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§1. Introduction

Let X = SL(2,Z)\H2 be the modular surface and λj = 1
4

+ t2j , 0 < λ1 6 λ2 6 λ3 . . . be the

eigenvalues of the Laplacian 4 on the cuspidal subspace of L2(X) [Sa3]. Selberg [Se] showed that
these obey a Weyl law:

N(T ) =
∑

06tj6T

1 ∼ T 2

12
(1.1)

as T →∞. Define the remainder term S(T ) by

N(T ) =
T 2

12
− 2T log T

π
+

(
2 + log π − log 2

π

)
T +

13

144
+ S(T ) (1.2)

(See [He2, pp. 466] and [St] for these lower order terms which come from the trace formula).

The graph of S±, where ± denotes the even and odd parts of the spectrum corresponding to
z → −z̄, was calculated by Steil [St] for T 6 3000 and is reproduced in Figure 1.

We write (1.2) as
N(T ) = Nsmooth (T ) + S(T ) (1.3)

where Nsmooth(T ) is the “smooth” contribution to the Weyl count and it includes the smaller and
well understood contribution ω(T ) from the continuous spectrum. S(T ) is the oscillatory part,
about which much less is known. A simple application of the Selberg trace formula shows that

S(T ) = O

(
T

log T

)
. (1.4)

On the other hand, Selberg established the lower bound (see [He1, pp. 303]) for the mean
square∗

1

T

∫ 2T

T

(S(t))2 dt � T

(log T )2
. (1.5)

It follows in particular that

S(T ) = Ω

(
T 1/2

log T

)
. (1.6)

There have been many conjectural and related numerical developments concerning this modular
spectrum (see [Sa3], [BLS] [St]). For example, it is believed that the spectrum is simple and
that the local scaled spacing distributions are “Poissonian” rather than the Gaussian Orthogonal
distribution which is what is expected for the generic hyperbolic surface. However, progress on
S(T ) remains elusive and (1.4) and (1.5) are all that were known concerning S(T ). One of the
consequences of the analysis of the number variance below is the following modest improvement
of (1.5).

∗The proof given there is for quaternion groups and applies equally well to X.
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Theorem 1.1.
1

T

∫ 2T

T

(S(t))2 dt � T

(log T )2
exp

(
(log log T )5/17

)
and

S(T ) = Ω

(
T 1/2

log T
exp

(
1

2
(log log T )5/17

))
.

Our main results concern the smoothed number variance. Fix h ∈ S(R) a Schwartz function on

R with

∫ ∞

−∞
h(x) dx = 1 and h(x) = h(−x). We assume further that the support of ĥ is contained

in (−1, 1) where ĥ(ξ) =

∫ ∞

−∞
h(x)e−2πixξ dx is the Fourier transform of h. We use this h to define

a smoothed count of the eigenvalues in a short interval. For 1 � L� t1−ε set

Nh(t, L) =
∑
j>1

h(L(t− tj)) . (1.7)

Thus, Nh counts the number of eigenvalues within 1/L of t and the larger we can take L the more
information about the local distribution of the spectrum can be determined. A simple application
of the trace formula shows that for 1 6 L 6 log t/π, Nh is asymptotic to the smooth part in Weyl’s
law,

Nh(t, L) ∼ t

6L
, for 1 6 L 6

log t

π
. (1.8)

This range for L falls just short of being critical for the number variance. The following extends
the range suitably

Theorem 1.2.

For 1 6 L 6
2 log t

π
, we have that

Nh(t, L) ∼ t

6L
as t→∞ .

�

Corollary 1.3. Let m(t) be the multiplicity of the eigenvalue 1
4

+ t2, then

lim
t→∞

m(t) log t

t
6

π

12
.

This is embarrassingly far from the believed bound m(t) 6 1 but it is the best bound that we
know.
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We turn to the variance of Nh(t, L) (the “smoothed number variance”). Again for 1 6 L 6
log T

π
one can use the trace formula (the point being that in this range the off-diagonal terms don’t

contribute significantly) to show that as T →∞

∑
(T, L) :=

1

T

∫ 2T

T

(
Nh(t, L) − t

6L

)2

dt

∼ 1.328 . . .

2πL

∫ ∞

0

|ĥ(ξ)|2 eπLξ dξ

= O(Tα) , for some α < 1 . (1.9)

This was shown by Rudnick [Ru] (see also [LS] where the stronger lower bound as in (1.5) is
established for the number variance) who shows further more, by computing the higher moments,
that Nh(t, L), for T 6 t 6 2T , has a Gaussian distribution if L = o(log T ) and L → ∞. The
constant 1.328. . . is the one obtained by Peter [Pe1] for the mean square of the multiplicity of the
lengths of closed geodesics on X. Thus in the range L 6 log T

π
the variance is much smaller than

the Poisson variance whose order of magnitude is T/L. Our main result is the determination of

the number variance
∑

(T, L) in a window L ∈
[

(1+δ)
π

log T ,
(1+ 1

121
)

π
log T

]
for any given δ > 0.

The result indicates a Poissonian number variance which emerges from a detailed analysis of the
off-diagonal terms whose contribution turns out to be significant.

Throughout the paper we denote by S(u; v) the Kloosterman sum

S(u; v) =
∑

a(modv)

∗
e

(
au + āu

v

)
, with a ā ≡ 1(v) , where ∗ means (a, v) = 1 . (1.10)

Theorem 1.4. Let ψ ≥ 0 be a fixed smooth function with support in (1,2) with

∫ ∞

0

ψ(x) dx = 1

and fix δ > 0. Then for (1+δ)
π

log T 6 L 6
(1+ 1

121)
π

log T

∑
h
(T, L) :=

1

T

∫ ∞

0

ψ

(
t

T

) (
Nh(t, L) − t

6L

)2

dt

=

∫ ∞

0

ξ5ψ(ξ) dξ

π6

T

L2

∑
v≥1

∑
(u,v)=1

∏
p|v

(
1− p−2

)−2 S2(u; v)

u2v2

∣∣∣∣∣ ĥ
(

log Tv
u

πL

)∣∣∣∣∣
2

+ O

(
T

L2

)
.

Note that the series on the right hand side above consists of positive terms. Thus its asymptotic
behavior depends on the average sizes of Kloosterman sums. This is a quite subtle issue and it
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has been addressed recently by Fouvry and Michel [FM]. They show that

exp
[
(log log x)5/17

]
�
∑
v 6 x

|S(1; v)|2

v2
� (log x) (log log x)3 . (1.11)

From this and similar bounds (6.6) and (6.7), one deduces that if the support of ĥ is close enough
to ±1 then the first term on the right in Theorem 1.4 satisfies

T

L2
exp

(
(log log T )5/17

)
� R � T

L
(logL)3 . (1.12)

In particular, it is the main term!

As a consequence we have for such h

Corollary 1.5. Fix δ > 0, then for

(1 + δ)

π
log T 6 L 6

(
1 + 1

121

)
π

log T ,

T

L2
exp

(
(log log T )5/17

)
�
∑

h
(T, L) � T

L
(logL)3

Theorem 1.1 then follows from the lower bound in this Corollary.

It seems reasonable to conjecture that as x→∞,∑
v 6x

|S(u; v)|2

v2
∼ A log x , for a non-zero A . (1.13)

This combined with Theorem 1.4 would lead to
∑

h(T, L) ∼ cT/L, for a non-zero constant c (and L
restricted as in Theorem 1.4). That is to say that at least for L in this window the number variance
is Poissonian. In the same way (1.13) would lead to the lower bound of T/ log T in (1.5) which could
well be the true order of magnitude for the mean square of S(t). The extension of the range for L
to the window specified in Theorem 1.4 is the analogue of extending the range in Montgomery’s
pair correlation conjecture for the zeros of the zeta function [Mo] to the region α > 1 (see [Pe2] for
the analogue of Montgomery’s analysis in the context of the eigenvalues of a hyperbolic surface).
In the case of the zeros of zeta such an extension would follow from a quantitative version of the
Hardy-Littlewood prime 2-tuple conjectures. In our case of the eigenvalues of X we have to handle
similar off-diagonal shifted sums as described briefly in the next paragraph.

We end the introduction by outlining the proofs of the results. Instead of using the Selberg trace
formula, we use the Kuznetzov formula (see Section 2). The latter involves sums over the spectrum
weighted by Fourier coefficients of eigenfunctions. These weights need to be removed (which turns
out to be non-trivial) since the count in N(T ) involves no weights. The gain in using the Kuznetzov
formula over the trace formula is that the sums on the geometric side involve Kloosterman sums
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and integrals which apparently package certain cancellations in a more transparent way than do
the sums involving class numbers which appear naturally from the Selberg trace formula. In fact
the doubling of the range of L that is the content of Theorem 1.2, is achieved in this fashion
without too much trouble. The idea of introducing these weights and then removing them is not
new. It was used by Iwaniec [Iw1] in connection with improving the error term in counting closed
geodesics on X and we also use some other technical devices introduced in that paper. As we
noted earlier, Theorem 1.4 involves extending L to be large enough to see the Poissonian number
variance. Not surprisingly this analysis requires understanding the contributions from off-diagonal
terms. These do in fact contribute to the main term and certain further cancellations among these
are crucial. We handle these off-diagonal terms emerging from the Kuznetzov formula using the
circle method and in particular the smooth “δ-method” developed in [DFI]. It is possible that one
could also obtain Theorem 1.4 by making the analysis in Peter [Pe1] (specifically the shifted sums)
effective by obtaining a uniform power saving in the error terms. The quality of the result (i.e.
doubling the window length) in Theorem 1.2 would appear to be more difficult to achieve without
using the Kuznetzov formula.

§2. Some Technical Tools

We review the Kuznetzov formula as well as some facts about Rankin-Selberg L-functions
which will be used later on. Our notations and set up agree with that in [Iw1] and [Iw2]. The
Eisenstein series for X is given by

E(z, s) =
∑

γ∈Γ∞\Γ

(y(γz))s (2.1)

for <(s) > 1, Γ = PSL(2,Z) and Γ∞ =
{(

1 m
0 1

)
: m ∈ Z

}
. E(z, s) has a meromorphic continua-

tion to the entire complex plane and has Fourier expansion

E(z, s) = ys + φ(s)y1−s +
∑
n6=0

φ(n, s)Ws(|n|z) (2.2)

where φ(s) and φ(n, s) are given by

φ(s) =
ξ(2s− 1)

ξ(2s)
, ξ(s) = π−s/2 Γ

(s
2

)
ζ(s)

φ(n, s) = πs(Γ(s) ξ(2s))−1 |n|1/2
∑

ab = |n|

(a
b

)s− 1
2
, (2.3)

and Ws(z) is the Whittaker function

Ws(z) = 2y1/2Ks− 1
2
(2πy) e(x) . (2.4)

E(z, s) is an eigenfunction of 4 with eigenvalue s(1− s) and it furnishes the continuous spectrum
for 4 on L2(X) when s = 1

2
+ it, t ∈ R. Other than a simple pole at s = 1, E(z, s) has no poles
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in <(s) ≥ 1
2
. The cuspidal subspace L2

cusp(X) consists of all functions in L2(X) which have∫ 1

0

f(z) dx = 0 for almost all y . (2.5)

This is a closed 4 invariant subspace which is the orthogonal complement in L2(X) of the con-

tinuous spectrum and the constant function u0(z) = (Area X)−1/2 =
(

π
3

)−1/2
. The spectrum of

4 on L2
cusp(X) is discrete and let {uj}∞j=1 be a corresponding orthonormal basis. These functions

have Fourier expansions

uj(z) =
∑
n6=0

ρj(n)Wsj
(|n|z) (2.6)

where sj(1− sj) = λj (i.e. sj = 1
2

+ itj) and ρj(n) are the corresponding Fourier coefficients.

Let p(z) be an even test function which is holomorphic in |=(z)| 6 1
2

+ ε and which is
O((1 + |z|)−2−ε) in this region.

Set

p0 =
1

π

∫ ∞

−∞
y tanh (πy) p(y) dy (2.7)

and

p+(x) =
2i

π

∫ ∞

−∞
J2iy (x)

p(y)y

cosh πy
dy . (2.8)

Define the normalized coefficients

νj(n) =

(
4π|n|

cosh π tj

)1/2

ρj(n) (2.9)

and

η(n, t) =

(
4π|n|

cosh π t

)1/2

φ

(
n,

1

2
+ it

)
. (2.10)

With these notations, we have the following form of the Kuznetzov formula that we will need (see
[Iw2]).

Proposition 2.1. For any n ≥ 1

∑
j≥1

p(tj) | νj(n)|2 +
1

4π

∫ ∞

−∞
p(t)|η(n, t)|2 dt

= p0 +
∞∑

c=1

S(n; c)

c
p+

(
4πn

c

)
.
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Here S(n; c) is the Kloosterman sum defined in (1.10).

Next, we review the Rankin-Selberg L-functions. We assume as we may, that the uj’s are
eigenforms of the Hecke operators Tn. Thus, for n > 1 (see [Iw2])

ρj(n) = ρj(1)λj(n) (2.11)

where λj(n)
/√

n is uj’s eigenvalue for Tn. In particular, these satisfy

λj(n)λj(m) =
∑

d|(n,m)

λj

(nm
d2

)
. (2.12)

For <(s) > 1 we define the Rankin-Selberg L-functions Rj(s) by

Rj(s) =
∑
n>1

|νj(n)|2 n−s . (2.13)

It is known (Rankin and Selberg) that Lj(s) = ζ(2s)Rj(s) has an analytic continuation to the
complex plane with a simple pole at s = 1 and residue 2. Furthermore, Lj(s) satisfies the functional
equation

Λj(s) := Lj(∞, s)Lj(s) = Λj(1− s) (2.14)

where
Lj(∞, s) = π−2s Γ2

(s
2

)
Γ
(s

2
+ itj

)
Γ
(s

2
− itj

)
.

In the critical strip 0 < <(s) < 1 we have the convexity bounds:

Proposition 2.2. For 0 < β < 1 and <(s) = β we have

|Rj(s)| �
ε
|tj|1−β+ε |s|2(1−β)+ε .

Proof: It is known ([Iw2 pp. 130]) that∑
16m6M

|νj(m)|2 �
ε
M |tj|ε . (2.15)

Hence for <(s) = 1 + ε we have

|Lj(s)| � |Rj(s)| �
ε
|tj|ε . (2.16)

Now applying the functional equation (2.14) and Stirling’s formula gives for <(s) = ε

|Lj(s)| �
ε
|tj|1+3ε |s|2+4ε . (2.17)
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Applying the Phragmen-Lindelöf principle and Stirling’s formula we get

|Rj(s)| �
ε
|tj|1−β+6ε |s|2(1−β)+6ε ,

on the line <(s) = β .

�

We will also make use of Luo’s zero density theorem for the family Lj(s) (see [Lu]). Specifically,
we appeal to the following consequences of his results.

Proposition 2.3. Let η > 0 be a sufficiently small constant, then at most t1/5 of the Rj’s with
|tj| 6 t have a zero in the rectangle

1− η 6 <(s) 6 1 , |=(s)| 6 log3 t .

Furthermore, all but at most t1/5 of these Rj’s with |tj| 6 t satisfy

|(s− 1)Rj(s)| �
ε

(|s| |t|)ε

for
1− η/2 6 <(s) < 1 , |=s| 6 (log t)2 .

§3. Multiplicity Bounds

We turn to the proofs of Theorem 1.2 and Corollary 1.3. Let h(x) satisfy the conditions stated
before (1.7) and let

ht,L(x) := h(L(t− x)) + h(L(t+ x)) where t is large and L � tε . (3.1)

ht,L is even and satisfies the conditions imposed on p in Proposition 2.1. Note that

Nh(t, L) =
∑
j>1

ht,L(tj) + O(1) . (3.2)

In order to apply Proposition 2.1, we introduce the weights |νj(n)|2 and then remove them by
averaging over n 6 N (with N to be chosen). According to Proposition 2.3 with 2t instead of t,
we split the set of |tj| 6 2t into two sets G1 and G2. G1 contains those tj for which Rj(s) has no
zeros in the rectangle described in the Proposition and G2 contains the rest. By the Proposition
|G2| 6 (2t)1/5.

Now consider

Ωj(N) :=
∞∑

n=1

|νj(n)|2 e−n/N =
1

2πi

∫
σ=2

Γ(s)Rj(s)N
s ds . (3.3)
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Shifting the contour to <(s) = β = 1− δ with δ < η/2 and η as in Proposition 2.3 and using the
properties of Rj(s) discussed in Section 2, we obtain

Ωj(N) =
12N

π
+ Ij(N) (3.4)

with

Ij(N) =
1

2πi

∫
<(s)=β

Γ(s)Rj(s)N
s ds . (3.5)

For tj ∈ G1 we apply Proposition 2.3 which gives

Ij(N) �
ε
Nβ tε . (3.6)

For tj ∈ G2 we simply apply the convexity bound in Proposition 2.2 and find that

Ij(N) �
ε
Nβ|tj|1−β+ε . (3.7)

Hence, combining (3.4), (3.6) and (3.7) gives

Mh(t, L) :=
1

N

∑
j

ht,L(tj) Ωj(N)

=
12

π
Nh(t, L) +

1

N

∑
j

ht,L(tj) Ij(N) + O(1)

=
12

π
Nh(t, L) +

1

N

∑
j∈G1

+
1

N

∑
j∈G2

+ O(1)

(3.8)

=
12

π
Nh(t, L) + Oε

(
N−δt1+ε + 1

)
. (3.9)

In order to use Proposition 2.1, we note that the analogous contribution of the continuous
spectrum to the sum via in (3.9) is

1

4πN

∑
n≥1

e−n/N

∫ ∞

−∞
ht,L(x) |η(n, x)|2 dx

� N ε

∫ ∞

−∞
|ht,L(x)| log2(1 + 2|x|) dx

� N ε L−1 log(1 + 2|t|) , (3.10)

by the well-known bounds ζ(1 + 2ix) � log(1 + 2|x|)−1 and τ(n) � nε, where τ(n) is the divisor
function.
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We apply Proposition 2.1 to the sums∑
j>1

ht,L(tj)|νj(n)|2 =
∑
j>1

h(L(tj − t))|νj(n)|2 + O(1) .

The main term comes from h0 = p0 which gives

1

π

∫ ∞

−∞
x tanh(πx) [h(L(t− x)) + h(L(t+ x))] dx ∼ 2t

πL
(3.11)

(recall we normalized h so that

∫ ∞

−∞
h(x) dx = 1).

Hence this contribution from h0 to the N -sum is

∼ 1

N

∑
n>1

e−n/N 2t

πL
∼ 2t

πL
. (3.12)

The other terms that arise applying Kuznetzov formula to (3.11) involve the sum over c and in
particular h+

t,L and S(n; c). We will estimate these.

First, we need the behavior of J2iy(2x) for y > cx and c any positive number. Let

z =
√
x2 + y2, then we have the asymptotic expansion (see [ Er, pp.87])

J2iy(2x) = (2π1/2)−1 z−1/2 e−
π
4
i exp(πy) · e

(
z
π
− y

π
log
(

z−y
x

))
·

·
{

1 + 1
2iy

(
1
8

y
z
− 5

24

(
y
z

)3)
+ 1

(2iy)2

(
9

128

(
y
z

)2 − 231
576

(
y
z

)4
+ 1155

3456

(
y
z

)6
+ · · ·

)}
.

(3.13)

Also since J−2iy(x)=J2iy(x) it follows that (recall (2.8)) h+
t,L(x)=2<[h+

∗ (x)] where
h∗(y) = h(L(t− y)).

Proposition 3.1. For x� t

h+
∗ (x) ∼ iπ−3/2 e

−iπ
4
t1/2

L

(ex
4t

)2it

ĥ

(
log 4t

ex

πL

)
+

+L−1t1/2
(ex

4t

)2it ∑
k≥1

t−k
∑
m≥0

αm(L−1, t−1) · ĥ(m)

(
log 4t

ex

πL

)
where αm(L−1, t−1) are polynomials in L−1 and t−1 and the asymptotic expansion when terminated
at say k 6 B, leaves a remainder of O(t−B).
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For the rest of the paper, when t � x we will only examine the leading term in the above
series, the higher order terms can be handled similarly. We always terminate at some fixed order
B which is large enough so that the remainder is negligible for our purpose.

Our original test function h satisfies support ĥ ⊂ [−b, b] ⊂ (−1, 1). Let δ1 be small with
0 < δ1 < 1− b and let N = tδ1 and 1 6 L 6 2 log t

π
.

Then
1

N

∑
n>1

e−n/N
∑
c>1

S(n; c)

c
h+

t,L

(
4πn

c

)

� 1

N

∑
n6N1+ε

∑
c>1

t1/2

L

(n, c)1/2

c1/2
τ(c)

∣∣∣∣ĥt,L

(
log ct

eπn

πL

)∣∣∣∣
�
ε
L−1N ε tb+

δ1
2 = o

(
t

L

)
(3.14)

where we have invoked Weil’s bound

S(n; c) � c1/2(n, c)1/2 τ(c) . (3.15)

Combining (3.14), Proposition (2.1), (3.11), (3.10) yields

Mh(t, L) =
2t

πL
+ o

(
t

L

)
. (3.16)

This, together with (3.9) yields (with our choice of N) that for 1 6 L 6 (2 log t)/π,

Nh(t, L) =
t

6L
+ o

(
t

L

)
. (3.17)

This completes the proof of Theorem 1.2.

To deduce Corollary 1.3 from this, let h be as above with h(x) > 0. Then (recall ĥ(0) = 1)

h(0)m(t) 6
∑
j>1

h((tj − t)L) ∼ t

6L
ĥ(0) .

Taking L = 2 log t
π

(that is as large as is allowed)

lim
t→∞

m(t) log t

t
6

π

12

ĥ(0)

h(0)
. (3.18)

As shown in [ILS pp. 115]

min
h>0

supp ĥ⊂[−1,1]

ĥ(0)

h(0)
= 1 .
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Hence

lim
t→∞

m(t) log t

t
6

π

12
.

This proves Corollary 1.3.

Note that the right sides of (35) and (36) of [Sa3] and the corresponding bound in [Sa2] should
be multiplied by 2.

§4. Smoothed Number Variance

The final three sections are concerned with proving Theorem 1.4. In this section we use
Proposition 2.1 to bring the number variance into a form that will allow us to determine its
asymptotic behavior. Fix φ(x) and ψ(x) smooth test functions which are supported in (1, 2) and

which satisfy

∫ ∞

−∞
ψ(x)dx =

∫ ∞

−∞
φ(x)dx = 1. Define the weighted number variance

∑w
h (T, L) by

∑w
h (T, L) :=

1

T

∫ ∞

0

(
Mφ

h (t, L) − t

6L

)2

ψ

(
t

T

)
dt (4.1)

where

Mφ
h (t, L) =

∑
j>1

ht,L(tj)

(
tπ

12NT

∑
n>1

|νj(n)|2 φ
(
nt

NT

))
, (4.2)

and N is to be determined as a function of T . As in the last section, we have∑
n

|νj(n)|2 φ
(
nt

NT

)
=

12

π

NT

t
+ Iφ

j (N) , (4.3)

where

Iφ
j (N) =

1

2πi

∫
<(s)= 1

2

(
NT

t

)s

Rj(s) Ω (s) ds

and

Ω(s) =

∫ ∞

0

φ(ξ) ξs dξ

ξ
.

Hence, using the convexity bound for Rj(s) in Proposition 2.2, we have

Iφ
j (N) = Oε

(
N1/2 |tj|1/2+ε

)
. (4.4)

Thus, ∑w
h (T, L) =

∑
h (T, L) + O

(
N−1 T 3+ε + N−1/2 T 5/2+ε

)
. (4.5)

For the rest of the paper we choose N = T 100. With this it clearly suffices to study
∑w

h (T, L)
rather than

∑
h(T, L).
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Apply the Kuznetzov formula to the j sum in (4.2). One checks that the continuous spectrum
contribution is Oε(N

ε). The contribution from the h0 term is

πt

12NT

∑
n

φ

(
nt

NT

)
2

π

∫ ∞

−∞
x tanh(πx)ht,L(x) dx

∼ t

6L
, with a negligible error term. (4.6)

Hence, with our choice of N and the above comment about the continuous spectrum, we have∑w
h (T, L) = σ(T, L) + O

(
σ(T, L)1/2N ε

)
(4.7)

where

σ(T, L) =
1

T

∫ ∞

0

∣∣∣∣∣ πt

12NT

∑
c

∑
n

S(n; c)

c
h+

t,L

(
4πn

c

)
φ

(
nt

NT

)∣∣∣∣∣
2

· ψ
(
t

T

)
dt (4.8)

and h+
t,L(x) = 2<(h+

∗ (x)) with

h+
∗ (x) =

2i

π

∫ ∞

−∞
J2iy(x)

yh(L(y − t))

cosh πy
dy . (4.9)

So for our purposes it is sufficient to investigate σ(T, L).

Note that the integrand in (4.9) is negligible unless y is near t. Consider first the range of
summation for c where N

c
> T . In this case the argument 4πn

c
in h+ is > 4T and we use the

following estimates for J .

For x ≥ 2y

J2iy(x) =
1√
2πx

(
W1(2iy, x)e

ix + W2(2iy, x) e
−ix
)

(4.10)

where
∂(j)

∂xj
Wi �

j
(1 + |x|)−j cosh πy for i = 1, 2, j ≥ 0 (see[Wa], pp. 205).

Hence, applying Poisson summation∑
n

S(n; c) J2iy

(
4πn

c

)
φ

(
nt

NT

)
=

∑
d(modc)

S(d; c) e

(
2d

c

) ∑
m

e

(
−md
c

)

·
∫ ∞

−∞
x−1/2W

(
2iy,

4πx

c

)
e
(mx
c

)
φ

(
xt

NT

)
dx

∼
√
c
∑

d(modc)

S(d; c) e

(
2d

c

) ∫ ∞

−∞
x−1/2W

(
2iy,

4πx

c

)
· φ
(
xt

NT

)
dx

� c1/2N1/2 cosh πy . (4.11)
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Hence for c 6 NT−1∑
n

S(n; c)h+
t,L

(
4πn

c

)
φ

(
nt

NT

)
� t

L
c1/2N1/2

and
πt

12NT

∑
c6NT−1

∑
n

S(n, c)

c
h+

t,L

(
4πn

c

)
φ

(
nt

NT

)

� t

NL
N1/2

∑
c6NT−1

c−1/2 =
t

LN1/2
· N

1/2

t1/2
= t1/2

/
L . (4.12)

Hence, we have

∑w
h (T, L) =

1

T

∫ ∞

0

∣∣∣∣∣∣ πt

12NT

∑
c>NT−1

∑
n

S(n; c)

c
h+

t,L

(
4πn

c

)
φ

(
nt

NT

)∣∣∣∣∣∣
2

· ψ
(
t

T

)
dt

+O

(
T

L2

)
(4.13)

Applying Proposition 3.1 to h+
∗
(

4πn
c

)
with c > NT−1 yields∑w

h
(T, L) =

4

π3L2

∫ ∞

0

∣∣∣∣∣∣ t
1/2πt

12NT
<

−i eπi
4 e

π
42

∑
c>NT−1

∑
n

S(n; c)

c

(eπn
tc

)−2it

·

·φ
(
nt

NT

)
ĥ

(
log ct

en

πL

)]∣∣∣∣2 ψ( t

T

)
dt

T
+ O

(
T

L2

)
(4.14)

In order to execute the n sum in (4.14) we write

S(n; c) =
∑

− c
2
<a6 c

2

ρ(c, a) e
(na
c

)
(4.15)

where ρ(a, c) denotes the number of solutions d(mod c) of

d2 − ad + 1 ≡ 0(c) . (4.16)
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Now applying the Euler-Maclaurin formula gives∑
n

e
(an
c

)
n−2it ĥ

(
log ct

n

πL

)
φ

(
nt

NT

)

=

∫
R
e(f(x)) ĥ

(
log ct

x

πL

)
φ

(
xt

NT

)
dx + O

(
1

N

)
(4.17)

where

f(x) =
ax

c
− t

log x

π
.

From now on, set
U = eπL (4.18)

(so that U 6 T 1+δ for δ > 0 but small as in Theorem 1.4). If a = 0 or if |a| ≥ 100U then there
is no stationary phase point in the integral in (4.17) and one sees that the integral is OB(NT−B)
for any positive B. In particular, this restricts the range of a’s that we need to consider. For
0 < |a| 6 100U we use the stationary phase method ([Hu]) and find that∑

n

e
(an
c

)
n−2it ĥ

(
log ct

n

πL

)
φ

(
nt

NT

)

=
e(f(x0) + 1

8
)√

f ′′(x0)
ĥ

(
log ct

x0

πL

)
φ

(
x0t

NT

)
+ O

(
N

T 3/2

)
(4.19)

with

x0 =
tc

aπ
.

By the mean value theorem ( [Iw]) for ρ(c, a):∑
16c6C

∑
A6a62A

ρ(c, a) =
6

π2
AC + Oε

((
A

11
6 C + AC1/2

)
Cε
)

(4.20)

and hence the contribution to
∑w

h (T, L) from the error term in (4.19) is at most (UT−1L−1)2. We
arrive at ∑w

h (T, L) =

4

144π2L2

∫ ∞

0

∣∣∣∣∣ t2NT <
[∑

a>0

a2it−1Wa ĥ

(
log a

πL

)]∣∣∣∣∣
2

ψ

(
t

T

)
dt

T

+O
(
TL−2 + U2T−2L−2

)
, (4.21)

where

Wa =
∑

c

ρ(c, a)φ

(
cT

aN

)
. (4.22)
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Squaring out in (4.21) leads to

∑w
h (T, L) =

T 2

576π6.L2N2

∑
|k|6 K

D(k, T ) + O
(
TL−2 + U2T−2L−2

)
(4.23)

where K = UT−1+ε and (assuming k > 0 without loss of generality)

D(k, T ) =
∑

a

WaWa+k ĥ

(
log a

πL

)
ĥ

(
log(a+ k)

πL

)

· ψ̂(4)

(
T

π
log

a+ k

a

)
a−1(a+ k)−1 . (4.24)

Note that ρ(c, a) is multiplicative in c. Following [Iw1, pp. 154] we factor c as k` with (k, 4`) = 1
and k being the square-free part of c, we have ρ(c, a) = ρ(k, a)ρ(`, a) and

ρ(k, a) =
∑
r|k

(
a2 − 4

r

)
. (4.25)

Let L be the set of integers ` s.t. p|` ⇒ p2|`, then using (4.25) we may write for R a large
parameter which will be chosen shortly:

Wa = Wa,1 + Wa,2 . (4.26)

where

Wa,1 =
∑

`
`∈L

∑
r

`r 6 R

∑
s

(rs,4`)=1

µ2(rs) ρ(`, a)

(
a2 − 4

r

)
φ

(
`rsT

aN

)
(4.27)

and

Wa,2 =
∑

`
`∈L

∑
r

`r > R

∑
s

(rs,4`)=1

µ2(rs)ρ(`, a)

(
a2 − 4

r

)
φ

(
`rsT

aN

)
. (4.28)

In order to estimate the r-sum in (4.28), we use the zero density theorem for Dirichlet L-functions
as a substitute for the Lindelöf hypothesis. Let

L(a, s) =
∑
r≥1

(
a2 − 4

r

)
r−s .

Choosing an exponential smoothing (we could of course use any smoothing essentially),

we have

I(a) :=
∑
r≥1

(
a2 − r

r

)
e−r/R1 =

1

2πi

∫ 2+i∞

2−i∞
Γ(s)L(a, s)Rs

1ds . (4.29)
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Move the line of integration to β = 1− δ with 0 < δ 6 1
2
, this yields

I(a) =
1

2πi

∫
β

Γ(s)L(a, s)Rs
1ds . (4.30)

Let DR1 be the rectangle

1− 1

30
< <(s) < 1 , −2 logR1 < =(s) < 2 logR1 . (4.31)

Then according to Barban ([Ba], Lemma 5.3) and Stirling’s formula, if L(a, s) has no zeroes in
DR1 , in which case we say a ∈ G(R1), we have

I(a)�
ε
aεR

29
30
1 . (4.32)

Let B(R1) be the complement of G(R1) with |a| 6 100U . Using standard density theorems (see
for example [Sa1, pp. 342]) we have

#B(R1) � U1/2 . (4.33)

For a ∈ B(R1) we employ the convexity bound for L(a, s)

L(a, s)�
ε
|a|1/2 |s|M

with M > 0 and <(s) = 1
2
. This yields

I(a)�
ε
|a|1/2+εR

1/2
1 for a ∈ B(R1). (4.34)

One can remove the weights e−r/R1 by Fourier analysis (see for example [Iw1] pp. 146) to get

Lemma 4.1. For a ∈ G(R1), ∑
16r6R1

(
a2 − 4

r

)
�
ε
aεR

29
30
1 ,

while for any a ∈ B(R1) ∑
16r6R1

(
a2 − 4

r

)
�
ε
a1/2+εR

1/2
1 .

Adding the condition that r be square free and relatively prime to a given q by the device in
[IS, pp. 329], we obtain
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Corollary 4.2. Let q ≥ 1,

for a ∈ G(R1) ∑
r6R1

(r,q)=1

µ2(r)

(
a2 − 4

r

)
�
ε
R

29
30

+ε

1 (aq)ε

while for a ∈ B(R1) ∑
r6R1

(r,q)=1

µ2(r)

(
a2 − 4

r

)
�
ε
|a|1/2+εR

1
2
+ε

1 qε .

It is elementary that ∑
s6S

(s,q)=1

µ2(s) ∼ 6

π2
Πp|q

(
1 + p−1

)−1
S . (4.35)

We break the r-sum in (4.28) into dyadic boxes [R1, 2R1] and apply Corollary 4.2 and (4.35).

For a ∈ G(R) the contribution to (4.28) is

�
ε

∑
`≥1
`∈L

`−29/30 |a|1+εN1+εT−1R−
1
30 �

ε
|a|1+εN1+εT−1R−

1
30 . (4.36)

While for a ∈ B(R) it is
�
ε
|a|3/2+εN1+εT−1R−1/2 . (4.37)

Consider now∑
a

Wa,2Wa+k,1 ĥ

(
log a

πL

)
ĥ

(
log(a+ k)

πL

)
ψ̂(4)

(
T log

a+ k

a

)
(a(a+ k))−1 . (4.38)

We split it into
∑

a∈B(R)

and
∑

a∈G(R)

and use the trivial bound

Wa+k,1 � |a+ k|NT−1

and (4.36), (4.37) and (4.33), we get that∑
a∈G(R)

�
ε

(U + k)NT−1 U−1(U + k)−1U1+εN1+ε T−1R−
1
30U

�
ε

U1+εT−2N2+εR−
1
30

+ε (4.39)
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and ∑
a∈B(R)

�
ε
U1+ε T−2N2+εR−1/2 . (4.40)

On summing |k| 6 K (K as in (4.23)), it follows that the contribution to (4.23) of the terms in
(4.38) is

� N εU2+εR−
1
30 T−1 . (4.41)

The same applies to the contributions from Wa,1Wa+k,2 and Wa,2 Wa+k,2. Hence if we choose

R = U (60+ 1
105

)T−60 (4.42)

then we have that ∑w
h (T, L) =

T 2

576π6L2N2

∑
|k|6K

D1(k, T ) + O(T/L2) (4.43)

where

D1(k, T ) =
∑

a

∑
b

b−a=k

Wa.1Wb,1ĥ

(
log a

πL

)
ĥ

(
log b

πL

)
· ψ̂(4)

(
T

π
log

a

b

)
(ab)−1 (4.44)

and where
T < U < T

122
121 . (4.45)

The condition (4.45) is ensured by the choice (4.18) and the support condition of h in Theorem
1.4.

In the next section, we use the “δ-method” to study the asymptotic behavior of the shifted
sum (4.44). Note for later that with U satisfying (4.45)

R 6 T 1/2−δ1 with δ1 fixed and positive. (4.46)

§5. The δ-Method

We recall the flexible variant of Kloosterman’s circle method, due to Duke-Friedlander and
Iwaniec [DFI], known as the δ-method. It uses Fourier analysis to isolate the terms b − a = k in
the shifted sum (4.44). Let w(u) be a smooth even test function supported in V < |u| < 2V where
V is a large parameter. Assume further that w satisfies

wj(u)�
j
V −j−1 for each j ≥ 0 . (5.1)

Normalize w(u) by requiring that ∑
v>1

w(v) = 1 . (5.2)
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Then for any n ∈ Z
δ(n) =

∑
u>1

∑
u(modv)

∗
e
(un
v

)
4v(n) (5.3)

with
4v(u) =

∑
r>1

(vr)−1
(
w(vr)− w

( u
vr

))
. (5.4)

Now 4v(u) is an approximate δ-function as the following shows (see [DFI]):

Lemma 5.1. For f ∈ C∞
0 (R) and any j ≥ 1 we have

(i)

∫ ∞

−∞
f(u)4v(u)du = f(0) + O

(
V −1vj

∫ ∞

−∞

(
V −j|f(u)| + V j|f (j)(u)|

)
du

)
(ii) 4v(u) � (vV + V 2)−1 + (vV + |u|)−1

(iii) ∂a

∂ua 4v(u)�
a

(vV )−a−1, for a ≥ 0.

Note that (i) is only useful if v � V 1−ε, in the case v � V 1−ε we use (ii).

We study the shifted sums in (4.44) in more general form: Let f(x, y) be a smooth function of
x and y satisfying:

xi+1yj+1f (i,j)(x, y) �
i,j

(
1 +

|x|
U

)−B (
1 +

|y|
U

)−B

(5.5)

for each i, j ≥ 0, where f (i,j) is the mixed (i, j)-th partial derivative, B is a large constant and U
a large parameter.

In our application we take

f(x, y) =
1

xy
ĥ

(
log x

πL

)
ĥ

(
log y

πL

)
ψ̂(4)

(
T

π
log

x

y

)
. (5.6)

We can assume that ĥ is supported in a small neighborhood of {−1, 1} and so U = eπL as in
(4.18) and L is as in Theorem 1.4. By a partition of unity argument we can reduce to the case
that f is supported in [U, 2U ]× [U, 2U ]. The shifted sums that we study are

Df (k, T ) :=
∑

a

∑
a−b=k

Wa,1Wb,1 f(a, b) (5.7)

where

Wz,1 =
∑

`

∑
r

∑
s

`∈L,`r6R
(rs,4`)=1

µ2(rs)ρ(`, z)

(
z2 − 4

r

)
φ

(
`rsT

zN

)
. (5.8)
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In applying the δ-method to (5.7) we take the parameter V in the definition of w(u) to be

V = U1/2 , (5.9)

so that
4v(u) = 0 if |u| 6 U and v ≥ 2V . (5.10)

Thus

Df (k, T ) =
∑

16v62V

∑
u(v)

∗
e

(
−ku
v

) ∑
a

∑
b

Wa,1Wb,1 e

(
ua− ub

v

)
E(a, b) (5.11)

with
E(x, y) = f(x, y)4v(x− y − k) . (5.12)

Note that from Lemma 5.1 and (5.5)

E(x, y) � U−2(vV )−1 (5.13)

and
E(i,j)(x, y) � (vV )−1−i−j U−2 , i, j ≥ 0 . (5.13′)

Next we carry out a and b sums in (5.11). We begin with the a sum. Let

F (u, v, b) =
∑

a

Wa,1 e
(ua
v

)
E(a, b) (5.14)

=
∑
`1

∑
r1

∑
s1

`1 ∈L , `1r1 6 R1
(r1s1,4`1)=1

µ2(r1s1)
∑

a

ρ (`1, a)

(
a2 − 4

r1

)
e
(ua
v

)
I1 (a, b, `1r1s1) (5.15)

where

I1(a, b, c1) = E(a, b)φ

(
c1T

aN

)
. (5.16)

Splitting the a sum in (5.15) into residue classes α(mod `1) and applying Poisson summation yields∑
a≡α(`1)

(
a2 − 4

r1

)
e
(ua
v

)
I1(a, b, `1r1s1)

=
1

`1r1

∑
s(r1)

(
s2 − 4

r1

) ∑
h1

e

(
−h1(αr1r̄1 + s`1 ¯̀1)

`1r1

)

· Î1
(
h1

`1r1
+
u

v
, b, `1r1s1

)
(5.17)

where r̄1 and ¯̀
1 are defined by

r1r̄1 ≡ 1( mod `1) and `1 ¯̀1 ≡ 1( mod r1)
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and Î1 denotes Fourier transform in the first variable. Hence, the a sum in (5.15) is∑
a

=
∑

a

ρ(`1, a)

(
a2 − 4

r1

)
e
(ua
v

)
I1 (a, b, `1r1s1)

=
1

`1r1

∑
h1

S(−h1r̄1; `1)H(h1, `1, r1) Î1 (h′1, b, `1r1s1) (5.18)

where

H(h1, `1, r1) =
∑
s(r1)

(
s2 − 4

r1

)
e

(
−h1

¯̀
1s

r1

)
, (5.19)

h′1 =
h1

`1r1
+
u

v (5.19′)

and where we have used (4.15). We define H(h2, `2, r2) similarly.

Next, we apply Poisson summation in b,∑
b

=
∑

b

ρ(`2, b)

(
b2 − 4

r2

)
e

(
ub

v

)
Î1 (h′1, b, `1r1s1)φ

(
c2T

bN

)

=
1

`2r2

∑
h2

S(−h2r̄2; `2)H(h2, `2, r2) I2(h
′
1, h

′
2, c1, c2) (5.20)

where h′2 = h2

`2r2
+ u

v
and

I2(h
′
1, h

′
2, c1, c2) =

∫ ∫
I1(x, y, c1)φ

(
c2T

yN

)
e(h′1x+ h′2y) dxdy

=

∫ ∫
E(x, y)φ

(
c1T

xN

)
φ

(
c2T

yN

)
e (h′1x+ h′2y) dxdy (5.21)

with ci = `irisi , i = 1, 2.

Now if h′j 6= 0 then according to (5.19′) and (4.46)

|h′jvV | �
vV

`jrjv
� U1/2

R
� T δ1 with δ1 > 0 and fixed . (5.22)

Hence integrating by parts M times in (5.21) and using (5.13′) we conclude that if one of h′1 or h′2
is not zero then the integral I2 satisfies

I2 �
M
T−δ1M for any M > 0 .
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Combining (5.18) and (5.20) we arrive at

`1`2r1r2
∑

b

∑
a

=

S(−h0
1 r̄1; `1)S(−h0

2 r̄2; `2)H(h0
1, `1, r1)H(h0

2, `2, r2) I2(0, 0, c1, c2) + negligible (5.23)

where
h0

i

`iri

+
u

v
= 0 for i = 1, 2 . (5.24)

(Here, negligible means it is O(T−M) for any M .)

To evaluate the main term in (5.23) we need to evaluate various complete character sums.

Lemma 5.2. ∑
s(q1q2)

(
s4 − 4

q1

)
e

(
ts

q1q2

)
= 0

if
(tq1, q2) = 1 and q2 > 1 .

Proof: Write
s = s1q1q̄1 + s2q2q̄2 .

Then ∑
s(q1q2)

(
s2 − 4

q1

)
e

(
ts

q1q2

)

=
∑

s2(q1)

(
s2
2 − 4

q2

)
e

(
ts2q̄2
q1

) ∑
s1(q2)

e

(
ts1q̄1
q2

)
= 0 since (t, q2) = 1 .

Lemma 5.3. Let u, v and h0
i be as in (5.24), then

S(−h0
i ri; `i)H(h0

i , `i, ri) = µ(r′i)φ(`′i)mini
S(u; v)

v

where for i = 1 or 2
ri = mir

′
i, `i = ni`

′
i and

mini = vv′i where v
′
i|mi

and if p is a prime and p|v′i then p|v (i.e. mi is the part of ri in v and ni the part of `i in v).
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(Here µ is the Möbius function and φ the Euler function).

Proof: The Kloosterman sum satisfies the multiplicativity

S(−h0
i r̄i; `i) = S(−h0

i r̄i`′i ;ni)S(−h0
i r̄ini ; `

′
i)

where
S(−h0

i r̄in̄i; `
′
i) = φ(`′i)

since `′i|h0
i , while

S(−h0
i r̄i

¯̀′
i;ni) =

∑
d(ni)

∗
e

(
−h0

i r̄i
¯̀′
i(d+ d̄)

ni

)

=
∑
d(ni)

∗
e

(
u`′ir

′
iv
′
i`
′
iri(d+ d̄)

ni/v′i · v′i

)

=
∑
d(ni)

∗
e

(
um̄i(d+ d̄)

ni/v′i

)
= v′i S(um̄i;ni/v

′
i) . (5.25)

On the other hand,
H(h0

i , `i, ri) = H(h0
i , `ir

′
i,mi)H(h0

i , `imi, r
′
i)

and

H(h0
i , `imi, r

′
i) =

∑
s(r′i)

(
s2 − 4

r′i

)
e

(
−h0

i `imis

r′i

)
= µ(r′i)

since r′i|h0
i .

Finally,

H(h0
i , `ir

′
i,mi) =

∑
s(mi)

(
s2 − 4

mi

)
e

(
−hi`ir′is

mi

)

=
∑
s(mi)

(
(s`ir

′
i)

2 − 4

mi

)
e

(
−h0

i s

mi

)

=
∑
s(mi)

(
(s`ir

′
i)

2 − 4

mi

)
e

(
u`ir

′
iv
′
is

mi

)
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=
∑
s(mi)

(
s2 − 4

mi

)
e

(
ur′iv

′
i`
′
is

mi

)

=
∑
s(mi)

(
s2 − 4

mi

)
e

(
uv′in̄is

mi

)
= S(un̄i/v

′
i;mi) (5.26)

where we have used Lemma 5.2.

Lemma 5.3 now follows from (5.25) and (5.26) and the multiplicativity property of S.

Using (5.11), (5.23) and these lemmas, we conclude that

Df (k, T ) =
∑

16v62V

∑
u(v)

∗
e

(
−uk
v

)
·

·
∑∑∑

`1 r1 s1
`2 r2 s2
`iri 6 R

(`1`2r1r2)
−1 µ(r′1)µ(r′2)φ(`′1)φ(`′2)

· µ2(r1s1)µ
2(r2s2)m1n1m2n2 I2(0, 0, c1, c2)

S2(u, v)

v2
+ negligible , (5.27)

recall that R is given by (4.42).

To evaluate the main term in (5.27), set

Ωc2(s1) =

∫ ∞

0

I2(0, 0, `1r1x, c2)x
s1
dx

x
.

Then we have by Mellin inversion ∑
s1

(s1,4`1r1)=1

µ2(s1) I2(0, 0, `1r1s1, c2)

=
1

2πi

∫
(2)

Ωc2(s1)
ζ(s1)

ζ(2s1)

∏
p|4`1r1

(1 + p−1)−s1 ds1

=
6

π2

∏
p|4`1r1

(1 + p−1)−1 Ωc2(1) + O

((
UN

T`1r1

)1/2
)

on moving the line of integration from <(s1) = 2 to <(s1) = 1
2
.
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Summing on s2 in the same way, we have∑
s2

(s2,4`2r2)=1

µ2(s2)
∑

s1
(s1,4`1r1)=1

µ2(s1) I2(0, 0, `1r1s1, `2r2s2)

=

(
6

π2

)2 ∏
p|4`1r1

(
1 +

1

p

)−1 ∏
p|4`2r2

(
1 +

1

p

)−1

I(`1r1, `2r2)

+O
(
N3/2U1/2T−3/2(`2r2)

−1(`1r1)
−1/2

)
+N3/2U1/2T−3/2(`1r1)

−1
(
`2r2)

−1/2
)

where

I(`1r1, `1r2) =

∫ ∫
I2(0, 0, `1r1s1, `2r2s2) ds1ds2 . (5.28)

Hence,

Df (k, T ) =

(
6

π2

)2 ∑
16v62V

∑
u(v)

∗
e

(
−uk
v

)

·
∑∑
`1r16R

∑∑
`2r26R

 ∏
p|4`1r1

(
1 + p−1

)−1

  ∏
p|4`2r2

(
1 + p−1

)−1


· 1

`1r1`2r2
µ(r′1)µ(r′2)φ(`′1)φ(`′2)µ

2(r1)µ
2(r2)m1n1m2n2 I(`1r1, `2r2)

(
S(u; v)

v

)2

+ O
(
N3/2T−3/2R1/2

)
(5.29)

=

(
6

π2

N

T

)2 ∑
16v<2V

∑
u(v)

∗
e

(
−uk
v

) ∏
p|v

(
1− 1

p2

)−2

∑
`′1

∑
r′1

∑
`′1

∑
r′2

`′ir
′
i 6 R/v

∏
p|4`′1r′1

(
1 +

1

p2

)−1 ∏
p|4`′2r′2

(
1 +

1

p2

)−1
µ(r′1)µ(r′2)φ(`′1)φ(`′2)

(`′1`
′
2r
′
1r
′
2)

2


· S(u; v)2

v4
I + O

(
N3/2T−3/2R1/2

)
(5.30)

where

I =

∫∫
xy E(x, y) dxdy (5.31)
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and we have used

I(`1r1, `2r2) =

∫∫∫∫
E(x, y)φ

(
`1r1s1T

xN

)
φ

(
`2r2s2T

yN

)
ds1ds2dxdy

=

(
N

T

)2
1

`1r1`2s2

I .

In (5.30), we extend the summation ranges for `′1, r
′
1, `

′
2, r

′
2 to infinity. This introduces an error

of O(N2T−2R−1/2U1/4) which is admissible for our existing error term. Let α be the sum

α =
∑
`′i>1

`′i∈L

∑
r′i>1

(r′i,4`′i)=1

∏
p|4`′ir

′
i

(
1 +

1

p

)−1
µ(r′i)φ(`′i)

(`′ir
′
i)

2
. (5.32)

One can show (see [Iw1] pp. 156) that
α = 1 . (5.33)

We have shown that

Df (k, T ) = (
6N

π2T

)2 ∑
16v<2V

∑
u(v)

∗
e

(
uk

v

) ∏
p|v

(
1− 1

p2

)−2
S2(u; v)

v4
I

+O
(
N2T−2R−1/2U1/4 + N3/2T−3/2R1/2

)
. (5.34)

If v < V 1−ε then by Lemma 5.1 (i), we have

I =

∫∫
xy f(x, y)4v(x− y − k) dxdy

=

∫∫
(x+ y + k) y f(x+ y + k, y)4v(x) dxdy

=

∫
(y + k) y f(y + k, y) dy + negligible (5.35)

If v > V 1−ε then by part (ii) of Lemma 5.1, I � v−1U3/2. We extend the summation over v in
(5.34) to infinity making an error of at most (NT−1)2 U1/2+ε. We have established the following
theorem:

Theorem 5.4. For |k| 6 UT−1+ε we have that

Df (k, T ) =

(
6N

π2T

)2 ∑
v>1

∑
u(v)

∗
e

(
uk

v

) ∏
p|v

(
1− 1

p2

)−2
S2(u; v)

v4

·
∫

(y + k) y f(y + k, y) dy + Oε

(
N2T−2 U

1
2
+ε + N3/2T−3/2R1/2

)
.
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Applying the above theorem with f as in (5.6) and using

ĥ

(
log(y + k)

πL

)
= ĥ

(
log y

πL

)
+ O

(
U ε

T

)
and

ψ̂(4)

(
T log

(
1 +

k

y

))
= ψ̂(4)

(
Tk

y

)
+ O

(
U ε

T

)
gives together with (4.44)

D1(k, T ) = D∗(k, T ) + O
(
N2T−2 U1/2+ε + N3/2T−3/2R1/2

)
(5.36)

where

D∗
1(k, T ) =

(
6N

π2T

)2 ∑
v≥1

∑
u(v)

∗
e

(
ku

v

) ∏
p|v

(
1− p−2

)−2 S2(u; v)

v4

·
∫
ĥ2

(
log y

πL

)
ψ̂(4)

(
Tk

y

)
dy . (5.37)

§6. Completion of Proofs

We can now combine the results of Sections 4 and 5 and deduce the main Theorem 1.4. Ac-
cording to (4.43), (4.44), (5.36) and (5.37) we have that with our choice of parameters,

∑w
h (T, L) =

T 2

576π6L2N2

∑
|k|6K

D∗
1 (k, T ) + O

(
T

L2

)
(6.1)

=
1

16π10L2

∑
v>1

∑
u(v)

∗∏
p|v

(
1− p−2

)−2 S2(u; v)

v4

·
∫ ∣∣∣∣ĥ ( log y

πL

)∣∣∣∣2 ∑
|k|6K

e

(
ku

v

)
ψ̂(4)

(
Tk

y

)
dy + O(T/L2) . (6.2)

Now for v ≥ 1 fixed, we have ∑
u(v)

∗ ∑
|k|6K

S2(u; v) e

(
−ku
v

)
ψ̂(4)

(
Tk

y

)

=
∑
u(v)

∗ ∑
k

S2(u; v) e

(
ku

v

)
ψ̂(4)

(
Tk

y

)
+ negligible .
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Applying Poisson summation in k this becomes

=
∑
u(v)

∗
S2(u; v)

∑
`∈Z

∫ ∞

−∞
e
(xu
v

+ x`
)
ψ̂(4)

(
Tx

y

)
dx

=
∑

(u,v)=1

S2(u; v)

∫ ∞

−∞
e
(xu
v

)
ψ̂(4)

(
Tx

y

)
dx

= (2π)4 y

T

∑
(u,v)=1

S2(u; v)

∫ ∞

−∞
e

(
yuξ

Tv

)
ψ̂(4)(ξ) dξ

= (2π)4 y

T

∑
(u,v)=1

S2(u; v)
( yu
Tv

)4

ψ
( yu
Tv

)
(6.3)

Hence, ∑w
h (T, L) =

1

π6L2

∑
v>1

∑
(u,v)=1

∏
p|v

(
1− p−2

)−2

· S
2(u; v)

v4
·
∫ ∣∣∣∣ĥ( log y

πL

)∣∣∣∣2 y

T

( yu
Tv

)4

ψ
( yu
Tv

)
dy + O

(
T

L2

)
(6.4)

=
T

π6L2

∑
v>1

∑
(u,v)=1

∏
p|v

(
1− p−2

)−2

S2(u; v)

v4

∫
vξ

u
ξ4 ψ(ξ)

v

u

∣∣∣∣ĥ ( log Tvξ/u

πL

)∣∣∣∣2 dξ + O(T/L2)

=
T

π6L2

∑
v>1

∑
(u,v)=1

∏
p|v

(
1− p−2

)−2

S2(u; v)

u2v2

(∫ ∞

0

ξ5 ψ(ξ) dξ

) ∣∣∣∣ĥ ( log(Tv/u)

πL

)∣∣∣∣2 + O

(
T

L2

)
. (6.5)

Combining this with (4.5) completes the proof of Theorem 1.4.

To prove Corollary 1.5 we need the following bounds due to Fouvry and Michel [FM]:

ψ1(x) =
∑
v6x

|S(1; v)|2

v2
� exp

(
(log log x)5/17

)
(6.6)

and

ψu(x) =
∑
u6x

|S(u; v)|2

v2
� η(u) (log log x)3 log x (6.7)
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where η(u) = Oε(u
ε), the implied constants being absolute.

We begin with the lower bound for the (to be shown) main term R in (6.5).

Clearly,

R � T

L2

∑
v

S2(1; v)

v2

∣∣∣∣ĥ( log Tv

πL

)∣∣∣∣2
� T

L2

∑
v6U/T

S2(1; v)

v2
.

Since we are assuming that the support of ĥ comes very close to 1, U/T ≥ T δ with δ > 0 and
hence by (6.6)

R � T

L2
exp

(
(log log T )5/17

)
. (6.8)

This proves the claimed lower bound in Corollary 1.5 and it also shows that R is the main term
in Theorem 1.4.

For the upper bound we have

R � T

L2

∑
u

∑
v

S2(u; v)

u2v2

∣∣∣∣ĥ( log Tv/u

πL

)∣∣∣∣2
6

T

L2

∑
u

∑
v6T δU

S2(u; v)

v2

� T

L2

∑
u

η(u)

u2
(log log T δu)3 (log T δu) , by (6.7)

� T

L
(log log T )3 (6.9)

This establishes the upper bound in Corollary 1.5.

We conclude with a proof of Theorem 1.1. From (1.2) and (1.7) we have

Nh(t, L) =

∫ ∞

0

h ((ξ − t)L) dN(ξ)

=

∫ ∞

0

h((ξ − t)L) dNsmooth (ξ)

+

∫ ∞

0

h((ξ − t)L) dS(ξ) . (6.10)
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Using standard estimates for Nsmooth(ξ) we have

Nh(t, L) =
t

6L
−
∫ ∞

0

Lh′((ξ − t)L)S(ξ) dξ + O(log(1 + |t|)) (6.11)

Hence, ∣∣∣∣Nh(t, L) − t

6L

∣∣∣∣2
� (log t)2 +

∣∣∣∣∫ ∞

0

Lh′((ξ − t)L)S(ξ) dξ

∣∣∣∣2
� (log t)2 +

∫ ∞

0

|S(ξ)|2 |Lh′((ξ − t)L)| dξ

·
∫ ∞

0

|Lh′((ξ − t)L)| dξ

� (log t)2 +

∫ ∞

0

|S(ξ)|2 |Lh′((ξ − t)L)| dξ (6.12)

Thus integrating w.r.t. t in [T,2T]

∫ 2T

T

∣∣∣∣Nh(t, L) − t

6L

∣∣∣∣2 dt
� T (log T )2 +

∫ ∞

0

|S(ξ)|2
∫ 2T

T

|Lh′((ξ − t)L)|dt dξ . (6.13)

Now for ξ ≥ 4T , t ∈ [T, 2T ] or for ξ 6 T
2
, t ∈ [T, 2T ], Lh′((ξ − t)L) is negligible.

It follows from (6.13) that

∫ 2T

T

|Nh(t, L) − t

6L
|2 dt � T (log T )2 +

∫ 4T

T/2

|S(ξ)|2 dξ . (6.14)

On the other hand, according to Corollary 1.5, the left-hand side of (6.14) is

� T 2

L2
exp ((log log T )5/17) .

This establishes Theorem 1.1.
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Figure 1.

Let

N+
smooth(λ) =

λ

24
− 3

4π

√
λ log λ +

6 + 4 log π − log 2

4π

√
λ − 13

144
+

3

32π

log λ√
λ

and

N−
smooth(λ) =

λ

24
− 1

4π

√
λ log λ − 3 log 2− 2

4π

√
λ +

23

144
+

1

32π

log λ√
λ

Denote by λ+
1 ≤ λ+

2 ≤ λ+
3 ≤ · · · the eigenvalues corresponding to even eigenfunctions on X and

λ−j the ones corresponding to odd eigenfunctions.

Set

d±n = N±
smooth

(
λ±n
)
− n +

1

2
.

Below are the graphs of d+
n for 0 6 tn 6 3000 and d−n for 1500 6 3500 as computed by Steil [St].
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