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1. Introduction

This paper is concerned with the following general problem. For
j = 1, 2, . . . , k let Aj be invertible integer coefficient polynomial maps
of Zn to Zn (here n ≥ 1 and the inverses of Aj’s are assumed to be
of the same type). Let Λ be the group generated by A1, . . . , Ak and
let O = Ob = b · Λ be the orbit of some b ∈ Zn under Λ. Given a
polynomial f ∈ Q[x1, . . . , xn] which is integral on O our aim is to show
that there are many points x ∈ O at which f(x) has few or even the
least possible number of prime factors, in particular that such points
are Zariski dense in the Zariski closure1, Zcl(O) of O. Let O(f, r)
denote the set of x ∈ O for which f(x) has at most r prime factors. As
r → ∞ the sets O(f, r) increase and potentially at some point become
Zariski dense. Define the saturation number r0(O, f) to be the least
integer r such that Zcl(O(f, r)) = Zcl(O). It is by no means obvious
that that r0(O, f) is finite or even if one should expect it to be so in
general. If it is finite we say that the pair (O, f) saturates.

Many classical results and conjectures are concerned with this prob-
lem in the case that Λ is a subgroup of Zn acting by translations,
that is Aj(x) = x + bj. For example if Λ = qZ, O = b + Λ and
f(x) = x one checks that Dirichlet’s Theorem [18] is equivalent to
r0(O, f) = 1 + ν

(
(b, q)

)
, where ν(m) is the number of prime divisors

of m. Another example is Λ = Z,O = Z and f(x) = x(x + 2). Brun
[12] invented the combinatorial sieve to show that this pair (O, f) satu-
rates; the twin prime conjecture is equivalent to r0(O, f) = 2. One can
use the classical combinatorial sieve in Zn along the lines of Section 3
below, to show that any pair (O, f) with Λ ⊂ Zn acting by translations
saturates. One of the main goals of this paper is to study the case that
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1Unless indicated otherwise, the Zariski closure is in affine space An.
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Λ acts by affine linear transformations
(
Aj(x) = ajx+ bj

)
. By increas-

ing the dimension of the underlying space we can assume without loss
of generality that Λ ⊂ GLn(Z). We develop tools to attack the problem
of (O, f) saturation at least if the radical of G, the Zariski closure of
Λ in GLn, contains no tori2. It turns out that in this context multipli-
cation is much more problematic than addition and in extending the
elementary combinatorial sieve to this affine-linear setting a number of
novel problems present themselves. The most interesting and difficult
being the proof that certain graphs (see Section 4) associated with re-
duction of the orbit mod q, form an expander family. A large part of
the paper is concerned with proving this expander property in cases of
the simplest semisimple groups. As a consequence we prove that (O, f)
saturates when G = Zcl(Λ) is a Q-morphic image of SL2 or the unit
group of a quaternion algebra over Q. This already has a number of
classical applications (see Section 6).

In investigating the finer aspects, such as the exact value of r0(O, f),
we need to take possible local congruence obstructions into account. If
q ≥ 2 is an integer and there is no x ∈ O such that (f(x), q) = 1, then
any f(x) is divisible by at least one of the prime factors of q. Since
we demand Zariski density in the definition of the saturation number
(and we assume that f is not constant when restricted to Zcl(O))
it follows that r0 will be larger than expected. For example, in this
case r0(O, f) ≥ 2. We say that (O, f) is primitive if there is no such
local obstruction, that is if for every q ≥ 2 there is x ∈ O such that
(f(x), q) = 1. We will show (see section 2) that in our setting this
condition is easy to check and only involves finitely many q’s. Note that
being primitive is stronger than the condition that gcd(f(O)) = 1. We
give examples demonstrating this (see section 2), and for this reason
we will henceforth assume that (O, f) is always primitive.

In dimension 1, the affine linear motions preserving Z are x → ±x+
m, m ∈ Z and a set is Zariski dense iff it is infinite. Hence Dirichlet’s
theorem [18] asserts that if Λ is a nontrivial (infinite) group of such
motions of A1 and O an orbit and f(x) = λx + β with α, β ∈ Q, α 6= 0
and primitive for O, then r0(O, f) = 1. For f of degree 2 or higher r0

is not known but there is the following strong conjecture of Schinzel:

Conjecture 1.1 (Schinzel [55]). Let O be an orbit of a nontrivial sub-
group Λ of Z acting on Z by translations. Let f ∈ Q[x] with f inte-
gral and primitive on O. If f has t irreducible factors in Q[x] then
r0(O, f) = t.

2The difficulties with tori are discussed in Section 2.
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Note that this implies that if f(x) = f1(x) . . . ft(x) with fj ∈ Q[x]
and irreducible, then if there are no local congruence obstructions then
there are infinitely many x at which fj(x) are simultaneously prime.

One can formulate the Hardy-Littlewood k-tuple conjectures [30]
which are concerned with simultaneous linear equations for primes in
two or more variables as follows:

Conjecture 1.2 (Hardy-Littlewood [30]). Let Λ be a subgroup of Zn

acting by translations on Zn. Assume that for each j the j-th coordinate
function xj is nonconstant when restricted to Λ. If O = b+Λ is the orbit
of b under Λ and f(x) = x1x2 . . . xn is O primitive then r0(O, f) = n.
That is, the set of x ∈ O for which xj are simultaneously prime, is
Zariski dense in the affine linear subspace b + Zcl(Λ).

The general case of Conjecture 1.2 follows from its special case when
rank(Λ) = 1, which is the exact from in which it was formulated in
[30]. Moreover this rank one case is equivalent to the special case of
Conjecture 1.1 when f factors into linear factors over Q. Progress in
this rank one case has been very slow. However, if rank(Λ) ≥ 2 there
has been significant progress. Vinogradov’s fundamental method of
bilinear forms, introduced in [62] allows one to establish Conjecture 1.2
for a nondegenerate (if x ∈ Λ and x has two coordinates equal to 0 then
x = 0) rank two subgroup of Z3. Recently Green and Tao [27] have
established Conjecture 1.2 for a non-degenerate rank two subgroups
Λ of Z4. In Section 6 we give an application of [27] to compute the
saturation number of the pair (O, f), where O consists of Pythagorean
triples in the affine cone in A3 and f is the area of the corresponding
triangle. The case of rank one Λ in Z2 is a much sought-after case of
Conjecture 1.2 since it implies the twin prime conjecture.

Before putting forth our general conjecture concerning primes in or-
bits of a linear action we explicate the simplest such case, one which
could be viewed as an “SL2(Z) analogue of Dirichlet’s Theorem”.

Conjecture 1.3. Let Λ be a non-elementary subgroup of SL2(Z) (equiv-
alently, Zcl(Λ) = SL2), b a primitive vector in Z2, O = b ·Λ the corre-
sponding orbit and π(O) the points x ∈ O with x1 and x2 both prime.
Then

Zcl(π(O)) = Zcl(O)(= A2)

iff f(x) = x1x2 is O primitive.

The non-elementary condition in the above formulation is necessary.
Clearly we must avoid finite subgroups of SL2(Z) (and finite orbits O
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more generally) but Conjecture 1.3 can be false for cyclic toral sub-
groups. We give counterexamples in section 2 and explain the connec-
tion in the torus action case to Mersenne and Fibonacci primes. The
methods of this paper don’t apply to such torus actions and we need to
avoid them. In fact, even the question of saturation is questionable for
tori; see the discussion in section 2. In a forthcoming paper [9] we will
give a quantitative version of Conjecture 1.3, as well as some numerical
evidence.

We turn to our general setting. The study of the pair (O, f) with
O = bΛ reduces, by passing to the universal covering group, to the
fundamental case that G = Zcl(Λ) is simply connected and the orbit
is a subgroup of the group variety G. In this case we put forth a
prescriptive Conjecture (or Hypothesis). We assume that G ⊂ GLn

is connected, simply connected and is absolutely almost simple and
defined over Q. The coordinate ring Q[G] is a unique factorization
domain [20]. Fix f ∈ Q[G] which is neither a unit nor zero and which
factors into t irreducibles in Q[G]. The following is a generalization of
Schinzel’s Conjecture 1.1 above.

Conjecture 1.4. Let Λ, G, f be as above and O = Λ (in the affine space
of n×n matrices). Assume that (O, f) is primitive. Then r0(O, f) = t.

As with Conjecture 1.1, this Conjecture implies that if f = f1f2 . . . ft

with fj irreducible in Q[G] and integral on O, then the set of x ∈ O,
fj(x) are all prime, is Zariski dense in G.

Conjecture 1.4 implies Conjecture 1.3 by a general pull back ar-
gument. The group G = SL2 ⊂ Mat2×2 is realized in the standard
way with coordinates xij, i, j = 1, 2. If ϕ : G → A2 is the morphism
ϕ(g) = (b1, b2)g then by composition ϕ∗ maps Q[A2] → Q[G] and, in
particular,

ϕ∗(x1) = b1x11 + b2x21, ϕ∗(x2) = b1x12 + b2x22,

which are prime in Q[G], and one applies Conjecture 1.4.
In Section 2 we give examples which show that Conjecture 1.4 need

not hold for G’s which are not simply connected. The analysis in such
cases can be reduced by pull back to the universal cover G̃. Also in
Section 2 we investigate the local obstructions in Conjecture 1.4 and
show that there is a q = q(O) such that if the local condition is valid
for q(O) than it is valid for all q ≥ 2.

We should clarify at this point that in the above Conjecture, as well
as elsewhere in this paper, by f(x) being a prime number we mean
that f(x) generates a prime ideal in Z (i.e. f(x) = ±p where p is
a positive prime). The reason for this is that in the several variable
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context we cannot restrict to f(x) > 0 since otherwise Conjecture 1.4
and the theorems below can be false. This is related to the negative
solution of Hilbert’s tenth problem and we explain this in Section 2.

As with Conjecture 1.2 some special cases of Conjecture 1.4 can be
proven. For example, in [47] the following is proven using Vinogradov’s
methods. Let n ≥ 3 and Λ finite index subgroup of SLn(Z). The

group Λ acts on (Matn×n(Z) ∼= Zn2
) by left multiplication. Fix A ∈

Matn×n(Z) with det(A) = m 6= 0 and let

Vm = A · G = A · SLn = {X : X ∈ Matn×n, det(X) = m}.
Then Conjecture 1.4 is true for O = A · Λ when f ’s are coordinate
functions, fij(X) = xij for i, j = 1, 2, . . . , n. In particular if Om consists
of all integral matrices of determinant equal to m, then an analysis of
the local congruence obstructions shows that the subset of Om all of
whose coordinates are prime, is Zariski dense in Vm iff m ≡ 0(2n−1).
Another instance of Conjecture 1.4 was proven recently in [21]. Their
Theorem 5 implies the Conjecture for Λ = SL2(Z), O = Λ in A4 via the
standard realization of SL2 and f(x1, x2, x3, x4) = x2

1 +x2
2 +x2

3 +x2
4−2.

Some cases where Conjecture 1.4 is proven for Λ which are “thin” (see
below for a definition) are given in section 6 in connection with integral
Apollonian packings.

We turn now to what we can prove, that being the (O, f) saturation
in many cases. In the setting of Λ acting by translations and in partic-
ular Conjecture 1.1, it is well known that one can use the combinatorial
sieve of Brun to prove that r0 is finite. The bound for r0 depends on the
setting and much effort has gone into reducing this number in special
cases [28], [22]. To prove (O, f) saturation we develop a combinatorial
sieve in the setting of linear actions. To do so in this generality we
need to make a further hypothesis (which as we discuss below can be
established in many cases) about “congruence graphs” associated to Λ
and O. Let Λ and G be as in Conjecture 1.4 and choose a finite sym-
metric set of generators S of Λ. For q ≥ 1 let Λ(q) be the finite index
“congruence” subgroup of Λ given as the kernel of the reduction of Λ
mod q. The following Conjecture is due to Lubotzky; in the special
case that G = SL2 it has been popularized as his “1-2-3” question [43].

Conjecture 1.5. Let G ⊂ GLn and Λ ⊂ GLn(Z) with Λ Zariski dense
in G, be as in Conjecture 1.4. Then for q square-free the family of
Cayley graphs G(Λ/Λ(q), S) is an expander family.

See Section 4 and [32, 50] for definitions and properties of expanders.
We can now state our main saturation result. For simplicity we

assume that f = f1f2 . . . ft with fj irreducible in Q̄[G].
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Theorem 1.6. Let Λ, G, f be as in Conjecture 1.4, O = Λ, and, as
always, assume that (O, f) is primitive. Then, assuming Conjecture
1.5 for Λ, it follows that (O, f) saturates. Moreover, the bound for
r0(O, f) is given explicitly and effectively in terms of the spectral gap
in the expander family.

From Theorem 1.6 we can deduce (O, f) finiteness when G is almost
simple (but not necessarily simply-connected) as well as for orbits of
such G’s. We don’t state this here as a general Theorem because it
still depends on Conjecture 1.5. This process is carried out in Section
6: see Theorem 6.2 for the cases where we have established Conjecture
1.5.

We turn to Conjecture 1.5. Progress on the general Ramanujan Con-
jectures for G(Q)\G(A) (see [57, 16, 51]) establish Conjecture 1.5 when
Λ is a congruence subgroup of G(Q). When Λ is Zariski dense in G but
of infinite index in G(Z) it is apparently much more difficult to estab-
lish the Conjecture as we cannot appeal to the theory of automorphic
forms. We call this the “thin case”. A large body of this paper is
devoted to doing so for G = SL2 and Λ a thin subgroup of SL2(Z) or a
subgroup of G(Z) where G ⊂ GLn is a form of SL2. We expect these
methods will eventually settle the general case of Conjecture 1.5.

Theorem 1.7. Let Λ be a subgroup of SL2(Z) which is Zariski dense
in SL2 and let S be a finite symmetric set of generators for Λ. Then for
q square-free the family of Cayley graphs G(Λ/Λ(q), S) is an expander
family3.

In the recent paper [8] Theorem 1.7 is proven in the case that q is
restricted to be prime. For the application at hand it is crucial to allow
q to be square-free and we need, among other things, the following sum-
product theorem in Z/qZ, a result which is of independent interest.

Theorem 1.8. Let 1 > δ2 ≥ δ1 > 0 be fixed. Let q =
∏J

j=1 pj be a

product of distinct primes. Let πq′ denote the projection Z/qZ → Z/q′Z
for q′|q. Let A ⊂ Z/qZ and assume that

(1.1) |A| < q1−δ1

and

(1.2) |πq1(A)| > qδ2
1 for all q1|q with q1 > qη, where η = η(δ1) =

δ1

3
.

3In fact we prove more (and this is crucial in our in our applications of Theorem
1.7), namely we show that G(Λ/Λ(q), S) form a family of absolute expanders (see
Definition 4.1).



AFFINE LINEAR SIEVE, EXPANDERS, AND SUM-PRODUCT 7

Then

(1.3) |A + A| + |A · A| > qδ3 |A|
where δ3 = δ3(δ1, δ2) > 0.

The original sum-product theorem [11] establishes the above when
q = p is prime and |A| > qδ1 . The removal of this lower bound assump-
tion for q = p was established in [10], while when q is a product of a
fixed number of large primes, Theorem 1.8 is proven in [7].

We end the introduction with a brief outline of the contents of the
sections and the proofs. In section 2 we examine various obstructions
to the existence of points on an orbit for which f = f1f2 . . . ft is a prod-
uct of t primes. The analysis of the local obstructions in the setting
of Conjecture 1.4 makes use of a theorem of Matthews, Vaserstein and
Weisfeiler [46] which asserts that for all but finitely many p, the projec-
tion of Λ on G(Z/pZ) is onto. In section 3 we explain the fundamental
lemma of the combinatorial sieve and the set up in our context of an
orbit of Λ. Most of the work goes into verifying the axioms of the sieve.
An interesting point here is that we do not probe the orbit in the usual
way of ordering points by an archimedean height (cf. [9]). The reason
for this being that in this context of thin orbits we don’t know how to
count the points asymptotically according to such an ordering. Instead,
we order the points according to word length in generators of Λ (as is
commonly done in combinatorial group theory). The resulting main
terms in the sieving process are analyzed using the algebraic theorem
in [46] mentioned above, coupled with more standard techniques from
arithmetic geometry (specifically [41]). The expander property of the
congruence graphs is used to control the remainder terms in the sieve
and to establish a sufficiently strong form of level distribution. In the
more familiar setting of sieving in Z (or Zn) the expander feature does
not appear. In that setting the number of integer points in arithmetic
progressions which are contained in a large interval, may be estimated
accurately in the obvious way. However, when Z is replaced by, say,
a free nonabelian group, the boundary of a big set is at least as large
as the set, and a new ingredient is needed in order to give a suitably
sharp estimate for the number of points of O in a large “ball”. This
ingredient is the expander property. In this connection we note that if
Λ in Theorem 1.6 contains unipotent elements then one can approach
the sieving problem in a more classical fashion. Using unipotent sub-
groups one produces nonconstant polynomial maps from Z into O. In
this way one can sieve in the familiar classical setting of Z. If how-
ever Λ contains no unipotent elements, then, as far as we can see, our
approach, and in particular expander property, is necessary.
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The Zariski density of the points in Theorem 1.6 follows form the
quantitative lower bound for the number of such points (when ordered
combinatorially) that the fundamental lemma of the sieve, provides.
This lemma also provides upper bounds in this ordering and these yield
sharp (up to a multiplicative constant) upper bounds for the number
of points in O for which f1, . . . , ft are prime.

Sections 4 and 5 are devoted to proving Theorems 1.7 and 1.8 re-
spectively. The proof of the expander property follows the method in
[54, 25] which is based on an upper bound on the number of closed cy-
cles combined with exploiting the large dimensionality of a nontrivial
irreducible representation of SL2(Z/pZ) (the latter is due to Frobenius
[23]). The extension of the required multiplicity bound in SL2(Z/qZ)
is straightforward, proceeding inductively on the number of prime fac-
tors of q. The problem then reduces to giving a sharp upper bound for
the number of closed walks of length l (for l is a suitable range) in the
graphs G(SL2(Z/qZ), S). As in [8] this is achieved by an l2-flattening
lemma (Proposition 4.1) of Section 4. The proof of this Proposition
makes use of various results from additive combinatorics and in par-
ticular a noncommutative version of Balog-Szemeredi-Gowers Lemma,
due to Tao [59].

An important input in [8] is Helfgott’s result [31] asserting that sub-
sets of SL2(Z/pZ) grow under multiplication. His proof makes use of
the sum-product theorem [11] for Z/pZ. Both of these need to be ex-
tended to Z/qZ and this turns out to be quite involved. Proposition
4.3 of Section 4 is the appropriate extension of [31] to SL2(Z/qZ), while
Theorem 1.8 is the Z/qZ sum-product Theorem. The proof of Theo-
rem 1.8, given in Section 5, can be read independently of the rest of
the paper. It uses the techniques and results developed in the proofs of
the special cases of the Theorem ([11], [10], [7]), as well as the analytic
tools for general modulus exponential sums which were developed in
[6].

In the final Section 6 of the paper we give explicit examples of appli-
cations of Theorem 1.6, in particular unconditional ones coming under
the purview of Theorem 1.7. Theorem 6.2 establishes saturation for a
class of (O, f)’s, while example A shows that r0(O, f) < ∞ for the pair
in Conjecture 1.3; example B concerns orbits of orthogonal groups in
3-variables and example C deals with the cone of Pythagorean triples.
In example D we apply our theory to integral Apollonian packings
which are governed by a thin subgroup of an orthogonal group in four
variables.

Finally we note that if the group Λ is a congruence subgroup (that is
the non-thin case) one can develop the affine linear sieve of this paper
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in a much sharper quantitative fashion by appealing to some advanced
results in automorphic forms. This is carried out in [47] and [42] and
the bounds for r0(O, f) that are established are comparable in quality
to those of the classical one-variable sieve [28, 17]. For a leisurely
overview of these sieving problems se [53].

Acknowledgements. We thank N. Katz, J. Lagarias, E. Linden-
strauss, A. Lubotzky, B. Mazur, A. Wigderson for discussions on vari-
ous aspects of this work.

2. Algebraic Preliminaries

This Section prepares the way for the sieve analysis in the next Sec-
tion. We collect some algebraic tools and discuss some diophantine
obstructions to producing primes on orbits. We begin with the diffi-
culties connected with a torus. To demonstrate this in A1 consider the
ring R = Z[1

2
, 1

3
]. It is a unique factorization domain and has a unit

group U consisting of numbers of the form ±2a3b with a, b ∈ Z. The
prime ideals are Rp = (p) with p a prime p 6= 2 or 3. Let Λ be the sub-
group of GL1(R) generated by 4, i.e. Λ = {4m : m ∈ Z}. Λ is Zariski
dense in GL1 and the polynomial f(x) = x − 1 ∈ R[x] is irreducible.
Since f(4) = 3 which is in (R/qR)∗ for all ideals qR of R, there are no
local congruence obstructions to making f(x) prime in R and (Λ, f)
is primitive. However f(x) can be a prime in R for at most a finite
number of x in Λ since (4n − 1) = (2n − 1)(2n + 1) and 2n ± 1 = ±2a3b

has only finitely many solutions in n, a, b (this is elementary but more
generally it follows from the finiteness to the S-unit equation; see [1],
Chapter 5). Thus the local to global principle in Conjecture 1.4 fails
for this multiplicative group. The reason being that Λ is too thin in
that it consists of squares. One can try to remedy this by taking for Λ
the bigger group 〈2〉. The question of whether 〈2〉 contains a Zariski
dense set of points (i.e. infinitely many in this case) with f(x) a prime
in R, is the well known Conjecture of Mersenne: that 2p − 1 is prime
for infinitely many primes p4

However these and more general tori probably present much more
serious problems even as far as saturation goes. Consider the torus A
in SL2 given as follows. Let

Λ =
{[

3 1
−1 0

]m

: m ∈ Z
}

⊂ SL2(Z).

4Some things can be said about high divisibility of 2n − 1 for most n, as well as
for similar questions about the denominators of rational points on elliptic curves,
see section 10 in [38].
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The group Λ is infinite cyclic; Zcl(Λ) = A is a torus and if O = (1, 0) ·Λ
then Zcl(O) in A2 is the hyperbola {(x1, x2) : x2

1 − 3x1x2 + x2
2 = 1}.

The orbit consists of pairs (F2n, F2n−2) with n ∈ Z where Fn is the
n-th Fibonacci number. As with the previous example of a torus, this
sequence is too sparse both from an algebraic and an analytic point of
view to execute any kind of sieve to establish saturation. In fact, while
it is conjectured that Fn is prime for infinitely many n, as pointed out
to us by Lagarias, standard heuristics suggest a very different behavior
for F2n. We have F2n = FnLn where Ln is the n-th Lucas number and
assuming a probabilistic model for the number of prime factors of a
large integer in terms of its size and that Fn and Ln are independent,
leads to the Conjecture that F2n has an unbounded number of prime
factors as n → ∞. A precise conjecture along these lines is put forward
in [13] (see Conjecture 5.1). In our language this asserts that if O is
as above and f(x1, x2) = x1 then r0(O, f) = ∞. It would be very
interesting to produce an example of a pair (O, f) for which one can
prove that r0(O, f) is infinite. In view of this and also in terms of the
setting in which our methods apply, we must keep away from tori which
occur in rad(Zcl(Λ)).

The prescriptive local to global Conjecture 1.4 also fails for semisim-
ple groups which are not simply connected (of course r0 should be finite
in these cases). Consider the special orthogonal group G = SOF where

(2.1) F (x1, x2, x3) = x1x3 − x2
2.

G is contained in GL3, it is simple, and over Q it is given by the
equations in 9-dimensional space

(2.2)

{

X tAX = A

det X = 1

where

A =





0 0 1/2
0 −1 0

1/2 0 0



 .

Let Q[G] be the corresponding coordinate ring. The simply connected
double cover G̃ of G is SL2. This is realized explicitly by the group
homomorphism π of GL2 onto G:

(2.3)

[
α β
γ δ

]

→ 1

(αδ − βγ)





α2 2αγ γ2

αβ αδ + βγ γδ
β2 2βδ δ2



 .

The homomorphism π restricts to a morphism of SL2 onto G (as group
varieties over Q) with kernel ±I. It is classical (see [14] pp. 301–302)
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that π
(
GL2(Z)

)
= G(Z) while Λ = π

(
SL2(Z)

)
is of index 2 in G(Z).

The polynomial f(x) = x11 − 1 is prime in Q[G] and there are no local
obstructions to f(x) being prime on Λ. However since x11 is a square
when x ∈ Λ we see that f(x) is prime only if x11 = 3. The source of
the difficulty here is that G is not simply connected, and, in particular,
G(Z) fails to satisfy strong approximation, that is G(Z) → G(Z/pZ)
is not onto for half of the primes. Thus Conjecture 1.4 is false for
G = SOF . However unlike the torus case this is not a serious issue, at
least in terms of understanding r0. Let f ∈ Q[xij] for which we seek to
understand r0(Γ, f), with Γ ⊂ G(Z) and Zcl(Γ) = G. The morphism π

from G̃ onto G induces by composition an injective ring homomorphism
π∗ : Q[G] → Q[G̃]. Thus it suffices to examine ρ∗ and its values on
the group Λ = ρ−1(Γ) in G̃. The factorization of π∗(f) in Q[G̃] is in
this way the critical issue. This reduces the study of the group variety
G or, more generally an orbit V = b · G of G, to understanding the
simply connected setting. Thus Conjecture 1.4 is the central one. This
strategy is pursued in Section 6 where we establish the almost prime
theorem for non simply connected cases as well as for orbits thereof by
invoking Theorem 1.6.

We pointed out in the introduction that when looking for primes or
almost primes f(x), we cannot insist that f(x) be positive because of
difficulties associated with the negative solution of Hilbert’s 10-th prob-
lem. In several variables the condition f(x) > 0, f ∈ Z[x1, x2, . . . , xn]
can encode the general diophantine equation (for example if f(x) =
1 − g2(x) then f(x) > 0 is equivalent to g(x) = 0). The work of
Matiyasevich et al [45] on Hilbert’s 10-th problem shows that given any
recursively enumerable subset S of the positive integers N there is an
f ∈ Z[x0, x1, . . . , xn], (one can take n = 10) such that S is exactly the
set of t ∈ N for which f(t, x1, . . . , xn) has a solution x1, x2, . . . xn ∈ Z.
From this it is not difficult to construct a g ∈ Z[x1, x2, . . . xn] such that
the set of positive values assumed by g is exactly S. Now suppose that
our orbit O is all of Zn (say Γ = Zn acting by translations). We can
choose S so as to make g(x) behave very singularly as far as its positive
values. For example, let S consists of the numbers in the sequence

am =
∏

m<p<2m

p,

for m > 2. Then we have

(i) S is recursively enumerable.
(ii) There are no local obstructions to making the corresponding

g(x) a prime.
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(iii) For any r the set of x ∈ Zn such that g(x) > 0 and is a product
of at most r primes lies in a finite union of closed sets of the
form Aa = {x : g(x) = a}. Hence this set is not Zariski dense
in Zcl{x ∈ Zn : g(x) > 0}.

Thus the pair (Zn, g) does not saturate when restricted to values
of g(x) which are positive. Without the positivity condition the pair
(Zn, g) saturates by a simple version of Theorem 1.6.

At the other extreme of this phenomenon of positive values is the
well known example of S being the subset of N consisting of the prime
numbers. A corresponding explicit g of degree 25 in 26 variables is
given in [35]. In this case the set of positive values assumed by g is
exactly all primes, and from our point of view this is too many primes.
The combinatorial sieve is based on the equidistribution of points in
the orbit mod q, for any q and clearly restricted to g(x) > 0; this is far
from true here.

We turn to the main setting of the paper. G ⊂ GLn is a connected,
simply connected absolutely almost simple group defined over Q. Λ is
a subgroup of GLn(Z) for which Zcl(Λ) = G. For d ≥ 1 an integer we
denote by Λd the image in GLn(Z/dZ) of the reduction of Λ modulo
d. Let Λ(d) be the kernel of this reduction so that Λ/Λ(d) ∼= Λd. For
(d1, d2) = 1, Λ reduces diagonally into a subgroup of Λd1 ×Λd2 and we
need to know the extent to which this is a surjection or, at least, is a
product. By Noether’s theorem [48], outside a finite set S = S(G) of
primes the reduction of G mod p is an (absolutely) irreducible variety
over Fp

∼= Z/pZ and we denote the corresponding Fp points by G(Fp),
p /∈ S. The key stabilization property that is needed for sieving is the
following, which is due to Matthews, Vaserstein and Weisfeiler [46].

Theorem 2.1. Given an integer M there is q1 = q1(Λ,M) containing
the primes in S and also M |q1, such that

(i) For p a prime, p ∤ q1

Λp = G(Fp).

(ii) For d = p1p2 . . . pl square-free and (d, q1) = 1, the diagonal
reduction

Λ → Λd → Λp1 × Λp2 × · · · × Λpl

is surjective.
(iii) For (d, q1) = 1 square-free

Λ → Λq1 × Λd

is surjective.
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Proof: Parts (i) and (ii) are proved in [46] with a suitable q0 (in place
of q1) depending on Λ. Their proof makes use of the classification of
finite simple groups. The treatment of this theorem in [49] does not
make use of this classification. To see that part (iii) is true, choose q1

with q0|q1 and M |q1, and so that the following holds: the center Z of G
is finite and for p large enough G(Fp)/Z(Fp) are distinct finite simple
groups. So we can clearly arrange for a large enough q1 so that Λq1

has no composition factors in common with G(Z/qZ) with q square
free and (q, q1) = 1. Now if (d, q1) = 1 and d is square free then the
image of Λ in Λq1 ×Λd surjects onto each factor and hence by Goursat’s
Lemma (see [40], p. 75) and the above remarks, the image surjects onto
the product. ¤

Theorem 2.1 says that a Λ which is Zariski dense in G can be deficient
at only a finite number of primes (if it is thin then it is automatically
deficient at infinity). To sieve out all primes we need a little more in
terms of projections onto products. For this we pass to a finite index
subgroup and the following Proposition follows from Theorem 2.1.

Proposition 2.1. Let Λ, G and M = N2 be as in Theorem 2.1 and
q1 = q1(Λ,M) be the resulting integer in the Theorem. Let Γ = Λ(q1)
be the corresponding principal congruence subgroup of Λ. Then for
d = d1d2 of the form Nβt with β = 0 or 1, t square free and (d1, d2) = 1
we have that Γ → Γd1 × Γd2 is surjective and Γp = Λp for p ∤ q1.

Next we discuss the primitivity condition in this context. Let f ∈
Q[G], f integral on O = Λ. We can write f = g/N where g ∈ Z[G] and
N ≥ 1, N | gcd(g(O)). Since we are assuming that f is primitive, we
have that gcd(f(O)) = 1 (which we call weakly primitive), and hence
N = gcd(g(Λ)). Note that if our given f is not weakly primitive then
f/ gcd(f(O)) is, and it is clear that weak primitivity is easily checked
and involves only finitely many congruences. Concerning primitivity
we have

Proposition 2.2. With the above notations (O, f) is primitive iff there
is a ξ ∈ O such that (f(ξ), q1) = 1 where q1 = q1(Λ, N2) as in Theorem
2.1.

Proof: By definition of primitive the condition is satisfied with d =
q1. To prove the converse, let d ≥ 1; we seek an x ∈ O such that
(f(x), d) = 1. We may assume that d is square-free and that d = d1d2

with d1|q1 and that (d2, q1) = 1. Consider the orbit O′ = ξΓ where ξ
is given in Proposition 2.2 for q1 and Γ = Λ(q1)ξ as in Proposition 2.1.
By this Proposition

(2.4) Γ → Γq1 × Γp1 × · · · × Γpν
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is onto, where p1p2 . . . pν is the prime factorization of d2. For each pj

there is a yj ∈ O such that pj ∤ f(yj) since (O, f) is weakly primitive.
Hence, using (2.4) and Γpj

= Λpj
we can find a γ ∈ Γ such that

γξ ≡ yj mod pj.

Hence f(γξ) ≡ f(yj) 6= 0 mod pj. Also

Nf(γξ) = g(γξ) ≡ g(ξ) mod q1

since γ ≡ 1 mod q1. Hence Nf(γξ) ≡ Nf(ξ) mod q1, and therefore
f(γξ) ≡ f(ξ) mod q1/N . But d1|q1, d1 is square free and N2|q1, hence

f(γξ) ≡ f(ξ) mod d1.

Therefore if x = γξ then (f(x), d1d2) = 1 as needed. ¤
To end this section we give a simple example in this setting of G

simply connected and simple and a pair (Λ, f) which is weakly primitive
but not primitive. Let

Λ =

〈(
2 1
15 8

)

,

(
1 1
0 1

)〉

≤ SL2(Z).

Then Zcl(Λ) = SL2 and if

f(x11, x12, x21, x22) = (x11 − 29)(x11 − 11),

note that 15|q1(Λ). One checks that (Λ, f) is weakly primitive but that
for any x ∈ Λ, f(x) is 3 or −5 mod 15. Thus f is not primitive. The
problem of course is that Λ → Λ3 × Λ5 is not a product.

3. Sieving: Proof of Theorem 1.6

3.1. Combinatorial Sieve. We will make use of the simplest com-
binatorial sieve which is turn is based on the Fundamental Lemma in
the theory of elementary sieve, see [34] and [28]. Our formulation is
tailored for the applications below.

Let A denote a finite sequence an, n ≥ 1 of nonnegative numbers.
Denote by X the sum

(3.1)
∑

n

an = X.

X will be large, in fact tending to infinity. For a fixed finite set of
primes B let z be a large parameter (in our applications z will be a
small power of X and B will usually be empty). Let

(3.2) P = Pz =
∏

p≤z
p/∈B

p.
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Under suitable assumptions about sums of A over n’s in progressions
with moderate-size moduli d, the sieve gives upper and lower estimates
which are of the same order of magnitude for sums of A over the n’s
which remain after sifting out numbers with prime factors in P .

More precisely, let

(3.3) S(A,P ) :=
∑

(n,P )=1

an.

The assumptions on sums in progressions are as follows:
(A0) For d square-free, and having no prime factors in B (d < X),

we assume that the sums over multiples of d take the form

(3.4)
∑

n≡0(d)

an = β(d)X + r(A, d),

where β(d) is a multiplicative function of d and

for p /∈ B, β(d) ≤ 1 − 1

c1

for a fixed c1.

The understanding being that β(d)X is the main term and that the
remainder r(A, d) is smaller, at least on average (see the next axiom).

(A1) A has level distribution D = D(X), (D < X) that is
∑

d≤D

|r(d,A)| ≪ X1−ε0 for some ε0 > 0.

(A2) A has sieve dimension t > 0, that is for a fixed c2 we have
∣
∣
∣
∣
∣
∣
∣
∣

∑

w≤p≤z
p/∈B

β(p) log p − t log
z

w

∣
∣
∣
∣
∣
∣
∣
∣

≤ c2

for 2 ≤ w ≤ z.

In terms of these conditions (A0), (A1), (A2) the elementary combi-
natorial sieve yields:

Theorem 3.1. Assume (A0), (A1) and (A2) for s > 9t and z = D1/s

and X large we have

(3.5)
X

(log X)t
≪ S(A,Pz) ≪

X

(log X)t
.

The implied constants depend explicitly on t, ε0, c1, c2.
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3.2. Arithmetic and geometry of the orbit. We review the setting
in Theorem 1.6. G is a connected, simply connected semisimple matrix
group in GLn which is defined over Q. f is a nonunit in the coordinate
ring Q[G]. We are assuming further that in this unique factorization
domain f factors as f1f2 . . . ft with fj irreducible in Q̄[G]. Hence the
varieties G and

Wk = G ∩ {x : fk(x) = 0} for k = 1, . . . , t

are defined over Q and are absolutely irreducible. For our purposes
of sieving we will assume further (without loss of generality) that the
fj’s are distinct in Q[G]. In particular, since the W ’s are connected,
dim(Wi ∩ Wj) < dim(G) − 2 for i 6= j, while dim(Wj) = dim(G) − 1.

Consider now the reduction of G and Wj modulo p for p a large prime.
According to Noether’s Theorem [48] for p outside a set S1 = S1(G, f)
these reduce to absolutely irreducible varieties G and Wk is defined
over Fp = Z/pZ.

By the Lang-Weil Theorem ([41], see also [56] for an elementary
treatment) we have that for p /∈ S1

(3.6)







|G(Fp)| = pdim G + O
(

pdim G− 1
2

)

,

|Wk(Fp)| = pdim G−1 + O
(

pdim G− 3
2

)

,

|Wk ∩ Wl(Fp)| ≪ pdim G−2 if k 6= l,

where the implied constants depend on G and f .
Recall that Λ ⊂ GLn(Z) and Zcl(Λ) = G. Our sieve will be carried

out on the orbit (in this case a coset) of a subgroup Γ of Λ. For the
purposes of counting on the orbit it is convenient to work with a free
group. By Tits Theorem [61] there is a subgroup L of Λ which is free
on two generators and is Zariski dense in G. Applying Proposition 2.1
with L (in place of Λ) and M = N2 where f = g/N as in Proposition
2.1, we arrive at the subgroup Γ = L(q1) (q1 = q1(L,N2) and N2|q1)
which satisfies

(3.7a) Γ is Zariski dense in G;

(3.7b) Γ is free on k ≥ 2 generators;

outside a finite set of primes S2 = S2(Γ)

we have Γp = Λp
∼= G(Fp);

(3.7c)

Γ → Γd1 × Γd2 is surjective for (d1, d2) = 1

and d1d2 = Nβt with β = 0 or 1 and t square free.
(3.7d)
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Now since (Λ, f) is primitive, given

(3.8) ν = q1(L,N2)
∏

p∈S1

p
∏

p∈S2

p,

we can find x ∈ Λ such that

(3.9) (f(x), ν) = 1.

Let O = xΓ ⊂ GLn(Z). We will sieve on the orbit O. For d ≥ 1 denote
by Od the reduction of O in GLn(Z/dZ). Clearly

(3.10) Od = xΓd (in GLn(Z/dZ)).

Also

(3.11) |Od| = |Γd|,
since the stabilizer of x in Γd is trivial (since det x = 1).

From (3.10) and (3.7d) it follows that Od inherits the product struc-
ture. That is, for (d1, d2) = 1 and d = d1d2 = Nβt as in (3.7)

(3.12) O → Od → Od1 ×Od2 is surjective.

For our given g ∈ Z[G] where f = g/N let

(3.13) O(g)
d = {x ∈ Od : g(x) ≡ 0 mod d}.

These sets are well-defined and by the ordinary Chinese remainder
theorem we have that

(3.14) O(g)
d → O(g)

d1
×O(g)

d2

is a bijection for d1, d2 as in (3.12). Finally, since g(x) ≡ 0 mod N for
x ∈ O we note that

(3.15) O(g)
N = ON .

3.3. Sieving on an orbit. Continuing with the notation and setup of
the previous two sections we have O = xΓ where Γ is a free group on k
generators (k ≥ 2) which we denote by A1, . . . , Ak. Since Γ acts simply
transitively on O we can identify Γ and O. In this way we turn O into a
2k regular tree by joining y in O to y ·Aj and y ·A−1

j for j = 1, 2, . . . , k.
Another way of saying this is that O is identified with the Cayley graph
of Γ with respect to the generating set S = {A1, A

−1
1 , . . . , Ak, A

−1
k }. For

x, y ∈ O let w(x, y) denote the distance in the tree from x to y. The
key nonnegative sequence an to which we apply the combinatorial sieve
in Section 3.1 is defined as follows: for n ≥ 0 and L ≥ 0 let

(3.16) an(L) = #{y ∈ O : w(y, x) ≤ L, |f(y)| = n}.
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Let r = 2k − 1. It is elementary that the number of points on a
2k-regular tree whose distance to a given vertex is at most L is equal
to

1 + (r + 1)
L∑

i=1

ri−1 =
(r + 1)rL − 2

r − 1
.

Hence

(3.17) X :=
∑

n

an(L) =
∑

y∈O
w(y,x)≤L

1 =
(r + 1)rL − 2

r − 1
.

We need to study the sums of an(L) for n in progressions. For d ≥ 1
we have

(3.18)
∑

n≡0(d)

an(L) =
∑

y∈O
w(y,x)≤L
f(y)≡0(d)

1.

Clearly we have

(3.19)
∑

n≡0(d)

an(L) =
∑

y∈O
w(y,x)≤L

g(y)≡0(Nd)

1 =
∑

ρ∈O(g)
Nd

∑

δ∈Γ(Nd)
w(ρ′δ,x)≤L

1,

where ρ′ ∈ O is any point in O which reduces to ρ in ONd.
To analyze the inner sum in (3.19) we make use of the 2k-regular

quotient graphs GNd = O/Γ(Nd). The size of this graph is |ONd| =
|ΓNd| which we denote by F . Let ϕ0, . . . , ϕF−1 be an orthonormal
basis of Γ(Nd)-periodic functions on O (i.e. functions φ satisfying
ϕ(yγ) = ϕ(y) for γ ∈ Γ(Nd)) which are eigenfunctions of the discrete
“Laplacian” ∆

(3.20) ∆ϕ(y) =
∑

η∼y

ϕ(η).

Denote by λj the eigenvalue of ϕj;

(3.21) ∆ϕj = λjϕj.

The indices are chosen so that

(3.22) λ0 = 2k and ϕ0(y) =
1√
F

.

The graph GNd is isomorphic to the Cayley graph G(Γ/Γ(Nd), S) =
G(ΓNd, S). The assumption about these that is made in Theorem 1.6
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is that they are a family of absolute expanders. That is, any eigenvalue
λ of GNd with |λ| 6= 2k satisfies

(3.23) |λ| ≤ κ, with κ < 2k independent of d.

This is our key analytic input into controlling the level distribution in
the sieve. The smaller κ the better this level, and we keep track of the
dependence on κ in the ensuing estimates.

Using the basis ϕj we can expand the function in the inner sum in
(3.19) in the following form (see [44]) : for y, η ∈ O

(3.24)
∑

w(yδ,η)≤L
δ∈Γ(Nd)

1 =
F−1∑

j=0

PL

(
λj

2
√

r

)

ϕj(y)ϕj(η),

where PL is the degree L polynomial

(3.25) PL(cos θ) = rL/2

(
sin(L + 1)θ

sin θ
+

sin Lθ√
r sin θ

)

.

In particular

(3.26) PL

(
λ0

2
√

r

)

= PL

(
r + 1

2
√

r

)

=
rL+1 − 1

r − 1
+

rL − 1

r − 1
= X.

Thus the contribution from j = 0 to (3.24) is (using (3.22) and (3.11))

(3.27)
X

|F | =
X

|ΓNd|
=

X

|ONd|
.

For j 6= 0, |λj| ≤ κ and hence

(3.28) |PL

(
λj

2
√

r

)

| ≤
(

κ +
√

κ2 − 4r

2

)L

≪ Xτ ,

where

(3.29) τ =
log

(
κ+

√
κ2−4r
2

)

log r
< 1.

Also
∑F−1

j=0 |ϕj(y)|2 is independent of y since Γ acts isomorphically and
transitively on GNd. This coupled with ϕj being an orthonormal basis
of L2(GNd) gives

(3.30)
F−1∑

j=0

|ϕj(y)|2 = 1.
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Hence, uniformly for y, η ∈ O, we have

(3.31)
F−1∑

j=0

PL

(
λj

2
√

r

)

ϕj(y)ϕj(η) =
X

|ONd|
+ O(Xτ ).

Hence

(3.32)
∑

w(yδ,η)≤L
δ∈Γ(Nd)

1 =
X

|ONd|
+ O(Xτ ).

Substituting this in (3.19) yields

∑

y∈O
w(y,x)≤L
g(y)≡0(d)

1 =
∑

ρ∈O(g)
Nd

(
X

|ONd|
+ O(Xτ )

)

(3.33)

=
|O(g)

Nd|
|ONd|

X + O(|O(g)
Nd|Xτ ).

We have therefore shown that for an(L) as in (3.16) we have

(3.34)
∑

n≡0(d)

an(L) = β(d)X + r(d,A),

where

(3.35) β(d) =
|O(g)

Nd|
|ONd|

and

(3.36) |r(d,A)| ≪ |O(g)
Nd|Xτ .

The following Proposition verifies (A0) of section 3.1 (with B the
empty set).

Proposition 3.1. For d square free β(d) is multiplicative and there is
c1 fixed (depending only on Γ and N) such that β(p) ≤ 1− 1

c1
for all p.

Proof: Let (d1, d2) = 1 and d1, d2 square free. Write N = N1N2 with
(N1, d2) = 1, (N2, d1) = 1 and (N1, N2) = 1. The product structure
(3.14) for d1d2 = Nβt, β = 0 or 1, t square free shows that
(3.37)

|O(g)
Nd| = |O(g)

N1N2d1d2
| = |O(g)

N1d1
||O(g)

N2d2
| =

|O(g)
N1N2d1

|
|O(g)

N2
|

|O(g)
N1N2d2

|
|O(g)

N1
|

=
|O(g)

Nd1
||O(g)

Nd2
|

|O(g)
N |

.
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Similarly from (3.12) we have

(3.38) |ONd| =
|ONd1||ONd2 |

|ON |
.

Since, as noted in (3.15), O(d)
N = ON , we have

(3.39) β(d) = β(d1d2) =
|O(g)

Nd|
|ONd|

=
|O(g)

Nd1
|

|ONd1|
|O(g)

Nd2
|

|ONd2|
= β(d1)β(d2),

establishing the multiplicativity.
For p prime with p|ν where ν is given in (3.8), by our choice of x

in (3.9) we have (f(x), p) = 1 and hence O(g)
Np 6= ONp, and so β(p) <

1. If p ∤ ν then by (3.7c) we have O(g)
Np 6= ONp since f is weakly

primitive. Thus we have that β(p) < 1 for all p. To establish the
required uniformity note that for p ∤ ν we have

(3.40) Op = Γp = G(Fp)

and

(3.41) O(f)
p = ∪t

k=1Wk(Fp).

From (3.7) it follows that

(3.42) p
|O(f)

p |
|Op|

= t + O(p−1/2),

where the implied constant depends on G, Λ and f . We have therefore
verified that β(p) < 1 − 1

c1
for c1 fixed and for all primes p and this

completes the proof of Proposition 3.1 ¤
We turn to the level of distribution axiom (A1) of section 3.1. From

the product structure (3.42), (3.6) , (3.10), (3.11) we have

(3.43) |O(g)
Nd| ≪ ddim(G)−1

with an implied constant depending only on Λ and f . Hence from
(3.36) we have that

(3.44)
∑

d≤D

|r(d,A)| ≪ XτDdim G.

Thus our level of distribution in (A2) is

(3.45) D = X(1−τ)/ dim G.
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The third axiom concerns the sieve dimension. From (3.43) we have
that
(3.46)

∑

w≤p≤z

β(p) log p =
∑

w≤p≤z

(
t log p

p
+ O

(
log p

p3/2

))

= t log
z

w
+ O(1).

This establishes (A2) with the sieve dimension being t.
We are ready to use the elementary sieve Theorem 3.1 except that in

our analysis of the sums on progressions we included n = 0. According
to Proposition 3.2 below this term can be omitted as can any fixed
term an0 . Applying the sieve we have shown that for z = X(1−τ)/9t dim G

(3.47)
X

(log X)t
≪ S(A,P ) ≪ X

(log X)t
.

The n’s that remain after this sieving satisfy (n, Pz) = 1 and hence
all the prime factors p of n must be bigger than z. Also if y ∈ O with
f(y) = n then y = xAi1Ai2 . . . Air with Aij ∈ {A±1

1 , . . . A±1
k } and r ≤ L.

Hence the Hilbert-Schmidt norm of y (‖y‖ = (
∑ |yij|2)1/2) satisfies

(3.48) ‖y‖ ≤ CL+1,

where

(3.49) C = max{‖x‖, ‖A±1
1 ‖, . . . , ‖A±1

k ‖}.
Let deg(f) be the total degree of f . Then for a point y as above we

have

(3.50) |f(y)| ≪ C(L+1) deg(f).

Thus our points y ∈ O which contribute to the sum S(A,Pz) satisfy
(3.50) and all prime factors of f(y) are at least

X(1−τ)/(9t dim G) ≫ r(L+1)(1−τ)/(9t dim G).

That is each such y has at most

(3.51)
9t dim(G) deg(f) log C

(1 − τ) log r

prime factors. In order to complete the proof of Theorem 1.6 with the
saturation number r0(Λ, f) at most the number in (3.51) (plus 1 if it
is an integer) we need to show that the y’s produced above are Zariski
dense in G. For this we use the expander property the second time.

Proposition 3.2. Let W be a proper subvariety of G defined over Q.
Then

|{y ∈ O : w(y, x) ≤ L, y ∈ W}| ≪ X1−δ,

where δ = (1 − τ)/ dim G and the implied constant depends on W .
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With this proposition we can complete the proof of Theorem 1.6. If
the points y produced by the sieve in the discussion leading to (3.51)
are not Zariski dense then they lie in a proper subvariety W of G which
is defined over Q. Hence by the Proposition their number is at most
O(X1−δ). However the sieve produces at least c1X/(log X)t such points
with c1 > 0 and fixed.
Proof of Proposition 3.2: Since G is irreducible the W in question is
defined over Q and has dimension at most dim(G)−1. Let W = ∪k

j=1Wj

be the decomposition into irreducible components of W . These are
defined over a fixed finite extension K of Q and each Wj has dimension
at most dim(G) − 1. For P outside a finite set of prime ideals of
the integers OK of K, Wj is absolutely irreducible over the finite field
OK/P . Hence by Lang-Weil Theorem [41]

(3.52) |Wj(OK/P )| ≪ N(P )dim Wj ≤ N(P )dim G−1.

Choosing p a large rational prime (of size to be determined momen-
tarily) so that (p) splits completely in K so that OK/P ∼= Fp for any
P |(p) and hence

(3.53) |W (Z/pZ)| ≤
k∑

j=1

|Wj(OK/P )| ≪ pdim G−1.

Note that for any p (large)

(3.54)
∑

y∈O
w(y,x)≤L

y∈W

1 ≤
∑

y∈O
w(y,x)≤L

y∈W (Z/pZ)

1.

According to (3.53) and the analysis leading to (3.33) which uses the
expander property, we have that

(3.55)
∑

y∈O
w(y,x)≤L

y∈W (Z/pZ)

1 ≪
∑

y∈W (Z/pZ)

(
X

|Op|
+ Xτ

)

≪ X

p
+ pdim G−1Xτ .

We are ready to choose p. By the Chebotarev density theorem [15]
we can choose p which splits completely in K and p satisfies

X(1−τ)/ dim G

2
≤ p ≤ 2X(1−τ)/ dim G.

With this the right hand side of (3.55) is O(X1−δ) with δ = (1 −
τ)/ dim G and coupled with (3.54) this proves Proposition 3.2. ¤

In applying the sieve to the saturation problem we only made use of
the lower bound for S(A,P ). With our ordering of the orbit O = xΓ
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in terms of the 2k-regular tree, the upper bound provided by the sieve
for S(A,P ) is certainly meaningful and is sharp up to multiplicative
constant. However as far as upper bounds go this says nothing about
the original orbit Λ since after applying Tits Theorem Γ is possibly of
infinite index in Λ. To obtain meaningful upper bound for Λ with the
analysis that we have developed it is more natural to do the counting in
the language of random walks. This means that we don’t pay attention
to whether we visit a point x ∈ Λ repeatedly but in the present context
this does not cost much. Let S be a finite symmetric set of generators
of Λ and perform a random walk on Λ by starting on e and each step
moving by multiplying by an element of S chosen at random with
probability 1/|S|. For ρ ≥ 1 let Pρ(L) be the probability that after L
steps of the walk on Λ one is a a point s for which f(x) has at most
ρ prime factors. Our analysis shows (by restricting to the finite index
subgroup Λ(q1N

2)) that if ρ is at least as large as the quantity in (3.50)
then as L → ∞
(3.56) Pρ(L) ≥ C1L

−t with C1 > 0.

On the other hand, Proposition 3.2 shows that given a proper subvari-
ety W of G that the probability PW (L) that after L steps of the walk
(on Λ) on lies in W satisfies

(3.57) PW (L) ≪W e−βL

for a positive β = β(Λ). Thus Theorem 1.6 can be established more
directly this way without passing to the subgroup Λ1 of Λ and hence
Theorem 1.6 can be established as stated assuming Conjecture 1.5 for
Λ itself rather than for Γ.

With this language we can give a meaningful and sharp upper bound
for Pt(L), that is the probability of f(y) having exactly t factors (its
minimal number on a Zariski dense set). We apply the upper bound
sieve to the walk on Λ where this time we take for B in Theorem 3.1 the
set of all primes p which divide the number q1(Λ, N2) in Theorem 2.1.
We also need the upper bound in Proposition 3.2 to hold uniformly in
m for the varieties

Vm = {x ∈ G : f(x) = m}.
This follows easily from the considerations in Lang-Weil [41]. With
this and the analysis in section 3 the upper bound sieve yields

(3.58) Pt(L) ≪ 1

Lt
.

This upper bound is of the correct order of magnitude in that we expect
a “prime number theorem” which can be viewed as a quantitative form
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of Conjecture 1.4:

(3.59) lim
L→∞

LtPt(L) = C(Λ, f) 6= 0.

We have not determined a conjectured value for C(Λ, f) but it will

clearly involve the local probabilities |Λ(g)
Nd|/|ΛNd| as well as the Lya-

punov exponent for the random walk in GLn(R) determined by the
measure µ = 1

|S|
∑

g∈S δg (see [4]).

4. Expanders: Proof of Theorem 1.7

The adjacency matrix of a graph G, A(G) is the |G | by |G | matrix,
with rows and columns indexed by vertices of G, such that the x, y
entry is 1 if and only if x and y are adjacent and 0 otherwise. For
a d-regular graph on n vertices the adjacency matrix is a symmetric
matrix having n real eigenvalues which we can list in the decreasing
order:

d = λ0 ≥ λ1 ≥ . . . ≥ λn−1 ≥ −d;

d = λ0 is strictly greater than λ1 iff the graph is connected (which we
assume from now on). The smallest eigenvalue λn−1 is equal to −d
if and only if the graph is bipartite, in the latter case it occurs with
multiplicity one. A family of d-regular graphs Gn,d is said to form an
expander family (see [32, 50]) if

lim sup
n→∞

λ1(A(Gn,d)) < d.

For our applications we need (and prove) a slightly stronger property:

Definition 4.1. A family of connected d-regular graphs Gn,d forms a
family of absolute expanders if, denoting by λ(A(G)) an eigenvalue dif-
ferent from ±d of greatest absolute modulus, we have

lim sup
n→∞

|λ(A(Gn,d))| < d.

Given a finite group G with a symmetric set of generators S, the
Cayley graph G(G,S), is a graph which has elements of G as vertices,
and which has an edge from x to y if and only if x = σy for some σ ∈ S.

For a Cayley graph G(G,S) with S = {g1, g−1
1 , . . . , gk, g−1

k } the
adjacency matrix A can be written as

(4.1) A(G(G,S)) = ΠR(g1) + ΠR(g−1
1 ) + . . . + ΠR(gk) + ΠR(g−1

k ),

where ΠR is a regular representation of G given by the permutation
action of G on itself. Every irreducible representation ρ ∈ Ĝ appears
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in ΠR with the multiplicity equal to its dimension

(4.2) ΠR = ρ0 ⊕
⊕

ρ∈Ĝ
ρ 6=ρ0

ρ ⊕ · · · ⊕ ρ
︸ ︷︷ ︸

dρ

,

where ρ0 denotes the trivial representation and dρ = dim(ρ) is the
dimension of the irreducible representation ρ.

Let N = |G|. The adjacency matrix A(G(G,S)) is a symmetric
matrix having N real eigenvalues which we can list in the decreasing
order:

2k = λ0 > λ1 ≥ . . . ≥ λN−1 ≥ −2k;

the eigenvalue 2k corresponds to the trivial representation in the de-
composition (4.2). The strict inequality

2k = λ0 > λ1

follows from connectivity of our graphs G(q) (for q sufficiently large),
which is a consequence of strong approximation (and, in the case of SL2,
can be also established elementarily as in section 4.1 of [8]). Denoting
by W2m the number of closed walks from identity to itself of length 2m,
the trace formula takes form

(4.3)
N−1∑

j=0

λ2m
j = NW2m.

We now fix S = {g1, g−1
1 , . . . , gk, g−1

k } such that 〈S〉 is a free sub-
group of SL2(Z), and consider, for q square-free, G(q) = G(SL2(Z/qZ), Sq),
where Sq is a projection of S modulo q. Let N(q) = |SL2(Z/qZ)|. Let
Ω(q) denote the nontrivial spectrum of the adjacency matrix A(q) of
G(q) (that is, all the eigenvalues of A(G(q)) except for ±2k) and let
λ(q) be the eigenvalue of maximum modulus in Ω(q).

Denote by ν the probability measure on SL2(Z) supported on S,

ν =
1

|S|
∑

g∈S

δg,

and denote by νq the probability measure on SL2(Z/qZ) supported on
Sq,

νq =
1

|S|
∑

g∈Sq

δg.

Let ν(l) denote the l-fold convolution of ν:

ν(l) = µ ∗ · · · ∗ µ
︸ ︷︷ ︸

l

,
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where

(4.4) µ ∗ ν(x) =
∑

g∈G

µ(xg−1)ν(g).

Note that we have

(4.5) ν(2l)
q (1) =

W2l

(2k)2l
.

For a measure µ on G we let

‖µ‖2 =

(
∑

g∈G

µ2(g)

)1/2

,

and
‖µ‖∞ = max

g∈G
µ(g).

The following proposition is proved in section 4.1.

Proposition 4.1. Notation being as above, for any η > 0 there is C(η)
such that if q is square-free for l > C(η) log q

(4.6) ‖ν(l)
q ‖2 < q−3+η.

Now observe that since S is a symmetric generating set, we have

ν(2l)
q (1) =

∑

g∈G

ν(l)(g)ν(l)(g−1) =
∑

g∈G

(ν(l)(g))2 = ‖ν(l)‖2
2,

therefore, keeping in mind (4.5), we conclude that (4.6) implies that
for

l > C(η) log2k q

we have

(4.7) W2l <
(2k)2l

q3−2η
.

Let q = p1 · · · · · pJ where pj are primes. Each irreducible representa-
tion of SL2(Z/qZ), ρ(q) is given by the tensor product of irreducible
representations ρ(pi) of SL2(Z/piZ):

(4.8) ρ(q) = ρ(p1) ⊗ · · · ⊗ ρ(pJ).

Our proof proceeds by induction on the number of prime factors J .
For J = 1 a result going back to Frobenius [23], asserts that for

G = SL2(Z/pZ) with p prime we have

(4.9) dρ(p) ≥ p − 1

2
for all nontrivial irreducible representations.
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Denoting by mp(λ) the multiplicity of λ(p), we clearly have

(4.10)

N(p)−1
∑

j=0

λ2l
j > mp(λ)λ(p)2l,

since the other terms on the left-hand side of (4.10) are positive.
Combining (4.10) with the Frobenius bound (4.9), and the bound on

the number of closed paths (4.7), we obtain, using the trace formula
(4.3), that for l > C(η) log p we have

(4.11)
p − 1

2
λ(p)2l < |SL2(Z/pZ)|(2k)2l

p3−2η
.

Since |SL2(Z/pZ)| = p(p2 − 1) < p3, this implies that

(4.12) λ(p)2l ≪ (2k)2l

p1−2η
,

and therefore

(4.13) |λ(p)| < (2k)1− (1−2η)
C(η) = β(S) < 2k;

here β(S) depends only on the archimedean norm of elements in S.
Now suppose that Theorem 1.7 is established for q ∈ Q(J−1), where

Q(J − 1) consists of square-free numbers given by a product of J − 1
prime factors, that is we have

(4.14) |λ(q)| < β(S) < 2k ∀q ∈ Q(J − 1);

we want to extend (4.14) to the square-free q ∈ Q(J − 1), that is, we
want to extend it to the square-free numbers q(J) given by a product
of J prime factors. The irreducible representations ρq(J) can be split
into two classes: the “old” ones, of the form (4.8) with at least one of
the ρpj

being the trivial representation, and the “new” ones, where all
of the factors ρpj

are given by nontrivial irreducible representations of
SL2(Z/pjZ). Corresponding to this split we have the decomposition

Ω(q) = Ωold(q) ∪ Ωnew(q),

where

Ωold(q) =
⋃

r∈QJ−1(q)

Ω(r),

with QJ−1(q) being the set of all products of J−1 distinct primes in the

decomposition of q =
∏J

j=1 pj. Either λ(q) ∈ Ωold(q), or λ(q) ∈ Ωnew(q).
In the “old” case the spectral gap bound is established by the induction
hypothesis (4.14). In the “new” case, we have that

mult(λ(q)) = dim(ρnew(q))
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for some

ρnew(q) = ρ(p1) ⊗ · · · ⊗ ρ(pJ),

with ρ(pj) being nontrivial for all 1 ≤ j ≤ J . Consequently, in the
“new” case we have, using Frobenius bound (4.9),
(4.15)

mult(λ(q)) = dim(ρnew(q(J)) = dim(ρ(p1))×· · ·×dim(ρ(pJ)) ≥
J∏

j=1

pj − 1

2
.

Therefore, for l > C(η) log q, we obtain

(4.16) λ(q)2l

J∏

j=1

pj − 1

2
< |SL2(Z/qZ)|(2k)2l

q3−2η
.

Since |SL2(Z/qZ)| = O(q3), this implies that

(4.17) λ(q)2l ≪ (2k)2l

q1−2η
,

and therefore

(4.18) |λ(q)| < (2k)1− (1−2η)
C(η) = β(S) < 2k,

completing the proof of Theorem 1.7.

4.1. The measure convolution on SL2(Z/qZ), q square-free. In
this section we prove Proposition 4.1, which follows immediately from
the following

Proposition 4.2. Let µ = πq[ν
(ℓ)], ℓ ∼ log q. Assume that for some γ,

0 < γ < 3
4

we have

(4.19) ‖µ‖2 > q−
3
2
+γ.

Then

(4.20) ‖µ ∗ µ‖2 < q−η‖µ‖2,

where η = η(γ) > 0 depends only on γ.

We now proceed to prove Proposition 4.2 following the approach in
[8].

Assume (4.20) fails, that is fails, that is, suppose that for any η > 0
we have that

(4.21) ‖µ ∗ µ‖2 > q−η‖µ‖2.

We will prove that by choosing η sufficiently small we can find a set A
violating Proposition 4.3.
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Set

(4.22) J = 10 log q

and let

(4.23) µ̃ =
J∑

j=1

2−jχAj
,

where Aj are the level sets of the measure µ: for 1 ≤ j ≤ J

(4.24) Aj = {x | 2−j < µ(x) ≤ 2−j+1}.
Setting

AJ+1 = {x | 0 < µ(x) ≤ 2−J},
we have, for any x ∈ G,

µ̃(x) ≤ µ(x) ≤ 2µ̃(x) +
1

2J
χAJ+1

(x),

hence, keeping in mind (4.22) we obtain

(4.25) µ̃(x) ≤ µ(x) ≤ 2µ̃(x) +
1

q10
.

Note also, that for any j satisfying 1 ≤ j ≤ J , we have

(4.26) |Aj| ≤ 2j.

By our assumption, (4.21) holds for arbitrarily small η, consequently,
in light of (4.25), so does

(4.27) ‖µ̃ ∗ µ̃‖2 > q−η‖µ̃‖2.

Using triangle inequality

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2,

we obtain

‖µ̃∗µ̃‖2 = ‖
∑

1≤j1,j2≤J

2−j1−j2χAj1
∗χAj2

‖2 ≤
∑

1≤j1,j2≤J

2−j1−j2‖χAj1
∗χAj2

‖2.

Therefore, by the pigeonhole principle, for some j1, j2, satisfying

J ≥ j1 ≥ j2 ≥ 1,

we have

(4.28) J22−j1−j2‖χAj1
∗ χAj2

‖2 ≥ ‖µ̃ ∗ µ̃‖2.

On the other hand,

‖µ̃‖2 =

(
J∑

j=1

1

22j
|χAj

|
)1/2

≥
(

1

22j1
|Aj1| +

1

22j2
|Aj2|

)1/2

≥
(
2−j1−j2|Aj1|1/2|Aj2|1/2

)1/2
,
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therefore

(4.29) ‖µ̃‖2 ≥ 2−j1/22−j2/2|Aj1|1/4|Aj2 |1/4.

Note that we also have

J22−j1−j2‖χAj1
∗ χAj2

‖2 ≥ q−η max(2−j1|Aj1|
1
2 , 2−j2 |Aj2|

1
2 ),

and since

|Aj1|
1
2 |Aj2|

1
2 min(|Aj1|

1
2 , |Aj2 |

1
2 ) ≥ ‖χAj1

∗ χAj2
‖2,

we obtain

(4.30) min(2−j1|Aj1|, 2−j2 |Aj2|) ≥
q−η

J2
.

Now combining (4.27), (4.28) and (4.29) we have

J22−j1−j2‖χAj1
∗ χAj2

‖2 ≥ ‖µ̃ ∗ µ̃‖2 ≥ q−η2−j1/22−j2/2|Aj1 |1/4|Aj2|1/4,

yielding

‖χAj1
∗ χAj2

‖2 ≥
q−η

J2
2j1/22j2/2|Aj1|1/4|Aj2|1/4;

recalling (4.22) and (4.26), we obtain

(4.31) ‖χAj1
∗ χAj2

‖2 ≥ q−2η|Aj1|3/4|Aj2|3/4.

Let

(4.32) A = Aj1 and B = Aj2 .

Given two multiplicative sets A and B in an ambient group G, their
multiplicative energy is given by
(4.33)

E(A,B) = |{(x1, x2, y1, y2) ∈ A2 × B2|x1y1 = x2y2}| = ‖χA ∗ χB‖2
2.

Inequality (4.31) means that for the sets A and B, defined in (4.32),
we have

(4.34) E(A,B) ≥ q−4η|A|3/2|B|3/2.

We are ready to apply the noncommutative version of Balog-Szemerédi-
Gowers theorem, established by Tao [59] (Corollary 2.46 [60]), which
implies that there exists A1 ⊂ A such that

(4.35) |A1| > q−η1|A|,
where

(4.36) η1 = 4C1η with an absolute constant C1,

such that

(4.37) |A1(A1)
−1| < qη1|A1|,
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which means that

(4.38) d(A1, A
−1
1 ) < ε1 log q,

where

d(A,B) = log
|A · B−1|

|A|1/2|B|1/2

is Ruzsa distance between two multiplicative sets.
By definition, a multiplicative K-approximate group is any multi-

plicative set H which is symmetric,

(4.39) H = H−1,

contains the identity, and is such that there exists a set X of cardinality

(4.40) |X| ≤ K,

such that we have the inclusions

(4.41) H · H ⊆ X · H ⊆ H · X · X;

(4.42) H · H ⊆ H · X ⊆ X · X · H.

Note, that equations (4.40), (4.41), (4.42) imply

(4.43) |H3| = |H · H2| ≤ |H2 · X| < |H · X2| < K2|H|.
Now by Theorem 2.43 [60] (established by Tao in [59]), connecting

Ruzsa distance with the notion of approximate group in noncommuta-
tive setting, (4.38) implies that there exists a qη2- approximative group
H, where

(4.44) η2 = C2η1 with an absolute constant C2,

satisfying the following properties:

(4.45) |H| < qη2|A1|
and

(4.46) A1 ⊂ XH, A1 ⊂ HY with |X||Y | < qη2 .

Now since A1 ⊂
⋃

x∈X xH and |X| < qη2 , there is x0 ∈ X such that

(4.47) |A1 ∩ x0H| > q−η2|A1|.
Since A1 ⊂ A = Aj1 , by definition (4.24) of Aj, we have

µ(x0H) > µ(A1∩x0H) >
1

2j1
|A1∩x0H|

(4.47)
>

1

2j1
q−η2|A1|

(4.35)
>

1

2j1
q−η2q−η1|Aj1|,

and consequently, keeping in mind (4.30), we have

(4.48) µ(x0H) > q−η3
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with

(4.49) η3 = η1 + η2 + 2η.

Now (4.45) combined with A1 ⊂ Aj1 and (4.26) implies that

(4.50) |H| ≤ qη22j1 .

Using Young’s inequality

(4.51) ‖f ∗ g‖2 ≤ ‖f‖1‖g‖2

we have
‖χAj1

∗ χAj2
‖2 ≤ |Aj2||Aj1|1/2,

therefore
2j2|Aj1|1/2 ≥ |Aj2||Aj1|1/2 ≥ ‖χAj1

∗ χAj2
‖2

and

(4.52) 2−j1|Aj1|1/2 ≥ 2−j1−j2‖χAj1
∗ χAj2

‖2.

Since by (4.26)

2−j1/2 ≥ 2−j1|Aj1|1/2

and since by (4.22), (4.25), (4.27), (4.28) we have

2−j1−j2‖χAj1
∗ χAj2

‖2 ≥ q−2η‖µ‖2,

equation (4.52) implies that

2−j1/2 ≥ q−2η‖µ‖2,

which combined with (4.19) yields

(4.53) 2j1 ≤ q4η‖µ‖−2
2 ≤ q3−2γ+4η.

Therefore, recalling (4.50), we have

(4.54) |H| ≤ qη22j1 ≤ q3−2γ+4η+η2 .

Proceeding as in [8], using Kesten’s result [36] and the fact that the
group 〈S〉 is free we obtain

(4.55) ‖µ‖∞ < q−γ1 .

Combining equation (4.48) with (4.55) we have

(4.56) |H| > qγ1−η3 .

Since H is a qη2-approximate group, it follows from (4.43) that that

(4.57) |H · H · H| < q2η2 |H|,
and, therefore, using (4.56), we have

(4.58) |H · H · H| < |H|1+
2η2

γ1−η3 .
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We now apply the following product theorem for SL2(Z/qZ), proved
in section 4.2.

Proposition 4.3. Let q be square-free. Let A be a subset of SL2(Z/qZ)
satisfying the following properties for some κ0 > 0 and κ1 > 0

(4.59) qκ0 < |A| < q3−κ0 ;

(4.60) |πq1(A)| > qκ1
1 for all q1|q with q1 > qω(κ0), where ω(κ0) =

κ0

40
;

For all t ∈ Z/qZ, for all g ∈ Mat2(q) with πp(g) 6=
(

0 0
0 0

)

for all

p|q we have

(4.61) #{x ∈ A | gcd
(
q, (Tr(gx) − t)

)
> qκ2} < o(|A|),

where5 κ2 = κ2(κ0, κ1) > 0.
Then

(4.62) |A · A · A| > qκ3|A|
with κ3 = κ3(κ0, κ1) > 0.

We now show that by choosing η sufficiently small we can ensure that
the set H satisfies the conditions (4.59), (4.60), (4.61) in Proposition
4.3, while violating (4.62).

The condition (4.59) is satisfied for η sufficiently small in light of
(4.54) and (4.56).

To verify condition (4.60) for q1|q with q1 > qω(κ0) choose l0 and
D(g1, . . . , gk) such that πq1|supp ν(ℓ0) → SL2(Z/q1Z) is one-to-one and

(4.63) Dl0 < q1 < D2l0 .

We will make use of the following elementary observation.

Lemma 4.1. Let µ, µ1, µ2 be probability measures on a group G, and
suppose that µ = µ1 ∗ µ2 and µ(X) > α for some X ⊂ G. Then for
some g ∈ G we have µ2(gX) > α.

5To be precise, κ2(κ0, κ1) must satisfy

0 < κ2(κ0, κ1) < min

(
7

300
κ0,

7

70 + 5400κ−1

0
κ−1

1

,
κ0γ(κ0, κ1)

28 + 16γ(κ0, κ1)

)

,

where γ(κ1, κ1) = δ3(
κ0

10
, κ1

10
) with δ3(δ1, δ2) determined by (1.3) in sum-product

theorem (Theorem 1.8).
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Proof of Lemma 4.1: Write

µ(X) =
∑

g∈G

µ1(g)µ2(g
−1X).

Suppose µ2(g
−1X) < α for all g ∈ G. Then, since

∑

g∈G µ1(g) = 1 we
obtain a contradiction. ¤

Writing

ν(l) = ν(l−l0) ∗ ν(l0),

keeping in mind equation (4.48) and applying Lemma 4.1, we obtain
that for some x1 ∈ G we have

(4.64) ν(l0)
q (x1H) > q−η3 .

Hence

|πq1(H)| = |πq1(x1H)| ≥ |x1H∩(suppν(l0))| ≥ ν
(l0)
q (x1A)

‖ν(l0)‖∞
> q−η3

(
k√

2k − 1

)l0

,

were we applied Kesten’s bound for the random walk on free group
[36].

Consequently,

|πq1(H)| > q
log(k/

√
2k−1)

2 log D
− η3

ω(κ0)

1 ,

and so for sufficiently small η the condition (4.60) is satisfied.
It remains to verify condition (4.61). It clearly suffices to show that

for all t ∈ Z/qZ, for all b ∈ Mat2(q) with πp(b) 6=
(

0 0
0 0

)

for all p|q,
and for all q1|q satisfying q1 > qκ2 we have

(4.65) #{x ∈ H |Tr(bx) ≡ t(mod q1)} < q−ε|H|
for some ε > 0.

Assume, that (4.65) fails, that is, assume that for some b ∈ Mat2(Z/qZ)

such that b 6=
(

0 0
0 0

)

(mod p) for all p|q, for some t ∈ Z/qZ, and for

some q1 satisfying q1|q, q1 > qκ2 we have

#{x ∈ H |Tr(bx) ≡ t(mod q1)} = Ωε(q
−ε)|H|.

for all ε > 0. Recalling (4.48) we have

(4.66) µ[x |Tr(bx−1
0 x) ≡ t (mod q1)] > Ωε(q

−ε)q−η3 .

Let ℓ1 ∼ log q, to be specified below. Writing again ν(ℓ) = ν(ℓ−ℓ1) ∗
ν(ℓ1), and applying Lemma 4.1 we get some y0 ∈ G such that

(4.67) ν(ℓ1)[x|tr(bx−1
0 y0x) ≡ t(mod q1)] > Ωε(q

−ε)q−η3 .
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Let b′ = bx−1
0 y0. Since b 6=

(
0 0
0 0

)

(mod p) for all p|q and x0, y0 ∈
SL2(Z/qZ) we have

(4.68) b′ 6=
(

0 0
0 0

)

(mod p) for all p|q.

Denote W (m) = supp ν(m). Let T denote the set

(4.69) T = {x ∈ W (l1) |Tr(b′x) ≡ t(mod q1)};
we have

(4.70) ν(ℓ1)
q (T ) > Ωε(q

−ε)q−η3 .

For any quintuple x(1), x(2), x(3), x(4), x in T we have

(4.71) Trb′(x(j) − x) ≡ 0(mod q1) (1 ≤ j ≤ 4).

Viewing Mat2 as a four-dimensional vector space, that is, identifying

b =

(
b11 b12

b21 b22

)

with (b11, b12, b21, b22), Tr(ab) is identified with the inner

product,

Tr(ab) = a11b11 + a12b12 + a21b21 + a22b22.

Consequently, in light of (4.68) and (4.71) we have that for all p|q1

(4.72)

det








x
(1)
11 − x11 x

(2)
11 − x11 x

(3)
11 − x11 x

(4)
11 − x11

x
(1)
12 − x12 x

(2)
12 − x12 x

(3)
12 − x12 x

(4)
12 − x12

x
(1)
21 − x21 x

(2)
21 − x21 x

(3)
21 − x21 x

(4)
21 − x21

x
(1)
22 − x22 x

(2)
22 − x22 x

(3)
22 − x22 x

(4)
22 − x22








= 0 (mod p).

By submultiplicativity of the norm of product of matrices, the el-
ements of W (l1) ⊂ SL2(Z) have entries bounded by Dl1

1 for some
D1(g1, . . . , gk). Let D2 = D6

1 and choose l1 so that

(4.73) Dℓ1
2 < q1 < D2ℓ1

2 .

Hence the determinant of the matrix on the left-hand side of (4.72) is
an integer bounded by 55D5ℓ1

1 , which is less than q1. Consequently, by
(4.72) we have

(4.74) det








x
(1)
11 − x11 x

(2)
11 − x11 x

(3)
11 − x11 x

(4)
11 − x11

x
(1)
12 − x12 x

(2)
12 − x12 x

(3)
12 − x12 x

(4)
12 − x12

x
(1)
21 − x21 x

(2)
21 − x21 x

(3)
21 − x21 x

(4)
21 − x21

x
(1)
22 − x22 x

(2)
22 − x22 x

(3)
22 − x22 x

(4)
22 − x22








= 0 in Z.
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We now proceed as follows. Choose a prime P satisfying P ∼ log l1.
Applying expander result for prime modulus [8] to Cayley graph of
SL2(Z/PZ) with respect to πP (g1, . . . , gk) we have

(4.75) ‖ν(l1)
P ‖∞ = Oε(P

ε)P−3.

It follows form (4.70), (4.75) that

(4.76) |πP (T )| ≥ ν
(l1)
P (T )

‖ν(l1)
P ‖∞

> Ωε(q
−ε)q−η3Ωε(P

−ε)P 3.

Now since q1 > qκ2 we have

log P > D2(g1, . . . , gk)κ2 log q,

therefore (4.76) implies that

(4.77) |πP (T )| > Ωε(P
−ε)P

3− η3
D2κ2 .

Recalling (4.74), valid for all x(1), x(2), x(3), x(4), x ∈ T , (4.77) implies
that

|{(x(1), x(2), x(3), x(4)x) ∈ SL2(Z/PZ)5 :

det








x
(1)
11 − x11 x

(2)
11 − x11 x

(3)
11 − x11 x

(4)
11 − x11

x
(1)
12 − x12 x

(2)
12 − x12 x

(3)
12 − x12 x

(4)
12 − x12

x
(1)
21 − x21 x

(2)
21 − x21 x

(3)
21 − x21 x

(4)
21 − x21

x
(1)
22 − x22 x

(2)
22 − x22 x

(3)
22 − x22 x

(4)
22 − x22








= 0 in FP}|

> Ωε(P
−ε)P

−5
η3

D2κ2 |SL2(Z/PZ)|5

for any ε > 0. By choosing η sufficiently small, this would imply that

det








x
(1)
11 − x11 x

(2)
11 − x11 x

(3)
11 − x11 x

(4)
11 − x11

x
(1)
12 − x12 x

(2)
12 − x12 x

(3)
12 − x12 x

(4)
12 − x12

x
(1)
21 − x21 x

(2)
21 − x21 x

(3)
21 − x21 x

(4)
21 − x21

x
(1)
22 − x22 x

(2)
22 − x22 x

(3)
22 − x22 x

(4)
22 − x22








vanishes identically on SL2(FP )5, implying that SL2(FP ) ⊂ F4
P is con-

tained in a hyperplane, obtaining a contradiction and completing the
proof of Proposition 4.2. ¤

4.2. Product theorem in SL2(Z/qZ), q square-free. In this section
we establish Proposition 4.3, which generalizes the result of Helfgott
[31] in the case of prime modulus.
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4.2.1. Outline of the proof. We begin by giving a very rough outline of
the proof. Denote by A(n) the n-fold product set

(4.78) A(n) = (A ∪ A−1) . . . (A ∪ A−1)
︸ ︷︷ ︸

n

.

Assume (4.62) fails, that is assume that

(4.79) |A · A · A| < Oε(q
ε)|A|

for any ε > 0. By Proposition 2.40 [60] we then have

(4.80) |A(n)| < Oε(q
nε)|A|

for all n ≥ 1.
In the outline below we denote by ki (small) absolute integer con-

stants, and by ρi positive constants depending on κ0, κ1; these are
detailed in the course of the proof.

(1) If A fails to grow, that is, if it satisfies (4.80), and if it con-
tains two elements g1, g2 such that for a (large) divisor q1 of
q the projections πq1(g1) and πq1(g2) are in “general position”
(do not have common eigenvectors), and such that most of the
elements of πq1(A), πq1(g1A), πq1(g2A) are non-unipotent, we
deduce (Lemma 4.5) that A(k1) contains a large subset V , whose
projection modulo q1 consists of simultaneously diagonalizable
matrices.

(2) Using sum-product theorem, we deduce (Lemma 4.7) that given
a simultaneously diagonalizable set V with the set Tr(V ) sat-
isfying the assumptions of sum-product theorem, and a matrix
g3 with non-zero entries (in the chosen basis), the set of traces
of V (8)g3V

(8)g3 grows substantially. Applying this result to the
set V ⊂ A(k1) constructed in the preceding step, results in a set
A(k1k2) with Tr(A(k1k2)) & |A| 13+ρ2 .

(3) We now apply Lemma 4.4, which says, roughly speaking, that if
a subset A of SL2(Z/qZ) does not grow much under multiplica-
tion (that is, if it satisfies (4.80)) then A(2) contains a subset W
of matrices whose projections modulo q′ (a large divisor of q)
are simultaneously diagonalizable, and whose size is not much
less than the size of traces of matrices in A with non-unipotent
projections modulo q′. This allows us to deduce that the set
A(2k1k2) contains a subset W of simultaneously diagonalizable
matrices (modulo a large divisor q3 of q) of size |W | & |A| 13+ρ3 .

(4) Finally, we apply Lemma 4.6, asserting that if W is a simulta-
neously diagonalizable set of matrices and g4 is a matrix with
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non-zero entries then |Wg4Wg4W | > Ωε(q
−ε)|W |3, to obtain

|A(2k1k2k3)| & |A|1+ρ4 implying a contradiction with (4.80)

As detailed at the beginning of section 4.2.5, the existence of matrices
g1, g2, g3, g4, needed in the course of proof, is ensured using condition
(4.61) in the product theorem.

4.2.2. Trace size from size. Our first goal it to show (Corollary 4.2)
that for any set A ⊂ SL2(Z/qZ), given two matrices g, h, whose projec-
tions modulo a large divisor q′ of q (q′ > q1−τ ) are “in general position”
(that is, have no common eigenvector), the size of the set of traces of

one of the sets A, gA, hA is not much smaller than q−τ |A| 13 .
Lemma 4.2. Let {g, h} be elements in SL2(Fp) with no common eigen-
vector. Then the map

(4.81) SL2(Fp) −→ Fp
3 : x 7→ (Tr(x), Tr(gx), Tr(hx))

has multiplicity at most 2.

Proof of Lemma 4.2. Assume first Tr(g) 6= ±2. Diagonalize g in Fp

or in an extension field K ≃ Fp2 . Specify the basis, so as to make g
diagonal. Thus we can write

g =

[
r 0
0 r−1

]

and h =

[
α β
γ δ

]

,

where, from our assumption, r ∈ K\{1,−1} and βγ 6= 0 (mod p).

For x =

[
x11 x12

x21 x22

]

∈ SL2(K) we get

Tr(x) = x11 + x22,(4.82)

Tr(gx) = rx11 + r−1x22,(4.83)

Tr(hx) = αx11 + βx21 + γx12 + δx22.(4.84)

Let Tr(x), Tr(gx), Tr(hz) be given. ¿From (4.82), (4.83) we recover
x11 and x22. Since x11x22 − x12x21 = 1, (4.84) implies

(4.85) x12

(
γβ−1x12 + β−1(αx11 + δx22 − Tr(hx))

)
= 1 − x11x22

and therefore x12 is determined up to multiplicity 2. If x12 6= 0, also
x21 and hence x are determined. If x12 = 0, (4.84) determines x21.

Next, suppose that Tr(g) ∈ {2,−2}. In an appropriate basis we
obtain

g =

[
±1 b
0 ±1

]

and h =

[
α β
γ δ

]

with b 6= 0 and γ 6= 0, again from our assumption. Hence

(4.86) Tr(gx) = ±(x11 + x22) + bx21 = ±Tr(x) + bx21,
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determining x21. We obtain the equation
(4.87)
1 = x11(Tr(x)− x11)− x21γ

−1
(
Tr(hx)− βx21 −αx11 − δ(Tr(x)− x11)

)
,

that determines x11 up to multiplicity 2. From (4.82), x22 is obtained
and (4.84) gives x12. This completes the proof of Lemma 4.2. ¤

Now let q be square-free, q =
∏

i∈I pi; thus SL2(Z/qZ) is isomorphic
to the product

∏
SL2(Z/piZ). The following result is an immediate

consequence of Lemma 4.2.

Lemma 4.3. Let g, h ∈ SL2(Z/qZ) and assume that for each p|q

(4.88) {πp(g), πp(h)} do not have a common eigenvector.

Then the map

(4.89) SL2(Z/qZ) → (Z/qZ)3 : x 7→ (Tr(x), Tr(gx), Tr(hx))

has multiplicity at most 2|I|.

The following corollary is an immediate consequence of Lemma 4.3.

Corollary 4.1. Let g, h be elements of SL2(Z/qZ) satisfying (4.88).
For any subset A of SL2(Z/qZ) we have

(4.90) |Tr(A)| + |Tr(gA)| + |Tr(hA)| > Ωε(q
−ε)|A|1/3.

Corollary 4.2. Assume that g, h are elements of SL2(Z/qZ) such that
for some τ > 0 we have

(4.91) gcd
(
q, Tr(ghg−1h−1) − 2

)
< qτ .

Then for any subset A of SL2(Z/qZ) we have

(4.92) |Tr(A)| + |Tr(gA)| + |Tr(hA)| > Ωε(q
−ε)q−τ |A|1/3.

Proof of Corollary 4.2: Let q1 = gcd
(
q, Tr(ghg−1h−1) − 2

)
< qτ

and q′ = q
q1

. Thus if p|q′, then {πp(g), πp(h)} ⊂ SL2(p) don’t have a

common eigenvector. Applying Corollary 4.1 to πq′(A), it follows that

|Tr(A)| + |Tr(gA)| + |Tr(hA)| ≥
|Tr(πq′(A))| + |Tr(πq′(gA))| + |Tr(πq′(hA))| >

Ωε(q
−ε)|πq′(A)|1/3 > Ωε(q

−ε)q−τ |A|1/3.

(4.93)

¤
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4.2.3. Growth and simultaneously diagonalizable subsets.

Lemma 4.4. Let A ⊂ SL2(Z/qZ), q square free. Let T ⊂ Tr(A) ⊂
Z/qZ such that for some τ > 0 we have

(4.94) gcd(q, t2 − 4) < qτ for all t ∈ T.

Then there is a subset V ⊂ A−1A and q′|q, such that

(4.95) q′ > q1−τ ,

(4.96) πq′(V ) ⊂ SL2(Z/q′Z)are simultaneously diagonalizable,

(4.97) |V | > |T | |A|
|A2A−1| .

Proof of Lemma 4.4. For each t ∈ T , take an element gt ∈ A with
Tr(gt) = t. Define sets Ct by

(4.98) Ct = {xgtx
−1|x ∈ A} ⊂ A2A−1;

these sets are clearly disjoint. Hence, by the pigeonhole principle, there
is t ∈ T such that

(4.99) |Ct| ≤
|A2A−1|

|T | .

Split A = A1 ∪ · · · ∪ Ak into disjoint subsets Aj such that xgtx
−1 =

ygty
−1 for x, y ∈ Aj. Again, by the pigeonhole principle, for some j we

have |Aj| ≥ |A|
k

≥ |A|
|Ct| . Setting A0 = Aj, we have

(4.100) |A0| ≥
|A|
|Ct|

≥ |A|
|A2A−1| |T |.

Choose x0 ∈ A such that

(4.101) xgtx
−1 = x0gtx

−1
0 for x ∈ A0

and set V = x−1
0 A.

From (4.94), there is q′|q satisfying (4.95) and such that Trgt 6=
±2(mod p) for all p|q′. For p|q′, diagonalize πp(gt) over Fp. Thus, in
this basis

(4.102) πp(gt) =

(
rp 0
0 r−1

p

)

with rp 6= ±1.

If g ∈ V , equation (4.101) implies that g and gt commute. Thus,
writing in the chosen basis

πp(g) =

(
αp βp

γp δp

)

,
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it follows that

(rp − r−1
p )βp ≡ 0 ≡ (rp − r−1

p )γp (mod p);

hence βp ≡ 0 ≡ γp (mod p). Therefore πq′(g) is diagonal in this basis
for all g ∈ V . ¤

Lemma 4.5. Let A ⊂ SL2(Z/qZ). Assume there are elements g, h in
A such that the following properties are satisfied:

(4.103) gcd
(
q, Tr(ghg−1h−1) − 2

)
< qτ

and

(4.104) gcd(q,
(
(Trx)2 − 4

)(
(Tr(gx))2 − 4)

(
(Tr(hx))2 − 4)

)
< qτ

for all x ∈ A′, where |A′| > |A| − o(|A|). Then there is q1|q and
V ⊂ A−1A such that

(4.105) q1 > q1−τ ,

(4.106) πq′(V ) are simultaneously diagonalizable ,

(4.107) |V | > Ωε(q
−ε)q−τ |A|4/3

|A3A−1| .

Proof. By Corollary 4.2, assumption (4.103) implies that there is g0 ∈
{1, g, h}, such that |Trg0A

′| > Ωε(q
−ε)q−τ |A| 13 . Next, apply Lemma 4.4

to the set g0A
′ with Tr(g0A

′) = T . Assumption (4.104) implies that
condition (4.94) holds. The conclusion is clear from (4.95)-(4.97). ¤

Lemma 4.6. Let V ⊂ SL2(Z/qZ) be a set of diagonal elements (in a

specified basis). Let g =

(
α β
γ δ

)

with

(4.108) αβγ 6= 0(mod p) for all p|q.
Then

(4.109) |V gV gV | > Ωε(q
−ε)|V |3.

Proof. For p|q, denote

Sp = {x ∈ F∗
p|πp(α)x + πp(δ)x

−1 = 0 or πp(α
2)x + πp(βγ)x−1 = 0},

which has at most 4 elements, since πp(α) 6= 0. For each p, partition

F∗
p = (F∗

p\Sp) ∪ Sp.

We may then factor q = q1 · q2 and obtain a subset V ′ ⊂ V satisfying
the following properties:

(4.110) |πp(V
′)| = 1 if p|q1,
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(4.111) πp(V
′) ∩ Sp = ∅ if p|q2,

(4.112) |V ′| > 5−|I||V | > Ωε(q
−ε)|V |.

Thus πq2|V ′ is one to one.
Next, we show that the map πq2(V

′)3 → Mat2(q2) given by

(
x1 0
0 x−1

1

)

×
(

x 0
0 x−1

)

×
(

x2 0
0 x−1

2

)

7→
(

x1 0
0 x−1

1

)

πq2(g)

(
x 0
0 x−1

)

πq2(g)

(
x2 0
0 x−1

2

)

(4.113)

has multiplicity at most 10|I|, which by the preceding will imply (4.109).
It clearly suffices to show that for each prime p|q2 the map

(4.114)

F∗
p×F∗

p×(F∗
p\Sp) : (x1, x2, x) 7→

(
x1 0
0 x−1

1

)

πp(g)

(
x 0
0 x−1

)

πp(g)

(
x2 0
0 x−1

2

)

is of bounded multiplicity. Fix p|q2, and denote again

πp(g) =

(
α β
γ δ

)

αβγ 6= 0(mod p).

Then expression on the right hand side of (4.114) is equal to

(
ax1x2 bx1

x2

cx2

x1

d
x1x2

)

with (
a b
c d

)

=

(
α2x + βγx−1 β(αx + δx−1)
γ(αx + δx−1) δ2x−1 + βγx

)

.

We have that bc = βγ(αx+ δx−1)2, hence x is determined up to multi-
plicity 4. Since x 6∈ Sp, a = α2x+βγx−1 6= 0 and b = β(αx+δx−1) 6= 0
(mod p); therefore both x1x2 and x1

x2
are determined (mod p). This com-

pletes the proof of Lemma 4.6 ¤
We remark that Lemma 4.6 remains valid if SL2(Z/qZ) is replaced

by SL2

( ∏

p|q Fp

)
with Fp = Fp or F = Fp2 .

4.2.4. Trace amplification.

Lemma 4.7. Let V ⊂ SL2(Z/qZ) be a set of simultaneously diag-
onalizable elements which for each p|q we diagonalize over Fp in an
appropriate basis. Let in this basis

(4.115) g =

(
α β
γ δ

)

∈ SL2

(∏

p|q
Fp

)
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with

(4.116) αβγδ 6= 0(mod p) for all p|q.
Assume

(4.117) |V | > qδ2 .

For all 0 < δ1, δ2 < 1
10

, there is γ = γ(δ1, δ2) > 0, such that one of the
following properties holds:

(4.118) |V | > q1−δ1 ,

(4.119) There is q1|q such that q1 > q
δ1
3 and |πq1(V )| < qδ2

1 ,

(4.120) |Tr(V (8)gV (8)g)| > |V |1+γ ,

where we denote by V (n) the n-fold product set defined in (4.78).

Proof. Let V =
{(

x 0
0 x−1

)

|x ∈ M
}

where M ⊂ ∏

p|q(Fp)
∗. We

have

Tr

(
x1 0
0 x−1

1

) (
α β
γ δ

)(
x2 0
0 x−1

2

)(
α β
γ δ

)

= α2x1x2+δ2 1

x1x2

+βγ
(x1

x2

+
x2

x1

)

.

Suppose (4.120) fails, that is, suppose that for all ε > 0 we have
(4.121)

∣
∣
∣

{

α2x1x2 + δ2 1

x1x2

+ βγ
(x1

x2

+
x2

x1

)∣
∣
∣x1, x2 ∈ M (8)

}∣
∣
∣ < Oε(q

ε)|M |.

Letting x1 = y1y2, x2 = y1

y2
with y1, y2 ∈ M (4), it follows that for all

ε > 0

(4.122)
∣
∣
∣

{

(α2y2
1 +δ2y−2

1 )+βγ(y2
2 +y−2

2 )
∣
∣
∣y1, y2 ∈ M (4)

}∣
∣
∣ < Oε(q

ε)|M |.
Let

B =
{

α2y2 + δ2y−2
∣
∣
∣y ∈ M (4)

}

,

C =
{

y2 + y−2
∣
∣
∣y ∈ M (4)

}

,

C ′ = βγC.

By Ruzsa’s sumset inequality (see [60]) we have

(4.123) |C ′ + C ′| ≤ |B + C ′|
|B| .

For ab 6= 0(mod p) the map

(Fp)
∗ → Fp : y 7→ ax2 + bx−2
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has multiplicity at most 4; therefore

(4.124) |B| > Ωε(q
−ε)|M (4)|,

(4.125) |C ′| = |C| > Ωε(q
−ε)|M (4)|.

Consequently, we conclude from (4.122),(4.123), (4.124), (4.125),
that

(4.126) |C ′ + C ′| < Oε(q
ε)|M |.

Let

(4.127) Ts = {x2 + x−2|x ∈ M (s)}.
By (4.126) we have that

(4.128) |T4 + T4| < Oε(q
ε)|M |.

Since 1 ∈ M (2), we have that T2 ⊂ T4. Further, using identity

(x2 + x−2)(y2 + y−2) = (xy)2 + (xy)−2 + (xy−1)2 + (xy−1)−2,

we conclude that T2 · T2 ⊂ T4 + T4. Consequently (4.128) implies that
for all ε > 0 we have

(4.129) |T2 + T2| + |T2 · T2| < Oε(q
ε)|M |.

Since clearly |M (2)| ≥ |M |, and since by the remark following (4.123)
we have that

(4.130) |Ts| > Ωε(q
−ε)|M (s)|,

we obtain that

(4.131) |T2 + T2| + |T2 · T2| < Oε(q
ε)|T2|.

Note that

T2 ⊂ Tr(V · V · V · V ) ⊂
∏

p|q
Fp = Z/qZ,

so that we may invoke the sum-product theorem in Z/qZ (Theorem
1.8). Since the conclusion of Theorem 1.8 fails by (4.131), either as-
sumption (1.1) or (1.2) from Theorem 1.8 fails. If |T2| > q1−δ1 , (4.118)

holds. Next assume q1|q, q1 > q
δ1
3 and |πq1(T2)| < qδ2

1 . Then also

|πq1(M)| < qδ2
1 , and therefore the alternative (4.119) holds. This com-

pletes the proof of Lemma 4.7.
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4.2.5. Set amplification. We are ready to complete the proof of Propo-
sition 4.3. Assume (4.62) fails; as discussed in section 4.2.1, this implies
that (4.80) holds.

To see how condition (4.61) implies the existence of matrices gi men-
tioned in the outline, note that we can re-express this condition as

follows. Given t ∈ Z/qZ and g ∈ Mat2(q) with πp(g) 6=
(

0 0
0 0

)

for

all p|q, let ξg,t(x) denote the affine form given by ξg,t(x) = Tr(gx − t).
Then

(4.132) #
{

x ∈ A |
∏

p|q
ξg,t(x)=0(mod p)

p > qκ2

}

< o(|A|).

This assumption also implies that for a fixed number r, given g1, . . . , gr

in Mat2(q) with πp(gj) 6=
(

0 0
0 0

)

for all p|q and all 1 ≤ j ≤ r, and

t1, . . . , tr in Z/qZ, we have

(4.133) #
{

x ∈ A |
∏

p|q
ξg1,t1 (x)...ξgr,tr (x)=0(mod p)

p > qrκ2

}

< o(|A|),

or, equivalently,

(4.134) #
{

x ∈ A
∣
∣ gcd(q,

r∏

j=1

[Tr(gjx) − tj]) > qrκ2

}

< o(|A|).

Next, letting r = 2, g1 = g2 =

(
1 0
0 1

)

and t1 = 2, t2 = −2 we have

#
{

x ∈ A |
∏

p|q
Tr(x)=±2(mod p)

p > q2κ2

}

< o(|A|);

consequently there is an element g ∈ A such that

(4.135) q̃ =
∏

p|q
Trg=±2(modp)

p < q2κ2 .

Let q′ = q
q̃
. We have

(4.136) q′ > q1−2κ2 ,

and for each p|q′ in an appropriate basis the matrix g may be diago-
nalized over Fp:

(4.137) πp(g) =

(
rp 0
0 r−1

p

)

with rp 6= ±1.
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Letting r = 2, t1 = t2 = 0 and choosing g1, g2 corresponding, in the
chosen basis, to the linear forms

(
x11 x12

x21 x22

)

7→ x12 and

(
x11 x12

x21 x22

)

7→ x21

on Mat2(
∏

Fp), another application of (4.134) yields h ∈ A such that

(4.138) πp(h) =

(
αp βp

γp δp

)

with βpγp 6= 0

for all p|q′′ with q′′|q′ such that

(4.139) q′′ > q′q−2κ2 > q1−4κ2 .

Hence for p|q′′ we have

det(gh − hg) = βpγp

( 1

rp

− rp

)

6= 0 (mod p)

and therefore

(4.140) gcd
(
q, Tr(ghg−1h−1) − 2

)
<

q

q′′
< q4κ2 .

Hence condition (4.103) of Lemma 4.5 holds with τ = 4κ2.

Applying (4.134) with r = 6, g1 = g2 =

(
1 0
0 1

)

, g3 = g4 = g,

g5 = g6 = h and tj = ±2, condition (4.104) is obtained with τ = 4κ2.
Application of Lemma 4.5 therefore yields a subset V ⊂ A−1A and q1|q
such that

(4.141) q1 > q1−6κ2 ,

(4.142) The elements of πq1(V ) are simultaneously diagonalizable,

(4.143) |V | > Ωε(q
−ε)q−6κ2

|A|4/3

|A3A−1| .

Now since by (4.80) we have

(4.144) |A3A−1| = Oε(q
ε)|A|,

combining (4.143) and (4.144) we obtain

(4.145) |V | > Ωε(q
−ε)q−6κ2|A|1/3,

which combined with the left-hand side of the inequality (4.59) (|A| >
qκ0) yields

(4.146) |V | > Ωε(q
−ε)q

κ0
3
−6κ2
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and

(4.147) |V | > Ωε(q
−ε)|A|

1
3
− 6κ2

κ0 .

Perform a basis change to make πq1(V ) diagonal. Another applica-
tion of (4.134) yields g0 ∈ A and q2|q1 s.t.

(4.148) q2 > q1−4κ2
1 > q1−10κ2 ,

and, in the basis diagonalizing πq1(V ), we have

(4.149) g0 =

(
α β
γ δ

)

with πp(αβγδ) 6= 0 for all p|q.

Apply Lemma 4.7 with q replaced by q2 to the set πq2(V ); condition
(4.116) is implied by (4.149) and condition (4.117) is implied by (4.146).
Set

(4.150) δ1 =
κ0

10
, δ2 =

κ1

10
.

We now consider in turn the three possibilities (4.118), (4.119),
(4.120) and show that in each case we obtain a contradiction.
Case 1: We have

(4.151) |πq2(V )| > q1−δ1
2 .

Application of Lemma 4.6 gives

|πq2(V g0V g0V )| > Ωε(q
−ε)|πq2(V )|3 > Ωε(q

−ε)q
3(1−δ2)
2

> Ωε(q
−ε)q3(1−10κ2)(1−δ2) > Ωε(q

−ε)q3−κ4
(4.152)

with

κ4 =
3

10
κ0 + 30κ2 − 3κ1κ2.

Now since V ⊂ A−1A, we have V g0V g0V ⊂ A(8) and therefore (4.152)
implies that

|A(8)| > Ωε(q
−ε)q3−κ4 .

On the other hand, by our assumption (4.80), we have

|A(8)| < Oε(q
ε)|A|

and by (4.59) we have

|A| < q3−κ0 ,

yielding

|A(8)| < Oε(q
ε)q3−κ0 .

Consequently we obtain a contradiction for κ4 < κ0, that is for

(4.153) κ2 <
7

300
κ0.



AFFINE LINEAR SIEVE, EXPANDERS, AND SUM-PRODUCT 49

Case 2: Alternative (4.119) holds, that is, there is q3|q2 with q3 > q
δ1
3

2 ,
such that

(4.154) |πq3(V )| < qδ2
3 .

Hence we may specify a subset V1 of V , such that

(4.155) |V1| > q−δ2
3 |V |,

and

(4.156) |πq3(V1)| = 1.

Applying Lemma 4.6 with q replaced by q2/q3 to the set πq2/q3(V ), we
obtain

(4.157) |πq2/q3(V1g0V1g0V1)| > Ωε(q
−ε)|V1|3 > Ωε(q

−ε)q−3δ2
3 |V |3,

where the set
W = V1g0V1g0V1

satisfies by (4.156)

(4.158) |πq3(W )| = 1.

At this point, invoke assumption (4.60) on A. Keeping in mind (4.148)
and (4.150) we have

(4.159) q3 > q
δ1
3

2 > q
κ0(1−10κ2)

30 ,

and therefore, provided

(4.160) κ2 <
1

10
− 3ω(κ0)

κ0

=
1

40
,

we have

(4.161) |πq3(A)| > qκ1
3 .

It then follows from (4.157) - (4.161) that

|A(9)| ≥ |πq2(W · A)| ≥ |πq2/q3(W )||πq3(A)| ≥ Ωε(q
−ε)qκ1−3δ2

3 |V |3.
Recalling equation (4.145) we therefore have

|A(9)| > Ωε(q
−ε)qκ1−3δ2

3 q−18κ2 |A|,
and hence, using equations (4.159) and (4.150), we obtain

|A(9)| > Ωε(q
−ε)|A|q

7κ0κ1−κ2(5400+70κ0κ1)
300 .

Consequently, using the left-hand side of the inequality (4.59) (|A| >
qκ0) we obtain a contradiction with (4.80) provided

(4.162) κ2(κ0, κ1) <
7

70 + 5400κ−1
0 κ−1

1

.
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Case 3: Alternative (4.120) holds, that is for some γ > 0, γ(δ1, δ2) =
γ(κ0, κ1) we have

|Tr(V (8)gV (8)g)| > |πq2(V )|1+γ .

Since V (8)gV (8)g ⊂ A34, using (4.145) and (4.148) we obtain

(4.163) |Tr(A(34))| > Ωε(q
−ε)q−16κ2(1+γ)|A| 13 (1+γ).

Let T = Tr(A(34)). With the aim of applying Lemma 4.4 to A(34), we
pass to a divisor of q, so that condition (4.94) is fulfilled. Partitioning
for each p|q

Fp = {2} ∪ {−2} ∪ (Fp\{2,−2})
we obtain q4|q and T0 ⊂ T such that the following holds:

(4.164) |T0| > 3−|I||T | > Ωε(q
−ε)q−16κ2(1+γ)|A| 13 (1+γ),

(4.165) |πq/q4(T0)| = 1

and

(4.166) πp(T0) ∩ {2,−2} = ∅ for all p|q4.

Now apply Lemma 4.4 with q replaced by q4 to the set πq4(A
(34)) ⊂

SL2(Z/q4Z). By (4.166) we have

gcd(q4, t
2 − 4) = 1 for all t ∈ πq4(T0),

consequently Lemma 4.4 yields a subset W ⊂ A(68) such that πq4(W )
is simultaneously diagonalizable and

(4.167) |πq4(W )| > |T0|
|πq4(A)|

|πq4(A
(102))| .

Diagonalize πq4(W ) ⊂ SL2(Z/q4Z) in an appropriate basis. By (4.134),
there is g1 ∈ A and q5|q4, satisfying

(4.168) q5 > q1−4κ2
4 ,

such that in the chosen basis we have

(4.169) g1 =

(
α β
γ δ

)

with πp(αβγδ) 6= 0 for p|q5.
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Applying Lemma 4.6 to πq5(W ) ⊂ SL2(Z/q5Z), we obtain

|πq5(WgWgW )| > Ωε(q
−ε)|πq5(W )|3 > Ωε(q

−ε)q−12κ2
4 |πq4(W )|3

(4.167)
> Ωε(q

−ε)q−12κ2
4 |T0|

( |πq4(A)|
|πq4(A

(102))|

)3

(4.164)
> Ωε(q

−ε)q−28κ2−16κ2γ|A|1+γ

( |πq4(A)|
|πq4(A

(102))|

)3

.

(4.170)

Now since WgWgW ⊂ A(206), the left-hand side of (4.170) is no greater
than |A(206)|. By our assumption (4.80), we have

(4.171) |A(206)| < Oε(q
ε)|A|.

So combining (4.170) and (4.171) we have

|A| > Ωε(q
−ε)q−28κ2−16κ2γ|A|1+γ

( |πq4(A)|
|πq4(A

(102))|

)3

,

and therefore, since |A| > qκ0 , we obtain

(4.172) |πq4(A
(102))| > Ωε(q

−ε)q
γκ0−28κ2−16κ2γ

3 |πq4(A)|.
Now choose ξ ∈ Z/q4Z and A1 ⊂ A such that

(4.173) πq4(A1) = {ξ}
and

(4.174) |πq/q4(A1)| = |A1| ≥
|A|

|πq4(A)| .

Then from (4.172) - (4.174) we have for all ε > 0

|A(103)| > |A1·A(102)| > |πq4(A
(102))|·|πq/q4(A1)| > Ωε(q

−ε)q
γκ0−28κ2−16κ2γ

3 |A|.
Therefore, provided

(4.175) κ2 <
κ0γ(κ0, κ1)

28 + 16γ(κ0, κ1)
,

we obtain a contradiction to (4.80).
This completes the proof of Proposition 4.3. ¤

5. Sum-product theorem in Z/qZ (q square-free)

This section is devoted to the proof of Theorem 1.8. Recall that
q =

∏J
j=1 pj is a product of distinct primes; for q′|q we let πq′ denote

the projection Z/qZ → Z/q′Z. Let Z∗
q denote the units of Zq, where

Zq = Z/qZ.
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5.1. Outline of the proof. We begin by giving a rough outline of the
proof.

Reduction to a subset of Z∗
q. Assuming A satisfies assumptions (1.1),

(1.2) of Theorem 1.8 but fails (1.3), we first show that there is a large
subset A1 of A, and a large divisor q1 of q such that πq1(A1) ⊂ Z∗

q1
and

πq1(A1) satisfies (1.1), (1.2) but fails (1.3) in Zq1 . For A1 ⊂ Z∗
q1

the
failure of (1.3) implies (using Lemma 5.1 established in [6]) that for a
large subset A2 of A1 all the polynomial expressions do not grow, so
(after passing to a large subset of A and a large divisor of q) the failure
of (1.3) implies that for any k > 0 and any ε > 0

(5.1) |kAk| < Oε(q
ε)|A|.

From now on our task is to establish a contradiction with (5.1).

Application of sum-product estimate in Zp for prime p. Sum-product
estimate in Zp for prime p [10] implies that for A ⊂ Zp satisfying
|A| > pτ we have rAr = Zp for r = r(τ) (see Lemma 1 in [5]). A
slight generalization of the exponential sum bound in [10] implies that
the same conclusion also holds for different sets Ai,j ⊂ Zp satisfying
|Ai,j| > pτ , that is, given τ > 0, there is r = r(τ) such that we have

(5.2)
r∑

i=1

r∑

j=1

Ai,j = Zp.

“Regularization”. With the aim of applying (5.2) we perform the
following “regularization” of A. Naturally associated with a subset
A of Zq is a directed tree T (A), consisting of J levels, with vertices
on level j consisting of elements in πp1...pj

(A), and with each vertex
corresponding to the element x at level j, connected to those vertices
at level j+1, for which there is t ∈ Zpj+1

, such that (x, t) ∈ πp1...pj+1
(A).

After mild “pruning” we obtain a “regularized” subset of A which is of
comparable size with A, such that the degrees of vertices in T (A) are
constant at each level.

Preserving large subfactors. Letting q1 be the product of those
primes for which the degrees of T (A) constructed in the previous
step are greater than pδ1/3, we obtain using (5.1), (5.2) (applied with
τ = δ1/3), that q1 > qδ2/2 and

(5.3) πq1(rA
r) = Zq1

where r = r(δ2), and with the same property (5.3) holding for all q′|q
with q′ > qδ1/3 (with q replaced by q′).
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“Gluing” different factors. Finally, we combine different factors ob-
tained in the preceding step to iteratively increase the value of q1,
thereby obtaining a contradiction with (5.1) and (1.1). This is accom-
plished using Proposition 5.1, asserting that if for some subset S ⊂ Zq

and q1|q, q2| q
q1

we have πq1(S) = Zq1 , πq2(S) = Zq2 , then there is Q|q1q2,

such that Q > q1q
ρ
2 (with ρ > 0) and πQ(400S2) = ZQ. Proposition 5.1

is proved using techniques developed in [6], combined with “very dense
graph” analogue of Balog-Szemerédi-Gowers Lemma (Lemma 5.9) and
near-exact sum set theorem (Lemma 5.7), which is a consequence of
Kneser’s theorem [37].

5.2. Reduction to a subset of Z∗
q. Assume (1.3) fails, that is, sup-

pose that for all ε > 0 we have

(5.4) |A + A| + |A · A| < qε|A|.
The aim of this section is to show that assuming (5.4) and (1.1), (1.2),
there is a divisor q′ of q, q′ > q1−η and a large subset B of A (|B| >
Ωε(q

−ε)|A|) for any ε > 0), such that πq′(B) ⊂ Z∗
q′ , which satisfies

condition (1.2) (with q replaced by q′, η replaced by 2η and δ2 replaced
by δ2

2
), and such that for any k ≥ 1 we have

|kπq′(B)k| < Ok,ε(q
′ε)|πq′(B)|.

We begin by constructing a large subset A′ of A, such that πq′(A
′) ⊂

Z∗
q′ with q′|q, q′ > q1−η, and having a small sum-set A′ +A′ and a small

product-set A′ · A′. Let A0 = A, q′0 = 1, q′′0 = 1. Let

A′
1 = {x ∈ A0 |πp1(x) 6= 0}.

If |A′
1| ≥ p1−1

p1
|A0|, let A1 = A′

1 and let q′1 = q′0p1, q′′1 = q′′0 . If |A′
1| <

p1−1
p1

|A0|, let A1 = A0 and let q′1 = q′0, q′′1 = q′′0p1. Proceeding iteratively,

at step i + 1 let

A′
i+1 = {x ∈ Ai |πpi+1

(x) 6= 0}.

If |A′
i+1| ≥ pi+1−1

pi+1
|Ai|, let Ai+1 = A′

i+1 and let q′i+1 = q′ipi+1, q′′i+1 = q′′i .

If |A′
i+1| < pi+1−1

pi+1
|Ai|, let Ai+1 = Ai and let q′i+1 = q′i, q′′i+1 = q′′i pi+1.

After J steps we obtain a subset A′ of A, A′ = A′
J and q′ = q′J , q′′ = q′′J ,

satisfying the following properties:

πq′(A
′) ⊂ Z∗

q′ ,(5.5)

πq′′(A
′) = {0},(5.6)

|πq′(A
′)| = |A′| > 2−J |A|.(5.7)
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Hence, keeping in mind (1.2) we have

(5.8) |A′| > Ωε(q
−ε)|A| > Ωε(q

−ε)qδ2 .

We claim that q′′ ≤ qη (and hence q′ > q1−η). Otherwise, (1.2) would
imply

|πq′′(A)| > (q′′)δ2 > qηδ2

and, since by (5.5), (5.6), we have

|A + A′| ≥ |πq′′(A)||πq′(A
′)|,

we would obtain

|A + A| ≥ |A + A′| ≥ |πq′′(A)| |A′| > Ωε(q
−ε)qηδ2|A|

contradicting (5.4).
By (5.4), (5.7) we have for any ε > 0

(5.9) |A′ + A′| + |A′ · A′| < Oε(q
ε)|A′|.

We now make use of the following result:

Lemma 5.1. [Lemma 3 in [6]] Let A ⊂ Z∗
q satisfy

(5.10) |A + A| + |A · A| < K|A|.
Fix k ∈ Z+. Then there is a subset A1 ⊂ A such that

|A1| > K−2|A|(5.11)

|kAk
1| < KC |A1|(5.12)

with C = C(k).

Applying Lemma 5.1, a further reduction to a subset A1 of A′, |A1| >
Ωε(q

−ε)|A′|, permits us to ensure that moreover

(5.13) |kAk
1| < Ok,ε(q

ε)|A1|
for any given k ∈ Z+ and any ε > 0. We denote here by kB (respec-
tively Bk) the k-fold sum (respectively product) set of B.

Next, let q1|q′ and q1 > (q′)2η > qη. Assume |πq1(A1)| < q
δ2/2
1 . We

may then specify x0 ∈ Zq1 and A0 ⊂ A1 such that πq1(A0) = {x0} and

|A0| > q
−δ2/2
1 |A1|. Write again

|A + A| ≥ |A + A0| ≥ |πq1(A)| |A0| > qδ2
1 q

−δ2/2
1 Ωε(q

−ε)|A|,
which contradicts (5.4). Therefore |πq1(A1)| ≥ q

δ2/2
1 .

In summary, the set B = πq′(A1) ⊂ Z∗
q′ satisfies the following prop-

erties:

(5.14) |B| > Ωε(q
−ε)|A|;

(5.15) |kBk| < Ok,ε(q
ε)|B|;
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(5.16) if q1|q′, q1 > (q′)2η, then |πq1(B)| > q
δ2/2
1 .

Replacing q by q′, and A by B, we may thus assume that A satisfies
the conditions

(5.17) A ⊂ Z∗
q,

(5.18) |kAk| < Ok,ε(q
ε)|A|,

in addition to (1.1), (1.2). ¤

5.3. Construction of a regular subset. Naturally associated with
a subset A of Zq is a directed tree T (A), consisting of J levels, with
vertices on level j consisting of elements in πp1...pj

(A), and with each
vertex corresponding to the element x at level j connected to those
vertices at level j + 1, for which there is t ∈ Zpj+1

such that (x, t) ∈
πp1...pj+1

(A). Our aim in this section is to show that by performing
“regularization” of A we can pass to a large subset A′ of A, such that
the degrees of vertices in T (A′) are constant at each level.

Lemma 5.2. There exists a subset A′ of A satisfying the following
properties:

For all 1 ≤ j ≤ J and x ∈ πp1...pj
(A′) we have

(5.19) |{t ∈ Zpj+1
|(x, t) ∈ πp1...pj+1

(A′)}| = Kj+1,

where {Kj}1<j≤J is a sequence of positive integers;

(5.20) |A′| >
[ J∏

j=1

(2 log pj)
−1

]

|A|.

Proof of Lemma 5.2. Recall that q = p1 . . . pJ . We perform the
regularization in a straightforward way, starting from the bottom so
as to preserve the regularization performed at an earlier stage. For
x ∈ Zq/pJ

consider the subset A(x) ⊂ ZpJ
for which obviously 0 ≤

|A(x)| ≤ pJ . Partitioning πq/p
J
(A) into log pJ subsets, we may specify

AJ ⊂ A and a positive integer KJ , such that for x ∈ πq/p
J
(AJ), we

have

(5.21) KJ ≤ |A(x)| = |AJ(x)| < 2KJ ,

(5.22) |AJ | > (log p
J
)−1|A|.

A further restriction of AJ

(
at the cost of an extra factor 1

2
in (5.22)

)

permits us to ensure that

(5.23) |AJ(x)| ∈ {0, KJ} for x ∈ Zq/p
J
.



56 JEAN BOURGAIN, ALEX GAMBURD, AND PETER SARNAK

Next, consider for x ∈ Zq/p
J−1

p
J

the sets πp
J−1

(
AJ(x)

)
⊂ Zp

J−1
. We

may specify an integer KJ−1 and a further subset AJ−1 ⊂ AJ with
AJ−1(x) = AJ(x) for x ∈ πq/p

J−1
p

J
(AJ−1), such that

(5.24) |AJ−1| > (2 log p
J−1

)−1|AJ |,

(5.25) |πp
J−1

(
AJ−1(x)

)
| ∈ {0, KJ−1} for x ∈ Zq/p

J−1
p

J
.

In light of (5.23), we also have

(5.26) |AJ−1(x)| = KJ−1KJ for x ∈ πq/p
J−1

p
J

(AJ−1).

The continuation of the process is clear; as a result we obtain a set
A′ such that that the degrees of vertices in T (A′) are constant at each
level. ¤

5.4. Sum-product sets in Zp for prime p. We will need the follow-
ing property:

Lemma 5.3. For all τ > 0, there is r = r(τ) ∈ Z+ such that the
following holds:

Let (As,s′)1≤s,s′≤r be subsets of Zp with

(5.27) |As,s′ | > pτ for all 1 ≤ s, s′ ≤ r.

Then the sum-product set of (As,s′)1≤s,s′≤r equals all of Zp:

(5.28)
r∑

s=1

r∏

s′=1

As,s′ = Zp.

Proof of Lemma 5.3: Our aim is to show that we can find r = r(τ)
such that for any y ∈ Zp

(5.29) #{(xs,s′) ∈
∏

As,s′
∣
∣ y =

r∑

s=1

xs,1 · · ·xs,r} > 0.

Note that

#{(xs,s′) ∈
∏

As,s′
∣
∣ y =

r∑

s=1

xs,1 · · · xs,r} =

1

p

p−1
∑

a=0

∑

xs,s′∈As,s′

ep

(
a(y −

r∑

s=1

xs,1 · · · xs,r)
)
,

(5.30)
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where ep(x) = exp
(

2πix
p

)

, and consequently it is enough to show that

for some r = r(τ) we have

(5.31)
1

p

p−1
∑

a=0

∑

xs,s′∈As,s′

ep

(
a(y −

r∑

s=1

xs,1 · · ·xs,r)
)

> 0.

¿From the exponential sum result in [10] (to be precise, from a
slightly more general version of Theorem 5 in [10]), for any τ > 0
there is r1 = r1(τ) and τ1 = τ1(τ) > 0 such that

(5.32) max
(a,p)=1

∣
∣
∣

∑

xi∈Ai

ep(ax1 . . . xr1)
∣
∣
∣ < p−τ1|A1| · · · |Ar1|,

whenever A1, . . . , Ar1 ⊂ Zp, |Ai| > pτ .
Consequently we have

1

p

p−1
∑

a=0

∑

xs,s′∈As,s′

ep

(
a(y −

r∑

s=1

xs,1 · · · xs,r)
)

=

1

p

∏

s,s′

|As,s′ | + O
(

max
a 6=0

r∏

s=1

∣
∣
∣

∑

xs,s′∈As,s′

ep(axs,1 · · ·xs,r)
∣
∣
∣

)

>
(1

p
− p−rτ1

) ∏

s,s′

|As,s′ | > 0,

(5.33)

provided we take r > max
(
r1,

1
τ1

)
. ¤

5.5. Preserving large subfactors. Identify Zq with
∏J

j=1 Zpj
. Fix

τ = η and decompose {1, . . . , J} = J1 ∪ J2 where

(5.34) J1 = {1 ≤ j ≤ J |Kj > pτ
j},

with {Kj}1<j≤J a sequence of positive integers in Lemma 5.2. Let
q = q1 · q2 with q1 =

∏

j∈J1
pj and q2 =

∏

j∈J2
pj. Take r = r(τ)

according to Lemma 5.3.
We claim that

(5.35) πq1

(
r(A′)r

)
= πq1(rA

r) = Zq1 .

Denote A′ by A. Let j1 < j2 < · · · < jβ be an enumeration of elements
in J1. Fix ξα ∈ Zpα , where 1 ≤ α ≤ β. Since πpj1

(A) ≥ Kj1 > pτ
j1

,
applying Lemma 5.3 we have

πpj1
(rAr) = rπpj1

(A)r = Zpj1
.
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Therefore, there are elements x
(1)
s,s′ ∈ πp1...pj1

(A), such that

(5.36) πpj1

( r∑

s=1

r∏

s′=1

x
(1)
s,s′

)

= ξ1.

Take x
[1]
s,s′ ∈ πp1···pj2−1

(A) with

(5.37) πp1···pj1
(x

[1]
s,s′) = x

(1)
s,s′ .

Consider next the sets πpj2

(
A(x

[1]
s,s′)

)
⊂ Zpj2

that are each of cardinality
Kj2 > pτ

j2
, by (5.19). Hence again by Lemma 5.3

πpj2

( r∑

s=1

r∏

s′=1

A(x
[1]
ss′)

)

= Zpj2
.

We can therefore obtain elements x
(2)
s,s′ ∈ πp1···pj2

(A) satisfying

πpj2

( r∑

s=1

r∏

s′=1

x
(2)
s,s′

)

= ξ2.

Take again x
[2]
s,s′ ∈ πp1···pj3−1

(A) such that

(5.38) πp1···pj2
(x

[2]
ss′) = x

(2)
ss′ .

Consider the sets πpj3

(
A(x

[2]
ss′)

)
⊂ Zpj3

of cardinality Kj3 > pτ
j3

and
repeat the construction.

After β steps, we obtain elements xss′ ∈ A(1 ≤ s, s′ ≤ r), such that
for all 1 ≤ α ≤ β

(5.39) πpj ···pjα
(xss′) = x

(α)
ss′

with

(5.40) πpjα

(∑

s

∏

s′

x(α)
ss

)

= ξα.

Hence

(5.41) πpjα

( ∑

s

∏

s′

xss′

)

= ξα for 1 ≤ α ≤ β,

where
∑

s

∏

s′ xss′ ∈ rAr. This proves validity of (5.35).

Recalling (5.20), (5.19), we have

(5.42)
J∏

j=1

Kj >
|A|

∏J
j=1(2 log pj)

> Ωε(q
−ε)|A|,
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and by (5.34) the left hand side of (5.42) is at most

q1 ·
∏

j∈J2

pτ
j < q1 · qτ .

Therefore, recalling that τ = η = δ1
3

and that δ2 ≥ δ1, we have

(5.43) q1 > Ωε(q
−ε)q−

δ1
3 |A|

(1.2)
> Ωε(q

−ε)qδ2− δ1
3 > qδ2/2.

Hence we have proved

Lemma 5.4. There is q1|q such that q1 > qδ2/2 and

(5.44) πq1(rA
r) = Zq1 ,

where r = r(δ2) .

Recalling assumption (1.2), the same claim holds for sets πq′(A) with
q′|q and q′ > qη (just apply the preceding argument with q replaced by
q′ and A by πq′(A)). Hence we have

Lemma 5.5. Let q′|q and q′ > qη. There is q′′|q′ s.t. q′′ > (q′)δ2/2 and

(5.45) πq′′(rA
r) = Zq′′ ,

where r = r(δ2).

5.6. Completion of the proof. Applying Lemma 5.4, we find q1|q,
q1 > qδ2/2 such that

(5.46) πq1(r1A
r1) = Zq1

(
r1 = r1(δ2)

)
.

Recalling (5.18) and (1.1), we have

(5.47) q1 = |r1A
r1| < Oδ2,ε(q

ε)|A| < Oδ2,ε(q
ε)q1−δ1 .

Write q = q1 · q′1, where q′1 > qδ1/2. Since η = δ1
3

< δ1
2
, we can apply

Lemma 5.5 and obtain q′′1 |q′1, q′′1 > (q′1)
δ2/2 , such that we also have

(5.48) πq′′1
(r1A

r1) = Zq′′1
,

where(q1, q
′′
1) = 1. The next problem we encounter is how, knowing

(5.46), (5.48), we may significantly enlarge q1 to a divisor q2 of q, q1|q2,
so that again

πq2(r2A
r2) = Zq2

(
with r2 = r2(δ2)

)
.

A (bounded) number of iterations will then lead to the required con-
tradiction with (5.18) and (1.1).

This problem is taken care of in Section 8 of [6]; following the argu-
ment there closely, in section 5.7 we prove the following
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Proposition 5.1. Let q1|q, q2| q
q1

and S ⊂ Zq such that πq1(S) =

Zq1 , πq2(S) = Zq2. Then there is Q|q1q2, such that

(5.49) Q > q1q
1
2
10−4

2

and

(5.50) πQ(400S2) = ZQ.

Now taking q1 as above,

q
δ1
2 < q1 < Oδ2,ε(q

ε)q1−δ1 ,

and q2 = q′′1 with q′′1 | q
q1

, q′′1 > q
δ1
2 and S = r1A

r1 , using Proposition 5.1,

we obtain Q1 dividing q such that

Q1 > q1

(
q

q1

) δ2
40000

and

πQ1(400S2) = ZQ1 .

Now since 400S2 ⊂ r2A
r2 with r2 = 400r2

1, we can repeat the procedure
with q1, r1 replaced by Q1, r2.

Proceeding iteratively, we obtain at step i a divisor Qi of q such that

Qi > Qi−1

(
q

Qi−1

) δ2
40000

and

πQi
(ri+1A

ri+1) = ZQi
.

Now choose i so that Qi > q1− δ1
2 . Then, since (5.18) and (1.1) yield

Qi = |ri+1A
ri+1| < Oε(q

ε)|A| < Oε(q
ε)q1−δ1 ,

we obtain a contradiction. This completes the proof of Theorem 1.8.
¤

5.7. Proof or Proposition 5.1. We will make use of the following
Lemmas, proven in section 5.8.

Lemma 5.6. Let A be a finite subset of an additive group Z and G ⊂
A × A, 0 < α < 1

4
, such that

|G| > (1 − α)|A|2.
Then there exists a subset A′ of A satisfying

|A′| > (1 −√
α)|A|
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and

|A′ + A′| <
|A

G
+ A|4

(1 −√
α)(1 − 2

√
α)2|A|3 .

The following Lemma is Corollary 5.6 on page 202 in [60] and is a
consequence of Kneser’s theorem (Theorem 5.5 on page 200 in [60]).

Lemma 5.7. (Near-exact inverse sum set theorem).
Let A be a finite subset of an additive group Z such that

|A + A| <
3

2
|A|.

Then there are x ∈ Z and a subgroup G of Z, such that

A ⊂ x + G

and

|G| <
3

2
|A|.

Lemma 5.8. Let q be square-free and suppose that A ⊂ Zq satisfies
|A| > γq with γ > q−2/5. Then there is q′|q such that

(5.51)
q

q′
< γ− 20

9

and

(5.52) πq′(100A · A) = Zq′ .

We now proceed to the proof of Proposition 5.1. The argument
given below is slightly simpler than the one appearing in [6] and relies
on Lemma 5.6 and 5.7 (that were not used in [6]).

Let q1 be a divisor of q with πq1(S) = Zq1 . Given x ∈ Zq1 and
a prime divisor p of q

q1
, let ψp(x) denote an element of Zp such that

(x, ψp(x)) ∈ πq1p(S).

Claim 5.1. For each divisor p of q
q1

one of the following alternatives

holds: either

(5.53) |{(x, y) ∈ Zq1 × Zq1|ψp(x + y) 6= ψp(x) + ψp(y)}| > 10−4q2
1;

or there is a subset B ⊂ Zq1 such that

(5.54) |B| >
99

100
q1 and |ψp(B)| = 1.
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Proof of Claim 5.1: For a prime divisor p of q
q1

denote

G+ = {(x, y) ∈ Zq1 × Zq1 |ψp(x + y) = ψp(x) + ψp(y)}.
Assume

(5.55) |G+| > (1 − 10−4)q2
1.

Apply Lemma 5.6 taking Z = Zq1 × Zp ≃ Zq1p and

A = {(x, ψp(x))|x ∈ Zq1}, |A| = q1,

G = {((x, ψp(x)), (y, ψp(y)))|(x, y) ∈ G+} ⊂ A × A.

By (5.55) we have

|G| > (1 − 10−4)|A|2

and from the definition of G+

|A
G
+ A| ≤ |A|.

According to Lemma 5.6 applied with α = 10−4, we obtain a subset B
of Zq1 such that

(5.56) |B| >
99

100
q1

and

(5.57) |{(x + y, ψp(x) + ψp(y))|x, y ∈ B}| < β|B|
where

(5.58) β =
1

(1 − 1
100

)(1 − 1
50

)2

100

99
<

3

2
.

Next apply Lemma 5.7 to the set

A′ = {(x, ψp(x))|x ∈ B} ⊂ Zq1 × Zp

for which by (5.57), (5.58) we have

|A′ + A′| <
3

2
|A′|.

Hence A′ is contained in a translate of a subgroup H of Zq1 × Zp

with |H| < 3
2
|A′| ≤ 3

2
q1. Since p and q1 are relatively prime, H is of

the form H = H1 × H0 with H1 < Zq1 , H0 < Zp. Also

|H1| = |πq1(H)| ≥ |πq1(A
′)| = |B| >

99

100
q1

so that H1 = Zq1 . Consequently |H0| ≤ 3
2
q1|H1|−1 = 3

2
and H0 = {0};

therefore |ψp(B)| = 1. This completes the proof or Claim 5.1. ¤
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Take next q2| q
q1

, such that also πq2(S) = Zq2 and let q2 = p1 · · · pℓ. For

each pi dividing q2, one of the alternatives in Claim 5.1 holds, yielding a

factorization q2 = q
(1)
2 q

(2)
2 , with q

(1)
2 being a product of primes satisfying

(5.53), and q
(2)
2 being a product of primes satisfying (5.54). Clearly,

either q
(1)
2 ≥ q

1/2
2 or q

(2)
2 > q

1/2
2 . We now show that the conclusion of

Proposition 5.1 holds in each of these two cases.

Case 1. Assume q
(1)
2 ≥ q

1/2
2 . Let

(5.59) Di = {(x, y) ∈ Zq1 × Zq1|ψpi
(x + y) 6= ψpi

(x) + ψpi
(y)},

so that |Di| > 10−4q2
1 for pi|q(1)

2 . Thus
∑

p1|q(1)
2

log pi|Di| > 10−4q2
1

∑

p1|q(1)
2

log pi,

which we can rewrite as

1

|Zq1 × Zq1|
∑

x∈Zq1×Zq1

∑

p1|q(1)
2

log piχDi
(x) > 10−4 log q

(1)
2 .

Therefore, for some x ∈ Zq1 × Zq1 we have
∑

p1|q(1)
2

log piχDi
(x) > 10−4 log q

(1)
2 .

Consequently, denoting x = (a, b) with a ∈ Zq1 , b ∈ Zq1 , and letting
I = {i|(a, b) ∈ Di} we obtain

∑

pi|q(1)
2

i∈I

log pi > 10−4 log q
(1)
2 .

Hence, keeping in mind our assumption q
(1)
2 ≥ q

1/2
2 , we have

(5.60) q̄2 =
∏

pi|q(1)
2

i∈I

pi >
(
q
(1)
2

)10−4

>
(
q2

) 1
2
10−4

.

Denoting

ā = (a, ψ(a)) ∈ S ⊂ Zq1 × Zq/q1 ,(5.61)

b̄ = (b, ψ(b)) ∈ S,(5.62)

a + b = (a + b, ψ(a + b)) ∈ S,(5.63)

it follows from the definition (5.59) of Di that

a + b − ā − b̄ 6= 0 mod (pi) for i ∈ I,
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while obviously
a + b − ā − b̄ = 0 mod (q1).

Thus, since

πq1(S
2) = πq1(S) = Zq1 and πq̄2(S) = Zq̄2 ,

we have

πq1q̄2

(
S2 + (a + b − ā − b̄)S

)
=

{(πq1(xx′), πq̄2(xx′) + πq̄2(a + b − ā − b̄)πq̄2(y)
)
|x, x′, y ∈ S}

= Zq1 × Zq̄2

(5.64)

since πq̄2(a + b − ā − b̄) ∈ Z∗
q̄2

.
Therefore

πq1q̄2(S
2 + (S − S − S)S) = Zq1q̄2 ,

and the conclusion of Proposition 5.1 is established in this case.

Case 2. q
(2)
2 > q

1/2
2 . Let I = {i

∣
∣pi divides q

(2)
2 }. For i ∈ I, there is

Bi ⊂ Zq1 such that |Bi| > 99
100

q1 and

(5.65) |ψpi
(Bi)| = 1.

Therefore we have

1

|Zq1|
∑

x∈Zq1

∑

i∈I

(log pi)χBi
(x) >

99

100

(

log q
(2)
2

)

.

Applying Jensen’s inequality we obtain

1

|Zq1|
∑

x∈Zq1

[
∏

i∈I

p
χBi

(x)

i

]

=
1

|Zq1|
∑

x∈Zq1

exp

{
∑

i∈I

(log pi)χBi
(x)

}

> [q
(2)
2 ]99/100.

Decomposing for each i ∈ I, Zq1 = Bi ∪ Bc
i , we can rewrite the

expression on the left-hand side as the sum of 2|I| terms:

1

|Zq1|
∑

x∈Zq1

∑

εi∈{0,1}|I|

[
∏

i∈I

pεi
i

(
εiχBi

(x) + (1 − εi)χBc
i
(x)

)
]

;

consequently, by the pigeonhole principle, for some choice of (ε̃1, . . . ε̃I) ∈
{0, 1}I we have
(5.66)

1

|Zq1|
∑

x∈Zq1

[
∏

i∈I

pε̃i
i

(
ε̃iχBi

(x) + (1 − ε̃i)χBc
i
(x)

)
]

> 2−|I|[q
(2)
2 ]99/100 > [q

(2)
2 ]9/10.

Thus, letting

B =
⋂

i∈I,ε̃i=1

Bi and q̄2 =
∏

ε̃i=1

pi, q̄2|q(2)
2 ,
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it follows from (5.66) that

(5.67) |B|q̄2 > [q
(2)
2 ]9/10 · q1.

If pi|q̄2, then by (5.65)

|ψpi
(B)| = 1.

Therefore we may specify for each pi|q̄2 an element ui ∈ Zpi
, such that

(5.68) πpi
ψ(x) = ui for pi|q̄2 and x ∈ B.

Consider next B̄ = {
(
x, ψ(x)

)∣
∣x ∈ B} and write

(5.69) πq1q̄2(B̄ + S) = {
(
x + πq1(y), u + πq̄2(y)

)∣
∣x ∈ B, y ∈ S},

where πq̄2(S) = Zq̄2 . Hence, by (5.67), (5.68)

(5.70) |πq1q̄2(S + S)| ≥ |B|q̄2 > [q
(2)
2 ]9/10.q1

Applying Lemma 5.8 to the set π
q1q

(2)
2

(2S) ⊂ Z
q1q

(2)
2

with γ = [q
(2)
2 ]−

1
10 ,

we obtain Q dividing q1q
(2)
2 such that

(5.71) Q > q1[q
(2)
2 ]

7
9 > q1q

7
18
2

and

(5.72) πQ(400S2) = ZQ.

Therefore the conclusions (5.49), (5.50) hold in this case as well, and
the proof of Proposition 5.1 is complete. ¤

5.8. Proofs of Lemmas 5.6 - 5.8. The proof of Lemma 5.6 is based
on the following Lemma (Lemma 5.9), which is Exercise 2.5.4 on page
82 of [60]; for completeness we supply the proof.

Lemma 5.9. Let A, B, C be additive sets in an ambient group Z,
let 0 < α < 1/4, and let G ⊂ A × B, H ⊂ B × C be such that
|G| ≥ (1 − α)|A||B| and |H| ≥ (1 − α)|B||C|. Then there are subsets
A′ ⊆ A and C ′ ⊆ C with |A′| ≥ (1 −√

α)|A| and |C ′| ≥ (1 − √
α)|C|

such that

(5.73) |A′ − C ′| ≤ |A
G
− B| |B

H
− C|

(1 − 2
√

α)|B| ,

where

A
G
− B = {a − b|(a, b) ∈ G}.
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Proof of Lemma 5.9: We first show that at most
√

α|B| elements of
B have a G-degree of less than (1 −√

α)|A|. Let m be the number of
elements b in B of G-degree, deg(b) > (1 −√

α)|A|. Then

(1 − α)|A||B| ≤ |G| =
∑

b:deg(b)≤(1−√
α)|A|

deg(b) +
∑

b:deg(b)>(1−√
α)|A|

deg(b)

≤ (1 −√
α)|A|(|B| − m) + m|A|,

therefore

(1 − α)|B| ≤ (1 −√
α)(|B| − m) + m

and

(1 −√
α)|B| ≤ m.

Similarly, we have that at most
√

α|B| elements of B have an H-degree
of less than (1−√

α)|C|. Consequently, at least (1−2
√

α)|B| elements
of B have a G-degree of at least (1−√

α)|A| and an H-degree of at least
(1 − √

α)|C|; let B′ be a subset of B satisfying these properties and
let A′ (respectively C ′) be a subset of A (respectively of C) connected
to elements of B′ in G (respectively in H). Clearly, we have that
|A′| ≥ (1 −√

α)|A| and |C ′| ≥ (1 −√
α)|C|. From the identity

a′ − c′ = (a′ − b′) + (b′ − c′)

we see that every element a′ − c′ in A′ − C ′ has at least |B′| = (1 −
2
√

α)|B| distinct representations of the form x + y with (x, y) ∈ (A
G
−

B) × (B
H
− C), completing the proof of Lemma 5.9. ¤

Proof of Lemma 5.6: Take A = C,B = −A and G = {(x,−y)|(x, y) ∈
G} ⊂ A × B, H = {(−x, y)|(x, y) ∈ G} ⊂ B × C. Using Lemma 5.9
we obtain subsets A′ ⊂ A, C ′ ⊂ A such that |A′| > (1−√

α)|A|, |C ′| >
(1 −√

α)|A| and

|A′ − C ′| ≤ |A
G
− B| |B

H
− C|

(1 − 2
√

α)|B| =
|A

G
+ A|2

(1 − 2
√

α)|A| .

Applying Ruzsa’s triangle inequality

|A′ + A′| ≤ |A′ − C ′|2
|C ′|

the statement follows. ¤

In order to prove Lemma 5.8 we first establish the following result.
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Lemma 5.10. Let A be a subset of Zq (q arbitrary) satisfying the
following property:

(5.74) ∀ q1|q, and z ∈ Zq1 , #{x ∈ A|πq1(x) = z} ≤ q
−11/20
1 |A|.

Then

(5.75) Zq = 100A · A

Proof of Lemma 5.10: Lemma 5.10 Note that

100A · A = {x1x2 + · · · + x199x200|xi ∈ A}.
Our aim is to show that for all ξ ∈ Zq

(5.76) #{(x1, . . . , x200) ∈ A × · · · × A
︸ ︷︷ ︸

200

|x1x2 + · · ·+x199x200 = ξ} > 0.

Proceeding by the circle method we have

#{(x1, . . . , x200) ∈A × · · · × A
︸ ︷︷ ︸

200

|x1x2 + · · · + x199x200 = ξ}

=
1

q

∑

0≤z<q

[ ∑

x,y∈A

eq(zxy)
]100

eq(−ξz)

>
1

q
|A|200 − 1

q

∑

q1|q
q1>1

∑

z∈Z∗
q1

∣
∣
∣

∑

x,y∈A

eq1(zxy)
∣
∣
∣

100

.

(5.77)

Fix q1|q and denote, for z ∈ Zq1 ,

η(z) = #{x ∈ A|πq1(x) = z}.
For any z ∈ Z∗

m, and any two functions f, g on Zm, a simple appli-
cation of Cauchy-Schwarz inequality yields

(5.78)

∣
∣
∣
∣
∣

∑

x∈Zm

∑

y∈Zm

f(x)g(y)em(xyz)

∣
∣
∣
∣
∣
≤

(

m
∑

x∈Zm

f 2(x)
∑

y∈Zm

g2(x)

) 1
2

.

Applying (5.78) with f = g = η and m = q1 we obtain for any z ∈ Z∗
q1

:
∣
∣
∣

∑

x,y∈A

eq1(zxy)
∣
∣
∣ =

∣
∣
∣

∑

x1,y1∈πq1 (A)

η(x1)η(y1)eq1(zx1y1)
∣
∣
∣

≤
∣
∣
∣

∑

x1∈Zq1

∑

y1∈Zq1

η(x1)η(y1)eq1(zx1y1)
∣
∣
∣ ≤ √

q1

∑

x1∈Zq1

η(x1)
2.

(5.79)

Now assumption (5.74) implies

(5.80) ‖η‖∞ < q
−11/20
1 |A|,
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while we clearly have

(5.81) ‖η‖1 =
∑

z∈Zq1

η(z) ≤ |A|.

Consequently, using

||η‖2 ≤ ‖η‖1‖η‖∞,

we obtain

(5.82)
∣
∣
∣

∑

x,y∈A

eq1(zxy)
∣
∣
∣ ≤ q

−1/20
1 |A|2.

Substitution of (5.82) in (5.77) implies that the right-hand side in
(5.77) is greater than

1

q
|A|200 − 1

q

∑

q1|q
q1>1

ϕ(q1)q
−5
1 |A|200 >

1

q
|A|200

(

1 −
∞∑

j=2

j−4
)

> 0,

establishing (5.76) and completing the proof of Lemma 5.10 ¤

Proof of Lemma 5.8: If the condition (5.74) of Lemma 5.10 holds,
then the conclusion of Lemma 5.10 clearly follows. Assume that con-
dition (5.74) of Lemma 5.10 fails. Then for some q1|q there is z1 ∈ Zq1 ,

such that |A1| > q
−11/20
1 |A|, where A1 = {x ∈ A|πq1(x) = z1}. Since

|πq1(A)| = 1 and |A1| > q
−11/20
1 γq, we have that

q

q1

> γqq
−11/20
1

and so

q1 < γ−20/9 < q8/9.

Replace q by q
q1

and A by A′ = π q
q1

(A1). If (5.74) fails again, there

is q2| q
q1

and z2 ∈ Zq2 , such that |A2| > q
−11/20
2 |A1|, where A2 = {x ∈

A1|πq2(x) = z2}. If q1, . . . , qs are the consecutive divisors of q obtained
after s steps, then by construction

q

q1 · · · qs

≥ |As| ≥ (q1 · · · qs)
− 11

20 |A| > γ(q1 · · · qs)
− 11

20 q,

implying that

(5.83) q1 · · · qs < γ− 20
9 < q8/9.

Clearly this construction terminates after finitely many steps s, result-
ing in q′ = q

q1...qs
satisfying the bound (5.51), and in a set As satisfying

#{x ∈ As|πqs+1(x) = z} ≤ q
−11/20
s+1 |As| for all qs+1|q′ and z ∈ Zqs+1 .



AFFINE LINEAR SIEVE, EXPANDERS, AND SUM-PRODUCT 69

Application of Lemma 5.10 to πq′(As) ⊂ Zq′ gives

Zq′ = 100πq′(As) · πq′(As),

implying (5.52) and completing the proof of Lemma 5.8. ¤

6. Explicit applications

We give explicit applications of our main theorems. We stick to forms
of SL2 and their orbits since for the time being these are the only cases
for which we have established Conjecture 1.5. Once the general form
of Conjecture 1.5 is proven, then using Theorem 1.6 and the passage
from simply connected groups to other groups and their orbits (as is
done below for SL2) one can establish saturation for quite general pairs
(O, f).

Our basic example is SL2 itself. That is G = SL2 sitting in Mat2,
the affine 4 dimensional space of 2×2 matrices. As we have noted with
G = {X : det X = 1}, Q[G] is a unique factorization domain.

Theorem 6.1. Let Λ be a subgroup of SL2(Z) which is Zariski dense
in G and let f ∈ Q[G] be integral and primitive on Λ. Assume that
f is nonconstant when restricted to G and that the factors of f are
irreducible in Q̄[G]. Then r0(Λ, f) < ∞.

Proof: This is an immediate consequence of theorems 1.6 and 1.7
coupled with the fact that the expander property in Theorem 1.7 is
valid for q of the form Nβd with β = 0 or 1 and d is squarefree (these
being the q’s that are used in the proof of Theorem 1.6). This more
general case follows from the proof of the squarefree case.

We also note that the assumption that the factors of f are absolutely
irreducible was made for convenience. One can drop this assumption
and still deduce theorem 6.1. This involves using the Chebotarev theo-
rem in a more quantitative way than in the proof of Proposition 3.2, so
as to determine the behavior of the sum over p in (3.46) coming from
a modified (according to the finite extension of Q which splits f) form
of (3.6) and (3.42) ¤

A related basic example which we can handle is that of a quaternion
division algebra in place of the matrix algebra Mat2/Q. Let D/Q be
such an algebra. D is linearly generated over Q by 1, ω, Ω, ωΩ, where
ω2 = a, Ω2 = b with a, b nonzero integers. The elements 1, ω, Ω, wΩ
satisfy the usual rules for multiplication of quaternions. Let N denote
the reduced norm on D and let D1 denote the elements α with N(α) =
1. By D(Z) we mean the subring of elements α ∈ D of the form
α = x1 + x2ω + x3Ω + x4ωΩ with xj ∈ Z. This is not a maximal order,
but it is of finite index in such and this suffices for our purposes. Let
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D1(Z) be the corresponding unit group, that is elements α ∈ D(Z) with
N(α) = 1. This group is infinite iff D⊗R is the matrix algebra M2(R)
which we will assume is the case. D1 is an algebraic group defined over
Q and in terms of the coordinates (x1, x2, x3, x4) ∈ A4 it is given by
N(x) = x2

1 − ax2
2 − bx3

2 + abx2
4 = 1.

Theorem 6.1′. Let Λ be a subgroup of D1(Z) and assume Λ is Zariski
dense in D1. Let f ∈ Q[D1] be primitive integral and nonconstant on
Λ, then r0(Λ, f) < ∞.

Proof: The proof is the same as that of Theorem 6.1. Note that
D1 is connected and simply connected so that theorem 1.6 applies.
While theorem 1.7 does not apply directly to D1(Z) the proof of that
Theorem does. That is for p outside a finite set of primes we have
D1(Z)p = D1(Fp) ≅ SL2(Fp) and an inspection of the proof of Theorem
1.7 shows that this and the product structure for D1(Z)d for d = d1d2,
(d1, d2) = 1 is all that was used.

When the quaternion algebra D splits over Q, that is when it is the
full matrix algebra Mat2×2 then D1 is essentially SL2 and Theorem 6.1′

becomes Theorem 6.1. We allow both of these cases for D and D1 in
what follows. Let π : D1 → GLn be a rational representation of D1 into
GLn defined over Q. The matrix entries of π(g) are polynomials with
rational coefficients in the coordinates (x1, x2, x3, x4) of g. Denote by
G the matrix algebraic group π(D1). It is a subgroup of GLn, defined
over Q and it is connected. Let Γ be a subgroup of G(Z) = G∩GLn(Z)
which is Zariski dense in G. Fix b ∈ Zn and denote by O the orbit bΓ
in An.

Theorem 6.2. Let G, Γ and O be as above and let f ∈ Q[x1, . . . , xn]
with f integral, primitive, and nonconstant on O. Then r0(O, f) < ∞.

Proof: By composition we have that F (x1, x2, x3, x4) = f
(
bπ(g)

)
is

in Q[x1, x2, x3, x4]. Now π
(
D1(Z)

)
is commensurable with G(Z) (see

[3]) and hence ∆ = π
(
D1(Z)

)
∩ Γ is of finite index in Γ and is Zariski

dense in G. Thus without loss of generality we can assume that Γ ⊂
π
(
D1(Z)

)
. Set Λ = π−1(Γ), then Λ is a subgroup of D1(Z) and F is

integral primitive and nonconstant on Λ. Now kerπ is finite (since it
is a proper normal subgroup of D1 and we are assuming that G is not
trivial). Hence Λ is Zariski dense in D1. Applying Theorem 6.1 (or
6.1′) yields that either F is constant on Λ, or there is an r < ∞ such
that the set of x ∈ Λ, call it P , for which F (x) is a product of at most r
primes, is Zariski dense in D1. If F is constant on Λ, then it is constant
on D1 and hence f is constant of Zcl(O) which we assumed was not
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the case. Hence we are in the first case and π(P ) is contained in Γ
and bπ(P ) is contained in O. To complete the proof we need only to
show that Zcl

(
bπ(P )

)
= Zcl(bG) in An since f is a product of at most

r primes at these points. Now in the topology of GLn we have that

G = π(D1) = π
(
Zcl(P )

)
⊂ Zcl

(
π(P )

)
⊂ Zcl

(
π(D1)

)
= G.

Hence Zcl
(
π(P )

)
= G. Also

Zcl
(
bπ(P )

)
⊃ bZcl(π(P )) = bG.

Hence

Zcl
(
bπ(P )

)
= Zcl(bG),

which completes the proof of Theorem 6.2. ¤

We explicate some instances of Theorem 6.2 with concrete examples.

Example A: This is connected with Conjecture 1.3. Let π be the
standard representation of SL2 by linear action. If b ∈ Z2, b 6= 0 and
Λ is a non-elementary subgroup of SL2(Z) then the orbit O = b · Λ is
Zariski dense in A2. Let f ∈ Q[x1, x2] be a nonconstant polynomial
which is integral and primitive on O. Then according to Theorem
6.2, (O, f) saturates. With f(x) = x1x2 this yields an approximation
(“almost prime”) to Conjecture 1.3.

Example B: The next set of examples are associated with ternary
integral quadratic forms. Let F (x1, x2, x3) be a regular such quadratic
form which is indefinite over R. Let G = SOF ⊂ GL3 be the corre-
sponding special orthogonal group preserving F . If F (x) = xtAx with
A symmetric, then G is given as a matrix group defined over Q by the
3 × 3 matrices X satisfying

(6.1)
X tAX = A
det X = 1

}

.

G is not simply connected, but the simply connected covering group G̃
is a double cover. It can be realized as the norm 1 group in a quaternion
algebra D defined over Q. This is described explicitly in (2.3) and the
general case is described in [14]. D is Mat2 if F is isotropic over Q
and it is a division algebra in the anisotropic case. In either case,
G = π(D1) with π this covering morphism, and Theorem 6.2 can be
applied.

Let Γ be a subgroup of G(Z) which is Zariski dense in G. Let b ∈ Z3,
b 6= 0, for which F (b) = k and let O = b·Γ. Then if k 6= 0, Zcl(O) = b·G
and is the affine quadric Vk given by {x : F (x) = k}. As usual we
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conclude that if f ∈ Q[x1, x2, x3] is nonconstant, primitive and integral
then (O, f) saturates.

This result is even interesting when applied to the full group Λ =
G(Z). In this case if Vk(Z) is a finite union of G(Z) orbits and one
deduces that r0(Vk(Z), f) < ∞, In as much as our proof of Theorem
1.7 gives no explicit bound for the expansion our proof yields no explicit
bound for r0(Vk(Z), f). In this case where Λ = G(Z) one can use the
theory of automorphic forms to address the expansion. Instead of using
combinatorial ordering of the orbit as in Theorem 1.6 one can apply
a much more efficient Archimedean weighted ordering on the quadric
and a corresponding sharp quantitative analysis. This is carried out in
[42] where it is shown that for f(x) = x1x2x3, r0(Vk(Z), f) ≤ 26 (for
any F ) as long as Vk(Z) 6= ∅.
Example C: In the case that k = 0 in (B) and F is isotropic over Q,
V0 is an affine cone. We restrict to the specific case that

(6.2) F (x1, x2, x3) = x2
1 + x2

2 − x2
3

and in the tradition of Fermat examine what Theorem 6.2 gives in
this case. A point in V0(Z) with gcd(x1, x2, x3) = 1 is a Pythagorean
triple (or a Pythagorean triangle if x1, x2, x3 are positive). The group
SOF (Z) acts transitively on the set T of all such Pythagorean triples.
Consider the ancient problem of the divisibility properties of the area
A(x1, x2, x3) = x1x2

2
of such a triangle. It is elementary (see below) that

f = A/6 is integral on the set T . Note that f(3, 4, 5) = 1 and hence
(O, f) is integral and primitive for any orbit O = (3, 4, 5)Λ where Λ is
a Zariski dense subgroup of G = SOF . Hence by Theorem 6.2 we have
that r0(O, f) < ∞ for any such orbit O.

The question of the value of r0(O, f) for this orbit and f is of interest
as it gives the minimal divisibility of the areas of a Zariski dense (in V0)
of Pythagorean triangles in O. We show that Conjecture 1.4 implies
that r0(O, f) = 4, that is given any O as above, the set of x ∈ O
whose areas have 6 prime factors (including 2 and 3) is Zariski dense
in V0, while those with 5 or fewer prime factors is not Zariski dense.
To see this recall the standard parametrization of triples x in T (after
switching x1 and x2 if need be):

(6.3) x1 = m2 − n2, x2 = 2mn, x3 = m2 + n2,

where (m,n) = 1 and m and n are of different parity. From this it is
clear that x2 is divisible by 4 and one of x1 or x2 is divisible by 3. Hence
A = x1x2

2
is divisible by 6 and hence f is integral on T . From (6.3) it is

also clear that the set of x ∈ T for which f(x) = 1
6
(m − n)(m + n)mn

has at most 2 prime factors is finite. The set of x ∈ T for which f(x)
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has at most 3 prime factors is probably infinite, in fact this would follow
from Conjecture 1.2 of Hardy and Littlewood for the case of Λ of rank
1 in Z4. However even if this set is infinite it is not Zariski dense in
V0 since such triangles are of special form and lie on a finite number of
curves in V0. Hence r0(T, f) ≥ 4 and a fortiori r0(O, f) ≥ 4.

In order to apply Conjecture 1.4 we proceed by pull-back from G =
SOF to its double cover SL2. We can describe π : SL2 → G in coordi-
nates similar to those in (2.3) and we find that the pullback f ∗ ∈ Q[SL2]
is given by
(6.4)

f ∗(x1, x2, x3, x4) =

=
(2x1 + x2 + 2x3 − x4)(2x1 + x2 + 2x3 + x4)(2x1 + x2)(2x3 + x4)

6

and Γ = π−1(Λ) ≤ SL2(Z) is Zariski dense in SL2. f ∗ is integral and
primitive on Γ (since f(1, 0, 0, 1) = 1) and f ∗ factors into 4 factors
in Q[SL2]. Hence according to Conjecture 1.4 r0(Γ, f ∗) = 4 and thus
r0(O, f) = 4. While a proof that r0(O, f) = 4 for a thin such orbit of
triples is well out of reach of present technology it is interesting that
the recent advance of Green and Tao [27] mentioned after conjecture
1.2, allows one to prove that if O = T is the full orbit then r0(T, f) = 4.
Using the morphism of A2 into V0 given by the parametrization (6.3)
the problem is reduced to finding a Zariski dense (in A2) set of points
x, y ∈ Z2 for which the 4 homogeneous linear forms x, y, 2x + 3y and
2x− 3y are all prime. In the terminology of [27] this linear system has
complexity 2 and this is exactly the new case beyond Vinogradov that
their method can handle. Their lower bound for the count of the num-
ber of x, y satisfying the above (there are no local obstructions) implies
by a simple analogue of Proposition 3.2 that the points produced are
Zariski dense in A2. We state the result explicitly as it resolves the
minimal divisibility question for the areas of Pythagorean triangles:

The set of Pythagorean triangles whose areas have at most r

prime factors is Zariski dense in the affine cone V0 iff r ≥ 6.

Example D: Our final example is concerned with an orthogonal group
in four variables and a naturally thin subgroup which governs integral
Apollonian packings. A Theorem of Descarte asserts that (a1, a2, a3, a4)
in R4 are the curvatures of 4 mutually tangent circles in the plane (see
Figure 1) iff F (a) = 0 where

(6.5) F (x1, x2, x3, x4) = 2(x2
1 + x2

2 + x2
3 + x2

4) − (x1 + x2 + x3 + x4)
2.
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Figure 1.

For details concerning this and the related basic facts that we record
below see [26]. Given an initial configuration of 4 such circles in gen-
eration 1 of the Figure 2 (note that by convention the outer circle has
curvature −6) we fill in repeatedly the lune regions with the unique
circle which is tangent to 3 sides (which is possible by a Theorem of
Apollonius). In this way we get a packing of the outside circle by cir-
cles giving an Apollonian packing. The interesting diophantine feature
is that if the initial curvatures are integral then so are the curvatures
of the entire packing. The numbers in the circles in Figure 2 indicate
their curvatures. There are many questions (most being difficult) that
one can ask about the integers that appear in this way.

The connection to groups is that such a packing is associated to
an orbit of the Apollonian group A, which is the group of 4 × 4 in-
tegral matrices generated by the involutions Sj, j = 1, 2, 3, 4 where
Sj(ek) = −3ek + 2(e1 + e2 + e3 + e4) if k = j and Sj(ek) = ek if
k 6= j (e1, e2, e3, e4 are the standard basis vectors). The configurations
of 4 mutually tangent circles in the packing with initial configuration
a = (a1, a2, a3, a4) consists of points x in the orbit Oa = a · A of A.
The elements Sj preserve F and hence A ≤ OF (Z). A is Zariski dense
in OF but it is thin in OF (Z). For example if | | is a matrix norm
on Mat4×4(R), then |{γ ∈ A : |γ| ≤ T}| ∼ c1T

2δ as T → ∞ where
δ = 1.3... is the Hausdorff dimension of the limit set of A (see [26] and
[52]), while |{γ ∈ OF (Z) : |γ| ≤ T}| ∼ c2T

4. It is this thinness which
makes the diophantine analysis of the orbit Oa problematic. Oa is
Zariski dense in the cone V0 = {x : F (x) = 0}. If a is primitive (which
we assume henceforth), that is gcd(a1, a2, a3, a4) = 1, then the same
is true of every member of Oa. The primitive points in V0(Z) decom-
pose into infinitely many A-orbits, each corresponding to a different
Apollonian packing (see [26]).
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Figure 2.

11

23
51

42

35

Generation 2Generation 1

a = (−6, 11,14,23)

47
59 26

15

14

78

71

74

71

A modification of Theorem 6.2 implies that if f ∈ Q[x1, x2, x3, x4]
and f is nonconstant and primitive on Oa then the pair (Oa, f) sat-
urates. To see this we follow the recipe of passing to the spin double
cover of SOF . This can be realized as SL2/K where K = Q[

√
−1] (see

[19] and also [24]; note that our form F has signature (3, 1) over R and
it is isotropic). In this way the key expander property follows from the
following version of Conjecture 1.5:

Theorem 6.3. Let Γ be a subgroup of SL2(Z[
√
−1]) which is Zariski

dense in SL2 and such that the traces of elements of Γ generate the field
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Q(
√
−1). Then as A varies over squarefree ideals in Z[

√
−1] the Cayley

graphs SL2(Z[
√
−1])/A, S), where S is a fixed symmetric generating set

of generators of Γ, is a family of absolute expanders.

According to Weisfeiler [63], outside a finite set of primes P of
Z[
√
−1], Γ projects onto SL2(Z[

√
−1])/P ∼= SL2(Fp) × SL2(Fp) if p

splits (that is, if p ≡ 1 mod 4) and is isomorphic to SL2(Fp2) otherwise
(that is, if p ≡ 3 mod 4). Our proof of Theorem 1.7 extends without
much trouble to this case. This implies that the Cayley graphs (Ad, S)
where Ad is the reduction of A in Mat4×4(Z/dZ) , d a square-free inte-
ger, S = {S1, S2, S3, S4}, are an expander family. This completes our
discussion of the saturation of (Oa, f).

As far as determining the exact value of r0(Oa, f) for certain f ’s,
some progress can be made. If f(x) = x1 then f is integral and
primitive on Oa and the pullback f ∗ to Q(Spin1G) is prime. Hence
Conjecture 1.4 asserts that r0(Oa, f) = 1. In [52] this is proven using
ad-hoc methods which among other things employ Fuchsian subgroups
of A as well as Iwaniec’s work in half-dimensional sieves [33]. In par-
ticular, it follows that in any integral Apollonian packing (for example
the one in Figure 2) there are infinitely many circles whose curva-
ture is a prime number. For f(x) = x1x2, Conjecture 1.4 implies that
r0(Oa, x1x2) = 2. This can be proven by the same methods, as is shown
in [52]. In particular it follows that the set of pairs of tangent circles in
an integral Apollonian packing, for which both curvatures are prime, is
infinite (in fact they are pairs in quadruples of mutually tangent circles
of the packing which form a Zariski dense set in V0).

Consider next f(x) = x1x2x3x4. That is, we are looking for quadru-
ples of mutually tangent circles such that the product of their cur-
vatures has few prime factors. f is not primitive on Oa since each
primitive a ∈ V0(Z) has two components even and two odd. Still our
discussion yields that r0(O, f) < ∞, though with no explicit bound.
For the purpose of an explicit bound a simpler approach to this sat-
uration problem can be taken by using the unipotent elements SiSj,
i 6= j in A as indicated in the discussion on page 7. This and a number
of related things have been carried out in [24] where it is shown that
r0(Oa, x1x2x3x4) ≤ 28.

If we order the circles in a given integral Apollonian packing by the
generation in which they are produced, that is by reduced word length
with respect to generators S1, S2, S3, S4, then applying the upper bound
sieve as in (3.58) and using Theorem 6.3 we get

(6.6) |{circles C at generation n : curvature(C) is prime}| ≪ 3n/n.
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This bound is of the correct order of magnitude and we expect a
“prime number theorem” for integral Apollonian packings; that is the

left hand side of (6.6) is asymptotic to c1(a)3n

n
as n → ∞. The proof

that r0(Oa, x1) = 1 when quantified produces an exponential number of
such circles but far fewer than what is predicted by this prime number
theorem.
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