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Abstract

We apply the framework of the heterogeneous multi-scale method
(HMM) to develop numerical methods for the study of macroscale in-
terfacial motion in situations where the dynamics of the system are
only specified at the microscopic level. The level set method is em-
ployed on the macroscopic level to capture the evolution of the desired
interface while the nature of that evolution is determined on the mi-
croscopic level. Applications to interfaces and front propagation in
strongly heterogeneous media are presented.

1 Introduction

The heterogeneous multi-scale method (HMM) developed in [8] provides a
general framework for designing numerical methods for problems with mul-
tiple scales. In cases when the macroscale model is not explicitly given and
has to be inferred from a given microscale model, it provides a simple and
efficient methodology for capturing the macroscale behavior of the system
without having to resolve all details on the microscopic level. Preliminary
results on several classes of problems have demonstrated the potential of
HMM [1, 9, 14, 27].

Suppose we have selected a correct set of macroscale variables, denoted
by U, for which there should in principle exist a closed model describing
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its dynamics or equilibrium properties. For the sake of concreteness, let us
assume the macroscale model is of the form

U, = F(U,VU,V?U,...), (1)
or comes from a minimization problem

min F/(U, VU, V2U,...). (2)

Suppose the specific form of F' is not completely known, however, we do have
at our disposal a model for the microscale behavior of the system in terms
of the microscale state variable 4. The philosophy of HMM is to proceed
as if the macroscale model is known and solve (1) or (2) using a standard
macroscale numerical method where, in the implementation, unknown quan-
tities are measured through numerical experiments on the microscale model.
Compared with the traditional approach in which the explicit form of F' is
assumed to be given through constitutive relations with parameters mea-
sured by physical experiments, the key idea in HMM is the replacement
of these physical experiments by numerical ones. The advantage is that it
is no longer necessary to specify a particular form of the constitutive rela-
tion. Furthermore, feasibility and efficiency arise out of the separation of
the macroscopic and microscopic scales of the system.

HMM thus has the potential to be useful in a very large class of multi-
scale problems. However, it also takes into account the unique character-
istics of each specific application. For each of these applications, there are
non-trivial issues that need to be effectively dealt with. This mirrors the
issues found in physical experiments where questions on how to set up the
experiment and how to process the experimental data in order to extract the
quantities of interest are of concern. There are also choices to be made in
selecting a good macroscale solver as some fit better in the HMM framework
than others.

In this paper, we apply the HMM philosophy to the study of interface
motion in a multi-scale setting. Our main interest is to capture the dynamics
of the interface at the macroscopic level in the case where the velocity is not
explicitly specified by the geometry of the macroscale interface. Instead,
available to us is a microscale model to help determine those dynamics.
Some examples of such microscale models include:

1. Microscale interface dynamics with normal interfacial velocity of the
form

(o) = (o) = ¢ (2, ,7)). Q
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Here € < 1 is the ratio between the microscale and macroscale and y
denotes the microscale interface. Note the dependence of ¢ on v may
result in curvature effects. Such models arise in the study of interface
propagation in strongly heterogeneous media such as composite ma-
terials, polycrystals, materials with impurities, and porous media, to
name a few.

The problem is a homogenization problem. In this subject, there ex-
ists interesting research in the direction of deriving the homogenized
equation for the dynamics of the macroscale interface (see [6, 7, 26]).
These equations are usually not explicit in form since they involve so-
lutions to “cell problems”. They are also restricted in applications to
situations where the microstructure is periodic. Hence this approach
has limited value as a numerical tool, however, it does give hints as to
the form of the macroscale model.

2. Front propagation in phase-field models. Consider, for example, the
Allen-Cahn equation

up = eAu + %u(l —u?). (4)
It is well-known [19] that for small €, (4) describes the propagation
of a front whose inward normal velocity is the mean curvature of the
front. In this case, an equation for mean curvature flow can be solved
in place of (4) to capture the large scale dynamics of the front. Indeed,
this has been done in many different ways (see, e.g., [17]).

However, if the phase field model takes a more complex form or if
non-trivial chemical reactions occur at the front, deriving analytically
the effective dynamic laws for the front becomes a difficult task. In
this direction, we mention the related work of R. Klein et al. [13].

3. Discrete microscale models such as kinetic Monte Carlo or molecular
dynamics. Examples include the dynamics of step edges on the surface
of an epitaxially grown crystal and grain boundaries in solids, to name
a few. Treatment of this case will be postponed to a later work.

2 The Level Set Method as Macroscopic Solver

We now look at the construction of HMM for our interface problems of
interest. The HMM framework consists of two or possibly more components,



depending on the number of scales in the problem. At the macroscopic level,
a solver is needed to move the interface once the correct velocity for the
motion is determined. This velocity is calculated at the microscopic levels
through numerical experiments using the microscale models. Conventional
methods for interface dynamics in the frameworks of the level set method
[17], front tracking [10], or the segment projection method [22, 23] can be
used to produce the macroscale solver. In this work, we use the level set
method in this capacity.

In the framework of the level set method, an interface is described as the
zero level set of a globally defined function ®, called the level set function.
All operations, in particular evolution, are then performed on this function
in place of the interface of interest. For example, motion of the interface
in a globally defined velocity field translates to a transport PDE on the
level set function. The advantages of working on the level set function
instead of directly on the interface of interest are in the opportunity to use
fixed, uniform grids for both computations and resolution and the ability
to automatically handle topological changes. This has allowed the level set
method to be successfully applied to numerous interface problems in both
two and three dimensions.

The PDE for evolution of an interface described by the level set function
® in a globally defined velocity field v takes the form

Oy 4+v-VO =0.

Since the normal vectors to the interface, and in fact to any of the level sets
of @, can be written as £V®/|V®|, motion under a globally defined normal
velocity field v, is described by

By £ v, |VO| = 0. (5)

In many problems, though, the velocity is only naturally specified at the in-
terface. An extension of these values off the interface to the rest of points in
space is thus required [3, 4, 28]. A general approach for this involves extend-
ing the values constant in the normal direction and can be accomplished, for
example, through application of fast marching [11, 20, 25] and fast sweeping
[24] techniques. The level set equation (5) can then be handled by overlook-
ing any dependence of v, on ® and solving the resulting Hamilton-Jacobi
equation using standard discretization techniques (see, e.g., [12, 21]).
Efficiency of the approach can be retained through use of local level set
techniques [2, 18], which include limiting computations and storage to those
grid points contained in a small tubular neighborhood about the interface



of interest and employing reinitialization techniques to avoid adverse effects
arising from the tube boundaries. As this procedure can be added on without
difficulty, we concentrate our attention in this paper on obtaining the correct
interfacial motion in the clearer global level set setting. For more on the level
set method, see [15, 16].

Henceforth, ® takes the place of U for the macroscale variable.

3 Measuring the Macroscale Interface Velocity

What remains is determining the normal velocities necessary for evolution
of ® at the macroscale grid points from the microscale model. This can
be accomplished by first calculating the velocities at a selection of points
lying on the macroscale interface and then extending these values off the
interface to the rest of space. A selection of points commonly taken are
the intersections between the interface and grid lines. Note, following the
spirit of the level set method, the selection can also be the set of grid points
neighboring the front. Normal velocity at such a grid point, which may not
lie on the interface, is then translated as that of the particular level set of ®
passing through the point. We now detail the calculation of normal velocities
at the selected points for the front propagation problems of interest.

If the normal velocity of the macroscale interface is known to only depend
on the orientation of the local tangent plane of the interface then we may
approximate the interface locally by a hyperplane. On the other hand, if the
normal velocity is also known to depend on the local curvature, a quadratic
approximation such as a circular arc in two dimensions or an ellipsoid in
three dimensions is needed.

We first consider the homogenization problem. The level set represen-
tation of the microscale model, using the microscale level set variable ¢, in
this case takes the form

po+e (2 2) 199l =0, (

which describes motion in the normal direction at speed c. Note we may
use the hyperplane approximation, with ¢ representing it as its zero level
set, initially. At later times, the zero level set of ¢ will, in general, deviate
from being a straight line.

Furthermore, it is convenient to perform a change of variables so that this
hyperplane coincides with the {z;,, = 0}-plane. We then solve (6) in a rectan-
gular domain A with sides orthogonal to the coordinate axes (see Figure 1).
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Figure 1: A pictorial description of our setup showing the link between the
macroscopic and microscopic levels.

This domain should be, generally, a few times larger than the size of the peri-
odic cell or the correlation length of ¢. Lastly, periodic boundary conditions
are imposed in the =, s, ..., r,—1-directions. In the z,-direction, periodic-
ity is imposed after subtracting out the background, or initial, configuration.
These periodic boundary conditions are valid since the microstructure is lo-
cally homogeneous, with the size of the domain A larger than the microscale
length €. An underlying grid that resolves the microscale length € can then
be placed over A, allowing for the numerical discretization and solution of
the microscale equation in the microscale computational domain.

To extract the quantity of interest, at each microscale time step, the
microscale Hamiltonian c(z, z/€)|V | is averaged in the central region A of
the domain to reduce spurious effects that may arise from the boundary and
the chosen boundary conditions. Denote this value by h¢(t) (see Figure 2).
This signal is then processed, as in [5], by time averaging to obtain

1 st t
L ek (-) dt,
t* Jo t*

where ¢* is chosen so that this quantity has converged (see Figure 3). Note,
due to a separation of scales, the convergence time, a relaxation time, is
much shorter than the macroscopic time scale. The normal velocity for
evolution of the front is thus calculcated at the chosen location from

vy = t*|1v¢| /Ot* he () K (f) dt. (7)
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Figure 2: Typical flux values calculated at the time steps during the solve
of the microscale equation in the homogenization problem with periodic
microstructure. Note the initial transient followed by periodic behavior.

We note that the rate of convergence for the processed flux data, as well as
the computational cost of this part of the algorithm, depends on factors such
as the size of A, the number of grid points resolving A, and the number of
experiments run, if ensemble averaging is used. However, the optimal desired
balance of these is problem dependent and, as of yet, not particularly well
understood. Some basic information is known, for example, the importance
of smoothness in the averaging kernel. Furthermore, a general idea can be
obtained from viewing the behavior of acquired data for the specific problem
being considered.

After v, is calculated at the selected points, a global normal velocity
can be constructed through extension of v, to all macroscale grid points
following the ideas mentioned previously. The evolution equation for the
level set function can then be evolved for a macroscale time step using this
velocity and the process then repeated. Note the time stepping procedure
used here can be replaced for better accuracy. This altogether gives the
HMM for this front propagation problem.

Next we consider the case where the microscale model is described by a
phase-field equation. Specifically, we study the model

uy =€V - (a (w,%) Vu) +V. <b <$,§> u) —%g—zw), (8)

where a(z,y) > 0 and b(x,y) are smooth functions that are either periodic
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Figure 3: Profile of the kernel K used in the time averaging (left) and the
results of this averaging on the flux shown in Figure 2 (right). The bias in
K to the end of the interval removes the effect of the initial transient. This
allows for the averaged flux to converge in a few number of steps.

in y or stationary random in y with rapidly decaying correlation at large
distances and V is a double well potential with minima at u = «, (.

In the case V(«a) # V(f), then to leading order, the normal velocity
of the macroscale interface depends only on the local tangent. Therefore
we can once again take a hyperplane approximation for the initial form in
the microscale. Let @y be a function defined as @4y = « on one side of the
hyperplane, g =  on the other side, and ug = g * 7, where . = 27 (£)
is a mollifier of scale e. We can then use a procedure similar to that in the
homogenization problem to solve the microscale problem (8) in the domain
A with periodic boundary conditions in the z1, zs,...,z, 1-directions and
Dirichlet boundary conditions ¢ = «, 8 in the z,-direction.

As for the normal velocity, integrating (8) over the possibly smaller do-
main A gives on the left hand side, approximately, (o — 8)L(A, n)v,, where
L(A,n) denotes the length of the domain A in the z,-direction. Thus v,
can be approximated through the expression

1
(= B)L(A, n) 9)

Lo (a(m2) )+ 9 (o(2.) ) 12 )]

The typical behavior of v,, calculated at the microscale time steps in random
media is shown in Figure 4. Time or ensemble averaging can be considered
to obtain a better converged value, however, even without these techniques,
vy, i only slightly oscillating after a few steps. Note that the figure also

Uy =
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Figure 4: Typical normal velocity values calculated at the time steps during
the solve of the microscale equation for front propagation problems with a
phase-field model for the microscale equation (left). A zoom of the result
is also shown (right). The small oscillations seen at the tail end are due
to randomness in the medium and can be removed with time or ensemble
averaging.

shows that the formula for v,, makes sense at each microscale time step even
though the microscale interface location may not have changed much from
one step to the other. Especially, the convergence of the values allows us to
accept the final v,,.

In the case where V(a) = V(f), local curvature matters and we instead
make a quadratic approximation of the front. The procedure then follows
the same principles, with the quadratic approximation mapped to {z, = 0},
and the normal velocity v, can once again be determined for use in the level
set macroscale solver.

As a summary, we detail the steps of the our HMM approach to front
propagation:

1. The initial macroscale front location represented by the level set func-
tion @y is given.

2. Select a set of points on or near the interface in the macroscopic level,
for example, where the interface intersects grid lines. For each of these
points, create the microscale domain A and solve the microscale equa-
tion (6) or (8) in this domain with the previously described boundary
conditions until the value for vy, from equation (7) or (9), converges.
Time or ensemble averaging may be needed to better enforce this con-
vergence.



3. Extend the calculated values for v, at the selected points to all grid
points using fast marching or fast sweeping techniques.

4. Solve the level set evolution equation (5) in the macroscopic level for
one macroscale time step using this globally defined normal velocity.

5. Stop and output if the desired time is reached in the macroscale solve.
Otherwise, repeat from step 2 using the newly evolved level set func-
tion @ and its corresponding interface.

Note since microscale computations are not performed everywhere, the al-
gorithm is fast. In fact, the complexity of the algorithm is independent of €
and so great gains can be made when € is very small.

4 Numerical Results

We first look at the homogenization problem where the microstructure is
periodic. In this case, the microstructure may induce anisotropy in the
macroscale interface motion [7]. Figure 5 shows the anisotropic effects of
the macroscopic dynamics for an initially growing circle along with the nor-
mal velocities calculated and used in the algorithm when the microstructure
is composed of square tiles. Figure 6 shows an example of anisotropic dy-
namics along with the calculated normal velocities when the microstructure
is banded. In this case, two initial circles expand and a topological change
eventually develops. The ease with which the level set method handles topo-
logical changes is one of the main reasons for using it as the macroscale solver
in these interface problems.

For the case of the phase-field microscale model and random media,
Figure 7 shows the results of our algorithm for a certain choice of a and
b and with o = 1,8 = —2. An initial ellipse translates and shrinks and
the normal velocities calculated for this flow are displayed. Figure 8 shows
another result with different choices of @ and b. The normal velocities for this
case are also displayed, along with a zoomed image of part of the velocity
plot. Note there is some scattering of the calculated normal velocities in
this case, though this does not affect the stability of the solution.

5 Conclusion

We conclude by commenting that the example we considered of a microscale
phase-field model provides a natural compromise between the level set and
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Figure 5: Anisotropic effects for an initial circle growing over a periodic
microstructure for the homogenization problem (left). The computed normal
velocities are shown in a polar plot (right).
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Figure 6: Anisotropic effects for two initial circles growing over a periodic
microstructure for the homogenization problem (left). Note a topological
change occurs during the flow. The computed normal velocities are shown
in a polar plot (right).
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Figure 7: Shrinking and translating ellipse computed using the microscale
phase-field model in a random medium (left). Magnitudes of the normal
velocity calculated during the solve are shown in a polar plot (right).
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Figure 8: Shrinking and translating circle computed using the microscale
phase-field model in a random medium (left). Magnitudes of the normal
velocity calculated during the solve (middle) and a zoomed portion (right)
are shown in polar plots. Note the slight scattering in the values in this
case.

12



phase-field approaches. This HMM retains the flavor of the level set method,
especially in topological changes, but without the need for an explicit in-
terface dynamics model. Furthermore, it can be thought of as an adaptive
mesh refinement procedure for the phase-field model, though the refinement
is only performed for the purpose of accurately obtaining the macroscale
interface dynamics in contrast to the microscopic details of the phase-field
model that is usually sought. This fits into the general spirit of the HMM
framework.
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