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Abstract
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I. INTRODUCTION

This paper addresses two important issues on stochastic models of chemical kinetic sys-

tems with disparate rates, namely effective models over the slow time-scale and efficient

simulation algorithms. These issues have received a great deal of attention in recent years,

and much progress has been made [1–5]. One main idea, pursued by many authors [2, 4, 5],

is to make a quasi-equilibrium approximation for the fast processes and solve the empirically

averaged slow processes. Even though this has been a common theme in much of the recent

works on this subject, it seems that the key issue of identifying the effective process and

effective variables over different time-scales has not been fully understood. As a result, the

validity and generality of these approaches have not been satisfactorily demonstrated.

The present paper has two purposes. The first is to provide effective models and effec-

tive variables for stochastic chemical kinetic systems with disparate rates. Compared with

previous works, such as [4, 5] which rely on the identification of slow and fast species, our

work gives a general prescription for identifying effective slow variables. As we will see

later, in general the slow variables are not associated with specific species, but are rather

combinations of the molecular numbers of several species.

The second purpose of this paper is to suggest an efficient stochastic simulation algorithm

for systems with disparate rates in the style of the well-known Gillespie algorithm [6, 7].

What should be noted is the simplicity of this algorithm: It is completely seamless. Even

though understanding the effective dynamics on the slow time-scale requires knowing the

slow variables, the algorithm itself does not use this information explicitly. Based on the

error estimates, we are able to discuss the convergence and efficiency of the algorithm.

As mentioned above, some recent efforts have been made for the simulation of chemical

kinetic systems with disparate rates. In [1], a multi-scale simulation method was proposed

in which the slow and fast reactions are simulated separately at each event of the slow

reactions. The slow reactions are simulated with Gillespie’s algorithm and the fast reactions

are simulated with a Langevin dynamics assuming the number of the molecules involved is

so large that the kinetic dynamics converges to a diffusion process. In [3], a similar multi-

scale scheme is proposed in which the fast dynamics is simulated with deterministic ordinary

differential equations. The approaches in [1] and [3] require that the volume of the system

be sufficiently large in addition to having well-separated rates. In [2], a scheme based on
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the quasi-equilibrium assumption is proposed assuming that the probability density of the

fast processes conditioned on the slow processes is known exactly or can be approximated,

e.g. by a Gaussian. The same quasi-equilibrium assumption is used in [4, 5], except that

the probability density of the fast processes conditioned on the slow processes is computed

via a modified process called the virtual fast process. The method proposed in [4, 5] is more

general than previous methods, but it still has the following limitations. It applies only to

cases when slow and fast processes are associated with specific species; the rate functions of

the slow processes are assumed to be simple and are approximated empirically by solving a

system of algebraic equations. In contrast, our work relies only on the disparity of the rates,

and makes no a priori assumption on what the slow and fast variables are, or the analytic

form of the rate functions.

In the following we first recall Gillespie’s algorithm, the stochastic simulation algorithm

(SSA) for modeling general chemical kinetic systems, and introduce the nested SSA for

systems with fast and slow rates. Afterwards we discuss the effective process on the slow

time-scale and the identification of the slow variables. This discussion also helps us to un-

derstand why and how the nested SSA works for systems with disparate rates. We illustrate

the efficiency of the new algorithm with the example of the stochastic Petri net model for the

heat shock response of E. Coli proposed in [8]. Finally, we discuss straightforward generaliza-

tions of the method to systems evolving on more than two time-scales, e.g. with ultra-fast,

fast, and slow rates, and to systems where the grouping into fast and slow variables evolves

dynamically. These generalizations are also tested against numerical examples to show its

efficiency.

We note that the nested SSA is in the same spirit as the algorithms proposed in [9] and

further developed in [10, 11] in the context of stochastic differential equations that involve

different time-scales. In the context of deterministic differential equations, similar ideas are

developed in [12, 13].
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II. A NESTED STOCHASTIC SIMULATION ALGORITHM

A. The stochastic simulation algorithm

We begin with the general set-up. Assume that a well-mixed, isothermal system has NS

species of molecules Si, i = 1, . . . , NS, and there are MR reaction channels Rj, j = 1, . . . , MR.

Let xi be the number of molecules of species Si. Then the state of the system is given by

x = (x1, · · · , xNR
) ∈ X, (1)

where X denotes the state space. Each reaction Rj is characterized by a rate function aj(x)

and a vector νj that describes the change of the state due to the reaction. We write

Rj = (aj , νj). (2)

The dynamics of the model is completely specified by the following rules:

1. Given the state x, the reactions are independent of each other on an infinitesimal time

interval of duration dt and the probability for the reaction Rj to happen is given by

aj(x)dt.

2. The state of the system after Rj is given by x + νj.

These rules specify a Markov process on the state space X with generator

L(x, y) =

MR
∑

j=1

aj(x)δy=x+νj
, (3)

for x 6= y and L(x, x) = −
∑

y 6=x L(x, y).

The standard computer implementation of such a model is given by the well-known

stochastic simulation algorithm (SSA) proposed in [6] and [7] (see also [14]). Let

a0(x) =

MR
∑

j=1

aj(x). (4)

Assume that the current time is t = tn, and the state of the system is x = xn. The essential

steps of SSA are the following:

1. Generate independent random numbers r1 and r2 with uniform distribution on the

unit interval. Let

δtn+1 = −
ln r1

a0(x)
, (5)
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and kn+1 to be the natural number such that

1

a0(x)

kn+1−1
∑

j=1

aj(x) < r2 ≤
1

a0(x)

kn+1
∑

j=1

aj(x). (6)

2. Update the time and the state of the system

tn+1 = tn + δtn+1 , xn+1 = xn + νkn+1
. (7)

B. A seamless algorithm for systems with disparate rates

Next we consider the case when the rates have very different magnitudes. For simplicity

of discussion, we will first assume that the rates aj(x) are divided into two groups (the

general case with more than two groups is treated in Sec. VA): One group corresponding to

the fast processes with rates of order 1/ε and one group corresponding to the slow processes

with rates of order 1. We also assume that the grouping into fast and slow reaction is static

(the general case when this grouping can change over time is considered in Sec. VB). Here

ε≪ 1:

a(x) =
(

as(x), af(x)
)

, (8)

where

as(x) =
(

as
1(x), · · · , as

Ms
(x)

)

= O(1),

af (x) =
(

af
1(x), · · · , af

Mf
(x)

)

= O(1/ε).
(9)

in dimensionless units. The corresponding reactions and the associated state change vectors

can be grouped accordingly:

Rs = (as, νs), Rf = (af , νf). (10)

As a simple example, consider the system:

S1

af
1−→
←−
af
2

S2, S2

as
1−→
←−
as
2

S3, S3

af
3−→
←−
af
4

S4, (11)
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with reaction channels given by

af
1 = 105x1, νf

1 = (−1, 1, 0, 0);

af
2 = 105x2, νf

2 = (1,−1, 0, 0);

af
3 = 105x3, νf

3 = (0, 0,−1, 1);

af
4 = 105x4, νf

4 = (0, 0, 1,−1);

as
1 = x2, νs

1 = (0,−1, 1, 0);

as
2 = x3, νs

2 = (0, 1,−1, 0).

(12)

There are a total of 4 species and 6 reaction channels, with 4 fast reactions and 2 slow ones.

We can think of ε as being 10−5 for this example.

For problems of this type, direct application of SSA will result in time steps of size ε (the

total rate a0(x) in (4) is of order 1/ε) with a total cost of order 1/ε if we want to advance

the whole system through a time interval of order unity. Most of the cost will be spent on

the fast reactions, which are often of little interest in these cases. Indeed for such systems,

we are usually interested in the slow processes since they are the rate-limiting steps. Here

we propose a modified SSA that captures the slow processes at a cost that is independent

of ε, and therefore much less than that of the direct SSA when ε ≪ 1. The modified SSA

consists of two nested SSA: The outer SSA is on the slow processes only, but uses modified

slow rates. The inner SSA is on the fast processes only: it uses the original fast rates and

serves to give the modified slow rates. Let t = tn, x = xn be the current time and state of

the system respectively. Given (tn, xn), do:

1. Inner SSA

Run N independent replicas of SSA with the fast reactions Rf = (af , νf) only, for

a time interval of Tf . During this calculation, compute the modified slow rates: For

j = 1, · · · , Ms, these are

ãs
j =

1

N

N
∑

k=1

1

Tf

∫ Tf +T0

T0

as
j(xk(τ))dτ, (13)

where xk(τ) is the k-th replica of the auxiliary fast process at virtual time τ whose

initial value is xk(0) = xn, T0 is a parameter we choose in order to minimize the effect

of the transients in the auxiliary fast process.

The auxiliary fast process is the same as he virtual fast process defined in [5], and we

will refer to it as such.
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2. Outer SSA

Run one step of SSA for the modified slow reactions R̃s = (ãs, νs) to generate

(tn+1, xn+1) from (tn, xn).

Then repeat.

Note that the number of replicas N can be taken to be one in the above algorithm, but

it is advantageous to take a large N since the Inner SSA can be trivially parallelized.

A key issue is how long one should run the inner SSA (how big Tf should be) and how big

the error is. Another important issue is the total cost of this algorithm. We will discuss these

issues later. But before doing so, let us note that the algorithm as presented is completely

seamless and general. We do not need to know what the slow and fast variables are and

certainly we do not need to make analytical approximations to get the effective slow rates.

III. SLOW VARIABLES AND EFFECTIVE DYNAMICS

Even though the formulation of the nested SSA does not require explicit identification of

the slow variables and the effective rates of the slow process, to understand why and how

the algorithm works, we do need to understand these issues.

A. Identification of the slow variables

First we discuss the observables, which are functions of the state variable x. By defini-

tion, slow observables are conserved quantities during the fast reactions, i.e. v(x) is a slow

observable if for any x ∈ X and any state change vector νf associated with the fast reactions

one has

v(x + νf ) = v(x). (14)

This means that the value of the slow observable v(x) is unaffected by the fast reactions.

To find a general representation of such observables, we consider special slow observables

which are linear functions that satisfy (14). We call such slow observables slow variables. It

is easy to see that v(x) = b · x is a slow variable if

b · νf = 0, (15)
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for all νf . Let b1, b2, . . . , bJ be a set of basis vectors that satisfy (15). Define

yj = bj · x for j = 1, . . . , J. (16)

Then y1, y2, · · · , yJ defines a complete set of slow variables, i.e. all slow observables can be

expressed as functions of y1, y2, · · · , yJ . For the example considered in Sec. II B, it is easy to

see that both x1+x2 and x3+x4 are conserved during the fast reactions, i.e. y1 = x1+x2 and

y2 = x3 + x4 are the slow variables of that system. Note that for this particular example,

every species is involved in at least one fast reaction. Therefore there is no slow species

in this example. This means the methodology proposed in [4, 5] would not result in any

changes over the straightforward SSA.

B. Effective dynamics on slow time-scales

We can now put the quasi-equilibrium assumption in precise terms. Fix the slow variables

y and consider the virtual fast process defined by retaining only the fast reaction channels.

Two important conclusions can be drawn for this system. The first is that the slow variables

do not change. The second is that this system approaches a unique equilibrium state (which

depends on the value of y) on a time-scale of order ε. This equilibrium is the desired quasi-

equilibrium, which we denote by µy(x). The rates for the effective slow process are obtained

by averaging the slow rates with respect to this quasi-equilibrium:

āj(y) = 〈aj(x)〉y ≡
∑

x∈X

aj(x)µy(x). (17)

It is obvious that the effective rates are only functions of y. The effective dynamics is

completely specified by

R̄ = (Rs, ā(y)) . (18)

It is shown in [15] (see also [16]) by singular perturbation analysis that the original dynamics

converges to the above effective dynamics with an error of order O(ε). A formal derivation

is also provided in [2] assuming the slow variables coincide with some of the reacting species.

C. Convergence and efficiency of the nested SSA

If we knew ā(y) = (ā1(y), · · · , āMs
(y)) explicitly, we could have carried out SSA using

these rates. This would capture the process on the slow time-scale, which is what we are
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interested in. For convenience, we will call such a procedure “averaged SSA”. Unfortunately

we usually do not have an explicit expression for the effective rates (17). The nested SSA

proposed above is a way of getting approximate values of these rates “on-the-fly”.

To see why this algorithm should work, it is clear that the only difference between the

nested SSA and the averaged SSA is that the averaged SSA uses the rates in (17), whereas

nested SSA uses the rates in (13). However, by ergodicity we have that ã converges to ā for

when Tf and N goes to infinity. Therefore the results of the two algorithms also become

closer and closer for large Tf and N . Quantitative error estimates can be obtained. The

details are given in [15]. Among other things, it is proved in [15] that

E|āj − ãj | ≤ C
( e−αT0/ε

1 + Tf/ε
+

1
√

N(1 + Tf/ε)

)

, (19)

for some constants C and α which are independent of ε. Here E denotes expectation with

respect to the statistics of the virtual fast process in the Inner SSA. The first term on the

right hand-side of (19) measures the deviation from the quasi-equilibrium if the inner SSA

is run only for a time duration of Tf , starting at T0. α measures the rate of convergence for

the virtual fast process to equilibrium. The second term measures the sampling error from

using time and ensemble averaging on a time interval of duration Tf with an ensemble of N

replicas.

Let us now estimate the cost of the nested SSA. For simplicity we will take T0 = 0 here

and also in our numerical examples. One feature of (19) is that this estimate depends on the

ratio Tf/ε rather than Tf alone. This means that, when ε≪ 1, we can achieve a small error

on ãj by choosing Tf/ε≫ 1 and yet have Tf ≪ 1 (remember that we have assumed that the

time-scale for the slow process is of order 1). This is the very reason why the nested SSA

is more efficient than a direct SSA. To quantify this, suppose that we want to compute the

results within an error tolerance λ. To control each term in (19) by λ, the optimal choice of

parameters is:

N = Tf/ε = 1/λ2. (20)

Then the cost for evolving the nested SSA for a unit time is estimated to be:

cost = ãs
0 ×Naf

0Tf/ǫ = O
(

1/λ2
)

, (21)

which is independent of ε.
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IV. NUMERICAL EXAMPLE: HEAT SHOCK RESPONSE OF E. COLI

As an example, we will study a stochastic Petri net model proposed in [8] to quantify

the response of bacteria E. Coli to a temperature increase. This response is a complicated

mechanism of protection that the bacteria uses to fight against denaturation (unfolding) of

its constituent proteins induced by the increase of temperature. This response mechanism

is referred to as the heat shock response. The stochastic Petri net model of the heat shock

response proposed in [8] involves 14 species of molecules, as given in Table I together with

their initial conditions. These 14 species are involved in 17 reactions as specified in Table II.

The reaction rate for each reaction is given by the product of a rate constant and the

molecular numbers of the reactants. The rate constants are listed in the middle column of

Table II. For the second order reactions, the rate constants are already normalized with the

Avogadro constant and cell volume V = 1.5 × 10−15 liter. The typical magnitudes of the

corresponding reaction rates ai(x) are also listed in the right column. The rates and initial

values are chosen as in [3], except for the initial value of DnaJ which is chosen further away

from equilibrium to make our test more stringent.

We can see that the last three reactions are much faster than the others. The time-scales

of the fast and slow reactions differ by about 5 orders of magnitude (ε = 10−5). For this

particular example, the slow variables are the reactants in the slow reactions (the first 14

reactions in Table II) except DnaJ. The fast variable DnaJ shows up in the coefficients of the

slow reactions marked with (⋆). According to (18), the effective dynamics on the slow time-

scale is given by averaging the coefficients of the corresponding slow reactions with respect

to the equilibrium of the fast reactions, i.e. one must use the averaged value 〈DnaJ〉y instead

of DnaJ in the reactions marked with (⋆). This average is computed using an Inner SSA

which involves only the last three reactions listed in Table II, and it is used in an Outer SSA

which involves the first 14 reactions in the table.

To test the efficiency of the nested SSA and compare it to a direct SSA, we use the mean

value and the variance at time T = 10 of the heat shock sigma factor, σ32, as a benchmark.

A computation of this average by a direct SSA using N0 = 1000 realizations led to

σ32 = 14.8± 0.1, var(σ32) = 14.2± 0.1. (22)

This calculation took 19719.2 seconds of CPU time on our machine. Notice that these
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expectations must be computed by ensemble average (and not time average) since the system

is out of equilibrium.

To test the nested SSA, first we make a series of simulations in which we choose the

size of the ensemble and the simulation time of the inner SSA in the nested SSA scheme

according to

(N, Tf/ε) = (1, 22k/10), (23)

for different values of k = 0, 1, 2, . . .. The error estimate in (19) then implies that the error

λ of the nested SSA should decay with rate:

λ = O(2−k) . (24)

Table III gives the total CPU time and the values of σ32 and var(σ32) obtained with the

nested SSA with the parameters in (23) and using N0 = 1000 realizations of the Outer SSA

(same as in the direct SSA). The relative errors on σ32 are shown in Fig. 1.

Obviously the results produced by the first couple tests shown in Table III are very far

off from the correct value. But we can see that the last several values are close to the correct

value, with an error that is comparable to the error-bar in (22), and the cost is a small

fraction of the cost of direct SSA. The nested SSA is also able to track the time evolution

of the variables in a given realization, as shown in Fig. 2 where the growth of the number of

molecules of GroEL computed with the nested SSA is compared with the growth predicted

by the direct SSA.

Next, we make a second series of simulations in which we choose the size of the ensemble

and the simulation time of the inner SSA in the nested SSA scheme as

(N, Tf/ε) = (2k, 2k/10) , k = 0, 1, 2, . . . , . (25)

The error estimate (19) then implies that the error λ of the nested SSA should also decay

with rate of the form of (24). Table IV gives the total CPU time for the nested SSA with

the parameters in (25), and the value of σ32 and var(σ32) obtained. The relative errors on

σ32 is shown in Fig. 1.

V. GENERALIZATIONS

The nested SSA proposed in Sec. II B can be straightforwardly generalized to systems

involving more than two separate time-scales and to systems where the grouping into fast
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and slow variables evolves dynamically. We consider these generalizations next.

A. Multilevel SSA

Consider a system where the rates aj(x) can be grouped into three groups: One group

corresponding to ultra-fast processes with rates of order 1/δ; one group corresponding to

fast processes with rates of order 1/ε; and one group corresponding to slow processes with

rates of order 1. Here δ ≪ ε≪ 1:

a(x) = (as(x), af(x), auf (x)) (26)

where

as(x) = (as
1(x), · · · , as

Ms
(x)) = O(1),

af (x) = (af
1(x), · · · , af

Mf
(x)) = O(1/ε),

auf (x) = (auf
1 (x), · · · , auf

Muf
(x)) = O(1/δ)

(27)

The corresponding reactions and the associated state change vectors can then be grouped

accordingly,

Rs = (as, νs), Rf = (af , νf ), Ruf = (auf , νuf), (28)

and it is easy to see that this case can be handled by using a nested SSA with three levels.

The innermost SSA uses only the ultrafast rates and serves to compute averaged fast and

slow rates using a formula similar to (13); the inner SSA uses only the averaged fast rates and

the results are used again to compute the average slow rates (which are already averaged

with respect to the ultrafast reactions) as in (13); finally, the outer SSA uses only the

averaged slow rates. The cost of such a nested SSA is independent of δ and ε, and as before,

precise error estimates can be obtained in terms of Tuf (the timer interval over which the

Innermost SSA is run), Nuf (the number of replicas in the Innermost SSA), Tf (the time

interval over which the Inner SSA is run), and Nf (the number of replicas in the Inner SSA).

The generalization to systems involving more groups of separated rates is straightforward

and simply amounts to using more levels in the nested SSA.
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As an example, consider the system

S1

auf
1−→
←−
auf
2

S2, S3

auf
3−→
←−
auf
4

S4, S5

auf
5−→
←−
auf
6

S6, S7

auf
7−→
←−
auf
8

S8,

S2

af
1−→
←−
af
2

S3, S6

af
3−→
←−
af
4

S7,

S3

as
1−→
←−
as
2

S6,

(29)

with the ultra-fast reaction channels given by

auf
1 = 1012x1, νuf

1 = (−1, 1, 0, 0, 0, 0, 0, 0),

auf
2 = 1012x2, νuf

2 = (1,−1, 0, 0, 0, 0, 0, 0),

auf
3 = 1012x3, νuf

3 = (0, 0,−1, 1, 0, 0, 0, 0),

auf
4 = 1012x4, νuf

4 = (0, 0, 1,−1, 0, 0, 0, 0),

auf
5 = 1012x5, νuf

5 = (0, 0, 0, 0,−1, 1, 0, 0),

auf
6 = 1012x6, νuf

6 = (0, 0, 0, 0, 1,−1, 0, 0),

auf
7 = 1012x7, νuf

7 = (0, 0, 0, 0, 0, 0,−1, 1),

auf
8 = 1012x8, νuf

8 = (0, 0, 0, 0, 0, 0, 1,−1),

(30)

the fast reaction channels given by

af
1 = 106x2, νf

1 = (0,−1, 1, 0, 0, 0, 0, 0)

af
2 = 106x3, νf

2 = (0, 1,−1, 0, 0, 0, 0, 0)

af
3 = 106x6, νf

3 = (0, 0, 0, 0, 0,−1, 1, 0)

af
4 = 106x7, νf

4 = (0, 0, 0, 0, 0, 1,−1, 0)

(31)

and the slow reaction channels given by

as
1 = x3, νs

1 = (0, 0,−1, 0, 0, 1, 0, 0)

as
2 = x6, νs

2 = (0, 0, 1, 0, 0,−1, 0, 0)
(32)

Thus, with respect to the ultra-fast reactions, the slow variables are x1 +x2, x3 +x4, x5 +x6,

and x7+x8, whereas with respect to the fast reactions, the slow variables are x1+x2+x3+x4

and x5 +x6 +x7 +x8. Note that all variables are involved in at least one ultra-fast reaction,

and there is a 12 order of magnitude difference between the ultra-fast rates and the slow
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ones (δ = 10−12 and ε = 10−6 in this example). As a test for the nested SSA we took as

initial condition

(x1, x2, x3, x4, x5, x6, x7, x8) = (1, 0, 0, 0, 0, 0, 0, 0) (33)

and computed the equilibrium distribution for this system. The equilibrium distribution

can easily be computed exactly for this system and it is compared in Fig. 3 with the result

of the nested SSA run up to time T0 = 104 using

(Nf , Nuf , Tf , Tuf) = (1, 1, 10−4, 10−10) (34)

The result in Fig. 3 show that the time interval [0, T0] = [0, 104] was long enough to estimate

very accurately the equilibrium distribution of the system. In contrast, since the averaged

time-step in a direct SSA is of the order of δ = 10−12, it is impossible to run the direct SSA

up to time T0 = 104. To compare the efficiency of the nested SSA with the one of the direct

SSA at fixed cost, we fixed the total number of iterations in the calculation. The calculation

with the nested SSA with the parameters in (34) requires O(108) iterations. With the same

number of iterations, the direct SSA only advanced up to time T ′
0 = O(10−4), which is way

too small to produce an accurate estimate for the equilibrium distribution. In fact, the

probability that the system has visited any state other than S1, S2, S3 and S4 by time T ′
0 is

so small that this event was not observed in our simulation.

B. Adaptive SSA

Consider the following reaction:

S1

a1−→
←−
a2

S2, S1

a3−→
←−

a4

S3, 2S2 + S3

a5−→
←−
a6

3S4. (35)

The reaction rates and the state change vectors are

a1 = x1 , ν1 = (−1, +1, 0, 0) ;

a2 = x2 , ν2 = (+1, −1, 0, 0) ;

a3 = x1 , ν3 = (−1, 0, +1, 0) ;

a4 = x3 , ν4 = (+1, 0, −1, 0) ;

a5 = 2x2(x2 − 1)x3 , ν5 = ( 0,−1,−2, +3) ;

a6 = 2x4(x4 − 1)(x4 − 2) , ν6 = ( 0, +1, +2,−3) .

(36)
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Suppose the initial condition is chosen to be

(x1, x2, x3, x3) = (100, 3, 3, 3) . (37)

At the beginning, when the concentrations of S2 and S3 are low, all the reactions are slow.

As the number of S2 and S3 grow, the last two reaction becomes faster and faster. Figure

4 shows the evolution of the reactions rates. The time scale separation when the last two

reactions turn fast is ǫ = 10−4.

To account for this effect, we dynamically the set of fast reactions change over time. From

figure 4, we can seen that the time scale separation gets stable when time t > 1.5. We use

direct SSA to simulate the whole system when t ≤ 1.5 and use a 2-level nested SSA with the

last reaction as fast reaction when t > 1.5. For more complex examples, more sophisticated

mechanism for dynamically choosing the fast reaction set can be provided [15].

To test nested SSA and compare it with direct SSA, we again use the mean and the

variance at time T = 4 of x1, the number of species S1, as a benchmark. A computation of

direct SSA with N0 = 10000 gives

x1 = 27.33± 0.2, var(x1) = 20.47± 0.2. (38)

The calculation took 1144.9 seconds of CPU time on our machine.

To test the nested SSA, we make a series of simulations in which the size of the ensemble

and simulation time of the inner SSA in the nested SSA scheme are chosen to be

(N, Tf) = (1, 22k × 10−5), (39)

for different values of k = 0, 1, 2, . . .. The error should be

λ = O(2k). (40)

The following table gives the CPU times and values of the mean and variance of x1 using

N0 = 10000. The relative errors of the mean are shown in the figure 5.

VI. CONCLUDING REMARKS

In summary, we have presented a simple strategy for identifying the system of slow

reaction dynamics in models of stochastic chemical kinetics with disparate rates. This leads

15



to a general and seamless multiscale method that captures the dynamics of the system over

the slow time-scale with a much smaller cost than the direct SSA. This multiscale method

is a small modification of the direct SSA, in the form of a nested SSA, with inner loops

for the fast reactions, and outer loop for the slow reactions. The number of groups can be

more than two, and the grouping into fast and slow variables can be done dynamically in

an adaptive version of the scheme. The efficiency of the nested SSA has been illustrated

through a model of heat shock response of E Coli proposed in [8].
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Tables

Species Initial value

DNA.σ32 1

mRNA.σ32 17

σ32 15

RNAPσ32 76

DNA.DnaJ 1

DNA.FtsH 0

DNA.GroEL 1

DnaJ 4640

FtsH 200

GroEL 4314

DnaJ.UnfoldedProtein 5× 106

Protein 5× 106

σ32.DnaJ 2959

UnfoldedProtein 2× 105

TABLE I: List of species and their initial value (in number of molecules) in the Petri net model of

heat shock response of E. Coli proposed in [8].
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Reaction Rate constant Rates magnitude

DNA.σ32 → mRNA.σ32 1.4 × 10−3 1.4× 10−3

mRNA.σ32 → σ32 + mRNA.σ32 0.07 1.19

mRNA.σ32 → degradation 1.4 × 10−6 2.38 × 10−5

σ32 → RNAPσ32 0.7 10.5

RNAPσ32 → σ32 0.13 9.88

σ32 + DnaJ → σ32.DnaJ (⋆⋆) 3.62 × 10−3 25.2

DnaJ → degradation (⋆⋆) 6.4× 10−10 2.97 × 10−6

σ32.DnaJ→ σ32 + DnaJ 4.4 × 10−4 1.30

DNA.DnaJ + RNAPσ32 → DnaJ + DNA.DnaJ + σ32 8 3.71

DNA.FtsH + RNAP.σ32 → FtsH + DNA.FtsH + σ32 4.88 × 10−2 0

FtsH → degradation 7.4× 10−11 1.48 × 10−8

GroEL → degradation 1.8 × 10−8 7.76 × 10−5

σ32.DnaJ + FtsH → DnaJ + FtsH 1.42 × 10−5 8.4

DNA.GroEL + RNAPσ32 → GroEL + DNA.GroEL +σ32 0.063 4.78

Protein → UnfoldedProtein (⋆) 0.2 106

DnaJ+ UnfoldedProtein → DnaJ.UnfoldedProtein (⋆) 0.108 107

DnaJ.UnfoldedProtein → DnaJ+ UnfoldedProtein (⋆) 0.2 106

TABLE II: Reaction list for the heat shock model of E. Coli proposed in [8]. The rate constant is

the number ci in ai(x) = cixj for the reactions involving one species, or in ai(x) = cixjxk for the

reactions involving two species. The rate magnitude is the value of ai(x) evaluated at initial time

or equilibrium. The last three reactions marked with a (⋆) in the table are fast: they are used in

the Inner SSA. All the other reactions are used in the Outer SSA, and the rates of the reactions

marked with a (⋆⋆) are averaged according to (17).
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(N,Tf/10−6) (1, 1) (1, 4) (1, 16) (1, 64) (1, 256) (1, 1024)

CPU 0.62 1.32 2.98 9.56 35.81 142.08

σ32 4.60 8.66 13.60 14.52 14.98 15.00

var(σ32) 4.41 8.11 12.22 13.13 13.73 14.66

TABLE III: Efficiency of nested SSA when N = 1. Since we used N0 = 1000 realizations of the

Outer SSA to compute σ32 and var(σ32), the statistical errors on these quantities is about 0.1.

(N,Tf/10−6) (1, 1) (2, 2) (4, 4) (8, 8) (16, 16) (32, 32)

CPU 0.64 1.38 3.17 10.13 36.94 142.65

σ32 4.60 9.06 13.85 14.57 15.04 14.90

var(σ32) 4.41 8.68 13.07 13.63 14.01 14.38

TABLE IV: Efficiency of nested SSA with multiple replicas in the Inner SSA. Again the statistical

errors on σ32 and var(σ32) is about 0.1.

Tf/10−5 1 4 16 64 256

CPU 298.2 304.4 310.3 347.9 426.7

x1 27.07 27.10 27.28 27.20 27.32

var(x1) 20.03 20.25 20.04 20.22 20.57

TABLE V: Efficiency and accuracy of the adaptive nested SSA.
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Figure captions

Fig. 1: Relative errors on σ32 computed by the nested SSA with different N and Tf .

Notice that the error saturate, not because the error estimate (19) fails, but because we reach

statistical accuracy on the computation of σ32 and var(σ32) with N0 = 1000 realizations.

Fig. 2: Time evolution in one realization of the number of molecules of GroEL computed

by the direct SSA algorithm (solid line) and the nested SSA (dashed line).

Fig. 3: The exact equilibrium distribution of example (29) (red line) is compared to the

one estimated by the nested SSA (blue line). The two histograms can barely be distinguished.

Fig. 4: The time evolution of the magnitudes of reaction rates a1 + a2 + a3 + a4 and

a5 +a6. It can be seen that rates a1 +a2 +a3 +a4 keeps low all the time while a5 +a6 grows

to a very high level.

Fig. 5: The relative error on x1 in the adpative nested SSA with the parameters as

in (39). The scaling of the error in consistent with (40).
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