. Weak Orthogonal Matching Pursuit with parameter α can calculate m-term ap-

proximants which satisfy

‖x− am‖2 ≤
√

1 +
m (1 − µ1(m))

(α − (1 + α)µ1(m))2
‖x− aopt‖2 .

If, for example, µ1(m) ≤ 1
3 , then WOMP( 3

4 ) has an approximation constant no worse than√
1 + 24m.

4.2. Proof of the General Recovery Theorem.

Proof. After k steps, suppose that Orthogonal Matching Pursuit has recovered an approximant ak
which is a linear combination of k atoms listed in Λopt. The residual is rk = x − ak, and the
condition for recovering another optimal atom is

ρ(rk)
def
=

∥∥Ψ∗
optrk

∥∥
∞∥∥Φ∗

optrk
∥∥
∞

< 1.
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We may divide the ratio into two pieces, which we bound separately.

ρ(rk) =

∥∥Ψ∗
optrk

∥∥
∞∥∥Φ∗

optrk
∥∥
∞

=

∥∥Ψ∗
opt(x− ak)

∥∥
∞∥∥Φ∗

opt(x− ak)
∥∥
∞

=

∥∥Ψ∗
opt(x− aopt) + Ψ∗

opt(aopt − ak)
∥∥
∞∥∥Φ∗

opt(x− aopt) + Φ∗
opt(aopt − ak)

∥∥
∞

≤
∥∥Ψ∗

opt(x− aopt)
∥∥
∞∥∥Φ∗

opt(aopt − ak)
∥∥
∞

+

∥∥Ψ∗
opt(aopt − ak)

∥∥
∞∥∥Φ∗

opt(aopt − ak)
∥∥
∞

def
= ρerr(rk) + ρopt(rk).

(4.4)

The term Φ∗
opt(x− aopt) has vanished from the denominator since (x− aopt) is orthogonal to the

column span of Φopt.
To bound ρopt(rk), repeat the arguments of Section 3.3, mutatis mutandis. This yields

ρopt(rk) ≤
µ1(m)

1 − µ1(m − 1)
≤ µ1(m)

1 − µ1(m)
. (4.5)

Meanwhile, ρerr(rk) has the following simple estimate:

ρerr(rk) =

∥∥Ψ∗
opt(x− aopt)

∥∥
∞∥∥Φ∗

opt(aopt − ak)
∥∥
∞

=
maxψ |ψ∗(x− aopt)|∥∥Φ∗

opt(aopt − ak)
∥∥
∞

≤ maxψ ‖ψ‖2 ‖x− aopt‖2

m−1/2
∥∥Φ∗

opt(aopt − ak)
∥∥

2

≤
√

m ‖x− aopt‖2

σmin(Φopt) ‖aopt − ak‖2

.

(4.6)

Since Φopt has full column rank, σmin(Φopt) is nonzero.
Now, we can develop a concrete condition under which OMP retrieves optimal atoms. In the

following calculation, assume that µ1(m) < 1
2 . Then combine inequalities (4.4), (4.5) and (4.6),

and estimate the singular value with Lemma 2.3. We discover that ρ(rk) < 1 whenever
√

m ‖x− aopt‖2√
1 − µ1(m) ‖aopt − ak‖2

+
µ1(m)

1 − µ1(m)
< 1.

Some algebraic manipulations yield the inequality

‖aopt − ak‖2 >

√
m (1 − µ1(m))

1 − 2µ1(m)
‖x− aopt‖2 .

Since the vectors (x−aopt) and (aopt−ak) are orthogonal, we may apply the Pythagorean Theorem
to reach

‖x− ak‖2 >

√
1 +

m (1 − µ1(m))

(1 − 2µ1(m))2
‖x− aopt‖2 .

If this relation is in force, then a step of OMP will retrieve another optimal atom. �
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Remark 4.6. The term
√

m is an unpleasant aspect of (4.6), but it cannot be avoided. When the
atoms in our optimal representation have approximately equal correlations with the signal, the
estimate of the infinity norm is reasonably accurate. An assumption on the relative size of the
coefficients in bopt might improve the estimate, but this is a severe restriction. An astute reader

will notice that I could whittle the factor down to
√

m − k, but the subsequent analysis would not
realize any benefit. It is also possible to strengthen the bound if one postulates a model for the
deficit (x − aopt). If, for example, the nonsparse part of the signal were distributed “uniformly”
across the dictionary vectors, a single atom would be unlikely to carry the entire error. But we
shall retreat from this battle, which should be fought on behalf of a particular application.

5. OMP with Approximate Nearest Neighbors

Gilbert, Muthukrishnan and Strauss have discussed how to use an approximate nearest neighbor
(ANN) data structure to develop a fast implementation of Orthogonal Matching Pursuit (AN-
NOMP) for unstructured dictionaries. Indyk has also suggested this application for ANN data
structures. Since the paper [GMS03] already describes the essential details of the technique, I will
just say a few words on atom selection and conclude with a new theorem on using ANNOMP with
quasi-incoherent dictionaries.

5.1. Atom Selection. Let r̃k denote the normalized residual. With an approximate nearest neigh-
bor data structure, we can find an atom ϕλk

which satisfies

‖r̃k−1 ±ϕλk
‖2
2 ≤ (1 + η) min

ω
‖r̃k−1 ±ϕω‖2

2 (5.1)

for a fixed number η > 0. Each sign is taken to minimize the respective norm. Rearranging (5.1)
yields a guarantee on the inner products.

|〈rk−1,ϕλk
〉| ≤ (1 + η) max

ω
|〈rk−1,ϕω〉| − η ‖rk−1‖2 . (5.2)

Due to the absolute loss in the last term, this condition does not quite yield a weak greedy algo-
rithm. Unfortunately, a greedy algorithm which uses the selection procedure (5.2) will not generally
converge to the signal. It can be shown, however, that the algorithm makes progress until

max
ω

|〈r̃K ,ϕω〉| ≤ η.

In other words, it yields a residual rK which is essentially orthogonal to every atom in the dictionary.
Which means that no single atom can represent a significant part of the signal.

5.2. Quasi-Incoherent Dictionaries. For a quasi-incoherent dictionary, we can develop approx-
imation guarantees for ANNOMP which parallel Corollary 4.4, so long as the parameter η is
sufficiently small.

Theorem 5.1 (ANNOMP). Suppose that µ1(m) ≤ 1
3 , and set η = 1

5
√
m

. Then Orthogonal Match-

ing Pursuit implemented with an approximate nearest neighbor data structure calculates m-term

approximants that satisfy

‖x− am‖2 ≤
√

1 + 24m ‖x− aopt‖2 .

Implementing ANNOMP with Indyk’s nearest neighbor data structure [Ind00] requires prepro-

cessing time and space O(N (1/η)O(d) polylog (dN)). Subsequently, each m-term representation can
be calculated in O(m2d + md polylog (dN)) time and O(md) additional space, which is quite good
considering that we have placed no restrictions on the dictionary beyond quasi-incoherence. A more
sophisticated greedy algorithm based on approximate nearest neighbors appears in [GMST03], but
no additional approximation guarantees are presently available.
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Appendix A. Proof of Theorem 3.7

Theorem 3.7. Suppose that D consists of J concatenated orthonormal bases with overall coherence

µ. Let x be a superposition of pj atoms from the j-th basis, j = 1, . . . , J . Without loss of generality,

assume that 0 < p1 ≤ p2 ≤ · · · ≤ pJ . Then the Exact Recovery Condition holds whenever

J∑

j=2

µpj
1 + µpj

<
1

2 (1 + µp1)
.

In which case both Orthogonal Matching Pursuit and Basis Pursuit recover the sparse representa-

tion.

Proof. Permute the columns of the optimal synthesis matrix so that Φopt =
[
Φ1 Φ2 . . . ΦJ

]
,

where the pj columns of submatrix Φj are the atoms from the j-th basis. Suppose that there are a to-

tal of m atoms. The goal is to provide a good upper bound for
∥∥Φ+

optψ
∥∥

1
=
∥∥(Φ∗

optΦopt)
−1 Φ∗

optψ
∥∥

1
,

where ψ is a non-optimal vector. We shall develop this matrix-vector product explicitly under a
worst-case assumption on the size of the matrix and vector entries.

The Gram matrix has the block form

G
def
= Φ

∗
optΦopt =




Ip1 −A12 . . . −A1J

−A21 Ip2 . . . −A2J

...
...

. . .
...

−AJ1 −AJ2 . . . IpJ




def
= Im − A,

where the entries of A are bounded in magnitude by µ. Then we have the entrywise inequality

∣∣G−1
∣∣ =

∣∣∣∣∣Im +

∞∑

k=1

A
k

∣∣∣∣∣ ≤ Im +

∞∑

k=1

|A|k ,

where |A| is the entrywise absolute value of the matrix. Therefore, we are at liberty in our estimates
to assume that every off-diagonal-block entry of A equals µ. To proceed, creatively rewrite the Gram
matrix as G = (Im + µB) − (A + µB), where B is the block matrix

B =




1p1 0 . . . 0

0 1p2 . . . 0

...
...

. . .
...

0 0 . . . 1pJ




.

We have used 1 to denote the matrix with unit entries. By the foregoing, we have the entrywise
bound ∣∣G−1

∣∣ ≤ ((Im + µB) − µ1m)−1 ,

which yields ∣∣G−1
∣∣ ≤

(
Im − µ (Im + µB)−1

1m

)−1
(Im + µB)−1. (A.1)

Now, we shall work out the inverses from the right-hand side of (A.1). Using von Neumann
series, compute that

(Im + µB)−1 =




Ip1 − µ
1+µp1

1p1 0 . . . 0

0 Ip2 − µ
1+µp2

1p2 . . . 0

...
...

. . .
...

0 0 . . . IpJ
− µ

1+µpJ
1pJ




. (A.2)
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Meanwhile, the series development of the other inverse is

(
Im − µ (Im + µB)−1

1m

)−1
= Im +

∞∑

k=1

(
µ (Im + µB)−1

1m

)k
. (A.3)

Next, use (A.2) to calculate the product

µ (Im + µB)−1
1m =




µ
1+µp1

1p1
µ

1+µp2
1p2

...
µ

1+µpJ
1pJ




[
1t

p1 1t

p2 . . . 1t

pJ

]
def
= v 1t

m.

Nota bene that 1 indicates the column vector with unit entries. On the other hand, we have the
inner product

1t

m v =
J∑

j=1

µpj
1 + µpj

.

Therefore, the series in (A.3) collapses to
∞∑

k=1

(
v 1t

m

)k
=
(
v 1t

m

) ∞∑

k=1

(
1t

m v
)k−1

=
1

1 −∑J
j=1

µpj

1+µpj

v 1t

m. (A.4)

In consequence of (A.3) and (A.4), the inverse of the Gram matrix satisfies

∣∣G−1
∣∣ ≤

(
Im +

1

1 −∑J
j=1

µpj

1+µpj

v 1t

m

)
(Im + µB)−1. (A.5)

Now, assume that the vector ψ is drawn from basis number Z. So
∣∣Φ∗

optψ
∣∣ ≤

[
µ1t

p1 . . . 0t

pZ
. . . µ1t

pJ

]
t

. (A.6)

At last, we are prepared to calculate the product we care about. First,
∣∣Φ+

optψ
∣∣ =

∣∣(Φ∗
optΦopt)

−1
Φ

∗
optψ

∣∣ ≤
∣∣G−1

∣∣ ∣∣Φ∗
optψ

∣∣ . (A.7)

We shall work from right to left. Equations (A.2) and (A.6) imply

(Im + µB)−1
∣∣Φ∗

optψ
∣∣ ≤

[
µ

1+µp1
1t

p1 . . . 0t

pZ
. . . µ

1+µpJ
1t

pJ

]
t

. (A.8)

Introducing (A.5) and (A.8) into (A.7) yields

∣∣Φ+
optψ

∣∣ ≤




µ
1+µp1

1p1

...

0pZ

...
µ

1+µpJ
1pJ




+

∑
j 6=Z

µpj

1+µpj

1 −∑J
j=1

µpj

1+µpj




µ
1+µp1

1p1

...
µ

1+µpZ
1pZ

...
µ

1+µpJ
1pJ




. (A.9)

Finally, apply the `1 norm to inequality (A.9) to reach

∥∥Φ+
optψ

∥∥
1
≤

∑
j 6=Z

µpj

1+µpj

1 −∑J
j=1

µpj

1+µpj

. (A.10)

The bound (A.10) is weakest when Z = 1. And the theorem follows. �
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