       Talk at Stony Brook in July 2002

             Review of Agencies

     The work of the research project reported 

on now depends on the concept of "Agencies" as 

a means for reducing the complexity of the 

potential considerations of coalitions. Since I have previously spoken here about the basic idea of employing the agencies concept I will just review the basic concept now.

   In principle, as far as human language and human social thinking are concerned, a coalition, like a small group of human individuals, could 

get into very elaborated forms of behavior, simply because humans can talk among themselves in very complex fashions.

   By using the concept of elected agency powers the effect is that instead of coalitions there are just committees which are always entirely led by 

a dominant chairperson.

   The non-cooperative game, as a continually repeated game, is introduced as the game in which the agencies are elected. Whenever a player elects to allow himself to be represented by another player as his agent he renounces all control over his original strategic resources and assigns those powers, as if by a "power of attorney" grant to the agent who becomes like the leading chairman 

of a committee including the player electing to 

be so represented.  

   My idea that this approach to coalitions could be useful was inspired by learning of the work that had been done by researchers studying cooperation in the context of biological evolution and in particular the concept of the stability 

of cooperative behavior in the context of a formally non-cooperative game that is modified by repetition. And the "Prisoners' Dilemma", called PD, was often the example game studied.

   So in the sort of model that has been studied in this project and like which we hope to study more the players gain compensation for the need 

to give away their powers and rights by electing agents by being able to impose "demands" which make them reactive participants in the repeated game. Thus they are able to behave analogously to players of a repeated PD game that operate on a "tit for tat" strategy in relation to cooperation. And then if the "demand" or "demands" of a player are not satisfied then he or she reacts by reducing his or her "acceptance" behavior. That is, the player modifies his or her behavior in such a way that the probability of that player voting to grant agency power to some other player is reduced.

   We have found that it is possible to find "bargaining equilibria" in games of two or three players using models or modeling of this sort. 

And some problems or details of complication have appeared which have led to consideration of

refinements in the models.

   Ideally, there could be evolved and developed an analogy to the mathematical methods (studies of PDE descriptions for the air flow, etc.) that are used in weather prediction. On a materialistic-commercial level this would naturally apply to the details of the deals in big corporation mergers (like of Pfizer and Pharmacia recently). Or also we can hope to get more insight relating to

existing value or evaluation concepts such as, notably, the Shapley value or the nucleolus.

   This program of research has led, in connection with the approach to coalitions and cooperation via the model of agencies, to the consideration of

varied models of how the players or participants can "react" to favorable or unfavorable behavior by other players in the repeated game and to the study of varied concepts of how the players may choose "demands" that regulate their reactive behavior. For example, in the analogous area of the study by theoretical biologists of the possibility of the evolution of cooperation in

repeated games of PD type, there have been found various types of "reaction instinct" that can 

work to favor cooperation. Besides the simplest "tit for tat" instinct there can be more complex variants which may require more memory (of 

recent past game experiences in the sequence of repetitions). The analogous situation in terms of models with the election of agencies is that the "demands" that players could be allowed to make might be more or less elaborately structured.

   I am now working on a more complicated model (for three players) than that previously studied (and reported on here in 2001) because an expedient used in that simpler model to reduce 

the number of equations to be solved seemed to lead to problems (on which more comments later).

       Common Features of Last Year's 

        Model and the Current Model

    These models are the same in having a procedure of elections by means of which the agency powers are elected. In the previous model there was a simpler procedure employed after a first stage of agency elections had been effective

in reducing the remaining set of active players 

to merely two. We used a sort natural bargaining scheme through which competing choices, by 

the remaining players, of utility allocations 

could be rationalized. However this device of simplification did not follow straightforwardly the basic concept of the agencies as players in the same sort of game interaction as for all 

the players at the beginning of the playing of 

the game.  

    Both versions began with a first stage of elections where each of the three players could vote (or "choose") any specific one of the other two players to be his agent. In either version these voting or choosing actions (as repeatedly

taken in the repeated game context) are described by numbers that represent, effectively, the BEHAVIOR involved, or the probability of the action being taken when the opportunity is presented.

    Thus we have an array of six numbers (and three "implied numbers") that describe this:

For Player 1:     For Player 2:     For Player 3:          

 a1f2 & a1f3       a2f1 & a2f3       a3f1 & a3f2

   And these represent the probabilities of specific voting choices. Thus, for example, a2f1 is the probability that Player 2 will choose (at the first stage of the game) to elect that Player 1 should be authorized to act as his agent (as if with "power of attorney"). So it is "acceptance rate of 2 for 1" in the concept underlying the notation.

   The other aifj variables have parallel meanings. And it is sometimes convenient to use another type of symbol like  n3 = 1 - a3f1 - a3f2  which is the probability that Player 3 chooses NOT to accept either of Players 1 or 2 as his agent; or thus this is the probability the Player 3 votes "neither" or for himself.

   And since the three players make their 

first votes simultaneously there can be various outcomes. We have chosen a rule to simplify the process by which there is proper response to the votes. If the number of acceptance votes cast by the players at the first voting opportunity is more than one then we apply a rule that only 

one of these votes, chosen randomly, is to be accepted, so that the result of the election is either (1): that one of the players has elected some other player to be his agent or (2): that none of the players has voted to accept any other player to be an agent representing his interest.  

   We have also introduced a convention that in case of a failure of the players to come together at all so that no agency has been elected that, with a certain probability, the first stage of elections can be repeated. This idea was also used in our prior model. The probability of the players being given another chance to elect an agent is called (1-e4) or "one minus epsilon sub 4" and 

the idea is that we want to study results of calculations as e4 tends asymptotically to zero. (It was found, in the case of the previous 

model, that as e4 would tend towards zero the probabilities like a1f2 would also tend towards zero but that agencies would be elected with high probability because of the continued offering 

of "second chances" for the basic action of

coalescence (the election of an agency).  

   The Second Stage of the Election of Agencies

   In our prior model, after one agency had been elected and only two active players remained we based the payoff on the utility assignments which had been chosen by the two remaining players, taking into consideration two numbers chosen by the player that had been elected as an agent and one number chosen by the remaining solo player.                                        

    In the model currently being studied 

the approach is, in a sense, more "orthodox" 

with respect to the idea of agencies and all possibility of general cooperation is reduced 

to the idea of the final election of a "general agent". So when one player has accepted another 

as his agent there then remain two freely acting players and the level of cooperation corresponding to the "grand coalition" is not realized until one of them has elected the other as his agent.

    But if this final agency election fails to be realized then we can allow the existing agency to exploit the resources of the two player coalition formed by the two players involved. (And in a simple case, like we consider, this can lead simply to the use of the resources specified by the characteristic function for the coalition 

of that pair of players.)

    Similarly with the idea for the first stage 

of elections we allow the second stage to be repeated, with a probability of (1-e5), if neither side has elected the other side to agency power and the idea is that we want to study the limiting

form of the results as e5 asymptotically goes to zero.

    Once a "general agent" has been elected then he/she has the privilege of being able to allocate payoffs, from the total of the payoff utility resources available, to all of the players, including himself. Our model has simply a resource total available of +1 which corresponds also to the Pareto boundary of the game. 

    For each player there are four possible ways by which he could have become chosen as final agent. Either of two players may have initially elected him, and this leads to two cases, or the other two player may have initially combined in 

either of two ways followed by his being elected by the agent of that two player combination. And then as final agent he has essentially to choose 

a point in 2 dimensions to determine his choice 

of Pareto-accessible utility allocations.

    This leads to 8 dimensions for each player 

and there are three players so that this leads to 24 dimensions in all for the choices made by the players when they specify allocations of utility after being elected as "final agent". These are 24 out of a total of 39 "strategy variables" that are regarded as subject to the individual and individually optimizing choice by the players.

    And the other 15 dimensions of strategic choice by the players correspond to their choice options in relation to their reactive behavior 

(in the repeated game). The behavior of the players that is affected by or controlled by 

their reactive strategy choices is, in general, their "acceptance behavior".

         The Third Stage of the Game; 

          the Allocation of Utility

    When two stages of agency election are complete then one of the original players has become the agent for all and he "allocates" the payoffs. These are presumed to be Pareto-efficient and so we suppose that he/she specifies three non-negative numbers with sum = +1. The information for this is specified by the amounts allocated 

to the other players and that is two numbers. This leads to 24 strategic choices in all of this type, for all the players.

   For example, in cases of type UjBijRk player number i is in control and was first elected by Player j and then by player k and player i chooses to allocate the payoff of ujbijrk to player j 

(and ukbijrk to Player k, but that is another 

case of allocation strategy variables).

   Or for example, u1b3r21 is decided upon by Player 3, who was elected by Player 2 after Player 2 had been chosen by Player 1 in the first stage. This is the amount allocated to Player 1 and u2b3r21 would be the amount allocated to Player 2 (who has a different position in the history of the elections). Player 3 of course also allocates u3b3r21 to himself, but this is eliminated from our system of 42 equations in 42 variables 

because of its simple relation to the other 

two allocations by Player 3 here.

   So there are 24 "utility allocation" variables (which correspond to strategic choices by the players) and they group into the 4 categories 

of UjBijRk, UkBijRk, UjBiRjk, and UkBiRjk.   

         "Demands" and Behavior in the 

           Second Stage of the Game

    When the "second stage" is reached one player has become an agent, another player is represented through this agency, and a third player remains solo.

    Suppose that Player 1 now represents 2 and that 3 remains solo. We call a12, short for a12f3, the probability that 1 now chooses to vote for 3 as the final agent. (This is observable behavior on the part of Player 1 in the repeated game.) And we call af12, short for a3f12, the complimentary probability that Player 3 will vote to accept Player 1 (who already represents Player 2) as the

final agent.

    These classifications lead to 12 numbers, 

six of each type.

    These 12 numbers ARE NOT "strategic" choices by the players involved, rather we arrange 

that they are determined by "reactive behavior" regulated by "demands" which are the actual strategic choices for the players.

    For example a12 (or a12f3) is specified to be A12/(1+A12) where A12 will be a positive number. This makes a12 a positive number less than +1. 

And the quantity A12 controlling a12 is specified to be A12 = Exp[ (u1b3r12 - d12)/e3 ] .

    Here e3, or "epsilon sub 3", is intended to 

be made ultimately very small, as we study the equilibria of the model. That smallness will 

make A12 react sharply as d12 and u1b3r12 vary 

in relation to each other. The number "d12" is 

the "demand" chosen (strategically) by Player 1 

in relation to this situation where he can vote 

to accept Player 3 as general (final) agent or alternatively wait and hope that Player 3 will accept him instead (!). And what the formula takes 

into consideration is simply the prospective gain or payoff to Player 1 in the case where Player 3 becomes general agent and previously Player 1 had been elected to represent Player 2, and this is specifically u1b3r12.

   There are 6 demand strategy numbers like d12 (controlling a12). And there are also six quite analogous strategy choices like, for example, df23 controlling af23 (or a1f23). So "df23" is a choice by player 1, since it controls a1f23 or the probability of the acceptance by Player 1, as a solo player in stage 2 of a game, of the agency 

of Player 2 when Player 2 is already representing Player 3. So we have  af23 = AF23/(1+AF23) or  a1f23 = A1F23/(1+A1F23)  with the relation 

of AF23 = Exp[ (u1b23r1 - df23)/e3 ] being specified for the control of the acceptance behavior by the (strategic) demand choice. 

Or this could be called, in longer notation, 

A1F23 = Exp[ (u1b23r1 - d1f23)/e3 ] .

   Demands and Acceptance Behavior at Stage One 

    At the first stage of elections, when all three players are "solo" we have made a choice, conventionally, of how to relate election behavior to "demands". The choice made is not absolutely free from any possible arbitrariness and something more complex might also be considered appropriate.

   Each player, like e.g. player 2, has the 

option of voting either for Player 1 (behavior 

of probability a2f1) or for Player 3 (a2f3) or 

for not voting for either of them (behavior 

described by  n2 = 1 - a2f1 - a2f3  ). The model, 

in the same manner as the previously studied model, relates these behavior-describing numbers (or probabilities) to a single demand parameter called d2 which is all of the strategic choice by Player 2 that relates to stage 1 of the game. We specify in the model that positive numbers A2f1 and A2f3 are determined (controlled by d2) and that  a2fj = A2fj/(1 + A2f1 + A2f3)  where j is either 1 or 3. 

   A2fj is specified to be  Exp[ (q2j - d2)/e3 ] where q2j is specified to be the calculated expectation of payoff, to Player 2, under the hypothesis that the game has passed to stage 2 with Player 2 having become represented by 

Player j as his agent. So Player 2 chooses, strategically, the demand d2 which is                      interpretable as describing what Player 2 

"demands" he/she should expect in gains if 

either (q21) Player 1 becomes his representing agent or (q23) Player 3 becomes the agent representing Player 2 in stage 2 of the game.

   Then the three strategy variables, d1, d2, and d3, control the six behavior probabilities a1f2, a1f3, a2f1, a2f3, a3f1, and a3f2 which completely describe the actual (observable) behavior of the players in stage 1.

            Variables in the Model

   In all we have 39 "strategic" variables in the model, 15 "demands" and 24 choices of "utility allocations". But we replace all the demand variables, like d23 or d1, by associated controlled behavior probabilities like a23 or a1f2 

and a1f3. And then we arrive at simpler equations with most of the appearance of exponential functions being eliminated.

   It is a matter of practical considerations, 

how to find actual numerical solutions of the resulting equations. There is experience with this problem from work on the previous simpler model but for the current model the work has only

just arrived at a reliable derivation of the actual equations to be solved (in good form for study with applicable computer software) with the aid of the work of an NSF project assistant (AK).   

   So the challenge remains to be dealt with of actually finding the instructively revealing results from numerical solutions for model equilibria.

           Comparisons from Results

    The model is designed so that the game can 

be of a type where the Shapley value and the nucleolus give quite different "evaluations" of the game. Which of these, for example as a guide usable in an "arbitration scheme", is better or

worse (if such comparisons could be valid in any sense)? Naturally, any other route which leads, however it does so, to an "evaluation", can lead to a basis for comparison of these, and of other approaches that give evaluations.

   Our modeling, as also with the previous model, has three parameters that describe the resources available to each of the two-player coalitions. 

If these are small positive numbers, say of 

size less than 1/3, then the standard nucleolus

evaluation effectively disregards them although the Shapley value gives them a modest weighting 

in its evaluation of the game.

   Our previous model turned out to give numerical results in cases of this sort where, depending on the ratio of two "epsilons" (comparable to "e3" as described above) the evaluation could be either "hyper-Shapleyan" (compared with the nucleolus at {1/3,1/3,1/3}) or "sub-Shapleyan".

   Ultimately I came to the conclusion that it

was needed to have a MORE UNIFORM concept of 

"fuzziness" to be applied in smoothing out the

sharpness of the effects of "demand" choices. Otherwise, and this became evident in earlier studies of two-player models, if one player would have "sharper" demands and the other would make "duller" demands then the player with the sharper demands would indeed become like a "sharper" bargainer and would tend to gain an advantage 

in the calculated game outcomes! The fuzziness 

is needed for mathematical reasons, so that derivatives of smooth functions can be computed. But under certain circumstances it seems that "unbalanced" fuzziness can somehow "prejudice" 

the game evaluation objective.

             Associated Studies

   The work on this project which seeks to exploit the "agencies" concept to successfully study 

games with cooperation via a reduction to non-cooperative equilibrium considerations has led 

me also to study some other topics.

   One of these was the computability of the nucleolus, since if a variety of sample games 

are studied, and if these are of the sort where the classical nucleolus and the Shapley value are defined, then just for the comparison of numerical

results it is nice to have a quick method for finding the numbers that form the nucleolus vector. It occurred to me that that should be possible by a programmable Monte Carlo style 

of method by which random perturbations would be 

used in finding, to a high level of approximation, the numerical values of the nucleolus components. 

   I tried programming that for use in MATHEMATICA

knowing that often the game would be defined by

rational numbers and that a close approximation 

to the exact nucleolus would lead to finding the exact answer by finding the simple rational numbers for which approximations had been found.

   In the method of successive approximations the

actual definition of the nucleolus would be the

basis for the criterion for the comparison of the

merits of various random perturbations made to an

approximate vector.

   Later I learned of the work of Sven Klauke in Bielefeld where this sort of a method has been the

basis of an effective program in C++ and where there has also been developed an effective program

that works by the method of reducing the problem 

to problems of a "linear programming" type.

   And after being at the Stony Brook meeting 

of last year I thought about the characteristic function as calculated by Harsanyi (this was around 1960) in connection with developing a general solution concept for cooperative games. And then I learned that if this approach were used

to transform the interpretation of a game of three

players and if after that the nucleolus were calculated for the (constant sum) game thus obtained that this would result in THE SAME vector

as that of the Shapley value for the game (which

itself would not be changed by the move to the

"Harsanyi characteristic function").

   On the other hand, if we consider similar 

types of four person games then the nucleolus 

computed after transforming the coalition values information via the Harsanyi characteristic function will not, in general, match the Shapley

value vector.

    And now this seems to me curiously parallel to

how Von Neumann, in 1928, concluded that 3-person cooperative games could be, somehow, evaluated, but that 4-person games were of a different order of difficulty, in terms of evaluation!

