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Abstract

Numerical schemes for systems with multiple spatio-temporal scales and chaotic
behavior is investigated. The multiscale schemes use asymptotic results for this
type of systems which guarantee the existence of an effective dynamics for some
suitably defined modes varying slowly on the largest scales. The multiscale schemes
are analyzed for generic large deterministic systems displaying chaotic behavior,
then illustrated on a specific example due to E. N. Lorenz. Issues like consistency,
accuracy, and efficiency are discussed in detail. The role of possible hidden slow
variables as well as additional effects arising on the diffusive time-scale are also
investigated. As a byproduct we obtain a rather complete characterization of the
effective dynamics in Lorenz model.
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1 Introduction

Computational techniques for dynamical systems evolving on widely separated
time-scales have received a lot of attention recently (for a review see [8]).
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Consider










Ẋε = f(Xε, Y ε), Xε
t=0 = x,

Ẏ ε =
1

ε
g(Xε, Y ε), Y ε

t=0 = y.
(1)

Here ε is a small parameter measuring the separation between time-scales, and
we have assumed that the state space can be explicitly decomposed into slow
variables, Xε ∈ R

m, and fast ones, Y ε ∈ R
n (this assumption is lifted below).

Systems like (1) arise from molecular dynamics, atmosphere sciences, material
sciences, etc. They are challenging for numerical computations because a time-
step of the order of ε is necessary to resolve the fast variables Y ε; therefore a
total number of steps of the order of ε−1 is required to simulate the evolution
of the slow variable Xε.

In [30] a numerical procedure was designed to overcome the computational
difficulties caused by the separation of time-scales. The procedure uses stan-
dard asymptotic results for systems like (1) (see e.g. [31,17,18,26,27]) which
state that, in the limit as ε→ 0, the slow process Xε converges to the solution
of the equation

Ẋ = F (X), Xt=0 = x. (2)

Here
F (x) =

∫

Rn
f(x, z)µx(dz), (3)

where µx(dz) is the invariant measure of the fast process considered at fixed
Xε = x:

Żε(x) =
1

ε
g(x, Zε(x)). (4)

Both µx(dz) and Zε(x) depend on x parametrically. (2) holds provided that the
dynamics in (4) is ergodic and the expectation in (3) exists. When ε is small,
it is natural to try to use the simpler equation in (2) to approximate the slow
process in (1). But this requires to estimate the expectation in (3), which is
nontrivial. Two possibilities come to mind. One is to make some simplifications
on the dynamics of the fast variables under which the measure µx(dz) can be
estimated semi-analytically. This is the approach that was followed e.g. in [22–
25]. Another possibility is to estimate µx(dz) and the expectation in (3) via
numerical simulation of (4). This idea is at the core of the method proposed
in [30]. More specifically, this method proposes a class of multiscale numerical
schemes with the following structure:

(1) A macro-solver for (2) gives the desired evolution of the slow variables
X ≈ Xε on the O(1)-time-scale. The choice of macro-solver is flexible,
but as a rule it requires to estimate F (X). Each time this is necessary,
one uses:

(2) A micro-solver for (4), whose choice is also flexible and which gives evo-
lution of the fast variables Zε on the O(ε)-time-scale; and:

(3) An estimator to evaluate the expectation in (3) for F (X) from the data
generated by the micro-solver.
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Algorithms with this structure fit within the general framework of the Het-
erogeneous Multiscale Method (HMM) proposed [7] (see also [6]).

The multiscale scheme gain in efficiency over direct numerical methods for (1)
because the dynamics of the fast variables has to be resolved only on a small
subinterval of the total interval of time over which the dynamics of the slow
variables is computed. Indeed the average in (3) can be estimated from the
evolution of the fast variables on their own time-scale, and this calculation
converges independently of the scale separation in the original dynamics. Thus
the multiscale schemes have a cost independent of ε in the limit as ε → 0,
unlike direct numerical methods for (1) whose cost increases as ε−1 in this
limit. Furthermore, unlike the traditional methods developed for stiff ODEs
or differential algebraic equations (see e.g. [10,19,13,2,11,12]), the multiscale
schemes also apply in the context of dynamical systems with stochastic effects.
In [9] a thorough analysis of the convergence and accuracy properties of these
schemes is presented for situations when the fast process is governed by a
stochastic differential equation.

In the present paper we will investigate the usefulness of the multiscale schemes
when applied to large deterministic systems with chaotic behavior. Systems of
this type arise commonly in applications and it is usually not known whether
they meet the assumptions underlying the results in [9]. As a specific example
of one such system we will study variants of a model proposed by E. N. Lorenz
in [20], hereafter referred to as L96. The following topics will be investigated,
first in general, then using L96 as a test system:

Methology and seamless multiscale schemes. Many systems with time-scale
separation do not come in a nice form such as (1) where slow and fast variables
are explicitly separated. Rather, one is often given a system of equations like

U̇ε = h(Uε, ε), Uε
t=0 = u, (5)

where u ∈ R
p and the dependency on the small parameter ε is not as explicit as

in (1) (for instance ε may simply be the reciprocal of the number of degrees of
freedom). Therefore it is nice that it is possible to devise a seamless multiscale
scheme for (5), provided that some suitable slow variables can be defined which
obey an effective dynamics as ε→ 0. This requires that a mapping ϕ(u) from
R

p onto R
m, with m < p exists such that

Dϕ(u)h(u, ε) = εf(u, ε), (6)

for some function f which is O(1) in ε. (This equation actually defines ε in
the sense that the mapping ϕ should be such that

ε := ‖Dϕ(u)h(u, ε)‖/‖h(u, ε)‖ � 1 (7)
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for suitable norms.) If the dynamics in (5) at ε → 0 is ergodic on the family
of hypersurfaces defined by ϕ(u) = cst, then the variable

Xε(τ) = ϕ(Uε(τ/ε)) (8)

is a slow variable for (5) whose dynamics as ε → 0 on the slow time-scale
τ = εt is governed by an equation like (2) with F (x) given by

F (x) = lim
ε→0

∫

Rp
f(u, ε)µx(du). (9)

Here µx(du) is the invariant measure of (5) at ε → 0 on the hypersurface
ϕ(u) = x. In section 2 we will show that the multiscale schemes can be readily
generalized to equations like (5). (9) can be estimated in a rather seamless
way at finite but small ε by constraining the dynamics in (5) on ϕ(u) = x via
projection. This seamless version of the multiscale scheme avoids the tedious
step of having to derive explicitly equations for the fast variables Y ε. The
seamless version of the multiscale scheme will be used throughout this paper
to study L96, first in parameters setting where the slow and fast variables are
explicitly separated (sections 3 and 4), then on a variant of L96 system with
hidden slow variables where the use of a seamless scheme is difficult to avoid
(section 5).

Consistency, accuracy, and efficiency. How should one assess the accuracy
and efficiency of the multiscale numerical schemes when applied to large deter-
ministic systems like L96 which display chaotic behavior? Since the behavior
of such systems is intrinsically stochastic, it is appropriate to use statistical
criteria like the invariant measure of the slow modes or their autocorrelation
function as diagnosis for the numerical scheme. In terms of numerical analysis,
such diagnoses correspond to using weak convergence criteria on infinite time
intervals. Unfortunately, the properties of usual numerical schemes in this con-
text are very poorly understood and, in particular, their rate of convergence
is not known (for results in this area see [29]). However, we will show that it is
possible to understand and predict the efficiency gain of the multiscale schemes
over direct numerical solvers via consistency analysis of these schemes. This
analysis will be given in section 2 and the results confirmed in sections 3–7
on the example of L96. In addition in the appendix we speculate on more
quantitative error estimates for the multiscale schemes under the assumption
that certain error estimates for the macro- and the micro-solvers are known.

The overall efficiency of the multiscale schemes depends on the efficiency of
the estimator. The better the estimator, the less computations with the fast
variables are necessary, and the more efficient the scheme is. Denoting by
{Zr(t, x)}Rr=1 R independent realizations of the fast process, a possible (and
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standard) way to estimate expectations like (3) is to use

F̃ (x) =
1

RN

R
∑

r=1

N+N1−1
∑

n=N1

f(x, Zr(nδt, x)). (10)

Here δt is the micro-time-step we use to simulate the fast process, N1 is the
number of steps we skip to eliminate transient and N is the number of steps
over which we perform time-averaging. The smaller these parameters, the more
efficient the multiscale scheme is. It is quite remarkable that the multiscale
scheme converges even when R = 1 (one realization only), N1 = 1 and N =
1 (one step of relaxation and no time-averaging), possibly with no loss in
accuracy at fixed cost compared with a scheme with larger R, N , and N1.

This will be explained in section 2 and illustrated on L96 in sections 3–5.
The key is the proper initialization of the fast variables used in the estimator.
Interestingly, it offers the possibility to use the multiscale schemes to derive
modified equations that are easier to solve than the original equations. This is
especially interesting in the seamless setting where it is not obvious a priori
how to modify (5).

Spatial scale separation. Besides the time-scale separation, there may also
exist two separated spatial scales when the number of fast variables Y ε is
much larger than the number of slow variables Xε. This situation is typical
of multiscale systems. We will show in sections 4 and 5 in the context of
L96 that the multiscale scheme can be used with only an O(1) number of
fast modes in situations when their original number is O(ε−1) (section 4) or
O(ε−2) (section 5). This permits to increase dramatically the efficiency of the
multiscale scheme.

Effective dynamics and effective forcing. During the computation, the multi-
scale schemes evaluate F (x) automatically. Therefore the multiscale schemes
can be used as a tool to determine the effective dynamical equation for the slow
modes. We will use this capability of the multiscale scheme in the context of
L96 in sections 3–5. This will give a rather complete characterization of the
effective dynamics of the slow modes in L96, at least when the number of fast
modes grows as the time-scale of their evolution becomes faster (sections 4
and 5).

Effects on diffusive time-scale. In principle (2) holds as a limiting equation
for (1) on finite time intervals only, and stochastic corrections must be included
on the O(ε−1)-time-scale. For L96 in the parameter regimes investigated in sec-
tions 3–5, it turns out that these corrections are small. The reason is that L96
displays deterministic chaos. Its behavior is already intrinsically stochastic on
the O(1)-time-scale, and the small stochastic corrections arising on the O(ε−1)
time-scale have a very small effect on the long-time statistical properties of
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the system. This needs not be always the case, though, and we can tune the
parameters in L96 in such a way that the stochastic corrections on the O(ε−1)
time-scale become crucial. Such situations are explored in section 6 where it
is shown how to devise a poor man version of the multiscale scheme which
accounts for stochastic effects.

2 Methodology

Here we describe the multiscale scheme proposed in [30] and analyze some of
its properties at a general level. The topics discussed in this section will be
revisited in the context of L96 in sections 3–5. We first discuss the multiscale
scheme for systems like (1) where slow and fast variables are explicitly sep-
arated. Then we show how to generalize to devise a seamless version of the
multiscale scheme which applies to equations like (5).

2.1 Basic algorithm

Let X̃m denote the numerical approximation of X(t = m∆t), solution of (2)
provided by the multiscale scheme. The simplest multiscale algorithm is the
following:

Algorithm 1

(Forward Euler macro-solver and estimator by ensemble-average with R real-
izations.)

Take X̃0 = x; {ZN1,−1}Rr=1 given; M = bT/∆tc; m = 0;

while m ≤M

F̃ (X̃m) = 0;

for r = 1, . . . , R

Zr
0,m = Zr

N1,m−1;

for n = 0, 1, . . . , N1 − 1

Zr
n+1,m = Zr

n,m + δt ψg(X̃m, Z
r
n,m, δt);

end(for)

F̃ (X̃m)← F̃ (X̃m) +
1

R
f(X̃m, Z

r
N1,m);

end(for)

X̃m+1 = X̃m + ∆t F̃ (X̃m);

m← m+ 1;

end(while)
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Here [0, T ] is the time-interval over which the evolution of the slow variables is
sought, and ∆t denotes the macro-time-step. Zr

n,m denotes the approximation

of the rth independent realization of Z(t = nδt, x = X̃m) provided by the
micro-solver whose micro-time-step is δt. Since any standard one-step method
can be chosen for the micro-solver (in sections 3–5 we will use a fourth-order
Runge-Kutta), we have simply used the compact notation

Zr
n+1,m = Zr

n,m + δt ψg(X̃m, Z
r
n,m, δt)

to denote the corresponding updating rule of the scheme. R is the number
of realizations, N1, the number of micro-time-steps we make to relax the fast
process on the invariant measure µx(dz), and the total number of micro-time-
steps required per macro-time-step is therefore R×N1. Note that the algorithm
requires an initial estimate for {Zr

N1,−1}Rr=1; in the applications, we make sure
that this estimate is irrelevant by running the inner loop on r with a sufficiently
large N1 at the first macro-time-step. Subsequently, the value of N1 can be
significantly decreased as explained below.

Generalizations of Algorithm 1 to arbitrary one-step explicit schemes for the
macro-solver, time-averaging for the estimator, etc. as well as a discussion of
the convergence properties of these algorithms is given in the Appendix. Here
we wish to discuss at a more qualitative level the properties of Algorithm 1 –
these properties will then be tested in practice on L96 in sections 3–5.

2.2 Consistency

Algorithm 1 is consistent with the limiting equation in (2) as

∆t→ 0, δt→ 0, and ε∆t/N1δt→ 0. (11)

To understand why the third limit is required, note that if ∆t → 0, δt → 0,
but ∆t/N1δt→ δ instead, then the scheme is consistent with (compare (1))



















Ẋε =
1

R

R
∑

r=1

f(Xε, Zr,ε, ε), Xε
t=0 = x,

Żr,ε =
1

εδ
g(Xε, Zr,ε, ε), Zr,ε

t=0 = Zr
N1,−1, r = 1, . . . , R.

(12)

This equation converges to (2) in the limit as εδ → 0 if (1) converges to (2)
in this limit, which explains why we need ε∆t/N1δt = εδ → 0. In practice we
therefore take ∆t, δt, and εδ sufficiently small to ensure stability and accuracy.

The consistency conditions in (11) may be somewhat surprising for two rea-
sons: Unlike what we might have expected at first sight, neither N1δt nor the
number of realizations R need to be large for the scheme to converge. This is
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of course a good news for the multiscale scheme since the smaller N1 and R,
the lower the cost of the scheme is. Next we elucidate why this can be the case.
Notice that in the explanations below it is crucial that we analyze the prop-
erties of the micro-solver/estimator (i.e. the inner loop over r in Algorithm 1)
as integrated within the multiscale scheme rather than considered alone.

Consider N1 first. Naively we might think that N1δt needs to be large com-
pared to ε because, at each macro-time-step, the R numerical approximations
of the fast process Zε(x) must relax to a sample of the invariant measure
µx(dz) unbiased by their initial conditions. Yet, on second thought, one real-
izes that Algorithm 1 is constructed in such a way that the initial value for
Zr

n,m at each macro-time-step is the final value they reached at the previous
macro-time-step. Therefore they already sample µX̃m−1

(dz) initially when one

let them evolve to sample µX̃m
(dz). And since X̃m − X̃m−1 = O(∆t), these

two measures become closer and closer as ∆t→ 0, and relaxation requires less
and less micro-time-steps. This explains the constraint N1δt/∆t � ε rather
than N1δt � ε. We will see below that the same mechanism explains why
ensemble-averaging is superior to time-averaging in terms of efficiency when
one assesses the performance of the multiscale scheme not in approximating
the slow process X (as we do now), but rather in evaluating F (x) at each
macro-time-step.

Consider R next. Clearly, (12) converges to (2) in the limit as ε→ 0 for arbi-
trary R, including R = 1. To understand why this is the case from an alter-
native viewpoint, compare Algorithm 1 with the following one corresponding
to a macro-solver using forward Euler with time step ∆t/R and an estimator
with 1 realization only. Assuming one stores the values of the slow variables
every R time step only (i.e. every ∆t, just as in Algorithm 1), this can be
written as:
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Algorithm 2

(Forward Euler macro-solver with time step ∆t/R and estimator with 1 real-
ization – no ensemble-average.)

Take X̃0 = x; ZN1,−1 given; M = bT/∆tc; m = 0;

while m ≤M

for r = 1, . . . , R

Z0,r = ZN1,r−1;

for n = 0, 1, . . . , N1 − 1

Zn+1,r = Zn,r + δt ψg(X̃m, Zn,r, δt);

end(for)

F̃ (X̃m)← f(X̃m, ZN1,r);

X̃m ← X̃m +
∆t

R
F̃ (X̃m);

end(for)

ZN1,−1 ← ZN1,R;

X̃m+1 ← X̃m;

m← m+ 1;

end(while)

Algorithm 2 is strikingly similar to Algorithm 1. Their cost is identical and,
except for the way the fast variables are initialized, the only difference is
that the slow variable X̃m is updated outside the loop over r in Algorithm 1,
whereas it is updated inside this loop in Algorithm 2. In particular, there
is no reason to believe that Algorithm 1 is more accurate than Algorithm 2
and, in fact, the opposite may be true since Algorithm 2 uses a smaller (by a
factor R) macro-time-step than Algorithm 1. This reduces the discretization
error associated with the macro-solver independently of the error it makes on
F̃ (x). Of course, such a conclusion does not account for other considerations
like stability, etc. which may indicates than using more than one realization is
preferable. It is also specific to a macro-solver using forward Euler; for higher
order macro-solvers the optimal number of realizations may be larger than 1
– see the appendix.

2.3 Efficiency

As mentioned before, a detailed discussion of the efficiency of the multiscale
scheme in the present context of chaotic systems is not possible since it would
require the convergence properties of numerical schemes according to weak
convergence criteria on infinite time intervals and these are not known. We
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speculate on this issue in the appendix by assuming that certain error esti-
mates hold. Here we simply note that the multiscale scheme is more efficient
than a direct solver for (1) because such a direct solver requires to compute
the evolution of the fast variables on the full time-interval [0, T ], whereas the
multiscale scheme requires to compute the dynamics of these only on a fraction
∆t/N1δt = δ−1 of [0, T ] – i.e. the multiscale scheme is δ times more efficient
than a direct solver. This efficiency gain is significant when ε� 1, since it is
then possible to take δ � 1 and at the same time satisfy δε� 1 required for
accuracy.

It is instructive to take a closer look at this explanation. Suppose that the
limiting process X is much closer – according to some suitable criterion – to
Xε than the error tolerance one accepts – if this is not the case, there is no
way out of a direct computation with (1). This means that one can in principle
increase the value of ε up to some optimal value εopt so that the discrepancy
between Xεopt and Xε is precisely within error tolerance. But if one recalls
the discussion about consistency at the beginning of this section, one realizes
that the multiscale scheme precisely is a way to implement such a procedure:
take R = 1 and ε∆t/N1δt = εopt.

From this viewpoint, the multiscale scheme bears some similarity with penalty
methods like the one used in computational fluid dynamics, originally intro-
duced in [4], or in Car-Parrinello ab-initio molecular dynamics [3]. In the first
method, the hard constraint on incompressibility is relaxed to facilitate the
computation using a slightly compressible velocity field within error tolerance
of the incompressible one. In the ab-initio molecular dynamics, the mass of
the electron is artificially increased to reduce the stiffness of the system.

In fact the multiscale scheme may be viewed as a tool to extend penalty
methods to systems where their application is not obvious at first sight. Indeed,
an advantage of the multiscale scheme is that it allows to compute with εopt

even in systems where it would be difficult or impossible to change explicitly
the value of ε in the original equation (recall that we do not explicitly tune up
ε in Algorithm 1 and εopt only emerges in the analysis of this algorithm). This
will become fully apparent in the next section where we discuss a seamless
version of the multiscale scheme.

2.4 Seamless scheme

Consider (5) appropriately rescaled

U̇ε =
1

ε
h(Uε, ε), Uε

t=0 = u, (13)
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and suppose that the mapping ϕ(u) defining the slow variables X as in (6) is
known. A simple seamless multiscale algorithm to compute the dynamics of
the slow variable is then the following:

Algorithm 3

(Seamless scheme with forward Euler macro-solver, unconstrained micro-solver,
and estimator by ensemble-average with R realizations.)

Take X̃0 = x; {UN1,−1}Rr=1 given and consistent, i.e. ϕ(U r
N1,−1) = x for all r;

M = bT/∆tc; m = 0;

while m ≤M

F̃ (X̃m) = 0;

for r = 1, . . . , R

U r
0,m = U r

N1,m−1;

for n = 0, 1, . . . , N1 − 1

U r
n+1,m = U r

n,m + δt ψh(U
r
n,m, δt);

end(for)

F̃ (X̃m)← F̃ (X̃m) +
1

R
f(U r

N1,m);

end(for)

X̃m+1 = X̃m + ∆t F̃ (X̃m);

for r = 1, . . . , R

U r
0,m+1 = U r

N1,m +DϕT (U r
N1,m)Λ

[Here Λ is determined so that ϕ
(

U r
N1,m +DϕT (U r

N1,m)Λ2

)

= X̃m+1]

end(for)

m← m+ 1;

end(while)

Here U r
n,m is the approximation of the rth independent realization of U(t =

nδt, x = X̃m) provided by the micro-solver for (9) whose updating rule is
denoted as

U r
n+1,m = U r

n,m + δt ψh(U
r
n,m, δt).

The second loop for r enforces the constraint that ϕ(U r
0,m+1) = X̃m+1, i.e.,

the initial value in the micro-solver is consistent with the current value of the
slow variables. Λ ∈ R

m (same dimensions as the slow variable X) needs to be
determined in some way, e.g. by iteration of a variant of (18) below.
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We show below that Algorithm 3 is consistent with

U̇ r =
1

εδ

(

h(U r, ε)−DϕT (U r)A−1(U r)Dϕ(U r)h(U r, ε)
)

+
1

ε
DϕT (U r)A−1(U r)

1

R

R
∑

r′=1

Dϕ(U r′)h(U r′ , ε)

=
1

εδ
Ph(U r, ε) +DϕT (U r)A−1(U r)

1

R

R
∑

r′=1

f(U r′ , ε),

(14)

in the limit as ∆t→ 0, δt → 0, and ∆t/N1δt → δ. Here A = DϕDϕT and P
is the following operator mapping R

p onto R
p:

P = I −DϕTA−1Dϕ. (15)

P projects vector fields in the full space to the tangent spaces of level sets
of ϕ(u). Notice that as enforced in Algorithm 3, X = ϕ(U r) for all r, and
therefore this algorithm is consistent with the following equation for X:

Ẋ =
1

R

R
∑

r=1

f(U r, ε). (16)

Thus (14) gives the same limiting equation for the slow variable X as (5) in
the limit as ε∆t/N1δt = εδ → 0. As for Algorithm 1, R and N1 do not need
to be larger than 1 for the scheme to converge, and a gain in efficiency arises
because one can take δ � 1 and simultaneously have δε� 1. This last point
can also be seen upon rewriting (14) when R = 1 as

U̇ =
1

εδ
h‖(U) +

1

ε
h⊥(U), (17)

where h‖(u) = Ph(u) and h⊥(u) = O(ε) denote the projections of h tangential
and perpendicular to ϕ(u) = x, respectively. Thus, for δ > 1 Algorithm 3 slows
down the dynamics in the direction which does not affect the evolution of X,
effectively introducing an effective εopt = εδ > ε as discussed before. This
leads to the gain in efficiency. Notice that it also suggests that (17), which
was derived from the multiscale scheme via consistency conditions, may be
used as a starting point for other type of theoretical or numerical analysis.
Indeed, given any numerical scheme, (17) can be integrated with a time-step
which is δ times bigger than the time-step that one must use for the original
equation (13). This very interesting observation allows to generalize penalty
methods to systems like (13); it will be exploited elsewhere.

It is also worth noting that it is not necessary to calculate the forcing f(u)
acting on the slow variables a priori and hard-code it into the program. The
finite-difference approximation to the forcing can be obtained easily once the
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full system has been propagated by N1δt micro-time-steps as

F̃ (X̃m) =
R

∑

r=1

(

ϕ(U r
N1,m)− X̃m)

)

/(RN1δt)

This approximation is in the spirit of the equation-free techniques developed
by Kevrekidis and collaborators [15]. It can be very useful if there is no easy
access to the equation controlling the full dynamics.

Derivation of (14). This is a standard calculation and the only point worth
mentioning is the calculation of Λ in the limit of ∆t, δt→ 0. Since, by definition

X̃m+1 = ϕ
(

U r
N1,m +DϕT (U r

N1,m)Λ
)

= ϕ
(

U r
N1,m−1 +

N1δt

ε
h(U r

N1,m−1) +DϕT (U r
N1,m−1)Λ

)

+ o(δt)

= X̃m +
N1δt

ε
Dϕ(U r

N1,m−1)h(U
r
N1,m−1) + A(U r

N1,m−1)Λ + o(δt),

it follows that

Λ = A−1(U r
N1,m)(X̃m+1 − X̃m)

− N1δt

ε
A−1(U r

N1,m−1)Dϕ(U r
N1,m−1)h(U

r
N1,m−1) + o(δt)

= ∆tA−1(U r
N1,m−1)

1

R

R
∑

r′=1

f(U r′

N1,m−1)

− N1δt

ε
A−1(U r

N1,m−1)Dϕ(U r
N1,m−1)h(U

r
N1,m−1) + o(∆t+ δt).

(18)

Using this result and matching properly the time-scales, it is straightforward
to derive (14).

2.5 Remark on the existence of hidden slow variables

Recall that the slow variables X defined via (8) have a limiting dynamics
provided that (5) at ε = 0 is ergodic on the hypersurface where ϕ(u) =
cst (equivalently if slow and fast variables are explicitly known, (4) must be
ergodic for every x). The question we wish to address here is the following.
Suppose that the slow variablesX one identifies in (8) are incomplete, i.e. there
exist hidden slow variables in the system, so that the ergodicity requirement
is not met with these variables alone (notice this can happens with (1) if
some combination of the Y ’s turn out to be also slow). What happens with
the seamless multiscale scheme Algorithm 3 if one uses this incomplete set of
X’s? (14) or (17) give the answer right away. Such a scheme would slow down
artificially the dynamics of the slow variables that are not included, which of
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course can affect the evolution of all the slow variables (only the fast variables
can be slowed down with no major effect on the slow ones when ε� 1 because
of the existence of a limiting dynamics). Thus, it is crucial in general to include
all the slow variables for the multiscale scheme to be accurate.

It is worth pointing out however that there is one exception where not includ-
ing a slow variable does not affect the multiscale scheme. This is the case when
this slow variable is piecewise constant in time and specifies the branch of an
ergodic component for (5) at ε = 0 if more than one coexist and the number
of branches depends on the values of the slow variables that are identified
explicitly. Since such a hidden variable does not evolve except for jumps that
are dictated by the current value of the slow variables explicitly accounted for
in the scheme, it is easy to convince oneself that the multiscale scheme will be
accurate in this case. The numerical experiments reported below suggest that
L96 display such piecewise constant hidden slow variables.

Finally, we note that taking more slow variables than required (i.e. erroneously
including fast variables in the set of the slow ones) does not work either. In
this case indeed, the term h⊥(u) in (17) is O(ε−1) (instead of O(1) with the
right choice of slow variable), and therefore to satisfy stability and accuracy
criteria this equation must be solved with as small a time-step as the original
equation (13).

2.6 Remark on ensemble- versus time-averaging

The discussion so far indicates that the multiscale scheme is fairly flexible.
If evaluating F (x) is one of the goals of the computation, then using many
realizations may be necessary. If on the contrary our only interest is in the
evolution ofX, then one realization may be enough. Below we will show how to
take advantage of this flexibility to study L96 via the multiscale scheme. Now
we explain why ensemble-averaging is superior to time-averaging if one wants
to obtain an accurate estimate of F (x) at each macro-time-step. Consider
the following multiscale algorithm using forward Euler as macro-solver and
time-averaging:
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Algorithm 4

(Forward Euler macro-solver and estimator by time-average over N micro-
time-steps.)

Take X̃0 = x; ZN1,−1 given; M = bT/∆tc; m = 0;

while m ≤M

Z0,m = ZN1,m−1; F̃ (X̃m) = 0;

for n = 0, 1, . . . , N1 − 1

Zn+1,m = Zn,m + δt ψg(X̃m, Zn,m, δt);

end(for)

for n = N1, . . . , N1 +N − 1

Zn+1,m = Zn,m + δt ψg(X̃m, Zn,m, δt);

F̃ (X̃m)← F̃ (X̃m) +
1

N
f(X̃m, Zn,m);

end(for)

X̃m+1 = X̃m + ∆t F̃ (X̃m);

m← m+ 1;

end(while)

Here N1 plays the same role as in Algorithm 1, and N is the number of
micro-time-steps over which the time-average is actually performed; thus, Al-
gorithm 4 requires N1 + N − 1 micro-time-steps per macro-time-step. Now
compare the costs of Algorithms 1 and 4 as estimators for F (x).

It is reasonable to assume that the sampling error with Algorithm 1 decreases
as 1/

√
R. Therefore, if one assumes that the macro-time-step is small enough

so that the relaxation errors can be neglected for the reason given before, then
one needs R = O(λ−2) realizations to achieve an error tolerance λ. And the
cost of Algorithm 1, which is N1 × R micro-time-steps per macro-time-step
(i.e. per evaluation of F (x)), scales as R.

In contrast the sampling error with Algorithm 4 decreases as 1/
√
Nδt only

(since Nδt is proportional to the effective number of realizations here), which
means that one has to take Nδt = O(λ−2) to achieve an error tolerance λ. And
the cost of Algorithm 4, which is N1+N micro-time-steps per macro-time-step
scales as N . But since δt also has to be taken small to put the discretization
errors from the micro-solver within tolerance, this means that the efficiency
of Algorithm 4 deteriorates as δt decreases unlike that of Algorithm 1. There-
fore Algorithm 1 beats Algorithm 4 in terms of efficiency in evaluating F (x)
accurately at each macro-time-step as asserted.
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3 Application to Lorenz 96 (L96) system

L96 consists of K slow variables {Xk}Kk=1 coupled to J × K fast variables

{Yj,k}(J,K)
(j,k)=(1,1) whose evolution is governed by



















Ẋk = −Xk−1(Xk−2 −Xk+1)−Xk + Fx +
hx

J

J
∑

j=1

Yj,k

Ẏj,k =
1

ε
(−Yj+1,k(Yj+2,k − Yj−1,k)− Yj,k + hyXk) .

(19)

The system is of the type of (1) (we dropped the subscript ε for simplicity of
notations). Here both the Xk’s and the Yj,k’s are assumed to be periodic, i.e.
Xk+K = Xk and Yj,k+K = Yj,k, Yj+J,k = Yj,k+1. L96 was originally introduced
to mimic mid-latitude weather and study the influence of multiple spatio-
temporal scales on the predictability of atmospheric flows. The slow and fast
variables Xk and Yj,k represent some atmospheric quantities discretized re-
spectively into K and K×J sectors along the latitude circle. Each variable is
driven by quadratic nonlinear interaction modeling advection, constant forc-
ing, linear damping, and coupling between the slow variable in one sector and
the J fast variables in the corresponding subsectors.

L96 was used as a tool to investigate the existence of an effective dynamics for
the slow variables alone in [14,28]. In the following sections we will take this
program one step further and use the multiscale scheme to compute the evo-
lution of the slow variables and their statistics without having to fully resolve
the evolution of the fast ones. This study will both demonstrate the usefulness
of the multiscale scheme and as a byproduct give a rather complete characteri-
zation of the effective dynamics of the slow modes in L96. For complementary
analysis of the properties of (19) in various parameter settings, we refer to
[1,21].

In this section, we will study (19) with Fx = 10, hx = −0.8, hy = 1, K = 9,
J = 8, and ε = 2−7 = 1/128. These values of J and ε are somewhat different
from the ones originally chosen by Lorenz since J 6= 1/ε but they will serve
well our purpose here which is to demonstrate that the multiscale scheme is
significantly more efficient than a direct scheme for (19) when the separation
of time-scales is large. In sections 4 and 5 we will consider situations with
J = O(1/ε) and J = O(1/ε2), respectively. The value of ε = 1/128 is also
such that the dynamics of the slow modes is close to the limiting dynamics
obtained as ε→ 0 – see below.
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Fig. 1. Typical time-series of the slow (black line) and fast (grey line) modes; K = 9,
J = 8, ε = 1/128. The subplot displays a typical snapshot of the slow and fast modes
at a given time.

3.1 Properties of the system and existence of a limiting dynamics

In the parameter setting that we use, the solutions of (19) are chaotic. Typical
time-series of a slow variable Xk and a fast variable Yj,k in the associated sub-
sector are shown in figure 1; the subplot displays a snapshot of the amplitude
of the modes at a given time. The chaotic behavior can be inferred from the
high sensitivity of the system to perturbations in the initial conditions, and
further quantified by the statistical tests described next.

The numerical experiments show that the solutions of (19) settle on an attrac-
tor. One way to visualize (part of) this attractor is to look at the marginal
probability density functions (PDFs) of the slow variable Xk (any k since the
PDFs are all identical by symmetry) shown in figure 2. The mixing character
of the dynamics can be inferred from the decay in time of the auto-correlation
functions (ACFs) defined as (assuming ergodicity)

Ck,k′(t) = lim
T→∞

1

T

∫ T

0
(Xk(t+ s)− X̄)(Xk′(s)− X̄)ds, (20)

where

X̄ = lim
T→∞

1

T

∫ T

0
Xkdt, (21)

and similarly for the fast variables – see figure 3. The ACFs of the slow modes
Xk can be fit with great precision by

Ck,k(t) ≈ C0 cos(ωt)e−νt, (22)
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Fig. 2. PDF of the slow variable; K = 9, J = 8, black line: ε = 1/128, grey line:
ε = 1/1024. The insensitivity in ε of the PDFs indicates that the slow variables
have already converged close to their limiting behavior when ε = 1/128.

with appropriate ν, ω, and C0 (the constant C0 is close to Ck,k(0), although
not quite it: the fitting is slightly off within the first oscillation).

Even though there is a separation of time-scales between the slow evolution of
the Xk’s and the fast evolution of the Yj,k’s since ε = 1/128, such separation
is not obviously apparent from the correlation functions of these modes. In
particular, figure 3 shows that, after a short transient decay, the correlation
function of Yj,k decays and oscillates with about the same rate and frequency
as the correlation function of Xk. In fact this short transient decay, which
becomes shorter and shorter as ε is decreased, is the only signature on the
ACFs that Yj,k is faster. This feature should be taken as a warning against
simple procedure to identify fast modes based on computing their correlation
time – here, the correlation time of the Yj,k’s are comparable to the one of Xk

and, in particular, independent of ε.

Next we check the existence of a limiting dynamics for the Xk’s as ε → 0.
A necessary condition is that marginal PDFs and correlations functions have
a limit as ε → 0. This is consistent with the numerical experiments – see
figures 2 and 3 and compare black and grey lines. This also indicates that the
value we take, ε = 1/128, is small enough so that the statistical properties
of the slow variables Xk are very close to their limit. Now, the existence of
a limit for the law of the Xk’s as ε → 0 is necessary but not sufficient in
order that these variables also have a limiting dynamics. For this we need to
check the ergodicity of the fast modes at fixed Xk = xk, – i.e. the solution of
the following equation corresponding to the equation (4) which we use in the
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Fig. 3. ACFs of the slow (thick line) and fast (thin line) variables; K = 9, J = 8,
black line: ε = 1/128, grey line: ε = 1/1024. The insensitivity in ε of the ACFs
for the slow modes indicates that the slow variables have already converged close
to their limiting behavior when ε = 1/128. The subplot is the zoom-in of the main
graph which shows the transient decay of the ACFs of the fast modes becoming
faster as ε is decreased: this is the only signature in the ACFs of the fact that the
Yj,k’s are faster.

micro-solver of the multiscale scheme:

Żj,k(x) =
1

ε

(

−Zj+1,k(x)(Zj+2,k(x)− Zj−1,k(x))− Zj,k(x) + Fy + hyxk

)

. (23)

Figure 4 shows the PDF of

hx

J

J
∑

j=1

Zj,k(x) (24)

for some typical values of x. This is the quantity whose average gives the
effective forcing. The PDFs of (24) are robust against variations in initial
conditions for Zj,k which confirm the ergodicity of (23). It is however worth
noting how different these PDFs look for different x, which indicates that the
back reaction of the slow variables Xk on the fast ones Yj,k is significant in
L96. This can also be seen in the time-series shown in figure 1: for some values
of Xk, the fast variables are locked, whereas they vary widely for other values
of Xk.
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Fig. 4. Typical PDFs of the coupling term (hx/J)
∑J

j=1 Zj,k(x) for various values
of x. These PDFs are robust against variations in the initial conditions for (23)
indicating that the dynamics of the fast modes conditional on the slow ones being
fixed is ergodic. Notice however how different these PDFs look: this indicates that
the feedback of the slow variables Xk on the fast ones Yj,k is significant in L96.

3.2 Direct-solvers versus the multiscale scheme

For the direct-solver we use the classical fourth-order Runge-Kutta method
with time-step δt. We need to take δt = 2−11 at most for stability, and at
this value of δt we achieve reasonable accuracy (i.e. eyeball insensitivity of
the results on the figures under further refinement of δt and changes in initial
conditions). Thus, the direct simulation has a cost, taken as the number of
time-steps of the fast variables per unit of time, given by

cost(direct) = b1/δtc = 211 = 2048. (25)

To compute the PDFs and the correlation functions of the slow variables we
use a total window of averaging of T = 218. The PDFs are computed from the
time-series by bin-counting. The correlation functions are computed by direct
summation:

Ck,k′(m∆t) =
1

M −m
M−m
∑

m′=1

Xk(m
′∆t)Xk′((m′ +m)∆t)− X̄2, (26)

where

X̄ =
1

M

M
∑

m=1

Xk(m∆t), (27)
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N1 R ∆t Gain ν error(%) ω error(%)

ε = 2−7 2−11 — 0.135 — 3.81 —

Truncated 2−6 — 0.287 113 3.57 6.3

1 4 2−4 32 0.201 49 3.76 1.3

1 2 2−5 32 0.171 27 3.89 2.1

1 1 2−6 32 0.162 20 3.88 1.9

2 1 2−5 32 0.162 20 3.88 1.9

4 1 2−4 32 0.158 17 3.87 1.6

1 1 2−7 16 0.137 2 3.84 0.8

2 1 2−7 8 0.135 0 3.83 0.5

Table 1
Gain in efficiency of the multiscale scheme over a direct solver for various values
of the control parameters in the multiscale algorithm. The error and the gain are
calculated relative to the simulation with ε = 2−7. The parameters ν and ω are
obtained by fitting as in (22) the ACF produced by the simulations. Notice that in-
creasing the number of realizations R while keeping the gain fixed actually increases
the error.

and similarly for the fast variables. We do not utilize FFT since in our examples
it does not provide significant improvements.

For the multiscale scheme we incorporate Algorithm 1 into a time-splitting
scheme with a first step for the nonlinear, damping, and forcing terms in
(19) using the fourth-order Runge-Kutta method, and a second step where
Algorithm 1 is used to deal with the coupling term, (hx/J)

∑J
j=1 Yj,k. The

step with the Runge-Kutta method allows us to take macro-time-steps up to
∆t = 2−4 = 1/16 which otherwise would have to be taken much smaller to
achieve stability. We test the multiscale scheme with the various values of ∆t
listed in table 1. For the micro-solver for (23), we use a fourth-order Runge-
Kutta with time-step δt = 2−11 (i.e. the same as in the direct-solver). We
check that the multiscale scheme converges and is accurate at the values N1 =
1 (one micro-time-step per macro-time-step) and R = 1 (one realization),
but we also test other values of N1 and R as listed in table 1. Even though
this is in in principle unnecessary for L96, we also use the seamless version
by incorporating Algorithm 3 instead of Algorithm 1 in the time-splitting
procedure described above. In all cases we estimate the cost of the multiscale
scheme as the number of micro-time-steps of the fast variables per unit of
time:

cost(multiscale) = R×N1 × b1/∆tc. (28)

Even though the multiscale scheme is significantly more efficient than the
direct-solver it reproduces extremely well both the PDFs and the correlations
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Fig. 5. Comparison between the ACF obtained via the multiscale scheme (black
line) and via the direct-solver with ε = 1/128 (full grey line); K = 9, J = 8. The
curves are so closed that it is difficult to distinguish them. The subplot displays
the PDF of the slow mode obtained via the multiscale scheme (black line) and
via the direct-solver with ε = 1/128 (full grey line). Here ∆t = 2−7 = 1/128,
N1 = 1, and R = 1. Thus cost(multiscale) = 27 = 128 and the multiscale scheme is
cost(direct)/cost(multiscale) = 24 = 16 times more efficient than the direct-solver.
Also shown in dashed grey are the corresponding ACF and PDF produced by the
truncated dynamics where the coupling of the slow modes Xk with the fast ones,
Yj,k, is artificially switched off. The discrepancy indicates that the effect of the fast
modes on the slow ones is significant in L96.

functions of the slow variables. Figure 5 shows a run with ∆t = 2−7 = 1/128,
N1 = 1, and R = 1, for which cost(multiscale) = 27 = 128, and hence the mul-
tiscale scheme is cost(direct)/cost(multiscale) = 24 = 16 times more efficient
than the direct-solver. And this happens even though the time series for Xk

that we generate with the multiscale scheme is much smaller than the one we
generate in the direct simulations, since Xk is sampled every macro-time-step
∆t in the former case, and every micro-time-step δt in the latter case. This
simply means that even though the sample from the direct-solver is much big-
ger, it is not more significant statistically due to the large correlation between
the slow variables at successive time-steps δt.

3.3 Effective forcing

The results of the last subsection clearly show that the forcing does not need
to be computed accurately at each macro-time-step (which is the case since
we can take R = 1) for the multiscale scheme to apply, as anticipated from
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Fig. 6. Typical time-series of the slow variable (grey) and corresponding effective
forcing (black) computed via ensemble averaging in the multiscale scheme with
R = 4096 realizations; K = 9, J = 8. The relative smoothness of the black curve
indicates that the multiscale scheme does a good job at computing the effective
forcing since this is the mean of the random variable (24) whose variance is large
in comparison – see figure 7.

the discussion in section 2. Now we increase R to R = 4096 (a value at which
the multiscale scheme is no longer more efficient than a direct scheme when
ε = 1/128) to compute the effective forcing

Fk(x) =
hx

J

J
∑

j=1

∫

RJ
zj,kµx(dz), (29)

where µx(dz) is the invariant measure of (23).

A typical time series of the effective forcing Fk(X) on mode Xk as it comes
out of the inner loop on r in Algorithm 1 is shown on figure 6. Also shown is
the time series of Xk itself. Since the effective forcing is the mean of the PDFs
shown in figure 4 whose variances may be fairly large in comparison, one sees
that the multiscale scheme does a good job at averaging this term to compute
the effective forcing.

The effective forcing Fk(x) is a vector-valued function of K = 9 variables
x = (x1, . . . , x9). In practice, it is not possible to run the simulation for long
enough to build a sample of Fk(x) which would allow to fit this function as
a whole. (Notice however that the multiscale scheme does not blindly sample
Fk(x) in x space but instead does it on the dynamical paths; therefore if the
slow variables are dynamically constrained on a smaller subset in state space,
like an attractor, the multiscale scheme automatically samples it and only it
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Fig. 7. Black points: scatterplot of the forcing F (x) produced by the multi-
scale scheme (R = 4096). Grey points: scatter plot of the bare coupling term
(hx/J)

∑J
j=1 Zj,k(x) produced by the direct-solver when ε = 1/128. K = 9,

J = 8. The width of the cloud obtained via the multiscale scheme indicates that
Fk(x) ≈ F (xk) is a rather bad approximation. In contrast, the width of the cloud
obtained via the direct-solver is more difficult to interpret since it is also due to
statistical fluctuation.

without wasting time evaluating Fk(x) in regions that are not visited by the
dynamics anyway). On the other hand, one may think of making additional
assumptions about Fk(x), the simplest of which being that it only depends on
the slow variable xk it corresponds to, i.e. Fk(x) ≈ F (xk) – the next natural
approximation would be to assume that Fk(x) ≈ F (xk−1, xk) (using the fact
that the slow variables sustain wave propagating primarily from left to right),
and so on. Testing Fk(x) ≈ F (xk) is elementary since it amounts to verifying
that the scatter-plot of Fk(X) versus Xk defines a function. Such a scatter-
plot is shown in figure 7, which clearly shows that Fk(x) ≈ F (xk) is a bad
approximation. Also shown is the scatter-plot of the bare forcing, which is even
wider since (hx/J)

∑J
j=1 Yj,k is (for all practical purposes at least) a random

quantity – the width of the cloud now corresponds to statistical fluctuations in
(hx/J)

∑J
j=1 Yj,k which arise independently on whether its conditional average

Fk(x) depends or not on xk only. This indicates that the multiscale scheme is
useful in checking assumptions on the effective forcing which are more difficult
to verify from direct numerical simulations due to statistical fluctuations.
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3.4 Time- versus ensemble-averaging

Here we use time-averaging instead of ensemble-averaging to compute the
effective forcing Fk(x) and verify the assertion in section 2 than the latter is
more efficient than the former. Thus in the macro-solver we use Algorithm 4
instead of Algorithm 1. Using N1 = 1 as before, the results show that it is
generally (the precise value depends strongly on x) necessary to take N =
218 = 262144 to obtain a time-series for Fk(X) as accurate as the one we got
with R = 212 = 4096 using ensemble-averaging. Thus, time-averaging is about
64 times less efficient than ensemble-averaging in the present situation. The
explanation for this phenomenon was given in section 2 – in essence: with
time-averaging, besides relaxing to the attractor, the Zj,k’s have to revisit it
at every macro-time-step, whereas they only need to relax to the attractor
with ensemble-averaging. Yet it is useful to corroborate this explanation by
looking at the convergence rate of Fk(x) as a function of N , as shown in
figure 8. When the micro-time-step δt is small, N becomes very large since
the physical time of averaging is fixed and independent of δt. Also shown
in figure 8, is the average of (hx/J)

∑J
j=1 Yj,k – i.e. no constraint X = x

unlike what happens when one averages (hx/J)
∑J

j=1Zj,k in the multiscale
scheme – which shows that constraining the dynamics as the multiscale scheme
does it in the micro-solver is necessary with time-averaging (while it is not
with ensemble averaging). Indeed, the averaging time window is so large that,
in the absence of constraint, the slow variable Xk significantly drifts before
the averages converges which eventually would give the complete expectation
of (hx/J)

∑J
j=1 Yj,k rather than the conditional expectation of this quantity.

4 L96 with spatial scale separation

Here we study L96 (19) in the same parameter setting as in section 2 except
that we take J = 1/ε = 128. Thus there are now 128 fast modes per slow mode,
and they evolve 128 times faster. This is closer to the original parameter setting
used by Lorenz. Applying the multiscale scheme directly to this system as we
did in section 3 would also result in a gain in efficiency by a factor of up to
32 with no significant loss in accuracy. Here we show that we can significantly
increase this gain by using the spatial scale separation in the system – i.e. the
fact that the number of fast variables Yj,k is large. Specifically, we show how
to apply the multiscale scheme by using in the micro-solver a smaller number
of fast variables than in the original system – below 8 instead of 128 per slow
mode. As a byproduct of this analysis, we obtain a complete characterization
of the effective dynamics of L96 when J = O(1/ε) and we show that in this
case the original system in (19) reduces to the following equation for the Xk’s
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Fig. 8. Black lines: Typical accumulated time-average of the effective forcing pro-
duced by the estimator in the multiscale scheme. K = 9, J = 8, ε = 1/128. Grey
line: Typical accumulated time-average of (hx/J)

∑J
j=1 Yj,k produced by the direct

solver at ε = 1/128. The subplot is the zoom-out of the main graph. Since δt = 2−11,
t = 0.1 corresponds to N = bt/δtc = 204. Notice that due to the lack on constraint
on the value of Xk in the direct solver, the average starts drifting (because the Xk’s
evolve) before it actually converges. Such problem does not arise in the multiscale
scheme since the dynamics of the fast modes can be constrained fixing Xk = xk in
the micro-solver.

alone as ε→ 0:

Ẋk = −Xk−1(Xk−2 −Xk+1)−Xk + Fx + F (Xk). (30)

Here F (xk) is an effective forcing term accounting for the effect of the Yj,k’s on
Xk which, in the present case, is a function depending only on one-variable,
namely Xk. The specific shape of F (x) is obtained below.

4.1 Existence and properties of a limiting dynamics

A typical snapshot and time series of the solution are shown on figure 9. To
check that the dynamics of slow modes solution of (19) has a limit as ε → 0
when J = b1/εc we proceed as in section 3.1. First we verify that PDF and
ACF of the slow mode Xk at J = 1/ε = 128 and J = 1/ε = 256 are very
similar which indicate that they have converged to their limit.

Next, we check the ergodicity of (23). Let us take a working assumption that
the spatial interaction between the Yj,k (and hence between the Zjk(x) in (23))
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Fig. 9. Typical time-series of the slow (black line) and fast (grey line) modes; K = 9,
J = 1/ε = 128. The subplot displays a typical snapshot of the slow and fast modes
at a given time.

are sufficiently weak and short-range on the average. Then, at any given time,
the term (hx/J)

∑J
j=1 Yj,k (and hence (hx/J)

∑J
j=1Zj,k(x)) self-averages in the

limit as J → ∞ (i.e. ε → 0 since J = b1/εc) to a limit which, by the law of
large numbers, satisfies

lim
ε→0

εhx

b1/εc
∑

j=1

Yj,k = hxEXk
Yj,k ≡ F (Xk), (31)

Here EXk
Yj,k is the conditional average of any given Yj,k at fixed Xk, and un-

der the assumption of weak spatial interaction between the Yj,k’s, it can only
depends on the single Xk entering the equation for Yj,k. Thus our working as-
sumption implies that Fk(x) depends only on this Xk, i.e. Fk(x) = F (xk). This
assumption is of course non-trivial since the Yj,k’s are nonlinearly coupled. Yet
it can be verified from the scatter-plot of Fk(X) versus Xk shown in figure 10
that this assumption holds with reasonable accuracy since this scatter-plot is
rather sharp (much sharper than the one shown in figure 7 when ε = 1/128
but J = 8 only). Taking J = 1/ε = 4096 makes it even sharper which supports
that this scatter-plot converges to the graph of a function as J = b1/εc → ∞.
As a further test of (31) we also changed the value of hx from the current value,
hx = −0.8, to hx = 1.2 and we checked that this amounts to a simple rescaling
of the scatter-plot by a factor 1.2/(−0.8) – see the subplot of figure 10 .

On figure 10, we can see that in the interval Xk ∈ [−0.5, 0.9], F is a linear
function of Xk, whereas for Xk > 0.9 and Xk < −0.5, F is a two-branch
function of Xk: one branch is the continuation of the linear piece in the center
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interval and each of the other branches is some nonlinear function of Xk.
Further analysis of the dynamics indicates that when Xk leaves the center
interval, F first follows the continuation of the linear branch, then jumps on
the other branch. This bifurcation is in fact driven by a linear instability
mechanism, as we explain next.

The simplest way to make sure that Fk = F (Xk) is to change the boundary
condition for the Yj,k in (19) and, correspondingly, the Zj,k(x) in (23). Instead
of taking them periodic over the whole system, i.e. Yj,k+K = Yj,k, Yj+J,k =
Yj,k+1, take them periodic in each subsector, i.e. Yj+J,k = Yj,k+1. Under the
working assumption above, this should not change anything to the limiting
dynamics for the slow variables Xk. With the new boundary conditions, it is
elementary to check that the equation for Zj,k(x) in (23) has the following
steady-state solution:

Zj,k = hyXk. (32)

This means that the measure of the Zj,k(x)’s and therefore the conditional
measure of the Yj,k’s at fixed Xk is atomic on this value. From (31) it follows
that

F (Xk) = hxhyXk. (33)

This function fits very well the center branch observed in the scatter-plot
shown in figure 10. Now, let us analyze the stability of the steady-state solution
(32). A standard eigenvalue analysis of the equation for Zj,k in (23) linearized
around (32) indicates that the eigenvalues are

λj = −2ihyXk exp(iπj/J) sin(3πj/J)− 1 j = 1, . . . , J. (34)

It follows that (32) is stable if Re(λj) < 0 or all j and unstable otherwise.
As J → ∞, the stable interval reduces to Xk = (−1/2, 8/9). This is again in
excellent agreement with the result in figure 10.

When (32) is unstable, we did not find any analytical argument which gives
the stable branches of F (Xk) seen in figure 10. Next, we use the multiscale
scheme to compute these stable branches.

4.2 Multiscale scheme with spatial-scale separation

The discussion in the last subsection indicates that, rather than using the
multiscale scheme for (19) with the original boundary conditions for Yj,k, we
should use this equation with the new boundary conditions, Yj+J,k = Yj,k+1.
But in this case, the number of fast modes in each subsector can be modified as
well, and in particular, can be taken much smaller than the actual value J =
128. Thus, in the multiscale scheme we took J ′ = 8 and checked insensitivity
of the results by increasing this value to J ′ = 16 (as a theoretical justification
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Fig. 10. Scatterplots of the bare forcing εhx
∑b1/εc

j=1 Yj,k (no averaging here); light
grey: J = 1/ε = 128; dark grey: J = 1/ε = 4096 (K = 9). The sharpness of these
graphs confirm that bare forcing self-averages consistent with (31). The subplot:
J = 1/ε = 1024, hx = 1.2 (instead of hx = −0.8 taken otherwise); it can be
obtained by rescaling the forcing in the main plot respectively by 1.2/(-0.8). The
thin dashed lines shows the stability band X ∈ (−0.5, 8/9) and the corresponding
forcing F (X) = hyhxX.

for the value J ′ = 8, note that if J ′ = 8, the stable interval for the linear
branch of F (Xk) is (−1/2, 1) which is already a fair approximation of the
limiting interval (−1/2, 8/9) as J →∞).

With the new boundary conditions, there are two obvious ways to implement
the multiscale scheme, with on on-the-fly evaluation of the effective forcing
F (x), or with a tabulation of this function.

4.2.1 Multiscale scheme with on-the-fly evaluation of F (xk).

This proceeds exactly as in section 3. The effective forcing is computed via
the micro-solver and estimator at each time-step. We used ∆t = 2−7, δt =
2−11 (same value as in the direct solver for (19) with the original boundary
conditions),N1 = 1, andR = 1. This gives (including the number of fast modes
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Fig. 11. Dark grey: scatterplots of the bare forcing εhx
∑b1/εc

j=1 Yj,k with
J = 1/ε = 4096 (K = 9). Light grey: effective forcing Fk(X) produced on-the-fly by
the multiscale scheme with K = 9, J = 8, N1 = 1, R = 64, ∆t = 2−7. Solid black
line: tabulated effective forcing computed via the multiscale scheme with K = 9,
J = 16.

in the cost since it is different from the one used in the direct simulations)

cost(multiscale) = R ×N1 × J ′ × b1/∆tc = 210 = 1024 (35)

On the other hand, a direct solver for (19) has a cost

cost(direct) = J × b1/δtc = 218, (36)

resulting in a cost(direct)/cost(multiscale) = 256 increase in efficiency in favor
of the multiscale scheme. Yet, it can be seen in figures 12 that the multiscale
scheme performs extremely well in reproducing the functional dependence of
the the PDFs and ACFs of Xk. It should also be stressed that the multiscale
scheme with R = 1 produces a forcing F (Xk) which is only a poor approx-
imation to the asymptotic limit. This can be seen in the scatterplot shown
in figure 10. The reason is simple: Since J ′ is rather small in the multiscale
algorithm, the forcing F (Xk) does not self-average as in the original equa-
tion with J = b1/εc. This reinforces a point we already made earlier. A good
approximation of the effective forcing at each time-step is not necessary to
obtain a good approximation of the limiting dynamics.
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Fig. 12. Comparison of ACFs and PDFs (subplot) of the slow mode for various
simulations in J = 1/ε regime. Light grey: J = 128; dark grey: J = 256 (practically
indistinguishable from the previous one); solid black: result from the multiscale
scheme with tabulated forcing (J = 16); dashed black: result from the multiscale
scheme with J = 8, ∆t = 2−7, N1 = R = 1.

4.2.2 Multiscale scheme with tabulation of F (xk).

In the present situation, the only advantage of using the multiscale scheme in a
on-the-fly procedure as above is that it may be able to capture the hysteresis
phenomena by which the fast mode remain metastable for a while on the
unstable linear branch of F (Xk). If one neglects this phenomena, we can simply
tabulate F (Xk) once and for all, for instance by saving and processing the
data provided by the on-the-fly procedure. Once F (Xk) has been tabulated,
one can simply simulate the associated limiting equation for Xk, which results
of course in an even bigger efficiency gain in favor of the multiscale scheme
(infinite in fact by the criterion above since we do not have to simulate the fast
variables anymore). We tabulated F (Xk) for J = 16 and the results are also
presented on figure 10. The results of this second procedure in terms of PDF
and ACF for the slow modes, shown in figure 12, indicate that the hysteresis
phenomena described before has a negligible influence on these quantities.

5 L96 with hidden slow variables

Even though we tested the seamless version of the multiscale scheme in sec-
tions 3 and 4, the use of the seamless scheme was avoidable there because
slow and fast variables are explicitly separated in the original set-up of L96.
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Here we make the seamless version unavoidable by modifying L96 so that it
contains hidden slow variables. The system we will study is:























Ẋk = −Xk−1(Xk−2 −Xk+1)−
1√
J

J
∑

j=1

(

Y 2
j,k+1 − Y 2

j,k−1

)

Ẏj,k = −1

ε
Yj+1,k(Yj+2,k − Yj−1,k)−

1√
J
Yj,k(Xk+1 −Xk−1).

(37)

We will consider these equations when the number J of fast mode scales as ε−2.
Besides this scaling, the main difference with (19) is that the coupling between
the slow and the fast modes is quadratic in (37) instead of being linear. We
have also dropped the forcing and damping terms in (37). This is unessential
but it allows us to use equilibrium statistical mechanics to analyze (37) and
use these results as an additional benchmark for the numerics. These results,
presented next, indicate that as ε→ 0 with J = O(ε−2)→∞, (37) lead to a
limiting dynamics for Xk and the following additional slow variables (hidden
in (37)):

B̄k =
1√
J

J
∑

j=1

Y 2
j,k. (38)

We start by analyzing the equilibrium statistical properties of (37) then report
the results of our numerical experiments.

5.1 Statistical mechanics properties and existence of a limiting dynamics

Due to the absence of forcing and damping in (37), this equation conserves
the energy

E =
K

∑

k=1

(

X2
k +

J
∑

j=1

Y 2
j,k

)

. (39)

Assuming ergodicity it is reasonable to expect that the invariant measure for
system is the uniform distribution on the surface of constant energy, which
is just a sphere. This assumption is consistent with the numerical results, see
figure 13. It follows that the marginal probability density of Xk is

ρJ(x) = Z−1(E − x2)
((K+1)J−3)/2
+ (40)

where Z is a normalization constant and z+ = max(z, 0). Assume that E
scales as the number of modes in the system, i.e.

E = (K + 1)JE . (41)
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where E is the energy density per mode. Then in the limit as J → ∞, ρ(x)
reduces to a (zero-mean) Gaussian PDF with variance E :

ρJ(x)→ ρ(x) =
e−x2/2E

√
2π

as J →∞ (42)

A similar argument shows that ρ(·) is also the limiting PDF of any Yj,k. By
the law of large number, this implies that

1

J

J
∑

j=1

Y 2
j,k → E as J →∞, (43)

whereas, by the central limit theorem, we conclude that the rescaled variables

Bk =
1√
J

( J
∑

j=1

Y 2
j,k − JE

)

, (44)

are Gaussian random variables in the limit as J →∞ with zero mean covari-
ance

cov(Bk, Bk′)→ 2E2δk,k′. (45)

This is also confirmed by the numerics.

The variables Bk’s are just re-centered versions of the B̄k’s in (38). We claim
that the Bk’s are hidden slow variables in (37). To see this, note that (37) can
be written in terms of Xk and Bk as















Ẋk = −Xk−1(Xk−2 −Xk+1)− (Bk+1 −Bk−1)

Ḃk = BTk(Y )− 2
(

E +
1√
J
Bk

)

(Xk+1 −Xk−1).
(46)

where

BTk(Y ) =
2

ε
√
J

(

YJ,k−1Y1,kY2,k − YJ,kY1,k+1Y2,k+1

)

, (47)

is a boundary term accounting for the interaction between the Yj,k between
subsectors k. Because of this term, (46) is not a closed system for (Xk, Bk).
But provided that J/ε2 → J0 ∈ (0,∞) as ε → 0, one clearly sees that the
term BTk(Y ) is O(1) in amplitude, implying that the variables Bk’s are slow
variables complementary to the Xk’s. In this limit (46) reduces to the following
effective system:







Ẋk = −Xk−1(Xk−2 −Xk+1)− (Bk+1 −Bk−1)

Ḃk = Fk(X,B)− 2E(Xk+1 −Xk−1).
(48)

where the effective forcing Fk(X,B) is the average of BTk(Y ) conditional on
Xk, Bk being fixed. (48) also is the limiting system for (37).
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To apply a non-seamless version of the multiscale scheme to (37) would require
deriving equations for a set of variables complementary to the Xk’s and Bk’s,
and rewriting (37) in terms of these new variables. This would be a rather
tedious operation to do, which we avoid by using the seamless version of the
multiscale scheme. Moreover we combine this algorithm with the dimension-
reduction technique discussed in the previous section, i. e., in our multiscale
simulations we also decrease the value of J to compute the effective forcing.

5.2 Numerical experiments

The first numerical experiment that we perform is a full-scale direct simulation
of (37) with ε = 1/64, J = 1/(8ε2) = 512, K = 9. This experiment will
serve us as a benchmark for the multiscale simulations. As before we use the
fourth-order Runge-Kutta scheme, but we also take additional precautions to
conserve the energy E. This is achieved by projecting the Xk’s and Yj,k’s onto
the sphere of constant energy at every micro-time-step (note that it is not
necessary to do it so often – even without this projection step the energy is
conserved up to 10% throughout the whole computation). The micro-time-
step that we use is δt = 2−10. The results in terms of PDFs and ACFs for Xk

are shown in figure 13. The Bk’s (not shown) behave similarly.

The seamless multiscale scheme which we use is a slight adaptation of Al-
gorithm 3. The microscopic dynamics is integrated using the fourth order
Runge-Kutta scheme with the same micro-time-step as in the direct compu-
tation, δt = 2−10. We take one realization only, R = 1, and we make one
micro-time-step per macro-time-step, N1 = 1. For the slow evolution we use
a split-step method: fourth order Runge-Kutta scheme for the nonlinear self-
interaction of the slow variables Xk and the forward Euler scheme for coupling
of the latter with the fast variables. The additional slow variables Bk’s are
propagated via forward Euler scheme applied to the second equation in (46).
We follow by a projection step where we renormalize the fast variables Yj,k’s
by multiplication so that they lie on energy spheres in y-space consistent with
the current value of the Bk’s, i.e. we update them as

Y new
j,k =

B̄k
∑J

j=1(Y
old
j,k )2

Y old
j,k , (49)

where B̄k = Bk + E/
√
J , see (38) and (44). This step corresponds to the

second loop on r in Algorithm 3. In the present case the nonlinear system
of equations which determine Λ can be solved explicitly and results in (49).
Finally, we make an additional projection step where we renormalize all the
variables to ensure that the total energy E is conserved.

Since the analysis in section 5.1 shows that the effective dynamics is obtained
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within the scaling J = O(ε−2), in the multiscale scheme we reduce the num-
ber of fast modes as we increase the macro-time-step. Indeed, increasing ∆t
amounts to increasing the value of ε to ε′ = ε∆t/δt (recall that R = N1 = 1),
as explained in section 2.3. Consistently, we use the multiscale scheme with
∆t = 2−8 and J = 32 (corresponding to an efficiency gain ratio of 64), and
with ∆t = 2−7 and J = 8 (corresponding to an efficiency gain ratio of 512).
The results are displayed in figure 13 and show that the multiscale scheme
performs extremely well even at the highest efficient gain ratio of 512.

Finally, we also did a multiscale simulation where the Bk’s are not accounted
for. The results displayed in figure 13 clearly show that this has a dramatic
influence on the PDFs and ACFs which depart significantly from their actual
values in this case. The reason for this failure is actually rather easy to un-
derstand. As explained in sections 2.3 and 2.5, the multiscale scheme gains in
efficiency because in effect it slows down the fast variables, thereby allowing
for a smaller number of micro-time-steps in the computation. But if some slow
variables are not accounted for, the multiscale scheme will slow down these
variables as well, and this will affect the dynamics of all the slow variables. In
our case, using the multiscale scheme without accounting for the Bk’s amounts
to slowing down the evolution for the Yj,k by a factor of δ = δt/∆t, i.e. multi-
plying the second equation in (37) by δ. If this happens the conserved quantity
E changes to (compare (39))

Ẽ =
K

∑

k=1

(

X2
k + δ

J
∑

j=1

Y 2
j,k

)

. (50)

Therefore the evolution proceeds on a wrong hypersurface altogether, e.g., the
variance of Xk which would normally be E/K(J + 1) becomes Ẽ/K(J + 1),
with Ẽ 6= Ẽ determined by the initial conditions. This is precisely the effect
one sees in figure 13.

6 Convective versus diffusive time-scales in L96

So far we have used the multiscale scheme on infinite time intervals without
worrying about the fact that the underlying theoretical results assert the exis-
tence of an effective equation like (2) for (1) only on finite time-intervals. The
reason why the multiscale scheme was able to capture correctly the long-time
behavior in L96 via PDFs or ACFs was already explained in the introduction.
L96 is an intrinsically stochastic system for which the stochastic corrections
in the dynamics arising on the O(ε−1) time-scale have a very weak effect on
the long-time dynamics and quantities like the PDFs and ACFs. This is not
always the case, though, and even L96 can be tuned in a way that the stochas-
tic corrections arising on the O(ε−1) time-scale do matter. How to deal with

35



0 3 6 9 12 15
-0.5

0

0.5

1

1.5

2

-5 -2.5 0 2.5 5
0

0.1

0.2

0.3

0.4

Fig. 13. ACFs and PDFs of Xk. Grey line: direct simulation with ε = 1/64, J = 512
(δt = 2−10); thick solid black line: multiscale scheme with ∆t = 2−8, J = 32
(efficiency gain: 64); thin black line: multiscale with ∆t = 2−7, J = 8 (efficiency
gain: 512). Dashed black line: multiscale scheme with ∆t = 2−8, J = 32 (efficiency
gain: 64) where the hidden slow variables Bk are not accounted for. The discrepancy
clearly indicates that accounting for the Bk’s is necessary. In all the multiscale
computations N1 = R = 1.

situations of this sort and use the multiscale scheme is the subject of this
section.

Consider the same generic model (1) with an additional property that the
expectation in (3) is of order ε, i.e.

∫

Rn
f(x, z)µx(dz) = εF̄ (x), (51)

where F̄ is some function O(1) in ε. (51) implies that the slow variable is frozen
on the O(1) time-scale and the interesting dynamics arises on the O(ε−1)
time-scale. However, this dynamics is not captured by the limiting equation
Ẋ = εF̄ (X). The reason is that stochastic effects arising due to fluctuations of
the effective forcing around it mean value (51) must be accounted for, and the
effective dynamics is in fact captured by some stochastic differential equation

Ẋ = εb(X) +
√
εσ(X)Ẇ (t), (52)

where W (t) is the standard multi-dimensional Wiener process, and the coef-
ficient b and σ are defined via expectations similar to (though more general
than) (51) (see e.g. [27] for details). Note that rescaling time as τ = εt, (52)

36



can be written as

Ẋ(τ) = b(X(τ)) + σ(X(τ))Ẇ (τ). (53)

A general multiscale procedure to compute the coefficient b and σ via micro-
simulation of the full system in (1) is given in [30] (see also[9]). Here we
show how to bypass this procedure using a poor man version of the multiscale
scheme much in the spirit of the penalty methods discussed in section 2.3. The
existence of the effective equation in (53) actually means that, when (51) is
satisfied, the solution of the original system and the solution of (53) satisfy

sup
0≤τ≤T

|Eϕ(Xε(τ/ε))−Eϕ(X(τ))| → 0 as ε→ 0, (54)

where ϕ is a test function and E denotes the expectation with respect to some
appropriate measures. In turns this implies that the solutions of the original
equation in (1) computed at two different values of ε, say, ε and ε′, satisfy

sup
0≤τ≤T

|Eϕ(Xε(τ/ε))− Eϕ(Xε′(τ/ε′))| → 0, as ε, ε′ → 0. (55)

Note the specific rescaling of time in (55) which involves the actual values of
ε and is different for Xε and Xε′. (54) implies that

Xε(t) ≈ Xε′(tε/ε′), (56)

provided that ε and ε′ are both sufficiently small.

The idea of a poor man’s multiscale scheme for situations of this type is as
follows. Since ε is small in the original equation, we can satisfy ε � ε′ � 1
and still be in the range where (56) holds. But simulating (1) with the new ε′

is then much less expensive than with the original ε. This results in efficiency
gains that may not be as dramatic as what one can obtain by a full multiscale
scheme where the coefficients b and σ are evaluated via micro-simulations. Yet
this seamless way to implement a multiscale scheme has the advantage of its
great simplicity. Next we demonstrate this on a variant of L96.

Consider



















Ẋk = −ε (Xk−1(Xk−2 −Xk+1) +Xk) +
hx

J

J
∑

j=1

(Yj,k+1 − Yj,k−1)

Ẏj,k =
1

ε
(−Yj+1,k(Yj+2,k − Yj−1,k)− Yj,k + Fy) + hyXk,

(57)

With this specific scaling of the nonlinear terms in the equation for Xk, and
of the coupling term with Xk in the equation for Yj,k, we guarantee that (51)
is satisfied. Indeed, the conditional measure entering (51) does not depend on
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Fig. 14. ACFs and PDFs (subplot) of the slow variable Xk evolving under (57).
Grey line: ε = 1/256; full black line: ε = 1/128; dashed black line: ε = 1/128 with
time rescaled as t→ 2t consistent with (56). The near perfect match confirms that
evolution of Xk converges to some limiting dynamics on the O(1/ε) time-scale.

x since the equation used in the microsolver is

Żj,k =
1

ε
(−Zj+1,k(Zj+2,k − Zj−1,k)− Zj,k + Fy) . (58)

In addition the statistics of Zj,k does not depend on k by periodicity and
therefore the conditional averages of Yj,k+1 and Yj,k−1 at x fixed are the same,
and the correspond term involving their difference in (57) cancels to leading
order.

We study (57) by the multiscale scheme described above by performing two
simulations with J = 2, K = 4, Fy = 10, hx = −0.8, Hy = 1, and ε = 1/256
and 1/128, and comparing the solution using the proper rescaling of time given
in (56). The results are displayed on figure 14 and show the almost perfect
agreement in PDFs and ACFs. The simulation with ε = 1/128 is performed
with a micro-time-step which is twice as big as the one used in the simulation
with ε = 1/256 and therefore corresponds to an efficiency gain ratio of 2.
Notice that, in the present situation, the use of the multiscale scheme can be
bypassed since the dependency in ε is explicit in (57). But this needs not be the
case, and the poor man’s multiscale scheme used here can be straightforwardly
generalized to systems such as the one considered in section 5 which contain
hidden slow variables.
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7 Concluding remarks

We have investigated a class of numerical schemes which fit within the gen-
eral framework of the Heteregeneous Multiscale Method and allow for signifi-
cant computational gain in efficiency in systems with multiple spatio-temporal
scales. We have applied these schemes on the example of L96 which is the
archetype of large deterministic system displaying chaotic behavior. While
precise error estimates are not currently available for systems of this type, we
have shown that the analysis of the multiscale scheme in terms of its consis-
tency with specific dynamical equations allows a rather complete understand-
ing of the efficiency of the method in terms of the numerical parameters used.
This analysis was made in general and confirmed on the specific example of
L96. On this example, it was shown that the multiscale scheme can be adapted
and improved by utilizing specific properties of the system so as to achieve
not only considerable gain in efficiency in the computations, but also good un-
derstanding of the properties of limiting equations for the slow modes in L96.
We believe that a similar strategy may be useful in more realistic examples
arising from atmospheric sciences, molecular dynamics, etc. which display the
same type of multi-scale characteristic as L96 and pose similar computational
and theoretical challenges.
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A More algorithms and speculative error estimates

Here we give specific multiscale algorithms and assess their performance. For
simplicity we focus on using one-step explicit schemes with fixed time-steps
for both the macro- and the micro-solver. The generalization to variable time-
steps, or explicit multi-step schemes is straightforward; the generalization to
implicit schemes for the micro-solver is straightforward as well, but using im-
plicit schemes as macro-solver is more involved and should probably be avoided
if possible. We also speculate the performances of various estimators and insist
on distinguishing (i) the error the estimator makes on evaluating F (x) at each
macro-time-step, and (ii) the error it induces on the slow variable evolution.
We focus on using ensemble-average as estimator; similar error estimates can
be derived if time-averaging is used [9]. We stress that the error estimates

39



given below are speculative in the sense that they depend on the convergence
properties of the macro- and micro-solvers on infinite time-intervals, which
we shall assume are well-behaved and known. Under these assumptions, the
statements below can be proven following the lines of [9] and we refer the
reader to this paper for details.

A.1 Algorithms

The generalization of Algorithm 1 to a multiscale scheme where the macro-
solver uses a Q-stage one-step method with Butcher coefficients aq,q′ and bq
can be written as:

Algorithm 5 (Q-macro-stage one-step macro-solver)

Take X̃0 = x; M = bT/∆tc; m = 0;

while m ≤ M ;

X̃?
0 = X̃m;

for q = 0, 1, . . . , Q− 1

call F̃ (X̃?
q )

X̃?
q+1 = X̃?

q + ∆t
q

∑

q′=0

aq,q′F̃ (X̃?
q′);

end(for)

call F̃ (X̃?
Q)

X̃m+1 = X̃m + ∆t
Q

∑

q=0

bqF̃ (X̃?
q );

m← m+ 1;

end(while)

Here the function F̃ (x) invokes a subroutine which contains both the micro-
solver and the estimator and can be integrated into the following subroutines
to evaluate F̃ (x) via ensemble-averaging:
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Algorithm 6 (micro-solver with estimator by ensemble-averaging)

function F̃ (X̃m)

given X̃m, {Zr
N1,m−1}Rr=1:

for r = 1, . . . , R

Zr
0,m = Zr

N1,m−1;

for n = 0, 1, . . . , N1 − 1

Zr
n+1,m = Zr

n,m + δt ψg(X̃m, Z
r
n,m, δt);

end(for)

F̃ (X̃m)← F̃ (X̃m) +
1

R
f(X̃m, Z

r
N1,m);

end(for)

return F̃ (X̃m), {Zr
N1,m}Rr=1.

It is also straightforward to implement a Q-stage generalization of the seamless
algorithm (3). In this case one has to use the same procedure as described
in section (2.4) to obtain the values of U r at every intermediate point and
therefrom calculate the macroscopic forcing and advance the slow variables.

A.2 Error estimates

A.2.1 Macro-solver

Let Xm be the numerical approximation of Xt=m∆t provided by Algorithm 5
with the exact F (x). We will assume that a weak error estimate of the following
type holds: for all test functions η(x) within a suitable class, there exists α > 0
such that for ∆t sufficiently small

∣

∣

∣

∣

lim
M→∞

1

M

M
∑

m=1

η(Xm)−
∫

Rm
η(x)µ(dx)

∣

∣

∣

∣

≤ C∆tα, (A.1)

where µ(dx) is the invariant measure of the limiting equation in (2) (assuming
it exists) and C is a generic constant. The exponent α depends on the macro-
scheme, and may be less than the order of accuracy of the method over finite
time-interval [29]. Thus (A.1) assumes that both the limiting equation for X
in (2) and the macro-solver are ergodic; the criterion (A.1) is then tailored for
assessing the performances of the scheme in approximating moments of µ(dx)
(in the context of SDEs, a scheme satisfying (A.1) is said to converge with re-
spect to the ergodic criterion with order α [16]). Such a criterion is appropriate
in the context of systems like L96 where both the original but also the effective
dynamics display deterministic chaos and for which a detailed description of a
given trajectory is therefore only possible on a rather short interval of time. Of
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course, if such description on a short time-interval is of interest, the criterion
in (A.1) can be changed into a standard ODE error estimate whose order of
accuracy then simply is the order of the macro-solver; the discussion below
can be straightforwardly adapted to this case.

When (A.1) holds, it is a general result of HMM [7] that the error estimate
for Algorithm 5 is then

∣

∣

∣

∣

lim
M→∞

1

M

M
∑

m=1

η(X̃m)−
∫

Rm
η(x)µ(dx)

∣

∣

∣

∣

≤ C (∆tα + e(HMM)) , (A.2)

where e(HMM) is an additional term accounting for the errors from the
micro-solver and the estimator, which we evaluate next.

A.2.2 Estimator

Denote by F̃ (x, z) the approximation of F (x) provided by estimating (3) by
time-averaging, i.e.

F̃ (x, z) =
1

R

R
∑

r=1

f(x, Zr
N1

(x, z), ε), (A.3)

where N1 and R are as in Algorithm 6, and we have indicated explicitly the
dependency of F̃ (x, z) and Zn(x, z) on the initial conditions for the micro-
solver, i.e. Zn=0(x, z) = z, since they affect the error estimates we give next.

To assess the performance of the estimator integrated within the multiscale
scheme, we introduce the following error estimate for (A.3) which would be
standard in the context of SDEs. We assume that there exist β > 0 such that
for ε, ∆x, and δt small enough, and N1 and N , with N1 < N , large enough,
we have

∫

∣

∣

∣F̃ (x, z)− F ε(x)
∣

∣

∣µx+∆x(dz)µ(dx)

≤ C
(

(δt/ε)β + ∆xe−C̄N1δt/ε +
1√
R

)

.
(A.4)

where C, C̄ are generic constants. (A.4) assume that measure µx(dz) is weakly
Lipschitz in x (i.e.

∫

Rm η(z)µx(dz) is Lipschitz in x for all test functions η).
The origin of the various terms at the right hand-side in these estimates is as
follows.

The first term accounts for the discretization errors from the micro-solver
and it is assumed that the micro-solver converges with respect to the ergodic
criterion of order β.

The second term accounts for relaxation errors from the initial condition used
in the micro-solver. This is a property of the dynamics, not of the solver; here
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it is assumed that the relaxation is exponential, though this is not essential
and a slower algebraic decay would suffice. What is essential is that ∆x is
small in (A.4); this amounts to assuming that the initial condition for the
micro-solver is Z0(x + ∆x, z), i.e. it is sampled from the measure µx+∆x(dz)
which is very close to the one entering the definition of F ε(x). This is precisely
what happens if one combines Algorithm 5 with 6 since the initial conditions
for the fast variables at the next call of these subroutines is their final values
from the last call, i.e. they already sample µX̃m−1

(dz) initially when one let

them evolve to sample µX̃m
(dz), and X̃m − X̃m−1 = O(∆t).

Finally, the last term account for finite sampling effects. Unlike the first two
terms, for standard SDEs this term disappears if the absolute value in (A.4)
is taken outside instead of inside the integral; we shall assume that this is also
the case in the present context.

A.2.3 HMM

It is shown in [9] that an estimate like (A.4) is the essential information needed
to evaluate e(HMM) in (A.2). In particular, Algorithm 5 combined with
Algorithm 6 leads to

e(HMM) = C
(

(δt/ε)β + ∆te−C̄N1δt/ε +
∆t

R

)

. (A.5)

We have already explained why the term accounting for relaxation error in
these estimates is proportional to ∆t. Note also that the sampling error term
enters squared compared with (A.4), and with an additional ∆t, which con-
firms that the effective number of realizations is R/∆t, i.e. the scheme con-
verges as ∆t→ 0 even if R = 1.

A.3 Efficiency

From (A.2) and (A.5) one sees that the optimal cost of the multiscale scheme,
taken as the total number of micro-time-steps, at error tolerance λ� 1 is

cost =
TQRN1

∆t
= O

(

λ−min{1/α,1}−1/β log λ−1
)

. (A.6)

The choice of parameters leading to this estimate is

∆t = O
(

λ1/α
)

, δt = O
(

ελ1/β
)

,

N1 = O
(

λ1/β log λ−1
)

, R = O
(

λmax{1/α−1,0}
)

.

(A.7)
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Note that, for α ≤ 1, the optimal number of realizations is R = 1; for α > 1, it
scales as λ1/α−1. Notice also that the cost is independent of ε, which explains
why the multiscale scheme is more efficient than a direct scheme for (1).
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