     The Agencies Method for Modeling Coalitions 
            and Cooperation in Games

    The idea leading to this study originated some time ago when I talked at a gathering of high school graduates at a summer science camp. I spoke about the theme of "the evolution of cooperation" (in Nature) and about how that topic was amenable to studies involving Game Theory (which, more frequently, has been used in research in economics).

    After that event I was stimulated to think of the possibility of modeling cooperation in games through actions of acceptance in which one player could simply accept the "agency" of another player or of an existing coalition of players. 

    The action of acceptance would have the form of being entirely cooperative, as if “altruistic”, and not at all competitive, but there was also the idea that the game would be studied under circum-stances of repetition and that every player would have the possib-ility of reacting in a non-cooperative fashion to any undesirable pattern of behavior of any another player. Thus the game studied would be analogous to the repeated games of "Prisoner's Dilemma" variety that have been studied in theoretical biology.

    These studies of "PD" (or "Prisoner's Dilemma") games have revealed the paradoxical possibility of the natural evolution of cooperative behavior when the interacting organisms or species are presumed only to be endowed with self-interested motivations, thus motivations of a non-cooperative type.

     Games in Theory and Games Played by Humans

    I feel, personally, that the study of experimental games is the proper route of travel for finding "the ultimate truth" in relation to games as played by human players. But in practical game theory the players can be corporations or states; so the problem of usefully analyzing a game does not, in a practical sense, reduce to a problem only of the analysis of human behavior.

    It is apparent that actual human behavior is guided by complex human instincts promoting cooperation among individuals and that moreover there are also the various cultural influences acting to modify individual human behavior and at least often to influence 
the behavior of humans toward enhanced cooperativeness.)

    If an experiment of the "experimental games" variety were performed with actual human players then all the complex of both instinctive and cultural influences could influence the behavior 
of the experimental subjects. Thus male subjects might play less competitively in relation to female subjects and more competitively in relation to other male subjects. And subjects being of the same minority category of the total aggregate might play less competit-ively in relation to themselves. Also, in general, the experimental subjects might be "trainable" so that under conditions of being given a course of instructions on how to play the game in a manner perhaps analogous to a "good businessman" they might then, in terms of their observable behavior, play differently than if simply observed playing without being given any training.

    Our study has the character of an experiment, but rather than working directly with human subjects we computationally discover 
the evolutionarily stable behavior of a triad of bargaining or negotiative players. And these players are, as far as the experi-mental science is concerned, equivalent to a set of three robots. 
So whether or not the experiment can be carried out successfully becomes simply a matter of the mathematics. And these computations are found to be “heavy” so that our research could not have been done in the earlier days of game theory, like in the 50’s, because of the inadequacy of the computing resources then. (And for the future we envision the feasibility of the study of much more complicated models for 4, 5, or more players, with many more distinct strategy parameters being involved.)

        Demands and Acceptance Probabilities 
            in the Case of Two Players
    We first worked out the function of players’ “demands” control-ling their “probabilities of acceptance” (in a repeated game context) for the case of games of a simple bargaining type of two players. 
We present an explanation of this to prepare for and facilitate explaining the modeling structure for three (or more) players.

    Originally, in our first trials of the new ideas, we studied a model bargaining problem where the set of accessible possibilities was enclosed by a parametrically described algebraic curve (forming the Pareto boundary). This was arranged so as to have a natural bargaining solution point at (u1=1/2, u2=1/2) (referring to the players’ utility functions). The total bargaining problem was asymmetric, but modulo the theory of localized determination of the solution point, it was such that (u1,u2) = (1/2,1/2) should be the compromise bargain.

    (We were surprised, however, when we found that if we used (as described below) different “epsilon numbers” (see below) for the players that that difference would unbalance the model’s selection 
of a bargaining solution (!). Later, thinking about it, we realized that the use of appropriately matching epsilon numbers for the players could be naturally justified. In a game problem with trans-ferable utility (like with our studies for 3 players) this amounts 
to using THE SAME epsilon number for all players.)

    For Player 1 we let d1 stand for his demand (number) and e1 for his epsilon-number. The “epsilons” make the “reactive” behavior of 
a player depend smoothly on the numbers that the players choose as parameters of strategy so that we can obtain the system of equations to be solved for the equilibria by differentiating a player’s expected payoff function with respect to each of the strategy para-meters that that player controls. Then his “acceptance rate” a1 is defined in terms of these numbers plus also the data number u1b2 which is “the amount of utility that Player 1 is given by the Player 2 when Player 2 has become the agent for both of the players (and 
has selected a point on the Pareto boundary)” (and this data is observable by Player 1 simply through the known history of Player 
2’s behavior in the repeated game).

    We need a specific rule of relationship between d1 and a1 and this is (was) specified by the relations:

    A1 = Exp[ (u1b2 – d1)/e1 ], and  a1 = A1/(1+A1) .

(Which formulae have the effect that A1 is positive and that 

a1 is like a positive probability, between 0 and 1.)   

    In a completely dual fashion, for Player 2:

    A2 = Exp[ (u2b1 – d2)/e2 ], and  a2 = A2/(1+A2) .

    As we remarked already, we discovered from the calculations that we needed to use e1 = e2 if we wanted desirable results! (But it seems that this can be justified as “impartial” if we consider another means for introducing probabilistic uncertainty affecting 
the consequences of demands; in particular, if the uncertainty resulted from “fuzziness” about the knowledge of the precise location of the Pareto boundary then that version of ignorance would affect the players in an impartial fashion.)    

    In the case of two players the players would simultaneously vote, with each player voting either to accept the other as the general agent or voting, in effect, for himself/herself instead. Then our first idea was to apply an “election rule” declaring that an election was void if both of the players voted for accepting (the other player) and only effective if only one player made a voting choice 
of acceptance. So then we specified that the election should be repeated with a certain probability (say probability (1-e4)) whenever both players had voted acceptance votes (and if that retrying process ultimately failed then the players finally were given the null reward {0,0} (in utilities) for failure to cooperate!). 

    This complicated the “payoff formula” somewhat but the VECTOR 
of payoffs, {PP1,PP2}, was ultimately calculable as functionally dependent on a1, a2, u1b2, and u2b1. (In this listing the utility amounts were regarded as resulting from STRATEGY CHOICES by the players where P1 would actually choose {u1b1,u2b1} as a point chosen BY P1 (!) on the Pareto boundary curve. So, from the curve, u1b1 could be interpreted as a function of u2b1, with P1 interpreted as simply choosing u2b1 strategically.)
    The vector {PP1,PP2} becomes a function of a1, a2, u1b2, u2b1, u1b1, and u2b2 and this reduces to the 4 quantities first listed because of u1b1 and u2b2 being determined by the Pareto curve.

    And a1 is a function of d1 and u1b2 with a2 similarly controlled by d2 and u2b1.

    So, ultimately, we arrive at 4 equations in four variables for the condition of equilibrium. These derive from the partial deriva-tives of the payoff function for a player taken with respect to the parameters describing his strategic options.

    Thus there are the partial derivatives of PP1 with respect to d1 and with respect to u2b1 and these are both to vanish. Then there are two dual equations derived from PP2.

    (Later we learned that differentiating PP1 with respect to a1 directly, rather than viewing a1 as a function of d1, would give a simplified (but equivalent) version of the d1-associated equation.)

     Details of the Modeling for Three Players

    When there are three players instead of two we need to arrange 
to have two successive stages for “acceptance votes” where any one player could vote to accept the (unconstrained!) agency function of any other player. This principle continues to apply to players who had already themselves become agents. So two steps of coalescence 
of this sort result necessarily in the achievement of the “grand coalition” in the form that all three of the players are represented by one of them who, as the agent acting for the other two, can access all the resources of the grand coalition (which are simply v(1,2,3) since we simplify by considering a “CF game” that is DEFINED by the characteristic function given for it).

    For the specific modeling we simplify further by having v(1,2,3)=1 and  v(1)=v(2)=v(3)=0 and we call (for convenience with Mathematica, etc.) the values of the two-player coalitions by the names b3=v(1,2), b2=v(1,3), and b1=v(2,3). These three numbers, b1, b2, and b3 define the games of the family we studied. We finally obtained graphs illustrating how the calculated payoffs (to the players, based on our model) would vary, as b3 (or b1 and b2) would vary, compared with similar graphs for the Shapley value and the nucleolus (which are calculable for any CF game).

    At the first stage of elections (in which every player is both 
a candidate to become an agent and also a voter capable of electing some other player to become his authorized representative agent) there are six possible votes of acceptance and we described the probabilities for each of these by the parameter symbols a1f2, a1f3, a2f1, a2f3, a3f1, and a3f2. (a3f2, for example, is the probability 
of the action of P3 (Player 3) to vote for P2 (which is to vote 
to accept P2 as his elected agent).

    These probabilities, like all of the voting probabilities in the model, need to be related to demands, as we will explain.

    After the first stage of elections is complete and one agency has been elected (Note that this requires some precision of the election rules that we need to specify.) then there remains one “solo player” and one coalition of two players of which one of the two (like a strong committee chairman) has been elected to be the empowered agent acting for both of them.
    Then for the second stage of elections there are 12 numbers that describe the probabilities of “acceptance votes” (but only two of these numbers are truly relevant corresponding to each of the six possible ways in which an agency had been elected as the first stage of agency elections). These numbers are a12f3 and a3f12, a13f2 and a2f13, a21f3 and a3f21, a23f1 and a1f23, a31f2 and a2f31, and a32f1 and a1f32. 

    Thus a12f3 is the probability of a vote by P1 representing 
the coalition, led by P1, of P1 and P2, voting for his (and his coalition’s) acceptance of P3 as the final agent (and thus as effective leader, finally, of the grand coalition). Alternatively a3f12 is the probability of a vote by P3, as a solo player, to accept the leadership of the (1,2) coalition (as led by P1) to become also

effective as his enabled agency and thus to access the resources 
of the grand coalition.

    With the election process we need rules that specify simple outcomes (eliminating tie vote complications, etc.) so what we used was that if in any  election there was more than one vote of accept-ance that then a random event would select just one of those (two 
or three) acceptances to become the effective vote. This convention suggested the naturalness of allowing an election to be repeated when none of the voting players had voted for an acceptance.

    The convention of repeating failed elections seemed to be a very favorable idea. (It also seems to favor some of our projected refine-ments or extensions of the modeling, as we explain later.) So, as variable parameters affecting the model structure, we introduced “epsilons” called e4 and e5 where the probability of repeating 
a failed election AT THE FIRST STAGE OF AGENCY ELECTIONS would be 
(1-e4) (this is expected to be a “high probability”) and the similar probability applying in the event of election failures at the second stage would be (1-e5).   
    (We will say more below about the benefits of having elections that are typically repeated when no party votes.) 
    Besides the set (presented above) of 18 numbers describing the probabilities for votes of acceptance there is a set of 24 numbers that describe how the players choose (this is a strategy choice!) to allocate utility among themselves and these numbers are linked with the 12 differentiable possibilities for how some individual player happened to be elected to become the final agent.

    These numbers are {u2b1r23,u3b1r23}, {u2b1r32,u3b1r32}, {u2b12r3,u3b12r3}, {u2b13r2,u3b13r2}, {u1b2r13,u3b2r13}, {u1b2r31,u3b2r31}, {u1b21r3,u3b21r3}, {u1b23r1,u3b23r1}, {u1b3r12,u2b3r12}, {u1b3r21,u2b3r21}, {u1b31r2,u2b31r2},

and {u1b32r1,u2b32r1}.
    The notational pattern is that, e.g., u1b2r31 represents “the quota of utility allocated to Player 1 by Player 2 in situations where Player 2 was elected as final agent by the coalition of Players 3 and 1 when this coalition was led by Player 3”. The “hidden allo-cations” are like u2b2r31 and these must be non-negative. u2b2r31 would be the amount that Player 2 would allocate to himself in this situation. Of course u2b2r31 = 1 – u1b2r31 – u3b2r31 because the resources (v(1,2,3)) of the grand coalition are simply +1. 
    Another generic case is like u3b13r2 where the final agent (Player 1 here) was previously the agent in control of a coalition (coalition (1,3) here) and he allocates u3b13r2 to Player 3 and u2b13r2 to Player 2.

    So these uxbxxxx numbers must all lie between zero and +1.

  Relations of Demands and Acceptance Probabilities

    For most of the cases, in the modeling of the games of three players, the relations between the acceptance probabilities and the controlling “demands” (which demands are parameters that are strategy choices of the players) are natural extensions of the comparable relations for two player games (and this is simply because MOST 
of these numbers actually relate to “second stage” elections where the field is reduced to just two voters and two candidates!).

    Thus we specify that a12f3 is to be controlled by a “demand” d12f3 which is made by Player 1, who is the competent voter in the situation (which is that (1,2) is led by Player 1 and that P3 is “solo”). The formulae controlling the relation mathematically are

   a12f3 = A12f3/(1 + A12f3)  (with) 
   A12f3 = Exp[ (u1b3r12 – d12f3)/e3 ] .

This is actually EXACTLY LIKE the relation used for a bargaining game of two players. (u1b3r12 corresponds to u1b2 there.) But here the perspective is thus: “Player 1 is leading (1,2) and considering whether or not to accept P3 as the final agent, so in relation 
to this he looks at the utility payoff, u1b3r12, that he WOULD BE ALLOCATED by Player 3 in the event of that (effective) acceptance and he compares that number with his demand d12f3 and this comparison

(modulated by e3) controls Player 1’s probability of voting to accept Player 3 in the situation”. (Note incidentally that Player 1 here appears as acting entirely in his selfish interest and disregarding any concerns of the (represented) Player 2 (!).)

    Similarly we specify, for a2f13 as typical, that

   a2f13 = A2f13/(1 + A2f13)  (with) 
   A2f13 = Exp[ (u2b13r2 – d2f13)/e3 ] .
    So for the 12 acceptance probabilities relating to the possib-ilities for votes at the second stage of elections there are linked 12 demand numbers, as described above. 
    But for the first stage of elections the version of modeling (perhaps not optimal) that we happened to use had three demands that controlled the six a-numbers a1f2, etc. that applied to that stage 
of the process of elections. This was because we only allowed that 
a player should choose a single demand number so that d1, d2, and 
d3 were these choices. Then each player’s choice of his “demand” 
controlled BOTH of his probabilities for voting for acceptance 
(of one or another of the two other players).  

    Thus a relationship between d1 and the pair of a1f2 and a1f3 was created so that Player 1’s (strategy) choice of d1 modulated his BEHAVIOR (as described by a1f2 and a1f3. In this relationship we used calculated utility expectation measures that we called q12 and q13. Here, to illustrate, q12 is “the expectation of the average receipt of utility, by P1, conditional on the assumption that P1 has achieved acceptance of P2 (at the first stage of elections) so that the coalition (2,1), led by Player 2 is formed to (enter into) play at the second stage of elections”. This quantity q12 happens to be calculable entirely from e3, e5, and the quantities that describe 
the behavior of players P2 and P3.
    The governing formulae relating d1 to a1f2 and a1f3 are then these:

 a1f2 = A1f2/(1 + A1f2 + A1f3)  and  a1f3 = A1f3/(1 + A1f2 + A1f3) ;
    with

  A1f2 = Exp[ (q12 - d1)/e3 ]  and  A1f3 = Exp[ (q13 - d1)/e3 ] .
    The structure is that A1f2 is a non-negative number which is large or small depending on how the rewards to be expected by P1 when P1 would manage to accept the agency offered by P2 compare with d1 while A1f3 similarly depends on the prospects if P1 becomes an acceptor of P3. Then the formulae (on the first of the lines of equations just above) give the definitions or constructions of a1f2 and a1f3 such that these can be the probabilities of exclusive events (since either P1 can vote for accepting P2 or P1 can vote for P3 (similarly) or P1 can simply decline to make any vote for an acceptance.

    (The expressions derivable for q12 and q13 are not very long and they are dual under symmetry of P2 and P3, so for illustration,

     q12 = ((1 - a21f3)*(1 – a3f21)*b3*e5 + 2*a21f3*u1b3r21 +

             a3f21*((2 - a21f3)*u1b21r3 - a21f3*u1b3r21))/

              (2*(1 - (1 - a21f3)*(1 – a3f21)*(1 - e5))) 

and q13 is dual to this.)
    We can also remark that a technical point of detail enters into the actual calculation of the formula above: If it happens (which has probability e5 at each trial) that a second stage election failed after Player 1 had accepted Player 3 then in that case our rule was that the players P1 and P2 were to be each given a payoff of b3/2 
while P3 is to be given zero (and this instance of the playing of the repeated game is then complete). (Thus technically our example game is an NTU game but we can still use Shapley value and the nucleolus

because of generalizations of those.) (It would have been rather complicating to allow the agent for a two-player coalition to allo-cate at his discretion the limited resources of that coalition and 
it would presumably be irrelevant for a game symmetric between P1 
and P2 with only the (1,2) coalition having resources.)

     The Equations for the Equilibrium Solutions

    From the quantities above, not including the demand numbers, 
the patterns of the actual (steady) behavior of the three players is fully described. These numbers, 18 a-numbers and 24 u-numbers, or 42 parameters in all, therefore describe the directly observed behavior of the players.

    So we can compute the (moderately lengthy) terms of a vector payoff function, say {PP1,PP2,PP3} describing the payoff consequences to the players of their behavior with the terms being rational fractional expressions in these 42 quantities plus also a dependence on e4 and e5 (because of the effects of the chances of repeating failed elections).

    It is, however, the d-numbers and the u-numbers (but not the 
a-numbers) that are officially the strategic choices of the players. For the proper set of equilibrium equations we need to work with these. This involves, in principle, the substitution for all of the a-numbers of the expressions derivable for them as functions of the d-numbers and the u-numbers. So suppose that the completion of these substitutions would give us an expanded vector payoff function 
{PP1du, PP2du, PP3du} in which all appearances of a-numbers have been replaced by the expressions that describe their reactive varying (as the players vary their behaviors in reaction to the observed actions of the other players). Then the set of 24 + 15 = 39 equilibrium equations for the strategic u-numbers and d-numbers are derivable by taking, for each of the strategic parameters, the partial derivative, with respect to it, of the payoff function of the player who is the controller of that strategy parameter.

    Actually, however, we found, starting with the study of two-
player cases, that we could take a modified route of derivation and arrive at simplified yet equivalent equations. But, skipping all 
the details, the PI worked with the project assistant Alexander Kontorovich in a program where the two workers independently derived the equations so that the results could provide good confirmations. Methods were also developed, working within Mathematica, that could exploit the symmetries of the game (with b1, b2 and b3 as symmetric symbols) and these gave both cross-checking benefits and also 
made it possible to derive multiple variant equations from one 
good calculation. In particular, the 24 equations associated with 
u-numbers, because of the 3-factorial (3!) symmetry, became 4 groups of six and only one of each group really needed direct calculation.
    In the end, with the chosen simplifications, we transformed into equations NOT INCLUDING any of the d-numbers but including all the
a-numbers. This needed the additional inclusion of three equations 
of the sort of an equation linking a1f2 and a1f3 , which both depend on d1, which is being eliminated from the simplified equations. Thus there are 42 equations, involving as variables the a-numbers and the u-numbers, for a general game.

    When the game has symmetries the equation set can be much 
reduced. If b1 = b2 = b3 then all of the two player coalitions have the same strength and then we can look for solutions involving the same behavior for all players. Then the equations reduced to merely 
7 in number (and this was a good basis for finding the first solu-tions!). If merely b1 = b2 then the coalitions (1,3) and (2,3) have the same strength and we can look for solutions with P1 and P2 in symmetrically patterned behavior. This leads to a reduction to 21 equations, and we did most of our work on calculations with these 
21 equations since that level of symmetry was enough to yield differentiation among the various value concepts that could be compared. 

   Prospective Model Improvements or Refinements

    Because the project research has already exhibited results that compare very interestingly with the analogous results (in terms of predicting game payoffs) that are derivable from the Shapley value, from the nucleolus, or from models of the “random proposers” type, 
we can wonder if variations in detail of our modeling would affect these comparisons in one direction or another. Good ideas to enable or facilitate the study of games with 4 or more players are naturally 
also of interest.

    One quite simple idea is that if by election a coalition of two players has been formed, with one of them elected as the agent authorized to act for both, then that it is not apparently in the interests of those two players to give information unnecessarily to the third player, so that the identity of the agent-leader who was elected in the formation of that coalition of two players may as well or better be kept secret. Then we find that very nice reductions 
of the quantity of the strategic data necessary for the players are 
a consequence. For example, the a-numbers of the types illustrated 
by a1f23 and a1f32 would need to become coincident, with the same applying to the related strategically chosen d-numbers d1f23 and d1f32, simply because P1 WOULD NOT KNOW which of P2 and P3 had been elected to be (as it were) the chairman of the committee formed by the two of them.

    Furthermore, u2b1r23 and u2b1r32 would likewise need to be the same number.

    Thus with “secret coalitions”, where the fact that the first stage of agency elections has succeeded would be known to all but where the remaining solo player would not be advised of WHO had elected WHOM in the formation of the coalition of the others; this change  would reduce the total number of strategic parameters needed from 39 to 30. (And this with probably no loss of good representation 
of the interactions of the players’ interdependent interests.)  

   Shifting the Agency Function to Attorney Agents
    A variant scheme of modeling based on the introduction of “attorney agents”, because of its perhaps giving payoff outcomes 
that are possibly either closer to those derived from Shapley or those from the nucleolus, is particularly of interest. (We found 
much earlier, for two-person bargaining games, that it was successful 
to use a variant of the modeling in which a single “attorney agent”

would perform the agency functions that were originally being performed, alternatively, by one or the other of the original two players. In this variant the two players would need to simultaneously both vote to elect the attorney.) 

    When we first conceived of the possibility of approaching coop-erative games via a repeated game modeling supporting the analogy with natural evolution at that time the idea of attorneys as agents occurred as soon as did the idea of the players themselves becoming agents for each other. But our initial viewpoint was that the attorneys should be expected to lead to much more of complications 
in detail!

    But now, after further consideration and stimulated by the hope of possibly finding an increased level of influence, on the model’s predictions of payoffs, of 2-player coalitions of only moderate 
value, we have thought more about the possibilities and have learned that a shift to attorney agents, for the same type of 3-player 
games, would yield a reduction from 39 strategy dimensions to only 
26 dimensions. (This includes 2 dimensions for a (model optional) special attorney agent who would represent the grand coalition {P1,P2,P3} and would stand as an election alternative at the first stage of agency elections.) 

    Each 2-player coalition would be represented by a dedicated attorney agent who would function somewhat like an “in-house” attorney working on corporate law (on a salary rather than on commissions!). We would model him/her/it as functioning like a robot that is motivated SIMPLY TO MAXIMIZE his/her/its frequency of being employed. (Of course this means that the attorney becomes a player 
in the expanded model and that the attorney’s payoff is determined by his/her/its frequency of employment. And the attorney has strategies also and at equilibrium will be setting these strategic choices so 
as to maximize his/her/its expected payoff.

    To become authorized to act the attorney agent for a set of two or three players would need to have received the simultaneous votes of all of the set of players of the represented coalition. But for this the players would not need, necessarily, to be voting for the coalition (and the agent) with a high probability since we could arrange that with probability (1-e4) that a failed election would be repeated (with here e4 being a small “epsilon” just like in the model already studied computationally). We say more about the elections below after touching on “reluctant acceptance” as a phenomenon.
    It can be remarked now that the election results are naturally unambiguous if all members of a possible coalition must SIMULTAN-EOUSLY vote to authorize the election of the attorney representing them as coalesced members of that coalition. Of course, if a 5-player game were similarly modeled, with competing attorney agents to be alternatively elected, then of course it COULD happen that two non-overlapping coalitions of 2-player type would simultaneously be elected. 
          Reluctant Acceptance Behavior
    It was only as a consequence of actually working on the details of the research project that we discovered the apparent desirability of allowing the players to find the sort of an equilibrium in which they would only rarely, comparatively, vote to accept the agency function of another player.

    Of course it is obvious enough that the acceptance action is quasi-altruistic, since the agent accepted is not at all constrained to consider properly the interests of a player accepting him/her EXCEPT through the structure of the repeated game context AND through the reactive behavior of the players built into the model structure. Thus a player will be “DEMANDING” to be treated by a chosen standard (of benefits) in connection with any particular type of acceptance vote.

    The players MUST be sometimes accepting, in a global sense, or they would not ever be gaining any of the benefits specified for the coalitions by the characteristic function.
    So we found that simply providing a rule for the probable repet-ition of failed acceptance elections caused the calculable equilibria to shift, in line with the highness of the probability of election repetitions, so that the same sort of efficiency of reaching close 
to the Pareto boundary would be attained with lower probabilities 
of acceptance, in the voting, whenever the probability of repeating 
a failed election would be improved.

    Thus the players could become as if wise negotiators waiting patiently for the other sides to make concessions! 

    There was another advantage found with arranging for “asymptot-ically perfectly reluctant accepting” and this was that this idea seemed to remove what otherwise would appear as an arbitrary rule for the elections, that being the rule that if more than one voter voted, then a single voting action, chosen at random, would be certified and made effective.

    We now see, in relation to the prospect for developing a success-ful model with “attorney agents”, that the natural possibility of an agent representing the grand coalition, (1,2,3), being in candidacy for election at the first stage of voting seems to become reasonably feasible if the players are voting “reluctantly”. Thus if they were voting with probabilities only like 10^(-12) for the (attorney-)agent of any two-player coalition they could be voting with probability like 10^(-8) for the agent of (1,2,3) and then the differently sized coalitions would all have probability like 10^(-24) of being elected (at the first stage of voting). (Of course this would call for an e4 value definitely much smaller than 10^(-24) so that the players would get repeated opportunities after behaving quite “reluctantly” in their voting!)

    Furthermore the prospects for good models for games of more than three players seem favored by the possibility for having coalitions of various sizes being simultaneously “in candidacy” for election; but of course that area would need to be cautiously investigated and premature speculations can hardly be regarded as justifiable.

    Pro-Cooperative Games and Evaluations of Games

    The forthcoming book of E. Maskin, which expands on his Presiden-tial Address to the Econometric Society, has a theme that connects with our idea of “Pro-Cooperative Games”. This is the theme of “externalities” as realistic considerations that are not included in the formal description of a game (say as a “CF game” in particular) and which COULD act, for example, to (effectively) prevent the formation of the grand coalition.

    We began to see that in our games studied by our modeling method (with agencies) that if the strengths of all of the 2-player coal-itions were quite large (and comparable to v(1,2,3) = +1) then that it would be quite reasonable, in a repeated game context, for there to be various stable equilibria. Thus any two of the players could 
be seen as being able to “learn” that they are natural allies and then, through an alliance, gain the lion’s share of all the possible benefits from the game.

    The concept of a “pro-cooperative game” would be that of games where such an alliance of two players would not be able to thus benefit them. Then these games would be more properly suitable for being assigned a “value” (by whatever means of evaluation would ultimately be selected).
    The Study of Equilibria That Are Less Central 
    We have found, in the work done up to now in searching for 
equilibria according to our studied model for simple CF games of three players, that it was easier to find solutions in families 
that exhibited the active use of all the behavioral options of 
the players. But it was becoming clear that for some values of the coalition strengths that it apparently would become appropriate 
for one or more of the options to become (electively) suppressed 
by players seeking optimization. It is possible we might want to use modified formulae for relations between “demands” and “acceptance behavior” to help with these areas since, as it is, the demand number associated with a suppressed action becomes positive infinity! 

     Comparisons with Random Proposers Modeling 

    Several references in the Bibliography can be viewed as works that relate to the “Nash program” (which was the suggestion that 
the study of cooperative games should, somehow, be reduced to that 
of non-cooperative games).
    We also have references to studies of games of more than two parties that are based on a method of modeling with “random propos-ers”. These studies have themselves cited the influence of earlier studies, by Rubinstein et al, of “alternating offers” models that have been somewhat successful for studies of two party bargaining games.

    With the “random proposers” models the mathematical calculations necessary to find equilibria are not so difficult as to limit the results available to numerical approximations (as they were found 
to be with our modeling based on elected agencies) and some really 
nice results have been obtained in the sense that relatively simple relations to the nucleolus and the Shapley value have appeared in
the outcomes.

    But what is the truth (if there is any truth!!)?

    We suspect, actually, (and this can be viewed as a private opin-ion) that the “random proposers” modeling simplifies the bargaining and negotiating context by removing an element of the “free enter-prise” type. So while nice results are deduced, in terms of mathe-matical simplicity, they may be only approximate results, in some sense.

    With the modeling in terms of “agencies” it was as if all players are always proposers but only occasionally does a player become an ACCEPTOR (of the proposal of another player). So the element of “free enterprise” possibly enters as the players, on their own initiatives, select and decide upon which proposals to accept.
    Researchers studying the “random proposals” models have observed that when a player becomes a “proposer” that this seems to give a differential advantage to him. Of course using random assignments, among the players, evens out the advantages, but that is not the same as a “free enterprise” process in its basic nature.

    We feel that a truly ideal concept, in relation to the study of games, is to achieve the capacity to give valuable appraisals of a game situation to the players or prospective players of the game.

    An “arbitration scheme” (in the words of Luce and Raiffa) could be developed on the basis of a theory that seemed helpful toward game appraisals. But we wish to remark that, in principle, there is some risk of building an “arbitration formula” into a modeling procedure used in studying games. So the arbitration formula cannot be validly DERIVED if it is already inserted as an assumption in the modeling!

           Relevant Existing Literature
    The recent work of Abreu and Pearce notably involves, like our modeling scheme, the study of the repeated games context. In this context they are able to deal with both the cooperative and the competitive aspects of a situation of bargaining that is not of the simplest variety.

    Harsanyi was an early pioneer explorer in the search for theo-retical understanding of cooperative games including, particularly, games of the NTU category.
    Rubinstein’s 1982 paper in Econometrica influenced various later papers connecting bargaining and offers and acceptances. 

    Others, for example Gul (1989), Osborne and Rubinstein (1990), Montero-Garcia (1998), Seidmann and Winter (1998), Ferreira (1999), and Ray and Vohra (1999), in a general sense, look at coalitions from a "dynamical" viewpoint, understanding that the participants in a game-like situation must act appropriately for coalitions to actually form.
    The papers of Baron and Ferejohn, of Okada, and of Gomes have made use of the “random proposers modeling” and are good sources in relation to that idea (which has antecedents going back to Rubinstein and Stahl).
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