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Lattice points and circles

What is the area of a circle of radius r? You may have just thought without
hesitation “Why, the area of a circle of radius r is πr2.” And that’s true.
Humans have understood how to compute the area of a circle for a long time.
There is even an Egyptian papyrus (the Rhind papyrus) dating from about 1650
BCE that demonstrates an understanding of π and its fundamental connection
to circles. We all agree that the area A(r) of a circle of radius r satisfies the
equation

A(r) = πr2. (1)

Now suppose we draw a grid of squares in the plane with sides of length
1 (and pick one vertex of the grid and call it the origin (0, 0)). We’ll call the
vertices of the grid “integer lattice points” or just “lattice points,” since the
coordinates of the vertices are integers, i.e. belong to the set

{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

Next, suppose we draw a circle of radius r centered at the origin. How many
lattice points are enclosed in the circle? (We will also count points that lie
precisely on the circle itself.) For example, for a circle of radius 1, there are
5 lattice points inside the circle. For a circle of radius 3, there are 29 lattice
points inside the circle.
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Let’s denote by N(r) the number of lattice points in a circle of radius r
(including points on the circle itself). Is there a precise formula for N(r), like
equation (1) for A(r)? It turns out that this is a hard question to answer. The
mathematician Carl Friedrich Gauss proposed in 1801 that the number of lattice
points N(r) is almost the same as the area A(r) of the circle, but not quite.
Precisely, Gauss proved that

N(r) = πr2 ± E(r), (2)

where E(r) is an error term defined by

E(r) = |#{lattice points in circle} − area of circle |.

How big can the error term be? This is the really hard part of the question.
The size of the error term E(r) depends on the radius r of the circle in question,
and for some radii the error might be bigger than for others.1,2

The Gauss circle problem

The problem of determining the size of E(r) is called the Gauss circle problem
and it is a very old and difficult—and unsolved—problem. Gauss showed that
the biggest the error term could be is E(r) ≤ 2

√
2πr. More recently, in 1915,

two mathematicians named G. H. Hardy and E. Landau proved that E(r) can
sometimes be as big as r1/2+ε, where ε is an arbitrarily small positive real
number. So the difference between the number of lattice points inside the circle
and the area of the circle is somewhere between r1/2+ε and r. Mathematicians
think that the “correct” upper bound for E(r) is r1/2+ε, in the sense that the
error can be at least this big, but no bigger. We still don’t know what the true
size of the error term is, more than 200 years after Gauss’s work, and nearly
100 years after the work of Hardy and Landau!3

Why is the Gauss circle problem so difficult? Let’s put everything into
equations. The set of points (x, y) that lie on a circle S(r) of radius r (centered
at the origin) are those points that satisfy the equation

x2 + y2 = r2. (3)

1Is it possible to choose r such that E(r) = 0? Remember that N(r) simply counts points
and so must be a positive integer, while A(r) = (3.14159....) · r2 doesn’t look like an integer
unless you pick the radius r very carefully. So the first step would be to choose r such that
A(r) is an integer. In this instance, you’re allowed to choose r to be any real number you
like—it doesn’t have to be a positive integer.

2In equation (2) you see that sometimes the error term E(r) is subtracted and sometimes it
is added, i.e. sometimes there are fewer lattice points in the circle than the area and sometimes
there are more. Should we expect there to be a paucity of lattice points 50% of the time (i.e.
subtraction in (2)) and an excess of lattice points the other 50% of the time (i.e. addition in
(2))? Or should we expect that there is some kind of bias, so that there is usually a paucity,
or usually an excess? We’ll explore these questions in class.

3But mathematicians keep making progress. In 2003, Huxley showed that E(r) ≤ r0.6298....
It would be big news to push this all the way down to E(r) ≤ r1/2+ε.
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We’ll now define the (closed) disk D(r) of radius r to be the set of points lying
on or within this circle, so that D(r) is the set of points (x, y) satisfying

x2 + y2 ≤ r2. (4)

The area enclosed by the circle S(r) (equivalently the area of the disk D(r)) is
πr2, and in some sense this is the “number” of real solutions to the equation
(4).

Now let’s restrict our attention to integer lattice points. The integer lattice
points (x, y) that lie on the circle S(r) are solutions to the equation (3) such
that both x and y are integers.4 Similarly, the integer lattice points that lie
inside the disk D(r) are solutions to (4) with x, y integers, and so the quantity
N(r) we are interested in is the number of such solutions to (4).

Finding integer solutions is hard!

The reason the Gauss circle problem is so hard is, roughly speaking, this: It is
much harder to find integer solutions to equations than it is to find real number
solutions to equations. Moreover, it is much harder to find the precise number
of integer solutions that satisfy an equation like (3) than it is to find the number
of integer solutions that satisfy an inequality like (4). This interesting difficulty
will be a key focus of our course.

The difficulty of finding (and counting) integer solutions to equations might
seem counterintuitive at first. After all, isn’t it much easier to think about
whole numbers like 4, 18,−3, 21 instead of about real numbers like π,

√
2, 1

319?
The point is that it is much easier to solve an equation like (3) if we can take
x, y to be any real numbers we like, while it is very restrictive to insist that x, y
must be integers.

Equation (3) is an example of a Diophantine equation, namely an indeter-
minate polynomial equation with integer coefficients for which we desire integer
solutions. This type of equation is named after the Greek mathematician Dio-
phantus of Alexandria, who lived in the 3rd century CE. Finding integer solu-
tions to Diophantine equations is one of the major problems in number theory,
and despite being hundreds (even thousands) of years old, remains an area of
active research to this day. One of the great beauties of Diophantine problems
is that they are easy to state, but very tricky to solve!

More Diophantine problems

The theme of this course will be exploring Diophantine equations and under-
standing why it is so much harder to find integer solutions to such equations,
rather than real number solutions. Along the way we will encounter many fa-
mous problems, some of which have been solved, and some of which haven’t. By

4Does (3) have any solutions with x, y integers if r is not an integer? Let’s think about this.
If x and y are integers, then x2 and y2 are integers, so x2 + y2 must be an integer. Therefore
r2 must be an integer. But this doesn’t mean that r must be an integer. For example, we can
choose r such that r2 = 2, but r is not an integer!
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the end of the course you’ll be able to spot “hard” questions from “easy” ones,
you’ll know some of the techniques used by number theorists to approach Dio-
phantine equations, and you’ll have a collection of important problems to pose
to your friends, your family and yourself. Diophantine problems are beautiful
and tricky enough to keep a mathematician occupied for her entire life! Here
are a few more examples of important, mysterious, and aesthetically pleasing
Diophantine equations that we will encounter in the course.5

Pythagorean triples

Equation (3), namely x2 + y2 = r2, might look familiar from geometry: it is
the same equation that governs the Pythagorean theorem for right triangles, as
you can see if you take a right triangle with perpendicular sides of lengths x
and y and hypotenuse of length r. Thus asking for solutions of (3) with x, y, r
positive integers is the same as asking for right triangles of side lengths x, y, r.
We might ask: given a fixed value for r, how many such triangles are there? If
we let r vary freely, are there infinitely many such triangles?
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Fermat’s Last Theorem

Of course, we don’t have to look at only squares of integers, like x2. More
generally, suppose we ask for positive integer solutions x, y, r to

x3 + y3 = r3 (5)

or
x4 + y4 = r4. (6)

How many integer solutions are there to these equations? These look very
similar to equation (3) but the situation turns out to be very different! In
fact, Fermat conjectured in 1637 that there are no positive integer solutions to
equations (5) and (6)! This is part of what is known as Fermat’s Last Theorem,
which turned out to be so deep and difficult that it was only finally proved
by Princeton professor Andrew Wiles (in coordination with other important
contributors) in 1995.

5The questions posed below may be quite hard, very hard, or even unsolved, so don’t worry
if you can’t answer them! We’ll talk about them in more detail during the course.

4



Sums of squares

Looking at higher powers like x3 and x5 is one way to generalize equation (3),
but we could also consider what happens when we stick with squares like x2 but
take sums of many squares. For example, we could ask for integer solutions to

x2 + y2 + z2 + w2 = r2. (7)

Given a fixed r, how many integer solutions to this equation are there? This is
an important question that relates to Lagrange’s Four Squares Theorem.

The twin prime conjecture

If you add prime numbers into the mix, things become even more difficult.6 For
example: the Twin Prime Conjecture asks if there are infinitely many pairs of
prime numbers p, q that satisfy the equation

q = p + 2. (8)

It is easy to spot a few examples of twin prime pairs, such as 3 and 5, 5 and 7,
11 and 13, 17 and 19, but are there infinitely many such pairs? We still don’t
know.7

The Goldbach conjecture

The Goldbach Conjecture proposes that every even number N > 2 may be
written as a sum of two odd prime numbers:

N = p + q. (9)

We don’t know if this is true either.

6Recall that a number p is prime if it is divisible only by itself and 1. The first few prime
numbers are 2, 3, 5, 7, 11, 13....

7If we remove the restriction that p and q be prime in equation (8) and simply ask for real
number solutions to the equation y = x + 2, what geometric object does this describe? Are
there infinitely many real number solutions (x, y) to this equation? This is a striking example
of how easy it can be to find real number solutions, while it is so hard to find prime solutions.
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