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Abstract

We analyze a class of numerical schemes proposed in [25] for stochastic differential
equations with multiple time-scales. Both advective and diffusive time-scales are con-
sidered. Weak as well as strong convergence theorems are proved. Most of our results
are optimal. They in turn allow us to provide a thorough discussion on the efficiency
as well as optimal strategy for the method.

1 Introduction

Multiscale modeling and computation have received a great deal of in-
terest in recent years (for a review, see [6]). Yet there are relatively few
analytical results available that help to assess the performance and pro-
vide guidance for the designing of these methods. The main purpose of
the present paper is to provide a thorough analysis of a recently proposed
numerical technique [25] (see also [9]) for stochastic differential equations
with multiple time-scales.

Consider the following generic example for (x, y) ∈ R
n × R

m:

(1.1)







Ẋε
t = f(Xε

t , Y ε
t , ε), Xε

0 = x,

Ẏ ε
t =

1

ε
g(Xε

t , Y ε
t , ε), Y ε

0 = y.

Here f(·) ∈ R
n and g(·) ∈ R

m are O(1) functions (possibly random) in ε,
and ε is a small parameter representing the ratio of the time-scales in the
system. We have assumed that the phase space can be decomposed into
slow degrees of freedom x and fast ones y. Systems of this type arise from
molecular dynamics, material sciences, atmosphere-ocean sciences, etc.
Standard computational schemes may fail due to the separation between
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the O(ε) time-scale that must be dealt with and the O(1) and O(ε−1)
time-scales that are of actual interest.

On the analytical side [10, 16, 21, 23], the following is known about
(1.1). On O(1) time-scale (advective time-scale), if the dynamics for Y ε

t

with Xε
t = x fixed has an invariant probability measure µε

x(dy) and the
following limit exists:

(1.2) f̄(x) = lim
ε→0

∫

Rm
f(x, y, ε)µε

x(dy),

then in the limit of ε → 0, Xε
t converges to the solution of

(1.3) ˙̄Xt = f̄(X̄t), X̄0 = x.

On O(ε−1) time-scale (diffusive time-scale), fluctuations become impor-
tant. With the rescaled time s = εt, (1.1) becomes:

(1.4)















Ẋε
s =

1

ε
f(Xε

s , Y ε
s , ε), Xε

0 = x,

Ẏ ε
s =

1

ε2
g(Xε

s , Y ε
s , ε), Y ε

0 = y.

Under appropriate assumptions on f and g, the effective dynamics for X ε
s

in the limit of ε → 0 is a stochastic differential equation,

(1.5) ˙̄Xs = b̄(X̄s) + σ̄(X̄s)Ẇs, X̄0 = x,

where Ws is a Wiener process and the coefficients b̄ and σ̄ are expressed
in terms of limits of expectations similar to (1.2). Details will be given in
later sections.

It is often the case that the dynamics of the fast variables Y ε
t is too

complicated for the coefficients f̄ , b̄ and σ̄ to be computed analytically.
The basic idea in [25] is to approximate f̄ , b̄ and σ̄ numerically by solving
the original fine scale problem on time intervals of an intermediate scale,
and use that data to evolve the slow variables with macroscopic time
steps. Several related techniques have been proposed [5, 12, 13]. For
kinetic Monte Carlo schemes involving disparate rates, Novotny et al.
proposed in [13] a technique called projective dynamics which reduces the
Markov chain onto a smaller state space involving only the slow processes.
A similar idea, also named projective dynamics, was proposed in [12] for
dissipative deterministic ODEs with separated time-scales. The method
in [12] can also be viewed as a special case of a general class of methods
called Chebychev methods for stiff ODEs [17].
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Of particular relevance to the present work is the framework of Het-
erogeneous Multiscale Methods proposed in [5] (HMM for short), since it
provides a very natural setting for the method proposed in [25]. At the
same time, it also gives a general principle for the analysis of this kind of
methods. In the present setting, the general theorem proved in [5] states
that if the macro-solver is stable, then the numerical error consists of two
parts: a part due to the error in the macro-solver and a new part, due
to the approximation of the macro-scale data (here the σ̄, ā and b̄) by
the micro-solver. In general the second part consists of the error in the
micro-solver, the relaxation error and the sampling error. This general
principle has been used for the analysis of several classes of multiscale
methods (see in particular [4, 7, 11, 22]). It is also the strategy that we
will follow in this paper. Deterministic analogs of the algorithm were
analyzed in [4, 8].

We will study equations like (1.1) both on the advective time-scale
(section 2) and the diffusive time-scale (section 3). After presenting the
multiscale numerical schemes (sections 2.1, 3.1, and 3.5), we prove con-
vergence theorems for these schemes (sections 2.2, 2.3, and 3.2), and use
these results (sections 2.4 and 3.3) to determine the optimal set of numer-
ical parameters to be used at a given error tolerance. We also illustrate
the schemes and test our theorems on numerical examples (sections 2.5
and 3.4).

Before ending this introduction, let us note that a simple trick for
dealing with the multiscaled nature of the problem above is to increase the
parameter ε to an optimal value according to a given error tolerance. This
idea is indeed used in the artificial compressibility method for computing
nearly incompressible flows [2], and the Car-Parrinello method [1], and
has proven to be very successful. The multiscale scheme is much more
efficient than direct solutions of the microscale model with the original
ε � 1. More interestingly, our results show that if used correctly, the
multiscale scheme is at least as efficient (on the advective time-scale) or
much more efficient (on the diffusive time-scale) than a direct scheme even
if an optimal value of ε is used in the microscale model to minimize the
cost. In addition, the multiscale scheme can be applied even in situations
when explicitly increasing the value of ε in the original equations can be
difficult.
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2 Advective time-scale

Consider the following dynamics:

(2.1)











Ẋε
t = a(Xε

t , Y ε
t , ε), Xε

0 = x,

Ẏ ε
t =

1

ε
b(Xε

t , Y ε
t , ε) +

1√
ε
σ(Xε

t , Y ε
t , ε)Ẇt, Y ε

0 = y,

where a ∈ R
n, b ∈ R

m and σ ∈ R
m × R

d are deterministic functions
and Wt is a standard d-dimensional Wiener process. Define C

∞
b to be

the space of smooth functions with bounded derivatives of any order. We
assume the following:

Assumption 2.1 The coefficients a, b and σ, viewed as functions of
(x, y, ε), are in C

∞
b , a and σ are bounded.

Assumption 2.2 There exists an α > 0 such that ∀ (x, y, ε),

|σT (x, y, ε)y|2 ≥ α|y|2.

Assumption 2.3 There exists a β > 0 such that ∀ (x, y1, y2, ε),

〈(y1 − y2), (b(x, y1, ε) − b(x, y2, ε))〉 + ‖σ(x, y1, ε) − σ(x, y2, ε)‖2

≤ −β|y1 − y2|2,
where ‖ · ‖ denotes the Frobenius norm.

Assumption 2.1 can be weakened but is used here for the simplicity of
presentation. Assumption 2.2 means that the diffusion is non-degenerate
for the y-process. Assumption 2.3 is a dissipative condition. Under these
assumptions, one can show that for each (x, ε), the following dynamics

(2.2) Ẏ x,ε
t =

1

ε
b(x, Y x,ε

t , ε) +
1√
ε
σ(x, Y x,ε

t , ε)Ẇt, Y x,ε
0 = y,

is exponentially mixing with a unique invariant probability measure µε
x(dy).

Define

(2.3) ā(x) = lim
ε→0

∫

Rm
a(x, y, ε)µε

x(dy).

It is proved later (with error estimates) that under Assumptions 2.1, 2.2,
and 2.3, Xε

t converges strongly as ε → 0 to the solution X̄t of the following
dynamics

(2.4) ˙̄Xt = ā(X̄t), X̄0 = x.
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2.1 The numerical scheme

What is usually of interest is the behavior of the slow variable X ε
t whose

leading order term for small ε is X̄t. But the coefficient ā in the effective
equation (2.4) for X̄t is given via an expectation with respect to mea-
sure µε

x(dy) which is usually difficult or impossible to obtain analytically,
especially when the dimension m is large.

The basic idea proposed in [25] is to solve (2.4) with a macro-solver in
which ā is estimated by solving the micro-scale problem (2.2). This leads
to multiscale schemes whose structure is explained next. (For simplicity
we restrict ourselves to explicit solvers. Extension to implicit solvers is
straightforward, but it tends to make the algorithm and implementation
more involved.)

At each macro-time-step n, having the numerical solution Xn, we need
to estimate ā(Xn) in order to move to step n+1. Since X̄t is deterministic,
as macro-solver we may use any stable explicit ODE solver such as a for-
ward Euler, a Runge-Kutta, or a linear multi-step method. For instance,
in the simplest case when forward Euler is selected as the macro-solver,
we have

(2.5) Xn+1 = Xn + ãn∆t,

where ∆t is the macro-time-step size and ãn is the approximation of ā(Xn)
which we obtain in a two-step procedure:

1. We solve (2.2) using a micro-solver for stochastic ODEs and denote
the solution by {Yn,m} where m labels the micro-time-steps. Mul-
tiple independent replicas can be created, in which case we denote
the solutions by {Yn,m,j} where j is the replica number.

2. We then define an approximation of ā(Xn) by the following time
and ensemble average:

ãn =
1

MN

M
∑

j=1

nT +N−1
∑

m=nT

a(Xn, Yn,m,j, ε),

where M is the number of replicas, N is the number of steps in the
time averaging, and nT is the number of steps we skip to eliminate
transients.

For the micro-solver, denoting by ` its weak order of accuracy, for each
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realization we may use the following first order scheme (` = 1):

(2.6)

Y i
n,m+1 = Y i

n,m +
1√
ε

∑

j

σij(Xn, Yn,m, ε)ξj
m+1

√
δt

+
1

ε
bi(Xn, Yn,m, ε)δt +

1

ε

∑

jk

Aijk(Xn, Yn,m, ε)skj
m+1δt,

or the second order scheme (` = 2):

(2.7)

Y i
n,m+1 = Y i

n,m +
1√
ε

∑

j

σij(Xn, Yn,m, ε)ξj
m+1

√
δt

+
1

ε
bi(Xn, Yn,m, ε)δt +

1

ε

∑

jk

Aijk(Xn, Yn,m, ε)skj
m+1δt

+
1

2ε3/2

∑

j

Bij(Xn, Yn,m, ε)ξj
m+1δt

3/2

+
1

2ε2
Ci(Xn, Yn,m, ε)δt2.

For the initial condition, we take Y0,0 = 0 and

(2.8) Yn,0 = Yn−1,nT +N−1,

i.e. the initial values for the micro variables at macro-time-step n are
chosen to be their final values from macro-time-step n − 1.

In (2.6) and (2.7) δt is the micro-time-step size (note that it only
appears in term of the ratio δt/ε =: ∆τ), and the coefficients are defined
as



































Aijk =
∑

l

(∂lσij)σlk,

Bij =
∑

l

(

σlj∂lbi + bl∂lσij
)

+ 1
2

∑

kl

gkl∂k∂lσij ,

Ci =
∑

j

bj∂jbi +
1

2

∑

jk

gjk∂j∂kbi,

where g = σσT and the derivatives are taken with respect to y. The
random variables {ξj

m} are i.i.d Gaussian with mean zero and variance
one, and

skj
m =























1
2ξk

mξj
m + zkj

m , k < j,

1
2ξk

mξj
m − zjk

m , k > j,

1
2

(

(ξj
m)2 − 1

)

, k = j,

where {zkj
m } are i.i.d with P{zkj

m = 1
2} = P{zkj

m = −1
2} = 1

2 .
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2.2 Strong convergence theorem

In this section, we give the rate of strong convergence for the scheme de-
scribed above under Assumptions 2.1, 2.2, and 2.3 given at the beginning
of section 2. Throughout the remaining of the paper, we will denote by C
a generic positive constant which may change its value from line to line.

Theorem 2.4 Assume that the macro-solver is stable and kth order ac-
curate for (2.4) and ∆t and δt/ε are small enough. Then for any T0 > 0,
there exists a constant C > 0 independent of (ε,∆t, δt, nT ,M,N) such
that

(2.9)

sup
n≤T0/∆t

E|Xε
tn − Xn|

≤ C

(

√
ε + ∆tk + (δt/ε)`

+
e−

1

2
βnT (δt/ε)

√

N(δt/ε) + 1
(R +

√
R) +

√
∆t

√

M(N(δt/ε) + 1)

)

,

where tn = n∆t and

(2.10) R =
∆t

1 − e−
1

2
β(nT +N−1)(δt/ε)

.

The error estimate on |Xε
tn − Xn| in (2.9) can be divided into three

parts:

1. |Xε
t − X̄t|, where X̄t is the solution of the effective equation (2.4).

2. |X̄tn − X̄n|, where X̄n is the approximation of X̄tn given by the
selected macro-solver assuming that ā(x) is known.

3. |X̄n − Xn|.
The first part is a principle of averaging estimate for stochastic ODEs,
and we will show in Lemma 2.5 that

sup
0≤t≤T0

E|Xε
t − X̄t| ≤ C

√
ε.

This part gives rise to the first term in (2.9).
The second part is a standard ODE estimate and based on the smooth-

ness of ā given by Lemma A.4 in the Appendix, we have

(2.11) sup
n≤T0/∆t

|X̄tn − X̄n| ≤ C∆tk.
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This is the second term in (2.9).

The third part accounts for the error caused by using ãn instead of
ā(Xn) in the macro-solver. This part gives rise to a term of order O(ε)
which is dominated by C

√
ε, and to the remaining three terms in (2.9)

which will be estimated later using Lemma 2.6. In this part of the error,
the term (δt/ε)` is due to the micro-time discretization which induces a
difference between the invariant measures of the continuous and discrete
dynamical systems. The term

e−
1

2
βnT (δt/ε)

√

N(δt/ε) + 1
(R +

√
R)

accounts for the errors caused by relaxation of the fast variables. As will
become clear from the proof, the factor R appears due to the way in (2.8)
that we initialize the fast variables at each macro-time-step. Different
initialization will lead to a similar error estimate with different values
of R. For example if we use Yn,0 = 0, then R = 1. As we will see in
section 2.4, the factor R is not essential for the multiscale scheme to be
more efficient than a direct scheme, but the presence of this factor permits
to achieve even bigger efficiency gains. Finally, the term

√
∆t

√

M(N(δt/ε) + 1)

accounts for the sampling errors when the fast variable reaches local equi-
librium (via a central limit theorem type of estimate).

Before proceeding with the proof of Theorem 2.4, we point out a prop-
erty of (2.9) which may seem somewhat surprising at first sight, namely
that the HMM scheme converges as ∆t → 0, δt → 0 on any sequence such
that R → 0, even if one takes one realization only, M = 1 and makes
only one micro-time-step per macro-time-step, nT = 1, N = 1 (in this
case R = ∆t/(δt/ε) plus higher order terms). Indeed in this case, (2.9)
reduces to

(2.12) sup
n≤T0/∆t

E|Xε
tn − Xn| ≤ C

(√
ε +

√

∆t/(δt/ε) + (δt/ε)`
)

.

While the set of parameters leading to (2.12) may not be optimal (see the
discussion in section 2.5), (2.12) is clearly a nice property of the multiscale
scheme since, at fixed ∆t and δt, the smaller M , nT , and N , the more
efficient the scheme is. The ultimate reason why the multiscale scheme
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converges even when nT = N = M = 1 has to be found in the proof of
Theorem 2.4, but it is worthwhile to give also an intuitive explanation to
this fact.

nT can be small and even equal to 1 is because we reinitialize the fast
variables at macro-time-step n by their final value at macro-time-step
n− 1 (see (2.8)). Therefore they already sample µε

Xn−1
(dy) initially when

one lets them evolve to sample µε
Xn

(dy). Since Xn − Xn−1 = O(∆t),
these two measures become closer and closer as ∆t → 0, and relaxation
requires less and less micro-time-steps. This gives convergence even when
nT = 1 provided that ∆t/(δt/ε) → 0. (Note that if we do not use (2.8) to
reinitialize the fast variables, the multiscale scheme still converges with
M = N = 1 but it requires that nT (δt/ε) → ∞.)

On the other hand, the reason why the multiscale scheme converges
even when N = M = 1 is best explained through a simple example.
Consider the two-dimensional system

(2.13)











Ẋε
t = −Y ε

t , X0 = x,

Ẏ ε
t = −1

ε
(Y ε

t − Xε
t ) +

1√
ε
Ẇt, Y0 = y,

which leads to the following equation for X ε
t in the limit as ε → 0

(2.14) Ẋt = −Xt, X0 = x.

To focus on sampling errors rather than relaxation errors, let us build a
forward Euler multiscale scheme where, at each macro-time-step, we draw
only one realization of Y ε

t out of the conditional measure

(2.15) µXn(dy) =
e−(y−Xn)2

√
π

dy.

where Xn is the current value of the slow variable in the scheme. Extract-
ing the mean explicitly, this amounts to using

(2.16) Xn+1 = Xn − Xn∆t +
1√
2
ξn∆t, X0 = x,

where the ξn’s are i.i.d. Gaussian random variables with mean zero and
variance one. Note that ξn is multiplied by ∆t, not

√
∆t as in a standard

SDE. This is not a misprint and, in fact, is the reason why the noise
term in (2.16) induces an error which disappears as ∆t → 0. To see this
explicitly, note that the solution of (2.16) is

(2.17) Xn = x(1 − ∆t)n +
∆t√

2

n−1
∑

j=1

(1 − ∆t)jξn−j.
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The first term at the right hand-side is what would have been provided
by a forward Euler scheme for the limiting equation in (2.14). Therefore,
a strong estimate accounting for the error introduced by sampling is

(2.18) E|Xn − x(1 − ∆t)n|2 =
∆t2

2

n−1
∑

j=1

(1 − ∆t)2j = O(∆t),

for n = O(∆t−1). Even though the scheme above makes an O(1) error
in sampling at each macro-time-step, it converges as ∆t → 0 because the
fast variable is sampled over and over again before the slow variable has
changed significantly. This leads to an effective number of realizations
of the order O(∆t−1), and shows the importance of assessing the quality
of the estimator as integrated in the multiscale scheme rather than as a
tool to evaluate the conditional expectation of the fast variables at each
macro-time-step.

Lemma 2.5 For any T0 > 0, there exists a constant C > 0 independent
of ε such that

(2.19) sup
0≤t≤T0

E|Xε
t − X̄t| ≤ C

√
ε.

Proof: Since a(x, y, ε) is bounded, the slow process {X ε
t }0≤t≤T0

is
also bounded on finite time interval [0, T0]. Partitioning [0, T0] into subin-
tervals of the same length ∆ =

√
ε and denoting by bzc the largest inte-

ger less than or equal to z, we construct the following auxiliary processes
(X̃ε

t , Ỹ ε
t ) such that for t ∈ [k∆, (k + 1)∆) ,










˙̃Xε
t = a

(

Xε
k∆, Ỹ ε

t , ε
)

, X̃ε
0 = x,

˙̃Y ε
t =

1

ε
b
(

Xε
k∆, Ỹ ε

t , ε
)

+
1√
ε
σ
(

Xε
k∆, Ỹ ε

t , ε
)

Ẇt, Ỹ ε
k∆

= Y ε
k∆

.

A direct computation with Itô’s formula gives for t ∈ [k∆, (k + 1)∆),

(2.20)
d E
∣

∣Y ε
t − Ỹ ε

t

∣

∣

2
=

2

ε
E(Y ε

t − Ỹ ε
t ) ·

(

b(Xε
t , Y ε

t , ε) − b(Xε
k∆, Ỹ ε

t , ε)
)

dt

+
1

ε
E
∣

∣σ(Xε
t , Y ε

t , ε) − σ(Xε
k∆, Ỹ ε

t , ε)
∣

∣

2
dt,

where Y ε
t solves (2.1). Using Assumptions 2.1, 2.2, and 2.3, we have

(Y ε
t − Ỹ ε

t ) ·
(

b(Xε
t , Y ε

t , ε) − b(Xε
k∆, Ỹ ε

t , ε)
)

+ 1
2

∣

∣σ(Xε
t , Y ε

t , ε) − σ(Xε
k∆, Ỹ ε

t , ε)
∣

∣

2
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≤ (Y ε
t − Ỹ ε

t ) ·
(

b(Xε
t , Y ε

t , ε) − b(Xε
t , Ỹ ε

t , ε)
)

+ (Y ε
t − Ỹ ε

t ) ·
(

b(Xε
t , Ỹ ε

t , ε) − b(Xε
k∆, Ỹ ε

t , ε)
)

+
∣

∣σ(Xε
t , Y ε

t , ε) − σ(Xε
t , Ỹ ε

t , ε)
∣

∣

2
+
∣

∣σ(Xε
t , Ỹ ε

t , ε) − σ(Xε
k∆, Ỹ ε

t , ε)
∣

∣

2

≤ −β
∣

∣Y ε
t − Ỹ ε

t

∣

∣

2
+ C

(

|Y ε
t − Ỹ ε

t ||Xε
t − Xε

k∆| + |Xε
t − Xε

k∆|2
)

.

Noting that for any β > 0, we have

C|Y ε
t − Ỹ ε

t ||Xε
t − Xε

k∆|

≤ 1

2
β|Y ε

t − Ỹ ε
t |2 +

C2

2β
|Xε

t − Xε
k∆|2,

this can be written as

(2.21)

(Y ε
t − Ỹ ε

t ) ·
(

b(Xε
t , Y ε

t , ε) − b(Xε
k∆, Ỹ ε

t , ε)
)

+ 1
2

∣

∣σ(Xε
t , Y ε

t , ε) − σ(Xε
k∆, Ỹ ε

t , ε)
∣

∣

2

≤ −1
2β
∣

∣Y ε
t − Ỹ ε

t

∣

∣

2
+ C|Xε

t − Xε
k∆|2.

By the boundedness of a, for t ∈ [k∆, (k + 1)∆),

(2.22) E
∣

∣Xε
t − Xε

k∆

∣

∣

2 ≤ C∆2.

Combining (2.20), (2.21), and (2.22), it follows that

d E
∣

∣Y ε
t − Ỹ ε

t

∣

∣

2 ≤ −β

ε

∣

∣Y ε
t − Ỹ ε

t

∣

∣

2
dt +

C

ε
∆2dt.

Since E
∣

∣Y ε
k∆

−Ỹ ε
k∆

∣

∣

2
= 0 by construction, Gronwall inequality then implies

that

E
∣

∣Y ε
t − Ỹ ε

t

∣

∣

2 ≤ C∆2.

This is true for each t ∈ [k∆, (k + 1)∆), and hence for 0 ≤ t ≤ T0.
Therefore we get

E
∣

∣Xε
t − X̃ε

t

∣

∣

2

= E

∣

∣

∣

∣

∫ t

0

(

a(Xε
s , Y ε

s , ε) − a(X̃ε
s , Ỹ ε

s , ε)
)

ds

∣

∣

∣

∣

2

≤ CE

∫ t

0

(

∣

∣

∣Xε
s − Xε

bs/∆c∆
∣

∣

∣

2
+
∣

∣

∣X̃ε
s − Xε

bs/∆c∆
∣

∣

∣

2
+
∣

∣

∣Y ε
s − Ỹ ε

s

∣

∣

∣

2
)

ds

≤ Cε.
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This implies that

(2.23) E
∣

∣Xε
t − X̃ε

t

∣

∣ ≤ C
√

ε.

On the other hand, based on the smoothness of functions a and â(x, ε) :=
∫

Rm a(x, y, ε)µε
x(dy) and the exponential mixing property established in

Lemma A.4 and Proposition A.2 given in the Appendix, we have

(2.24)

E

∣

∣

∣

∣

∣

∫ (k+1)∆

k∆

(

a
(

Xε
k∆, Ỹ ε

t , ε
)

− ā
(

Xε
k∆

)

)

dt

∣

∣

∣

∣

∣

≤ E

∣

∣

∣

∣

∣

∫ (k+1)∆

k∆

(

a
(

Xε
k∆, Ỹ ε

t , ε
)

− â(Xε
k∆, ε)

)

dt

∣

∣

∣

∣

∣

+
∣

∣

∣â(Xε
k∆, ε) − ā(Xε

k∆)
∣

∣

∣∆

≤ CεE

(

∣

∣Ỹ ε
k∆

∣

∣

2
+ 1

)

≤ Cε,

where the last step uses E(|Ỹ ε
k∆

|2 + 1) ≤ C which follows from the energy
estimate (A.3) established in the Appendix. By the smoothness of ā(x) =
â(x, 0), we have

E
∣

∣X̃ε
t − X̄t

∣

∣ = E

∣

∣

∣

∣

∫ t

0

(

a(Xε
bs/∆c∆, Ỹ ε

s , ε) − ā(X̄s)
)

ds

∣

∣

∣

∣

≤ E

∣

∣

∣

∣

∫ t

0

(

a
(

Xε
bs/∆c∆, Ỹ ε

s , ε
)

− ā
(

Xε
bs/∆c∆

)

)

ds

∣

∣

∣

∣

+ E

∣

∣

∣

∣

∫ t

0

(

ā
(

Xε
bs/∆c∆

)

− ā
(

Xε
s

)

)

ds

∣

∣

∣

∣

+ E

∣

∣

∣

∣

∫ t

0

(

ā
(

Xε
s

)

− ā
(

X̄s
))

ds

∣

∣

∣

∣

≤ E

∣

∣

∣

∣

∫ t

0
a
(

Xε
bs/∆c∆, Ỹ ε

s

)

ds −
∫ t

0
ā
(

Xε
bs/∆c∆

)

ds

∣

∣

∣

∣

+ C∆ + C

∫ t

0
E|Xε

s − X̄s|ds.

Breaking the first integral at the right hand-side into bt/∆c pieces and
using (2.24) we conclude that

(2.25) E
∣

∣X̃ε
t − X̄t

∣

∣ ≤ C
(√

ε +

∫ t

0
E|Xε

s − X̄s|ds
)

.
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Since

E
∣

∣Xε
t − X̄t

∣

∣ ≤ E
∣

∣Xε
t − X̃ε

t

∣

∣+ E
∣

∣X̃ε
t − X̄t

∣

∣,

combining (2.23) and (2.25) and using Gronwall inequality we arrive at
(2.19).

Denoting by EXn the conditional expectation with respect to Xn, we
have

Lemma 2.6 Under the assumptions in Theorem 2.4, for each T0 > 0,
there exists an independent constant C > 0 such that ∀ n ∈ [0, T0/∆t],

(2.26)

E |EXn ãn − ā(Xn)|2

≤ C

(

ε2 + (δt/ε)2` +
e−βnT (δt/ε)

N(δt/ε) + 1

(

e−β(n−1)Nm(δt/ε) + R2
)

)

,

and

(2.27)

E |ãn − ā(Xn)|2

≤ C

(

ε2 + (δt/ε)2` +
e−βnT (δt/ε)

N(δt/ε) + 1

(

e−β(n−1)Nm(δt/ε) + R2
)

)

+ C
1

M(N(δt/ε) + 1)
,

where Nm = nT + N − 1 is the total number of micro-time-steps per
macro-time-step and realization.

Proof: Notice first that since a(x, y, ε) is bounded, {Xn}n≤T0/∆t is
in a compact set. Let

â(x, ε) =

∫

Rm
a(x, y, ε)µε(dy).

Using the smoothness of â(x, ε) established in Lemma A.4, it follows that
ā(x) = â(x, 0). Since

E|EXn ãn − ā(Xn)|2 ≤ 2E|EXn ãn − â(Xn, ε)|2 + 2E|â(Xn, ε) − ā(Xn)|2,

and E|â(Xn, ε)− ā(Xn)|2 ≤ Cε2 by Lemma A.4, this term gives the factor
Cε2 in (2.26) and it suffices to estimate E|EXn ãn − â(Xn, ε)|2 to derive
the remaining terms. A similar argument gives the Cε2 term in (2.27)
and links the remaining terms to the estimate of E|ãn − â(Xn, ε)|2.
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We first compute

E|EXn ãn − â(Xn, ε)|2

=
1

M2N2
E

∣

∣

∣

∑

m,j

EXna(Xn, Yn,m,j , ε) − â(Xn, ε)
∣

∣

∣

2

≤ 1

MN
E
∑

m,j

∣

∣

∣EXna(Xn, Yn,m,j, ε) − â(Xn, ε)
∣

∣

∣

2
.

By Lemma A.3 in the Appendix, if δt/ε is small enough, for each n and j,
Yn,m,j is exponentially mixing with unique invariant probability measure

µδt,ε
Xn

and there exists a random variable ζXn,δt,ε with distribution µδt,ε
Xn

and is independent of the driving Wiener processes. Denote by ζn,m the
solution provided by the micro-solver with the initial condition ζXn,δt,ε.
Then, by construction, the distribution of ζn,m is µδt,ε

Xn
for all m > 0. We

have (recall that Nm = nT +N−1 is the total number of micro-time-steps
per macro-time-step and realization),

(

E

∣

∣

∣EXna
(

Xn, Yn,m,j , ε
)

− â
(

Xn, ε
)

∣

∣

∣

2
)1/2

≤
(

E

∣

∣

∣EXn

(

a
(

Xn, Yn,m,j, ε
)

− a
(

Xn, ζn,nNm+m, ε
)

)∣

∣

∣

2
)1/2

+

(

E

∣

∣

∣EXna
(

Xn, ζn,nNm+m, ε
)

− â
(

Xn, ε
)

∣

∣

∣

2
)1/2

.

The smoothness of a guarantees that

E

∣

∣

∣EXn

(

a
(

Xn, Yn,m,j, ε
)

− a
(

Xn, ζn,nNm+m, ε
)

)∣

∣

∣

2

≤ CE

∣

∣

∣Yn,m,j − ζn,nNm+m

∣

∣

∣

2
,

while (A.14) implies that

E

∣

∣

∣EXna
(

Xn, ζn,nNm+m, ε
)

− â
(

Xn, ε
)

∣

∣

∣

2
≤ C(δt/ε)2`.

Therefore

(2.28)

(

E

∣

∣

∣EXna
(

Xn, Yn,m,j , ε
)

− â
(

Xn, ε
)

∣

∣

∣

2
)1/2

≤ C

(

(

E

∣

∣

∣Yn,m,j − ζn,nNm+m

∣

∣

∣

2)1/2
+ (δt/ε)`

)

.
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The exponential mixing property established in Lemma A.3 implies that

(

E

∣

∣

∣Yn,m,j − ζn,nNm+m

∣

∣

∣

2
)1/2

≤ e−
1
2βm(δt/ε)

(

E

∣

∣

∣Yn−1,Nm,j − ζn,nNm

∣

∣

∣

2
)1/2

≤ e−
1
2βm(δt/ε)

(

E

∣

∣

∣Yn−1,Nm,j − ζn−1,nNm

∣

∣

∣

2
)1/2

+ e−
1
2βm(δt/ε)

(

E

∣

∣

∣ζn,nNm − ζn−1,nNm

∣

∣

∣

2
)1/2

≤ e−
1
2βm(δt/ε)

(

(

E

∣

∣

∣Yn−1,Nm,j − ζn−1,nNm)
∣

∣

∣

2)1/2
+ C∆t

)

,

where the last inequality follows since, by Assumptions 2.1 and 2.3,

E

∣

∣

∣ζn,nNm − ζn−1,nNm

∣

∣

∣

2
≤ CE

∣

∣

∣Xn − Xn−1

∣

∣

∣

2
≤ C∆t2.

Repeating the above argument at each macro-time-step from n − 1 till
n = 0, we have

(

E

∣

∣

∣Yn−1,Nm,j − ζn−1,nNm

∣

∣

∣

2
)1/2

≤ e−
1
2βNm(δt/ε)

(

(

E

∣

∣

∣Yn−2,Nm,j − ζn−2,(n−1)Nm

∣

∣

∣

2)1/2
+ C∆t

)

≤ C
(

e−
1
2β(n−1)Nm(δt/ε) + R

)

.

Inserting these results in (2.28), we arrive at

E

∣

∣

∣EXna
(

Xn, Yn,m,j, ε
)

− â
(

Xn, ε
)

∣

∣

∣

2

≤ C
(

e−βm(δt/ε)
(

e−β(n−1)Nm(δt/ε) + R2
)

+ (δt/ε)2`
)

.

The inequality also holds for n = 0 with appropriate choice of C. Sum-
ming over m ∈ [nT , nT + N − 1] and j ∈ [1,M ], we obtain

E |EXn ãn − â(Xn, ε)|2

≤ C

(

e−βnT (δt/ε)
(

e−β(n−1)Nm(δt/ε) + R2
) 1 − e−βN(δt/ε)

N(1 − e−β(δt/ε))
+ (δt/ε)2`

)

.
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Assuming δt/ε ∈ (0, 1), we have

1 − e−βN(δt/ε)

N(1 − e−β(δt/ε))
≤ C

1 − e−βN(δt/ε)

N(δt/ε)
≤ C ′

N(δt/ε) + 1
,

and the last two terms in (2.26) follow. Next we compute

E |ãn − â(Xn, ε)|2

=
1

M2N2

∑

j,m,k,l

E

(

a
(

Xn, Yn,m,j, ε
)

− â
(

Xn, ε
)

)

·
(

a(Xn, Yn,l,k, ε) − â(Xn, ε)
)

.

By the same analysis as above and independence between Yn,m,j and
Yn,m,k for j 6= k for given {Xn′}n′≤n and {Yn′,·,·}n′<n, we have for j 6= k
in the sum above

∣

∣

∣

∣

∣

∑

j 6=k

∑

m,l

E

(

a
(

Xn, Yn,m,j, ε
)

− â
(

Xn, ε
)

)

·
(

a
(

Xn, Yn,l,k, ε
)

− â
(

Xn, ε
)

)

∣

∣

∣

∣

∣

≤
∑

j 6=k

∑

m,l

E

∣

∣

∣En

(

a
(

Xn, Yn,m,j, ε
)

− â
(

Xn, ε
)

)

· En

(

a
(

Xn, Yn,l,k, ε
)

− â
(

Xn, ε
)

)∣

∣

∣

≤ CM2N2

(

e−βnT (δt/ε)

N(δt/ε) + 1

(

e−β(n−1)Nm(δt/ε) + R2
)

+ (δt/ε)2`

)

,

where En denotes the expectation conditioned on {Xn′}n′≤n, {Yn′,·,·}n′<n.
When j = k we have

∣

∣

∣E

(

a
(

Xn, Yn,m,j, ε
)

− â
(

Xn, ε
)

)

·
(

a
(

Xn, Yn,l,j, ε
)

− â
(

Xn, ε
)

)∣

∣

∣

≤
∣

∣

∣E

(

EXn

(

a
(

Xn, Yn,m,j, ε
)

− â
(

Xn, ε
))

· En,m,j
(

a
(

Xn, Yn,l,j, ε
)

− â
(

Xn, ε
))

)∣

∣

∣,

when m ≤ l and similarly when m > l. Here En,m,j denotes the condi-
tional expectation with respect to Yn,m,j. By the energy estimate (A.3)
and the same analysis as above using exponential mixing, we deduce

E

∣

∣

∣EXn

(

a
(

Xn, Yn,m,j, ε
)

− â
(

Xn, ε
)

)
∣

∣

∣

2
≤ C

(

e−βm(δt/ε) + (δt/ε)2`
)

,
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and

E

∣

∣

∣En,m,j

(

a(Xn, Yn,l,j, ε) − â(Xn, ε)
)∣

∣

∣

2
≤ C

(

e−β(l−m)(δt/ε) + (δt/ε)2`
)

.

Summing over j ∈ [1,M ] and m, l ∈ [nT , nT + N − 1], this leads to

∣

∣

∣

∣

∣

∣

∑

j

∑

m,l

E

(

a
(

Xn, Yn,m,j, ε
)

− â
(

Xn, ε
)

)

·
(

a
(

Xn, Yn,l,j, ε
)

− â
(

Xn, ε
)

)

∣

∣

∣

∣

∣

∣

≤ CMN2
(

1

N(δt/ε) + 1
+ (δt/ε)2`

)

,

and the last two terms in (2.27) follow.

Proof of Theorem 2.4: We will prove (2.9) for the case when the
macro-solver is the forward Euler method. The extension to general sta-
ble macro-solvers mentioned in section 2.1 is straightforward. By the
boundedness of a, the solutions of all the equations for the slow processes
X are all in a compact set. Letting en = X̄n − Xn, we have

en+1 = en + ∆t
(

ā(X̄n) − ãn
)

= en + ∆t
(

ā(X̄n) − ā(Xn)
)

+ ∆t
(

ā(Xn) − ãn
)

,

and

Ee2
n+1 = E

(

en + ∆t
(

ā(X̄n) − ā(Xn)
)

)2
+ ∆t2 E

(

ā(Xn) − ãn

)2

+ 2∆t E

(

en + ∆t
(

ā(X̄n) − ā(Xn)
)

)

· (ā(Xn) − ãn)

=: I1 + I2 + I3.

For I1, by the smoothness of ā, we have

I1 ≤ (1 + C∆t)e2
n.

For I2, letting Nm = nT + N − 1, by (2.27), we have

I2 ≤C∆t2
(

e−βnT (δt/ε)

N(δt/ε) + 1

(

e−β(n−1)Nm(δt/ε) + R2
)

+ (δt/ε)2` + ε2

)

+ C
∆t2

M(N(δt/ε) + 1)
.
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For I3, by (2.26), we have

|I3| ≤ 2∆t E

∣

∣

∣en + ∆t
(

ā(X̄n) − ā(Xn)
)

∣

∣

∣

∣

∣

∣EXn ãn − ā(Xn)
∣

∣

∣

≤ ∆t E

∣

∣

∣en + ∆t
(

ā(X̄n) − ā(Xn)
)

∣

∣

∣

2
+ C∆t E

∣

∣

∣EXn ãn − ā(Xn)
∣

∣

∣

2

≤ ∆t(1 + C∆t)Ee2
n

+ C∆t

(

e−βnT (δt/ε)

N(δt/ε) + 1

(

e−β(n−1)Nm(δt/ε) + R2
)

+ (δt/ε)2` + ε2

)

.

It follows that

Ee2
n+1 ≤ (1 + C∆t) Ee2

n

+ C∆t

(

e−βnT (δt/ε)

N(δt/ε) + 1

(

e−β(n−1)Nm(δt/ε) + R2
)

+ (δt/ε)2` + ε2

)

+ C
∆t2

M(N(δt/ε) + 1)
.

Therefore, using the fact that 1 − x2 ≥ 1 − x for x ∈ (0, 1), we have

Ee2
n ≤C

e−βnT (δt/ε)

N(δt/ε) + 1

(

R2 + R
)

+ C

(

(δt/ε)2` + ε2 +
∆t

M(N(δt/ε) + 1)

)

,

which, together with (2.19), completes the proof of Theorem 2.4.

2.3 Weak convergence theorem

Next we give the rate of weak convergence for the multiscale scheme under
Assumptions 2.1, 2.2, and 2.3.

Theorem 2.7 Assume that the assumptions in Theorem 2.4 hold. Then
for any f ∈ C

∞
0 and T0 > 0, there exists a constant C > 0 independent

of (ε,∆t, δt, nT ,M,N) such that

(2.29)

sup
n≤T0/∆t

|Ef(Xε
tn) − Ef(Xn)|

≤ C
(

ε + ∆tk + (δt/ε)` +
e−

1

2
βnT (δt/ε)

√

N(δt/ε) + 1

(

R + R2)

+
∆t

M(N(δt/ε) + 1)

)

.
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As before, we split the estimate of |Ef(X ε
tn)−Ef(Xn)| into three parts:

1. |Ef(Xε
t ) − f(X̄t)|;

2. |f(X̄tn) − f(X̄n)|;

3. |f(X̄n) − Ef(Xn)|.
The first part accounts for the error caused by replacing X ε

t by the solution
X̄t of the asymptotic equation in (2.4). It is proven e.g. in [10, 23] that

(2.30) sup
0≤t≤T0

∣

∣Ef
(

Xε
t

)

− f
(

X̄t
)
∣

∣ ≤ Cε.

This is the first term in (2.29) and we give a formal derivation of this
result by perturbation analysis at the end of this section. The second
part accounts for the error caused by the macro-solver assuming that the
coefficient ā in (2.4) is known exactly. A standard ODE estimate using
the smoothness of ā (see Lemma A.4 in the Appendix) gives

(2.31) sup
n≤T0/∆t

|f(X̄tn) − f(X̄n)| ≤ C∆tk.

This is the second term in (2.9). The third part, the HMM error, accounts
for the error introduced by using ãn instead of ā(Xn) in the macro-solver.
This part gives rise to a term of order O(ε) which can be absorbed in Cε,
and to the last three terms in (2.29). These terms account for discretiza-
tion error in the micro-scheme, as well as relaxation and sampling errors,
and are estimated in Lemma 2.8.

Lemma 2.8 For any f ∈ C
∞
0 and T0 > 0, there exists a constant C > 0

such that

(2.32)

|f(X̄n) − Ef(Xn)|

≤ C
(

ε + (δt/ε)` +
e−

1

2
βnT (δt/ε)

√

N(δt/ε) + 1

(

R + R2)

+
∆t

M(N(δt/ε) + 1)

)

.

Proof: Again for simplicity we will discuss only the case when the
macro-solver is the forward Euler method. To estimate |f(X̄n)−Ef(Xn)|,
we define an auxiliary function u(k, x) for k ≤ n as follows:

u(n, x) = f(x), u(k, x) = u (k + 1, x + ∆t ā(x)) .
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Then we have u(0, x) = f(X̄n). By the boundedness of a, the solutions of
the equations for X are uniformly bounded in a compact set K. By the
smoothness of ā, it is easy to show that

sup
k,x

{

|∂xu(k, x)| + |∂2
xu(k, x)|

}

is uniformly bounded on K for different ∆t. Hence we have

∣

∣

∣E

(

u(k + 1, Xk+1) − u(k,Xk)
)
∣

∣

∣

=
∣

∣

∣E

(

u
(

k + 1, Xk + ∆t ãk

)

− u
(

k + 1, Xk + ∆t ā(Xk)
)

)
∣

∣

∣

≤ ∆t
∣

∣E∂xu(k + 1, Xk) ·
(

EXk
ãk − ā(Xk)

)∣

∣

+ 1
2∆t2 sup

y∈K

∣

∣

∣∂2
xu(k + 1, y)

∣

∣

∣ E|ãk − ā(Xk)|2

≤ C
(

∆t E |EXk
ãk − ā(Xk)| + ∆t2 E |ãk − ā(Xk)|2

)

.

So, by Lemma 2.6, we have

∣

∣Ef(Xn) − f(X̄n)
∣

∣ = |E u(n,Xn) − u(0, x)|

=
∣

∣

∣

∑

0≤k≤n−1

E

(

u(k + 1, Xk+1) − u(k,Xk)
)∣

∣

∣

≤C
(

ε +
∑

0≤k≤n−1

∆t
e−

1

2
βnT (δt/ε)

√
Nδt + 1

· e− 1

2
βkNm(δt/ε)

)

+ C∆t
( e−

1

2
βnT (δt/ε)

√

N(δt/ε) + 1
R + ∆t

e−βnT (δt/ε)

N(δt/ε) + 1
R2
)

+ C∆t
(

(δt/ε)` +
∆t

M(N(δt/ε) + 1)

)

,

and we are done.

Finally we give a formal argument for (2.30) using perturbation anal-
ysis [23] . It is known that uε(t, x, y) = E{f

(

Xε
t

)

} satisfies the following
backward Fokker-Planck equation:

(2.33)
∂uε

∂t
=
(1

ε
L1 + L2 + εL3

)

uε, u(0) = f.

Here

L1 = b(x, y, 0)∂y + 1
2σσT (x, y, 0)∂2

y , L2 = a(x, y, 0)∂x + Ly
2,
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where Ly
2 is a differential operator in y only, and εL3 contains higher order

terms in ε. It is known [15] that under Assumptions 2.1, 2.2, and 2.3, for
each x, the process associated with L1 has µx(dy) ≡ µε=0

x (dy) as unique
invariant measure, and this measure has a density, µx(dy) = px(y)dy.
Define P by

Pf(x) =

∫

Rm
f(x, y)px(y)dy.

Notice that P is the projection onto the null space of L∗
1. Let uε be

formally represented by a power series

uε = u0 + εu1 + ε2u2 + · · · .

Inserting into (2.33) and equating coefficients of equal powers of ε, we get

L1u0 = 0,
∂u0

∂t
= L1u1 + L2u0, · · · .

Suppose Pu0(0) = u0(0). Then Pu0 = u0 for all t > 0 and acting with
P on both sides of the second equation we obtain the following transport
equation for u0:

∂u0

∂t
= PL2u0 = Pa(x, y, 0)∂xu0 = ā(x)∂xu0, u0(0) = f.

u1 is given by
u1 = L−1

1 (PL2 − L2)u0.

Now we have
(

∂

∂t
− 1

ε
L1 − L2 − εL3

)

(uε − u0 − εu1)

=

(

1

ε
L1 + L2 + εL3 −

∂

∂t

)

(u0 + εu1)

= ε

(

L2 + εL3 −
∂

∂t

)

u1 + εL3u0

= O(ε).

This means that on finite time intervals, as long as u0 and u1 are bounded,
we have

uε − u0 = O(ε).

And the boundedness of u0 and u1 is implied by the smoothness of ā and
the exponential mixing.

Remark 2.9 The derivation above implies that even if Assumption 2.1,
2.3 are not satisfied as in the numerical example in the next section, the
weak convergence still holds provided u0 and u1 are bounded on finite time
intervals.
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2.4 Efficiency and consistency analysis

A measure of the cost of the multiscale scheme described in section 2.1 is
the number of micro-time-steps per unit of time,

cost = MNm/∆t = M(nT + N − 1)/∆t.

Suppose that one wishes to compute with an error tolerance λ and ε is
such that

√
ε � λ if strong convergence is required, or ε � λ if weak

convergence is enough. Then the multiscale scheme is applicable, and the
best numerical strategy is to choose the parameters in the scheme so that
in estimate (2.9) or (2.29) each term but the first is of order λ. Suppose
that we take one realization only, M = 1, and evaluate expectations via
time-average. Then, the optimal parameters are

(2.34)
∆t = O

(

λ1/k
)

, δt/ε = O
(

λ1/`
)

,

nT = O
(

λ−1/`
)

, N = O
(

λ−α+1/k−1/`
)

,

with α = 2 for strong convergence and α = 1 for weak convergence. The
corresponding cost is

(2.35) cost = (nT + N − 1)/∆t = O
(

λ−α−1/`).

Similarly, if one takes N = 1 and evaluate expectations via ensemble
average only, we arrive at

(2.36)
∆t = O

(

λ1/k
)

, δt/ε = O
(

λ1/`
)

,

nT = O
(

λ−1/` log λ−1
)

, M = O
(

λ−α+1/k
)

,

and the cost is

(2.37) cost = MnT /∆t = O
(

λ−α−1/` log λ−1).

This indicates that (2.35) is in fact optimal over both N and M , though
the additional cost of using ensemble- instead of time-averaging is only
marginal and proportional to O(log λ−1). Notice that the cost decreases as
the order of the micro-scheme increases, but there is no gain in utilizing a
higher order macro-scheme since (2.35) and (2.37) are independent of k.
The reason is quite simple. A higher order macro-scheme in principle
allows one to use larger macro-time-step but this increases the sampling
errors unless larger N or M are used as well. The two effects balance
each other exactly and the cost remains the same. Therefore, the only
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way to drive the cost down would be to use a higher order estimator
in conjunction with higher order micro- and macro-schemes. This can be
done in the non-random case (see e.g. [4, 8]), but it is difficult to construct
higher order estimators when the fast process is governed by an SDE.

The costs in (2.35) and (2.37) indicate that, for small ε, the multiscale
scheme is cheaper than a direct scheme for (2.1). Denote by X ε

n the
numerical approximation provided by a scheme of weak order ` (same
as in the micro-solver used in the multiscale scheme) applied directly
to (2.1) and assume that the corresponding strong order of the scheme is
`/2. Then the following error estimates hold:

(2.38) sup
n≤T0/δt

E|Xε
tn − Xε

n| ≤ C(δt/ε)`/2,

(2.39) sup
n≤T0/δt

|Ef(Xε
tn) − Ef(Xε

n)| ≤ C(δt/ε)`.

Thus, at error tolerance λ, a time-step of order δt/ε = O(λα/`) must be
used, leading to

cost = 1/δt = O(ε−1λ−α/`),

where, as before, α = 2 for strong convergence and α = 1 for weak
convergence. This is much higher than the cost of the multiscale scheme
when ε � λα.

A much tougher test for the multiscale scheme is to compare it with a
direct scheme not for (2.1) but rather for an equation like (2.1) where an
optimal ε, say, ε′ > ε, is used. Denote by Xε′

n the numerical approximation
for this equation provided by a micro-scheme of weak order ` (same as
in the micro-solver used in the multiscale scheme) and strong order `/2.
Then analysis similar to the ones presented in sections 2.2 and 2.3 gives
the following error estimates for the scheme:

(2.40) sup
n≤T0/δt′

E|Xε
tn − Xε′

n | ≤ C
(√

ε′ + (δt′/ε′)`/2
)

,

(2.41) sup
n≤T0/δt′

|Ef(Xε
tn) − Ef(Xε′

n )| ≤ C
(

ε′ + (δt′/ε′)`
)

.

Given the error tolerance λ, the biggest ε′ one may take is therefore
ε′ = λα. Then

(2.42) δt′ = O
(

λα(1+1/`)),
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and the cost is

(2.43) cost = 1/δt′ = O
(

λ−α(1+1/`)).

For weak convergence (α = 1), this cost is identical to (2.35), but for
strong convergence (α = 2), it is higher by a factor of order O(λ−1/`), i.e.
the multiscale scheme is more efficient than a direct calculation with an
optimally increased ε. In essence, this is because the multiscale scheme
only requires weak convergence of the fast process even when strong con-
vergence of the slow process is sought, whereas the direct scheme with
optimized ε leads to either weak or strong convergence of both processes
by construction.

It is interesting to corroborate the analysis of the efficiency of the
multiscale scheme with the analysis of its consistency. The multiscale
scheme is consistent with the limiting equation in (2.4) if ∆t/(nT + N −
1)δt → 0 as ∆t → 0, δt → 0. But this scaling will not lead to gain in
efficiency in general. On the other hand, because of the way in (2.8) by
which we initialize the fast process at each macro-time-step, it is easy to
see that the multiscale scheme is consistent with (compared with (2.1))

(2.44)



















Ẋt =
1

M

M
∑

j=1

a(Xt, Y
j
t , ε), X0 = x,

Ẏ j
t =

1

ε′
b(Xt, Y

j
t , ε) +

1√
ε′

σ(Xt, Y
j
t , ε) Ẇ j

t , Y j
0 = 0,

as ∆t → 0, δt → 0 with ∆t/
(

(nT + N − 1)(δt/ε)
)

→ ε′ (note that it
does not matter what happens with nT , N , and M in this limit, and we
may just as well keep these parameters fixed). This scaling may lead to
efficiency gain. In particular, using the parameters leading to (2.35) in
the weak convergence case, we have

(2.45) ε′ = ∆t/
(

(nt + N − 1)(δt/ε)
)

= O(λ),

which is precisely the optimal value of ε we deduced before. In other
words, the multiscale scheme can also be thought of as a seamless way
to compute with a system where the value of ε has been optimized in
terms of the error tolerance. This is a rather remarkable property of the
multiscale scheme.

2.5 Numerical example

Consider the following example with (X,Y ) ∈ R
2:
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Figure 2.1. The comparison between X̄n and Xn produced by the mul-
tiscale scheme with ` = 1, p = 4 (black curves). Also shown is the fast
process Yn,nT +N used in the micro-solver (grey curve).

(2.46)















Ẋt = −Yt − Y 3
t + cos(πt) + sin(

√
2πt), X0 = x,

Ẏt = −1

ε
(Yt + Y 3

t − Xt) +
1√
ε
Ẇt, Y0 = y.

From (2.3) the effective equation for Xt is

(2.47) ˙̄Xt = −X̄t + cos(πt) + sin(
√

2πt), X̄0 = x.

Since the error caused by principle of averaging is independent of the
computational parameters (∆t, δt,M,N, nT ) and the analysis for the error
caused by the macro-solver is standard, we only analyze the difference
between the numerical solution Xn given by the multiscale scheme and
the numerical solution X̄n given by the macro-solver for (2.47)

(

in other
words, we analyze the error caused by using ãn instead of ā(Xn)

)

. We
focus on strong error estimates. Recall that according to Theorem 2.4, in
the case when

Nm(δt/ε) = (nT + N − 1)(δt/ε) > 1,
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we have R = ∆t plus higher order terms, and

(2.48)

sup
n≤T0/∆t

E|Xn − X̄n|

≤ C

(

(δt/ε)` +
e−

1

2
βnT (δt/ε)

√
∆t

√

N(δt/ε) + 1
+

√
∆t

√

M(N(δt/ε) + 1)

)

.

Here ∆t is a fixed parameter. Suppose that we want to bound the error
by O(2−p) for p = 0, 1, . . . and assume that M = 1. Then proceeding as
in section 2.4, we deduce that the optimal choice is to take

δt/ε = O(2−p/`), nT = O(1), N = O(2p(2+1/`)),

which leads to a cost scaled as

cost = (nT + N − 1)/∆t = O(2p(2+1/`)).

In the numerical calculations, we took

(T0,∆t, δt/ε, nT ,M,N)

= (6, 0.01, 0.01 × 2−p/`, 100, 1, 10 × 2p(2+1/`)),

and we computed the following error estimate for one realization of the
solution

E`
p =

∆t

T0

∑

n≤bT0/∆tc
|X̃n − X̄n|.

A comparison between X̄n and the solution Xn provided by the multiscale
scheme for ` = 1 and p = 2 is shown in figure 2.1. The magnitudes of
the errors for various p and ` = 1, 2 are listed in the following table and
shown in figure 2.2. As predicted, we observe E`

p = O(2−`p).

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

` = 1 .058 .070 .032 .019 .0096 .0067 .0025 .00076

` = 2 .045 .059 .022 .021 .0098 .0064 .0033 .0014

Table 2.1. The computed values for the error E`
p.
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Figure 2.2. The error E`
p = (∆t/T0)

∑

n≤bT0/∆tc |X̃n − X̄n| in function

of p when ` = 1 (circles) and ` = 2 (squares). Also shown is the predicted
estimated, 0.1 × 2−p (dashed line).

3 Diffusive time-scale

Consider the following equation for (x, y) ∈ R
n × R

m:

(3.1)















Ẋε
t =

1

ε
a(Xε

t , Y ε
t , ε), Xε

0 = x,

Ẏ ε
t =

1

ε2
b(Xε

t , Y ε
t , ε) +

1

ε
σ(Xε

t , Y ε
t , ε)Ẇt, Y ε

0 = y.

We assume that the coefficients satisfy Assumptions 2.1, 2.2, and 2.3.
This guarantees that the process Y x,ε

s , the solution of the second equation
in (3.1) with fixed Xε

t = x and rescaled time s = t/ε2, is exponentially
mixing with unique invariant probability measure µε

x(·). In addition, we
assume that

Assumption 3.1 The coefficients b and σ are of the form:











b(x, y, ε) = b0(y) + εb1(x, y, ε),

σ(x, y, ε) = σ0(y) + εσ1(x, y, ε).

Notice that by the above Assumption, Y x,ε=0
s and µ = µε=0

x are indepen-
dent of x. We assume the following centering condition
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Assumption 3.2

(3.2) ∀ (x, ε) :

∫

Rm
a(x, y, ε)µ(dy) = 0.

These two assumptions make the multiscale scheme simpler and facilitate
the analysis of its convergence properties but are not essential and will
be relaxed in section 3.5.

To give the effective dynamics for Xε
t when ε is small, it will be conve-

nient to define for each (x, ε) the following auxiliary processes
(

Y 1
t , Y 2

t

)

:

(3.3)































Ẏ 1
t =

1

ε2
b0(Y

1
t ) +

1

ε
σ0(Y

1
t ) Ẇt, Y 1

0 = y1,

Ẏ 2
t =

1

ε2
∂b0(Y

1
t )Y 2

t +
1

ε
∂σ0(Y

1
t )Y 2

t Ẇt

+
1

ε2
b1(x, Y 1

t , ε) +
1

ε
σ1(x, Y 1

t , ε) Ẇt, Y 2
0 = y2.

Assumptions 2.2, 2.3 imply that the process Y 1
t is exponentially mixing

with unique invariant probability measure µ(dy1) defined as above. It is
proved in Appendix B that for each (x, ε), the process (Y 1

t , Y 2
t ) defined by

(3.3) is exponentially mixing with unique invariant probability measure
νε

x(dy1, dy2).

It will be shown later that Xε
t converges to the solution of the following

stochastic differential equation:

(3.4) ˙̄Xt = ā(X̄t) + σ̄(X̄t) Ẇt, X̄0 = x,

where Wt is a n-dimensional Wiener process and

(3.5)



















































ā(x) = lim
ε→0

∫

Rm×Rm
νε

x(dy1, dy2)∂ya(x, y1, ε)y2

+ lim
ε→0

∫

Rm
µ(dy1)

∫ ∞

0
Ey1

∂xa(x, Y 1
ε2s, ε)a(x, y1, ε)ds,

σ̄(x)σ̄T (x) =

2 lim
ε→0

∫

Rm
µ(dy1)a(x, y1, ε) ⊗

∫ ∞

0
Ey1

a(x, Y 1
ε2s, ε)ds.

We will assume σ̄ is well defined and belongs to C
∞
b .
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3.1 The numerical scheme

The scheme for (3.1) consists of a macro-solver for (3.4), a micro-solver
for (Y 1

t , Y 2
t ), and an estimator for ā(·) and σ̄(·). For the macro-solver,

we may use any stable explicit solver, such as (in the simplest case) the
forward Euler method:

(3.6) Xn+1 = Xn + ãn∆t + σ̃nξ̃n+1

√
∆t,

where {ξ̃n} are i.i.d. Gaussian with mean zero, variance one and inde-
pendent of the ones used in the micro-scheme, and ãn and σ̃n are the
approximations of ā(Xn) and σ̄(Xn) provided by the estimator. For the
micro-solver for (3.3), we may use a first- or second-order scheme, similar
to (2.6) or (2.7) (note that the micro-time-step will now appear only as
the ratio δt/ε2 in these schemes). In order to estimate the expectation
in (3.5) (see (3.8) below), we integrate these equations over nT + N + N ′

micro-time-steps, and we re-initialize the fast variables as in (2.8) at each
macro-time-step, i.e. we take

(3.7) Y 1
n,0 = Y 1

n−1,nT +N+N ′−1, Y 2
n,0 = Y 2

n−1,nT +N+N ′−1.

For the estimator, we use the following time and ensemble average:

(3.8)















































































ãn =
1

MN

M
∑

j=1

nT +N−1
∑

m=nT

∂ya(Xn, Y 1
n,m,j , ε)Y

2
n,m,j

+
(δt/ε2)

MN

M
∑

j=1

nT +N−1
∑

m=nT

N ′
∑

m′=0

∂xa(Xn, Y 1
n,m+m′,j, ε)a(Xn, Y 1

n,m,j, ε),

B̃n =
2(δt/ε2)

MN

M
∑

j=1

nT +N−1
∑

m=nT

N ′
∑

m′=0

a(Xn, Y 1
n,m,j, ε) ⊗ a(Xn, Y 1

n,m+m′,j, ε).

σ̃n is obtained by Cholesky decomposition of B̃n so that σ̃nσ̃T
n = B̃n. Here

nT is the number of micro-time-steps that we skip to eliminate transients,
N is the number of micro-time-steps that we use for time averaging, and
N ′ is the number of micro-time-steps we use to estimate the integrals
over s in (3.5). M is the number of realizations of the fast auxiliary
processes (Y 1

t , Y 2
t ).
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3.2 Convergence of the scheme

Theorem 3.3 Suppose ∆t and δt/ε2 are sufficiently small. Then for
any f ∈ C

∞
0 and T0 > 0, there exists a constant C independent of the

parameters (ε,∆t, δt, nT ,M,N,N ′) such that

(3.9)

sup
n≤T0/δt

∣

∣Ef(Xε
tn) − Ef(Xn)

∣

∣

≤ C
(

ε + ∆t + (δt/ε2)` + e−
1

2
βN ′(δt/ε2)

)

+ C
( e−

1

2
βnT (δt/ε2)

√

N(δt/ε2) + 1
R̄ +

∆t

M(N(δt/ε2) + 1)

)

,

where

R̄ =

√
∆t

1 − e−
1

2
β(nT +N+N ′−1)(δt/ε2)

.

We divide the estimate of |Ef(Xε
t ) − f(Xn)| into two parts:

1. |Ef(Xε
t ) − Ef(X̄t)|;

2. |Ef(X̄tn) − Ef(Xn)|.

For the first part, it is known [10, 23] that

sup
0≤t≤T0

|Ef(Xε
t ) − Ef(X̄t)| ≤ Cε,

which gives rise to the first term in (3.9). We give a formal derivation of
this result at the end of this section. Now we estimate the second part.

Using Lemma B.2, B.3 and repeating the analysis of Lemma 2.6, we
can show that for each T0 > 0, there exists an independent constant C
such that ∀ n ∈ [0, T0/∆t],

(3.10)

E
∣

∣EXn ãn − ā(Xn)
∣

∣

2
+ E

∥

∥EXnB̃n − σ̄(Xn)σ̄T (Xn)
∥

∥

2

≤ C
(

ε2 + (δt/ε2)2` + e−βN ′(δt/ε2)
)

+ C
e−βnT (δt/ε2)

N(δt/ε2) + 1

(

e−βn(nT +N+N ′−1)(δt/ε2) + R̄2
)

,
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and

(3.11)

E
∣

∣ãn − ā(Xn)
∣

∣

2
+ E

∥

∥B̃n − σ̄(Xn)σ̄T (Xn)
∥

∥

2

≤ C
(

ε2 + (δt/ε2)2` + e−βN ′(δt/ε2)
)

+ C
e−βnT (δt/ε2)

N(δt/ε2) + 1

(

e−βn(nT +N+N ′−1)(δt/ε2) + R̄2
)

+ C
1

M(N(δt/ε2) + 1)
.

Based on these estimates, we have:

Lemma 3.4 For any f ∈ C
∞
0 and T0 > 0, there exists an independent

constant C such that

(3.12)

sup
n≤T0/δt

∣

∣Ef(X̄tn) − Ef(Xn)
∣

∣

≤ C
(

ε + ∆t + (δt/ε2)` + e−
1

2
βN ′(δt/ε2)

)

+ C

(

e−
1

2
βnT (δt/ε2)

√

N(δt/ε2) + 1
R̄ +

∆t
√

M(N(δt/ε2) + 1)

)

.

Proof: Define the function u(k, x) for k ≤ n similarly as in the proof
of Lemma 2.8:

u(n, x) = f(x), u(k, x) = E

(

u(k + 1, x + ∆t ā(x) +
√

∆t σ̄(x)ξn

)

.

It is easy to show by the smoothness of ā, σ̄, and f and the compact-
ness of f that u(k, x) is a smooth function of x with uniformly bounded
derivatives for all k. By Taylor expansion we then have

∣

∣

∣E
(

u(k + 1, Xk+1) − u(k,Xk)
)

∣

∣

∣

=
∣

∣

∣E
(

u
(

k + 1, Xk + ∆t ãk +
√

∆t σ̃k ξ̃k

)

− u
(

k + 1, Xk + ∆t ā(Xk) +
√

∆t σ̄(Xk)ξk

)

∣

∣

∣

≤ ∆t E

∣

∣

∣∂xu(k + 1, Xk)
∣

∣

∣

∣

∣

∣EXk
ãk − ā(Xk)

∣

∣

∣

+ 1
2∆t2 E

∣

∣

∣∂2
xu(k + 1, Xk)

∣

∣

∣

∣

∣

∣EXk
ã2

k − ā2(Xk)
∣

∣

∣

+ 1
2C∆t E

∣

∣

∣∂2
xu(k + 1, Xk)

∣

∣

∣

∣

∣

∣EXk
B̃k − σ̄(Xk)σ̄

T (Xk)
∣

∣

∣
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+ 1
6E

∣

∣

∣∂3
xu(k + 1, Xk)

∣

∣

∣

∣

∣

∣EXk

(

∆t
(

ãk − ā(Xk)
)

+
√

∆t
(

σ̃kξ̃k − σ̄(Xk)ξk

)

)3∣
∣

∣

+ 1
12E

∣

∣

∣∂4
xu(k + 1, yk)

∣

∣

∣

E

∣

∣

∣∆t
(

ãk − ā(Xk)
)

+
√

∆t
(

σ̃k ξ̃k − σ̄(Xk)ξk

)

∣

∣

∣

4

≤ C∆t
(

E
∣

∣EXk
ãk − ā(Xk)

∣

∣

2
+ E

∣

∣EXk
B̃k − σ̄(Xk)σ̄T (Xk)

∣

∣

2
)1/2

+ C∆t2
(

E|ãk − ā(Xk)|2 + E
∣

∣B̃k − σ̄(Xk)σ̄
T (Xk)

∣

∣

2
)1/2

+ C∆t2,

where

yk = Xk + θk

(

∆t ãk +
√

∆t σ̃k ξ̃k − ∆t ā(Xk) −
√

∆t σ̄(Xk)ξk

)

,

for some θk ∈ [0, 1]. Hence, using (3.10) and (3.11), we deduce

∣

∣Ef(Xn) − f(X̄n)
∣

∣ = |Eu(n,Xn) − u(0, x)|

=
∣

∣

∣

∑

0≤k≤n−1

E(u(k + 1, Xk+1) − u(k,Xk))
∣

∣

∣

≤ C
(

ε + ∆t + (δt/ε2)` + e−
1

2
βN ′(δt/ε2)

)

+ C
( e−

1

2
βnT (δt/ε2)

√

N(δt/ε2) + 1
R̄ +

∆t
√

M(N(δt/ε2) + 1)

)

.

Since
∣

∣

∣E
(

f(X̄tn) − f(X̄n)
)

∣

∣

∣ ≤ C∆t,

(3.12) follows.

Now we give a formal derivation for the convergence of the solution
Xε

t of (3.1) to the solution X̄t of (3.4) by perturbation analysis. Letting
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Zε
t =

(

Y ε
t −Y 1

t

)

/ε, (3.1) can be written as the following enlarged system:



































































Ẋε
t =

1

ε
a(Xε

t , Y 1
t , 0) + ∂ya(Xε

t , Y 1
t , 0)Zε

t + ∂εa(Xε
t , Y 1

t , 0)

+εE

Ẏ 1
t =

1

ε2
b0(Y

1
t ) +

1

ε
σ0(Y

1
t )Ẇt,

Żε
t =

1

ε2
∂b0(Y

1
t )Zε

t +
1

ε2
b1(X

ε
t , Y 1

t , 0) +
1

ε
F

+
1

ε
∂σ0(Y

1,ε
t )Zε

t Ẇt +
1

ε
σ1(X

ε
t , Y 1

t , 0)Ẇt + G Ẇt,

(3.13)

with Xε
0 = x, Y 1

0 = y, Zε
0 = 0. And E(·), F (·) and G(·) are appropriate

functions of (x, y1, y2, ε) whose actual values are not important for the
limiting equation. The generator of this enlarged system can be written
as

Lε =
1

ε2
L1 +

1

ε
L2 + L3 + εL4,

where







































































L1 = b0(y1)
∂

∂y1
+
(

∂b0(y1)z + b1(x, y1, 0)
) ∂

∂z
+

1

2
AAT ∂2

∂y2
,

(

A = diag
(

σ0(y1), ∂σ0(y1)z + σ1(x, y1, 0)
)

, y = (y1, z)
)

L2 = a(x, y1, 0)
∂

∂x
+ Lz

2

L3 =
(

∂ya(x, y1, 0)z + ∂εa(x, y1, 0)
) ∂

∂x
+

1

2
GGT ∂2

∂z2
,

L4 = E
∂

∂x
,

and Lz
2 is a differential operator in z.

Notice that L1/ε
2 is the infinitesimal generator of process (Y 1

t , Y 2
t )

defined by (3.3) with b1 and σ1 evaluated at ε = 0. By Lemma B.1 given
in the Appendix, L1 generates an exponentially mixing process, i.e., for
f ∈ C

∞
b ,

∣

∣

∣eL1tf − Pxf
∣

∣

∣ ≤ B
(

|y1|2 + |z|2 + 1
)

e−βt,

Here

Pxf =

∫

Rm×Rm
f(x, y1, z)νx(dy1, dz).
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where νx(dy1, dy2) = νε=0
x (dy1, dy2) is the invariant measure for (3.3) with

b1 and σ1 evaluated at ε = 0. Assumption 3.2 implies that

(3.14) PL2P = 0.

uε(t, x, y1, y2) = Ex,y1,y2
f
(

Xε
t

)

satisfies the following equation

(3.15)
∂uε

∂t
= Lεuε, uε(0) = f.

Represent uε in the following power series

uε = u0 + εu1 + ε2u2 + · · · .

Inserting this into (3.15) and equating coefficients of different powers of
ε, we have

L1u0 = 0, L1u1 = −L2u0, L1u2 = −L2u1 − L3u0 +
∂u0

∂t
, · · ·

Suppose that u0(0) = Pu0(0). Projecting on P , by the solvability condi-
tion (3.14), we have

(3.16)
∂u0

∂t
= (PL3P − PL2L

−1
1 L2P )u0 = L̄u0, u0(0) = f,

and
u1 = −L−1

1 L2u0, u2 = −L−1
1

(

L3 − L2L
−1
1 L2 − L̄

)

u0.

By definition and uniqueness of the invariant measures, for any bounded
function f ,

∫

Rm
f(y1)µ(dy1) =

∫

Rm×Rm
f(y1)ν

ε
x(dy1, dz).

Assumption 3.2 implies that

(3.17)

∫

Rm
∂εa(x, y1, 0)µ(dy1) =

∫

Rm×Rm
∂εa(x, y1, 0)ν

ε
x(dy1, dz) = 0.

A direct computation with (3.17) and Lemma B.3 show that

L̄ = ā
∂

∂x
+

1

2
σ̄σ̄T ∂2

∂x2
.

By the same “bootstrap” argument in section 2.3, on finite intervals, as
long as u0, u1 and u2 have bounded solutions, we have

uε − u0 = O(ε).

The boundedness of u0, u1 and u2 are guaranteed by the smoothness of
the coefficients and exponential mixing.
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Remark 3.5 Weak convergence to the effective dynamics is implied by
the above analysis even if the smoothness assumptions on the coefficients
are not satisfied, as in the following numerical example.

3.3 Efficiency and consistency analysis

We proceed as in section 2.4. At fixed error tolerance λ, assuming that
λ � ε, we will see that the multiscale scheme is then appropriate. Due to
the fact the sampling error is dominated by the macro time-discretization
error in (3.9), the optimal choice of parameters is:

(3.18)
∆t = O

(

λ
)

, δt/ε2 = O
(

λ1/`
)

,

M = N = 1, nT = N ′ = O
(

λ1/` log λ−1
)

.

This leads to

(3.19) cost = M(nT + 1 + N ′)/∆t = O
(

λ−1−1/` log λ−1).

In comparison, a direct scheme for (3.1) with weak order ` (same as in
the micro-solver used in the multiscale scheme) leads to an error estimate
as

(3.20) sup
n≤T0/δt

|Ef(Xε
tn) − Ef(Xε

n)| ≤ C(δt/ε2)`,

where Xε
n is the numerical approximation provided by the direct scheme.

At error tolerance λ, a time-step δt = O(ε2λ1/`), and the cost is 1/δt =
O(ε−2λ−1/`). This is much more expensive than the multiscale scheme
when ε � λ.

As in section 2.4, we can compare the cost of the multiscale scheme
to that of a direct scheme for (3.1) where with an optimally chosen ε as
a function of the error tolerance. The error estimate for such a direct
scheme when ε is increased to the value ε′ is

(3.21) sup
n≤T0/δt

|Ef(Xε
tn) − Ef(Xε′

n )| ≤ C
(

ε′ + (δt/ε′2)`
)

,

Thus as optimal parameters we should take ε′ = λ, a time-step of order

(3.22) δt = O
(

λ2+1/`),

and the cost is

(3.23) cost = 1/δt = O
(

λ−2−1/`).

This cost is still higher by a factor of order O(λ−1) than the one in (3.19)
of the multiscale scheme.
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3.4 Numerical example

Consider the following equation:






























Ẋε
t = −2

ε
Y ε

t Zε
t , Xε

0 = x,

Ẏ ε
t = − 1

ε2
Y ε

t +
1

ε
Xε

t Zε
t +

1

ε
Ẇ 1

t , Y ε
0 = y,

Żε
t = − 2

ε2
Zε

t +
1

ε
Xε

t Y ε
t +

1

ε
Ẇ 2

t , Zε
0 = z.

The fast time scale processes are given by the following dynamics:


















































Ẏ 1
t = − 1

ε2
Y 1

t +
1

ε
Ẇ 1

t , Y 1
0 = y1

Ẏ 2
t = − 1

ε2
Y 2

t +
1

ε2
xZ1

t , Y 2
0 = y2,

Ż1
t = − 2

ε2
Z1

t +
1

ε
Ẇ 2

t , Z1
0 = z1,

Z2
t = − 2

ε2
Z2

t +
1

ε2
xY 1

t , Z2
0 = z2.

The coefficients of the effective dynamics are














ā(x) =

∫

R4

(−2y1z2 − 2z1y2
)

µx(dy1, dz1, dy2, dz2) = −1

2
x,

σ̄2(x) = 2

∫

R2

µ(dy1, dz1)(2y1z1)

∫ ∞

0
E(2Y 1

ε2sZ
1
ε2s)ds =

1

3
.

i.e. the effective equation is

(3.24) ˙̄Xt = −1

2
X̄t +

1√
3
Ẇt.

Since the error caused by principle of averaging and macro time-
discretization is standard, we only compute the error caused by using
(ã, σ̃) instead of (ā, σ̄) in the scheme. In the case when

(nT + N − 1)δt > 1,

we have R̄ ≈
√

∆t. And (3.11) and its proof imply that for fixed ∆t

(3.25)

sup
n≤T0/δt

E
∣

∣ãn − ā(Xn)
∣

∣+ E
∥

∥B̃n − σ̄(Xn)σ̄T (Xn)
∥

∥

≤ C
(

(δt/ε2)` + e−βN ′(δt/ε2)/2
)

+ C

(

e−βnT (δt/ε2)/2

√

N(δt/ε2) + 1
+

1
√

M(N(δt/ε2) + 1)

)

.
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Figure 3.1. The error E`
p = (∆t/T0)

∑

n≤bT0/∆tc |ãn+ 1

2
Xn|+|σ̃n−

1√
3
| in

function of p when ` = 1 (circles). Also shown is the predicted estimated,
2−p (dashed line).

Suppose, assuming M = 1, we want to bound the error by 2−p, for
p = 0, 1, ..., . Then with the same analysis as before, the optimal choices
for the parameters can be given as

δt/ε2 = O(2−p/`), nT = O(1), N = O(2p(2+1/`)), N ′ = O(2p/`p),

which leads to a cost scaled as

cost = M(nT + N + N ′)/∆t = O
(

2p(2+1/`)).

In the numerical experiments, we took

(3.26)
(T0,∆t, δt/ε2, NT ,M,N,N ′)

= (1, .001, 2−p/` , 16, 1, 10 × 2p(2+1/`), 2p/`p),

and computed for one realization of the solution the following error be-
tween the (− 1

2Xn, 1√
3
) of (ãn, σ̃n):

E`
p =

∆t

T0

∑

n≤bT0/∆tc
|ãn +

1

2
Xn| + |σ̃n − 1√

3
|.

We choose the micro-solver to be the first order scheme (2.6). The mag-
nitudes of the above error are listed in the following table and shown in
figure 3.1.
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p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

` = 1 .274 .103 .052 .028 .014 .0071

Table 3.2. The computed values for the error E`
p.

3.5 Generalizations

In this section, we want to discuss two more general cases of the equation
(3.1). The first is when the centering Assumption 3.2 is not satisfied.
In this case the effective dynamics for small ε can be expressed in the
following form [16]:

(3.27) ˙̄Xt = ā
(

X̄t, ε
)

+ σ̄
(

X̄t
)

Ẇt,

where























































































ā(x, ε) =
1

ε

∫

Rm
µ(dy1)a(x, y1, ε)

+

∫

Rm×Rm
νε

x(dy1, dy2)∂ya(x, y1, ε)y2

+

∫

Rm
µ(dy1)

∫ ∞

0

(

Ey1
∂xa(x, Y 1

ε2s, ε)

−
∫

Rm
µ(dy1)∂xa(x, y1, ε)

)

a(x, y1, ε)ds

σ̄(x)σ̄T (x) = lim
ε→0

2

∫

Rm
µ(dy1)a(x, y1, ε)

⊗
∫ ∞

0

(

Ey1
a(x, Y 1

ε2s, ε) −
∫

Rm
µ(dy1)a(x, y1, ε)

)

ds.

Notice that the above formula is no more complicated than (3.5). So the
same scheme as before can be used with minor modifications.

The second case of interest is when the principal component of the
fast dynamics depends on the slow dynamics. In other words,

(3.28) b0 = b0(x, y), σ0 = σ0(x, y).

Just for simplicity, we assume 3.2. In this case the effective dynamics has
the following form:

(3.29) ˙̄Xt = ā(X̄t) + σ̄(X̄t)Ẇt,
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with


















































ā(x) = lim
ε→0

∫

Rm×Rm
νε

x(dy1, dy2)∂ya(x, y1, ε)y2

+

∫

Rm
µx(dy1)

∫ ∞

0
Ey1

(

∂xa(x, Y 1
ε2s, ε)

+∂ya(x, Y 1
ε2s, ε)Uε2s

)

a(x, y1, ε)ds

σ̄(x)σ̄T (x) = lim
ε→0

2

∫

Rm
µx(dy1)a(x, y1, ε) ⊗

∫ ∞

0
Ey1

a(x, Y 1
ε2s, ε)ds,

where Ut = ∂xY 1
t ∈ R

m × R
n is the process satisfying the following dy-

namics:

U̇t =
1

ε2
∂xb0(x, Y 1

t ) +
1

ε2
∂yb0(x, Y 1

t )Ut

+
1

ε
∂xσ0(x, Y 1

t )Ẇt +
1

ε
∂yσ0(x, Y 1

t )Ut Ẇt.

Provided the stability condition such that the above integrals exist, the
multiscale scheme can also be applied to this case.

Appendix A: Limiting Properties—Advective time-scale

Here we give some limiting properties of the auxiliary process Y x,ε
t defined

by (2.2) and its time discretization. We assume that Assumptions 2.1,
2.2, and 2.3 hold.

Taking y1 = y and y2 = 0 in Assumption 2.3 and using Assumption 2.1,
we deduce that for some positive constant C,

(A.1) y · b(x, y, ε) ≤ −β

2
|y|2 + C(|x|2 + ε2 + 1).

Using this inequality and Itô’s formula, it is easy to check that for any
p ≥ 1, V (y) = |y|2p is a Lyapunov function for Y x,ε

t in the sense that

(A.2) LV (y) ≤ −β

ε
V (y) +

1

ε
H(x, ε),

where L is the infinitesimal generator of Y x,ε
t and H(x, ε) is a positive

smooth function. This implies that

(A.3) lim sup
t→∞

EV
(

Y x,ε
t

)

≤ H(x, ε).
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By Theorem 6.1 in [20] (see also [18]), Y x,ε
t is exponentially mixing with

unique invariant probability measure µε
x(·) in the following sense. For

each (x, ε) and p ∈ N, there exist positive constants B and κ such that
for any function f : R

m → R with |f(y)| ≤ |y|2p + 1,

(A.4)
∣

∣

∣Ef(Y x,ε
t ) −

∫

Rm
µε

x(dy)f(y)
∣

∣

∣ ≤ B(|y|2p + 1)e−κt/ε,

where y = Y x,ε
t=0.

For each (x, ε), we can construct independent random variable ζx,ε

whose law is µε
x(·), i.e. L(ζx,ε) = µε

x(·). Let ζx,ε
t be the solution of (2.2)

with initial condition ζx,ε
t=0 = ζx,ε. Then

L(ζx,ε
t ) = µε

x(·).

(A.4) implies that

(A.5) E|ζx,ε|2 = lim
t→∞

|Y x,ε
t |2 ≤ C(|x|2 + ε2 + 1).

The following Lemma gives the exponentially mixing property of process
Y x,ε

t towards ζx,ε
t .

Lemma A.1 For any (x, ε),

(A.6) E|Y x,ε
t − ζx,ε

t |2 ≤ E|y − ζx,ε|2e−2βt/ε.

where y = Y x,ε
t=0.

Proof: Using Itô formula and Assumptions 2.3, we deduce

(A.7) d E|Y x,ε
t − ζx,ε

t |2 ≤ −2β

ε
E|Y x,ε

t − ζx,ε
t |2dt.

Hence (A.6) follows.

From (A.5) and (A.6), it follows

(A.8) E|Y x,ε
t − ζx,ε

t |2 ≤ CE(|y|2 + 1)e−2βt/ε.

uniformly in time as long as (x, ε) is in a compact set.
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Proposition A.2 Suppose (x, ε) is in a compact set, then there exists a
constant C > 0 such that for any function f with Lipschitz constant less
than 1 and t ∈ [0,∞),

(A.9)
E

∣

∣

∣

1

T

∫ t+T

t
f
(

x, Y x,ε
s , ε

)

ds −
∫

f(x, y, ε)µε
x(dy)

∣

∣

∣

≤ C
(|y|2 + 1)e−βt/ε

T
.

Proof: Since L(ζx,ε
t ) = µε

x(·), we have

Ef(x, Y x,ε
t , ε) −

∫

f(x, y, ε)µε
x(dy) = Ef(x, Y x,ε

t , ε) − Ef(x, ζx,ε
t , ε).

By Lemma A.1 and the assumption on f , we have

E

∣

∣

∣

∣

∣

1

T

∫ t+T

t
f
(

x, Y x,ε
s , ε

)

ds −
∫

f(x, y, ε)µε
x(dy)

∣

∣

∣

∣

∣

≤ 1

T

∫ T

0
E

∣

∣

∣f(x, Y x,ε
s , ε) − f(x, ζx,ε

s , ε)
∣

∣

∣ds

≤ C(|y|2 + 1)
e−βt/ε

T
.

Similar ergodic properties hold at the discrete level. Suppose Y x,ε
n is

the solution of the micro-solver (2.6) or (2.7) with parameter (x, ε) and
micro-time-step δt. By the smoothness assumption 2.1, for each x ∈ R

n,
p ∈ N and δt small enough, there exists λ < 1 such that

(A.10) E|Y x,ε
n+1|2p ≤ λ|Y x,ε

n |2p + F (x, ε),

where F is a smooth function. The results in [20] imply that under
Assumptions 2.2 and 2.3, for each (x, ε) and δt small enough, Y x,ε

n is
ergodic with unique invariant probability measure µδt,ε

x . By the same
analysis as in the proof of Lemma A.1, it can be shown:

Lemma A.3 Suppose (x, ε) is in a compact set, for δt small enough, there
exists a family of random variables {ζx,δt,ε} independent of the Wiener
process in (2.6) or (2.7) with measure µδt,ε

x such that

(A.11) E|Y x,ε
n − ζx,δt,ε

n |2 ≤ E|y − ζx,δt,ε|2e−βnδt/ε,

where Y x,ε
n (resp. ζx,δt,ε

n ) is the solution of the micro-solver (2.6) or (2.7)
with initial condition y (resp. ζx,δt,ε).
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For any smooth function f = (x, y, ε) with polynomial growth in y, we
define

(A.12) f̂(x, ε) =

∫

Rm
f(x, y, ε)µε

x(dy),

and

(A.13) f̂ δt(x, ε) =

∫

Rm
f(x, y, ε)µδt,ε

x (dy).

Using energy estimate (A.3) and following the proof of Theorem 3.3 in
[24] it can be shown that under Assumptions 2.1, 2.2, and 2.3, if (x, ε) is
in a compact set, for δt small enough, we have

(A.14) |f̂(x, ε) − f̂ δt(x, ε)| ≤ C(δt/ε)`.

This gives us an estimate on the error induced by the discretization on
computing expectations.

The following Lemma gives the property we need for

â(x, ε) =

∫

Rm
a(x, y, ε)µε

x(dy).

Lemma A.4 The function â(x, ε) is smooth.

Proof: For simplicity, we only discuss the case when R
n = R

m = R.
The proof for higher dimensions is similar. Suppose (x, ε) are in a compact
set. Let u(t, x, y, ε) = E a(x, Y x,ε

t , ε) be the solution of the backward
Fokker-Planck equation

(A.15)
∂u

∂t
= Lu, u(0, x, y, ε) = a(x, y, ε).

A straightforward generalization of Mikulevicius result [19] shows that
u(t, x, y, ε) is infinitely differentiable with respect to (x, y, ε). It is also
proved in [24] that under Assumptions 2.1, 2.2, and 2.3, for any (x, ε) and
n ∈ N, there exists sn ∈ N, Bn ∈ [0,∞) and βn > 0 such that

(A.16) |∂n
y u(t, x, y, ε)| ≤ Bn(|y|sn + 1)e−βnt/ε.

Taking derivatives with respect to x on both sides of equation (A.15), we
have

(A.17)
∂

∂t
∂xu = ∂xa(x, y, ε)∂yu + ∂xσ2(x, y, ε)∂2

yu + L∂xu.
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Using Duhamel’s principle, ∂xu can be formally expressed in terms of u
as

(A.18)

∂xu =eLt∂xa(x, y, ε)

+

∫ t

0
eL(t−s)(∂xa(x, ·, ε)∂yu + ∂xσ2(x, ·, ε)∂2

yu
)

ds.

By the uniform mixing (A.8), the following limit exists

∂xâ(x, ε) = ∂x lim
t→∞

u(t, x, y, ε) = lim
t→∞

∂xu(t, x, y, ε).

Differentiating (A.17) with respect to y and using (A.16) we deduce that
the semi-group generating ∂yu has a positive exponential decay. By the
same type of analysis, we deduce that

|∂xyu(t, x, y, ε)| ≤ B(|y|2 + 1) exp (−ηt).

where B and η are positive constants. Hence,

∂xyā(x, ε) = ∂xy lim
t→∞

u(t, x, y, ε) = lim
t→∞

∂xyu(t, x, y, ε) = 0.

The Lemma follows by repeating the same analysis to higher order deriva-
tives in x and ε.

Appendix B: Limiting Properties—Diffusive time-scale

Now we want to give the exponential mixing property of the process
(Y 1

t , Y 2
t ) given by (3.3). We will assume that the coefficients are smooth

and Assumption 3.2 holds.

Lemma B.1 For each (x, ε), the process (Y 1
t , Y 2

t ) is exponentially mixing
with unique invariant measure νε

x(dy1, dy2). And there exist stationary
processes (ζ1

t , ζ2
t ) with L(ζ1

t , ζ2
t ) = νε

x such that for some B < ∞ and all
t ∈ [0,∞),

(B.1) E|Y 1
t − ζ1

t |2 + |Y 2
t − ζ2

t |2 ≤ B
(

|y1| + |y2| + 1
)

e−2βt/ε2

.

Proof: By (A.4), Y 1
t is exponentially mixing. Now we want to show

that (Y 1
t , Y 2

t ) is also exponentially mixing. Now for any τ > 0, denote by
(V τ

t , Y τ
t ) the unique solution of the equation































V̇t =
1

ε2
b0(Vt) +

1

ε
σ0(Vt)Ẇt

Ẏt =
1

ε2
∂b0
(

Vt
)

Yt +
1

ε
∂σ0

(

Vt
)

YtẆt,+
1

ε2
b1(x, Vt, ε) +

1

ε
σ1(x, Vt, ε)Ẇt,

Y−τ = y2, V−τ = y1.
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It is easily seen that the distributions of (V τ
0 , Y τ

0 ) and (Y 1
τ , Y 2

τ ) coincide,
i.e.

L(V τ
0 , Y τ

0 ) = L(Y 1
τ , Y 2

τ ).

For ergodicity, it is sufficient [3] to prove that there exist random variables
ξ and ζ such that the following convergence is exponential:

lim
τ→∞

E|V τ
0 − ξ|2 + E|Y τ

0 − ζ|2 = 0, ∀ (y1, y2).

Then (Y 1
t , Y 2

t ) is ergodic with unique invariant measure νε
x = L(ξ, ζ). The

existence of ξ is guaranteed by the exponential mixing of Y 1
t . Now we

give the existence of ζ. Taking ε = 0 and |y2−y1| → 0 in Assumption 2.3,
we have for any (y, y′),

(B.2) 〈y, ∂b0(y
′)y〉 + ‖∂σ0(y

′)y‖2 ≤ −β|y|2.

By the smoothness Assumption 2.1, (B.2) and Itô’s lemma, we have for
some constant C and all t ≥ −τ ,

dE|Y τ
t |2 ≤ − β

ε2
E|Y τ

t |2dt +
C

ε2
(|y1|2 + 1)dt.

This means that for ∀τ > 0 and t ∈ [−τ,∞),

(B.3) E|Y τ
t |2 ≤ e−β(t+τ)/ε2 |y2|2 + C(|y1|2 + 1).

Let γ > τ and Zt = Y τ
t − Y γ

t , (t ≥ −γ), then Zt is the solution of the
following equation:

Żt =
1

ε2
∂b
(

Vt
)

Zt +
1

ε
∂σ
(

Vt
)

ZtẆt, Z(−τ) = y2 − Y γ
−τ .

Direct computation with Itô’s formula and (B.3) shows that

E|Z0|2 = E|Y τ
0 − Y γ

0 |2 ≤ C(|y1|2 + |y2|2 + 1)e−2βτ/ε2

.

This implies that there exists a random variable ζ such that

E|Y τ
0 − ζ|2 ≤ C0(|y1|2 + |y2|2 + 1)e−2βτ/ε2

.

The same analysis will show that ζ is independent of initial value (y1, y2).
Taking (ζ1

t , ζ2
t ) to be the solution of (3.3) with independent initial distri-

bution νε
x, by the same analysis above using Assumptions 2.3, we have

(B.1).
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By a similar argument above we can prove the following Lemma for
the time discretization of (Y 1

n , Y 2
n ) by the scheme (2.6) and (2.7).

Lemma B.2 For micro step δ small enough and each (x, ε), (Y 1
n , Y 2

n ) is
exponentially mixing with unique invariant measure ν δ

x,ε(dy1, dy2). And

there exist stationary processes (ζ1
n, ζ2

n) with distribution νδt
x,ε such that for

some B < ∞,

(B.4) E|Y 1
n − ζ1

n|2 + |Y 2
n − ζ2

n|2 ≤ B
(

|y1| + |y2| + 1
)

e−βnδt/ε2

.

By the independence of Y 1
t on (x, ε) and the linear form of the equation

for Y 2
t , using the same analysis as in [24], we also have for any x ∈ R

n

and any function of polynomial growth,

(B.5)

∣

∣

∣

∫

Rm×Rm
νε

x(dy1, dy2)f(x, y1, y2, ε)

−
∫

Rm×Rm
νδt

x,ε(dy1, dy2)f(x, y1, y2, ε)
∣

∣

∣ ≤ Bδt`,

where B is an independent constant.

Define

(B.6)



















































ã(x, ε) =

∫

Rm×Rm
νε

x(dy1, dy2)∂ya(x, y1, ε)y2

+

∫

Rm
µ(dy1)

∫ ∞

0
Ey1

∂xa(x, Y 1
ε2s, ε)a(x, y1, ε)ds,

σ̃(x, ε)σ̃T (x, ε) =

2

∫

Rm
µ(dy1)a(x, y1, ε) ⊗

∫ ∞

0
Ey1

a(x, Y 1
ε2s, ε)ds.

Lemma B.3 The functions ã(x, ε) and σ̃(x, ε)σ̃T (x, ε) are smooth func-
tions of (x, ε) with derivatives of polynomial growth.

Proof: To repeat the proof of Lemma A.4, we only need to show
that the following functions are smooth with derivatives of polynomial
growth,

∫ ∞

0
Ey1

a(x, Y 1
ε2s, ε)ds,

∫ ∞

0
Ey1

∂xa(x, Y 1
ε2s, ε)ds.

Based on the centering condition, the exponential mixing and the inde-
pendence of Y 1

ε2s with respect to x, using the same analysis for the proof of
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Lemma A.4, we have that functions Ey1
a(x, Y 1

ε2s, ε) and Ey1
∂xa(x, Y 1

ε2s, ε)
and their arbitrary derivatives w.r.t. y1 decay exponentially to zero and
hence integrable on infinite time interval. Hence interchanging the order
of limits, we have the following limit

∂y1

∫ ∞

0
Ey1

a(x, Y 1
ε2s, ε)dt =

∫ ∞

0
∂y1

Ey1
a(x, Y 1

ε2s, ε)dt,

and

∂y1

∫ ∞

0
Ey1

∂xa(x, Y 1
ε2s, ε)dt =

∫ ∞

0
∂y1

Ey1
∂xa(x, Y 1

ε2s, ε)dt.

The same differentiability holds for higher order derivatives for (x, ε) and
the result follows.
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