
Letter to J. Mozzochi on Linking Numbers of Modular Geodesics

January, 2008

from

Peter Sarnak

Dear Jeff,

Here are some remarks in connection with Ghys’ spectacular ICM 2006 talk [1]. I indicate
what the tools from the spectral theory of hyperbolic surfaces and especially the Selberg Trace
Formula provide in this direction. The technicalities with multiplier systems and weights are
quite delicate and I did not check them in detail.

In this write-up [1] Ghys shows that M = PSL2(R)/Γ where Γ = PSL2(Z) is homeo-
morphic to S3/τ where τ is the trefoil knot. Furthermore, if CA is the closed (primitive)
geodesic in M corresponding to the primitive hyperbolic element A in Γ, then the linking
number link(CA, τ) of CA with τ is equal to Ψ(A) the Rademacher function of A (see [2] page
54, equation (63)). The pictures from his talk that can be found on the web, beg one to
study the behavior of these knots C and their linking with τ as one varies over the closed
geodesic C. Let `(CA) denote the length of the closed geodesic C. If A is conjugate in

SL2(R) to

[
λ0 0
0 λ−1

]
with λ > 1, then `(CA) = log N(A) where N(A) = 2 log λ. We order

the geodesics by their lengths.

For y ≥ 2 let
π(y) := |{C : `(C) ≤ y}| (1)

The prime geodesic theorem for the modular surface in its strongest form [3] asserts that

π(y) = Li(ey) + O(e
7y
10 ) . (2)

Here

Li(x) =

x∫
2

dt

log t
∼ x

log x
. (3)

For n ∈ Z set

Li(x; n) =

x∫
2

log t

(log t)2 +
(

πn
3

)2 dt . (4)
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Define π(y; n) by
π(y; n) := |{C : `(C) ≤ y , link(C, τ) = n}| . (5)

I outline a proof of ∑
`(C)≤ y

link(C,τ) = n

`(C) =
1

3
Li(ey; n) + O(e

3y
4 ) . (6)

A key point in (6) is the uniformity that is the implied constant is absolute, that is it is
independent of n and y. Thus (6) gives the main term in the count (5) for |n| as large as
exp(y/8). In particular, it follows that for n fixed

π(y; n) ∼ π(y)

3y

(
1 +

2(1− (πn
3

)2

y3
+ · · ·

)
. (7)

Thus to leading order the number of geodesics with a given linking number is independent of
n. However, the next order term endures that π(y; n) > π(y; m) if |n| < |m| and y is large.
So the most common linking number is zero. Among these closed geodesics C whose linking
number is zero are the reciprocal geodesics (see [4]) of which there are 3/4ey/2 asymptotically.

Summing over n in (6) leads to the distribution of the values of link(C, τ) as we vary C:

If −∞ ≤ a ≤ b ≤ ∞ are fixed then as y →∞,

1

π(y)

∣∣∣∣{C : `(C) ≤ y , a ≤ link(C, τ)

`(C)
≤ b

}∣∣∣∣ −→ arctan
(

bπ
3

)
− arctan

(
aπ
3

)
π

(8)

The analogues of (7) and (8) are known for H/Γ a compact hyperbolic surface and where
instead Ψ we have a group homomorphism Φ of Γ to Z, that is we are counting the winding of
geodesics in homology (see [5],[6],[7],[8] for example). There are notable differences. Firstly
in that case π(y; n) ∼ c(Φ) π(y)/

√
y as y →∞ and secondly the corresponding normal order

of Φ(C) is
√

`(C) with the limiting distribution being Gaussian. If H/Γ is not compact but is
of finite area then the analogue of (7) is proven in [9] and for certain Φ’s the noncompactness
changes things with the normal order of Φ being much larger due to the winding around the
cusp. According to (6), (7) and (8) this effect persists for our Ψ (the trefoil in S3 corresponds
to the cusp) which is a quasi morphism (see [10]). This non-local Cauchy Distribution in (8)
has appeared before in related contexts. In [11] it comes up in connection with questions
involving Dedekind sums, while in [4] it appears in connection with the winding in homology
of a generic geodesic on the unit tangent bundle of a hyperbolic surface (noncompact) and in
[15] in the similar problem on S3/τ . The fluctuations of certain quasi-morphisms (including
our Ψ) when ordered combinatorially by word length is always Gaussian ([16]). The reason
is that the combinatorial ordering does not make the cusp singular.
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I outline a proof of (6) and (8). First one needs to connect Ψ to the spectral theory of
L2(H/SL2(Z), v, r) where v is a multiplier system for SL2(Z) of weight r (here r is any real
number). For this we use the defining relation for the allied function Φ : Γ → Z (page 49,
equation 60 of [2])

log η

(
az + b

cz + d

)
− log η(z) =

1

2
sgn2(c) log

(
cz + d

i, sgn(c)

)
+

πi

12
Φ

([
a b
c d

])
(9)

and η(z) is the Dedekind eta function. Using (9) we can relate Φ to the multiplier system
v1/2 of the eta function i.e.,

η(Az) = v1/2(A) (cz + d)1/2 η(z) , A ∈ SL2(Z) (10)

(note that v1/2 is defined on SL2(Z) and not PSL2(Z), unlike Φ and Ψ). From this and the
relation between Φ and Ψ (page 54) we have; for A ∈ SL2(Z) and trace(A) > 0

v1/2(A) = eiπΨ(A)/12 . (11)

Hence for any r ∈ R the multiplier system of weight r given by (v1/2)
r/2 satisfies:

For A ∈ SL2(Z) with trace(A) > 0

vr(A) = eiπrΨ(A)/6 . (12)

Next consider the spectral problem for the Laplacian4r on L2(H/SL2(Z) , vr, r), (see Chapter
9 of [12] i.e. functions transforming by

f(γz) = vr(γ)

(
cz + d

|cz + α|

)r

f(z), γ ∈ SL2(Z) . (13)

We restrict to −6 < r ≤ 6 with the critical interval being −1 ≤ r ≤ 1. In this range the

bottom eigenvalue is λ0(r) = |r|
2

(1− |r|
2
) and it is the only eigenvalue in [0, 1

4
), see [13]. In fact

in [13] it is shown that for −6 < r ≤ 6 there are no exceptional eigenvalues (not accounted
for by known holomorphic forms). With this and the precise trace formula that is derived in
Hejhal [12] for this space and a lengthy and detailed analysis of the uniformity as r → 0, one
shows:

Uniformly for 6 ≤ r ≤ 6 and x ≥ 5

∑
{γ}SL2(Z)
trace(γ) > 2
N(γ)≤ x

(γ primitive)

log N(γ) vr(γ) =


x1−|r|/2

1− |r|
2

+ O
(
x

3
4 (log 1

|r| + 1)
)

, if |r| ≤ 1
2

O(x
3
4 ) otherwise

(14)
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To get (6) integrate both sides of (14) against e−π`nr/6 w.r.t. r over (6,6]. Using (12) the
left hand side becomes

12
∑
{γ}Γ

N(γ)≤ x,Ψ(γ) = n

log N(γ). (15)

The right hand side equals

1/2∫
−1/2

x1−|r|/2

1− |r|/2
e−iπnr/6 dr + O(x3/4) (16)

= 4 Li(x; n) + O(x3/4) , uniformly for x ≥ 2 , n ∈ Z . (17)

Or ∑
`(c)≤ y
Ψ(c) = n

`(c) =
1

3
Li(ey; n) + O(e3y/4) , (18)

this is (6). (7) is an elementary consequence of (6) while (8) follows from (6) by summing
over n in the indicated range.
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