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 Abstract.   A  device is proposed to represent games in characteristic function form as games in normal form, enabling the  former  to exploit the concepts of solution of the latter. A new solution for games  in  characteristic  function  form   is   then   introduced   and   some   properties   are   found. 

A generalization of a result of von Neumann and Morgenstern is thus obtained. 

 

Key words: Characteristic Function Form, Normal Form, Transformation.

 

Short running title: Transforming Games.

_______________________________________________________________________________

 

1.  Introduction

 

   The  classical solutions of games in  characteristic function form  (core, stable sets, values etc.) can be considered as "coalition-oriented",  in the sense that these solutions  are  constructed with a view that each coalition must satisfy all players. This means that the strategic aspect of the players’ choices is ignored and distances the model from the concrete actions of the decision-makers involved.  The approach proposed here, on the other hand, enables the strategies to be placed once more in the hands of the players and therefore to give  “man-oriented“ solutions. 

    In brief, this proposal consists of a transformation of the game in characteristic form into a corresponding game in normal form.  For the latter game the solutions are sought using the classical theory of games in normal form.  The solutions thus obtained are then transferred to the original game.  The existence of such solutions for a wide range of games is demonstrated.  A result of von Neumann and Morgenstern (1944) is therefore generalized.

__________

* This paper extends a previous dynamic approach for political and economic applications (Gambarelli, 1995)  which was more limited, as it was restricted to a particular model of bargaining.  The work is sponsored by MURST.  The author thanks Cesarino Bertini, Vito Fragnelli,  Manfred Holler, Guillermo Owen, Stef Tijs and Mika Widgren for useful suggestions.

   Furthermore,  this  transformation enables us to use  a  specific method of tackling a problem which often arises in the applications  of cooperative games.  In fact, such models  usually assign an effective fraction of the win to all the members of the  global coalition. But in reality a winning  sub-coalition  is often formed, owing to the different propensities to cooperation between the different types of players. Many authors have approached this problem using various “a priori”  techniques; for bibliographical information see  for instance  (Gambarelli, 1994)   and  (Gambarelli  and  Owen,  1994b and  2002). The new approach provided by this model, makes it possible to intervene in determining the winning coalition during the stage where the probabilities of success of each coalition are assigned, and therefore “at the right moment”.

    An  overview of former contributions is given in  the  next section.   The proposed model is described in  the  following four sections. A general method for constructing the transformation is illustrated in sections 7 and 8. The existence of the solution for a particular class of games is proved  in sections  9  and 10.  The solutions of all 2-person games and 3-person simple games are described  in  sections  11 and 12.  Section  13  contains  a comparison  with other solutions, from which it is possible to deduce that the one proposed here is in fact different from the others. Some  conclusions  and  suggestions for further  development  of  this research are presented in the last two sections.

 

 

2.  A glance at the past      

 

   The first connection between different types of games dates back to John von Neumann and Oskar Morgenstern (1944).   They defined a method for transforming into normal form all finite zero-sum  games in extensive form (see pp. 77-84 of  the  III ed.).  They  also suggested a transformation of some  of  the above quoted games (e. g. the superadditive games) from normal  into characteristic function form and vice versa (see pp. 238-245  of  the III ed.). The connections between the normal and the extensive  form constituted an important subject of research,  starting  with the papers of Harold W. Kuhn (1950 and 1953).   As far  as relations between characteristic and normal form  are concerned, no great interest has been aroused. Robert Aumann  wrote on the subject (1967, p. 19): "The passage from the normal to the characteristic function form is not without its pitfalls. Even in the case of games with side payments and transferable utility  (the N-M case), it is not generally agreed that  the characteristic  function as derived from the normal  form  by von  Neumann and Morgenstern adequately represents the  game; this is chiefly because for games that are not  constant-sum, it does not always take adequate account of threats".  Martin Shubik  (1982,  pp. 128-131) added that  the  formulation  in characteristic  form may not retain all peculiarities of  the game,  except in particular cases such as constant-sum  games and games of consent. More recently, Peter Borm and Stef Tijs (1992)  introduced a "claim game" in strategic  form,  corresponding  to an NTU game (see also Borm et al.,  1995).  No general  results are known about transformations of  non-constant sum games from characteristic into normal form.

 

 

3.    The new approach

    The new approach consists in the transformation of the game in characteristic form into a corresponding game in normal form.  Solutions are sought for the latter game applying the classical theory of games in normal form.  The solutions thus obtained are then transferred to the original game.  The transformation is carried out as follows.   Each player, in a preliminary examination of the game, asks the  question: how  much must I demand, to take  part  in  a coalition? If  I ask too little, I won't optimize  my  win, while  if I ask too much, the coalition will refuse me.  More precisely,  the more I demand, the less probability I have  of belonging to a coalition which will actually be formed, up to the  extreme case in which I don't belong to any such  coalition and therefore I can obtain nothing. Therefore the strategies of each player are his demands, while the payments consist of these  demands multiplied by the probability that the  player belongs to a coalition which will actually be formed.

 

 

4.  Definitions

 

  Let N be the set of players of an n-person cooperative game v in characteristic function form. We will consider v as non-negative  (it does not reduces the generality of the results, owing  to strategic  equivalence). 

Definition 1.  We call  "strongly  superadditive" every coalition  of N having a greater characteristic function  than the one of each  of its sub-coalitions.

 

    Let P(v) be the set of strongly superadditive  coalitions of v.  On the grounds of v we construct  the game  G(v)  in normal form as follows.

    Let x = (x1,..., xn) be the real n-vector of the strategies of the players, representing their claims to the  coalitions. 

 

Definition 2. We call “feasible claim” of v  each strategy x such that

v(i)  (  xi (  max  v(S)   for all S( P(v)  and i ( S.

                                                               i (S
Let F(v) be the set of  feasible claims of v. 

 

Definition 3.  For every   S(P(v)  and  x(F(v)  we say that:

· S is a "winning coalition"  if and only if it is able to satisfy all claims of  its  members:                                     ( xi  (  v(S)      

-    S is a "losing coalition", otherwise.   i(S      

 

Definition 4.  For  every  x(F(v)   we call "bunch of winning  coalitions"  (or shortly  "bunch") each connected set B(x) of  winning  coalitions,  which are disjoint from all the other winning  coalitions  of P(v).  

 

  Observe that such bunches  form  a partition of the set of the winning coalitions of P(v)   and  each player belongs to only one bunch.

 

Definition 5. Having fixed a bunch B(x), we call "winning layout" L(B(x)) every  set  of coalitions of B(x)  having two  by  two  empty intersection  and  such that  all the  coalitions  formed  by players of B(x) \ L(B(x)) are losers. 

 

  To illustrate graphically the sets which we have now defined, we will resort to a “botanical” example. In  Fig. 1 each circle represents a  winning coalition.  The set of the winning coalitions of P(v)  is partitioned into two “bunches”, shaped as a bunch of grapes and a flower. The bunch associated to the i-th player  is the flower. This flower is shown in Fig. 2 in three different colour combinations to highlight the three winning layouts of this bunch. Each winning layout of the flower is represented  by each set of dark coalitions.  The white coalitions,  are losers.
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Fig.  1.  Bunches of winning coalitions.
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Fig. 2.  Winning layouts.

 

For each i-th player of N, let  li(x) be  the number of  winning layouts of the bunch associated with i  and l^i(x) be the  number of these layouts which include the i-th player.

 We  denote  ei(x) the expected participation of i in a winning layout , that is    ei(x) =  l^i(x) / li(x) 

 

For instance,  in  the layout represented in Fig. 2 we have

               li=3 and l^i=2  ( ei=2/3;     lj=3 and l^j=3  ( ej=1.

Definition 6. We define "payment" pi of each i-th player, the claim xi multiplied by the expected participation of i in a winning layout, that is: pi(x)= xiei(x).

 

  Note that this payoff definition considers all the winning layouts as equally probable.  A more general definition could take into account the different probabilities of the formation of these layouts, supplied a priori (cf. observations made in the Introduction).

 

 

5.  The trend of the payments

 

   The  particular form of the payments of the game G(v) is now examined. From the above definitions we can deduce the following, for every  x(F and i(N.  

   The payment pi(x) is subject to  0(pi(x)(xi.

  If  i  does not belong to any winning coalition,  then  his payment vanishes. If xi=v(i), then pi=v(i)  (in fact, in this case the coalition (i) is winning and therefore the i-th player belongs  to all the winning coalitions of his bunch, owing to the strong superadditivity).  If  i belongs to all winning coalitions of his bunch,  then his payment coincides with his claim xi.  Every strategy xi=0 is dominated. 

   If  we vary the i-th component of x keeping all the  others fixed, the payment curve of the i-th player is a sequence  of segments  positioned on straight lines crossing  the  origin. The  first segment starts from point (v(i), v(i)) with  slope 1. The slopes of all other segments have the value ei(x)  and are decreasing for each interval on the next right, up to the last interval  where the payment is nothing (see Fig. 3).
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Fig. 3. The payment of the i-th player.

 

 

6.  The solution

 

  In this way the game in characteristic function form has been transformed  into a normal form. It only remains to define the  solution  of this last game and to transfer  it  to  the original  game. In this context we will  employ  a  general concept  of  solution, but of course one can  use  any  other type: refinements, threats and so on. Besides, Pareto-optimality is obviously desiderable, but it could be given up in case (not found so far) of empty solution. 

  So, we define "TG-equilibrium" of G(v) every Nash-equilibrium  x* leading to Pareto-optimal payments of G(v) and "TG-solution" of  v  the set of the payments  p* corresponding to  the  TG-equilibria of G(v).

  Of  course, every payment of the TG-solution is an  imputation  of v, but the existence (or not) in general of such  an imputation has not been proved so far. (Here we will  provide a theorem of existence only for some classes of games).  Also uniqueness is not guaranteed, as some examples will prove.
7.  An algorithm for the transformed game

 

  A  procedure  for the transformation is suggested  in  this section, omitting the very simple proofs. An example of application will be done later.  It  is  of course convenient to deal with one  bunch  at  a time.

   Let  us suppose for the sake of simplicity  that  the group  of  players belonging to  a bunch is  M  =  (1,..., m). (The  processing  of other cases  involves  more  complicated notations, but it is essentially the same).

 

· For each i-th player all k-th intervals of strategies sik = (aik , bik] are  identified in each of which the value of ei (x) is constant. For each set of intervals sk = {s1k1, …, smkm}  we  have to identify the set Wk of the coalitions S which are  definitely  winners, i.e. such that 

                               m
                               (   biki  (  v(S) 

                               i=1
· Setting  aside  the above coalitions, the set  Uk  of  the "uncertain" S is identified, i.e. those coalitions which  are neither certainly  winning nor certainly losing:

                                              m
                               (   aiki  <  v(S) 

                               i=1
If both sets Wk and Uk   are empty, then each player has no payment. 

Otherwise, 

· if Uk  is empty, then the optimal request of each player i ( Wk  is the maximum value bik.

·  if Wk is empty, then we have to search the strategies so that

              m 

           (   xi = v(S)  for all  S ( Uk  ;            

          i=1
· -          if  both  Wk and Uk   are empty, then each player present in all coalitions of Wk, asks his maximum. The other players must compare the request for the maximum bik, with the request for a lower value bik – t, which enables them to take part  in  other coalitions of Uk.  (This latter case will be clarified in the example in the next section).
 

   The values of e are then calculated taking into account the coalitions actually involved.

  A  help  for the recursive generation of the payments  comes from the following properties, for all i, k:

 

Wk+1     (  Wk 

 

Uk+1     (  Uk  ( ( Wk   \  Wk+1 )     

 

pk = 0  ( pk+1 = 0
 

Besides, the variation of xi  can be superiorly limited by                              

max   (v(S)   -    (    v(h) )            

i(S               h(S\(i(
 

8. An example

 

  Consider  the following game:  v(1)=v(2)=v(3)=0,  v(1,2,3)= v(1,2)=3, v(1,3)=2, v(2,3)=1.  Let's  start by observing that the coalition  (1,2,3)  does not  belong  to  P: therefore  we will exclude  it  from  our considerations.  We  will occasionally use a  real  parameter  t ( (0,1).   The intermediate calculations which lead to the payments  given  in  Table  2, are  described  in  Table  1.   Explanation  of  how  to construct such tables  is  given  in preceding  section.  Here we will merely illustrate the  last case  dealt with in that section: s11 = s21 = s31 = (0,1]  (   p  = (1,1/2, 1/2)  (it corresponds to  the block positioned at the upper left of each table).   As  shown  in  Table 1, in this case  we  have  W  = {(1,2),(1,3)}  and U = {(2,3)}.   As player 1 belongs to both coalitions  of W,  the latter will ask for his maximum:  x1=1, which  corresponds  to  p1=1.  Regarding the other two players, it is necessary to  compare the  win made by asking the maximum (i.e. x2 = x3 =  1  which corresponds to p2 = p3 = 1/2) with the win obtained by asking a  lower quantity, which makes it possible to also  use  the contribution (2,3). Let x2=t ,  x3= 1-t.

For this second solution to be preferable to the first  one for both players  2  and 3,  we  must have   (2/3)t  > 1/2   and   (2/3) (1-t)  >  1/2.

From the first inequality comes t<4/3, while from the  second comes t >1/4: there is therefore a contradiction.  So the optimum strategy is x1=x2=x3=1, with payments p1 = 1 and p2 = p3 = 1/2. ( 

Regarding the solution, it is easy to verify that the Nash-equilibria  of G(v) are x* = (2, 1, () and x*= (1, 2, 1). Of these, only the first one leads to Pareto-optimal payments. Therefore the TG-solution consists of the sole imputation  p* = (2, 1, 0).

Table 1. The computations to obtain the payments of the transformed game of section 8.
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Table 2. The matroid of payments of the transformed game of  section 8.

 

	x3([0,1]
	x2([0,1]
	x2((1,2]
	x2((2,3]

	x1([0,1]
	1,  ½,   ½
	1, 1, ½
	1,  0,  1

	x1((1,2]
	2,  1,    0
	1-t,  (1+t)/2,  t/2
	2-t,  0,  t

	x1((2,3]
	(3-t)/2,  t/2, (1-t)/2
	0, 0, 0
	0, 0,  0


 

	x3([1,2]
	x2([0,1]
	x2((1,2]
	x2((2,3]

	x1([0,1]
	1,1, 0
	1, 2, 0
	1-t, (2+t)/2,(1+t)/2

	x1((1,2]
	2, 1,0
	(1+t)/2, 1- t/2,  0
	0, 0,  0

	x1((2,3]
	1+t/2, (1-t)/2, 0
	0, 0, 0
	0, 0,  0


9. Some properties of the TG-solution

 

  We  start  by  considering how  the  TG-solution  partially generalizes a result of von Neumann and Morgenstern quoted in section  2.  We refer to their transformation of  the  finite superadditive constant-sum games from normal into characteristic form and vice versa. von Neumann and Morgenstern  proved the  existence  of the transformed game and  of  the  related solution (here called NM-solution), consisting in one or more imputations.  Notice  that in such an approach  the  players' strategies  consist of the choice of the coalitions, and  not of  the claims, as in the present model. As we will see, the  TG-solution  is applied  to  the  general class of games and  then  does  not guarantee  uniqueness  (regarding existence the  question  is open).  But for the above quoted games (as for  instance  for the subsequent example 12.4) the following theorem is valid:

 

Theorem 1. The TG-solution coincides with the NM-solution for all finite superadditive constant-sum inessential games.

 

Proof. The  NM-solution of these games consists of xi = pi  = v(i) for all i from 1 to n.   A coalition of our transformed game is winning iff:
xi ( v(i)   and   (   xi  (  v(S).

                      i(S 

  For  all inessential games the above implies xi = v(i)  for all i. Thus, in these games, all bunches are identified  with the single players and the TG-solution consists of pi =  v(i) for all i. Vice versa, the game in characteristic form resulting from the bunches formed by single players has the  above solution.  (
 

  Regarding   finite  superadditive  constant-sum   essential games,  a direct connection between TG-solution and  NM-solution has not so far been found. We can only observe that  the core  of  these games is empty, and so theorem  2  cannot  be applied.  We have proved the existence of  games with a  non-empty TG-solution, consisting of a single imputation (see for instance  theorem 1 and the example of section 8) . The  existence  of the TG-solution has not so far been guaranteed  in general. For the time being we will only demonstrate a  theorem  of existence for games with a non-empty interior of  the core.  To better explain this, remember that the  core  (Gillies, 1953) can be identified with the set of imputations   q so that, for all subsets S of N, 

 

             (  qi  ( v(S) 

            i(S  

The  "interior of the core" is identified with the  set  of imputations  p for which all above inequalities are  strictly worth: 

 

              (   pi  > v(S) 

             i(S  

We therefore enunciate the  

 

Theorem  2. If the interior of the core of  v  is not  empty, then  this interior coincides with the TG-solution and   x*= p* applies.

 

Proof.   Let  p be an internal imputation of the core  of  v.  The strategy  x = p is such that

                                     (  xi = v(N) 

                                   i(N  

while,  for all the other  S  ( P  different from  N, it  holds that  

 

                                     (   xi > v(S) 

                                   i(S  

  Therefore  the only  bunch of winning coalitions  B(x)   is N.   So for all i, ei(x) = 1, and then p(x) = x.   Note  that p(x)  is  Pareto-optimal.   If all the  other  players  adopt strategy  x, then it is not worth the i-th player asking  for less  than xi  (as he would obtain a payment of less than  pi), and similarly he shouldn't ask for more than xi (as he  would obtain  null payment).  Then x=p belongs to  the  TG-solution.  As p is generic, all the interior of the core belongs to  the TG-solution.

  Let  us now consider an imputation r not inside  the  core. The strategy x=r  is such that

                                     (    ri = v(N) 

                                   i(N  

but there is at least one coalition R for which

                                     (    xi  ( v(R) 

                                   i(R  

In  this case there is more than one bunch associated to  all the elements of R and at least one i(R so that ei(x) < 1.

It follows that  ri(x) < xi and r  is not Pareto-optimal.  (
 

 

10. A generalization of the previous example

 

  Let  us  consider the same game defined in section  8  with only  the modification v(1,2,3) = k > 3.  In this case all the coalitions are strongly superadditive;  there  is therefore a single bunch consisting of the  set  of all  parts  of N.  Since the core has at least  one  internal point,  from the previous theorem it can be deduced that  the TG-equilibria  are made up of the strategies x1*, x2*, x3* not negative and such that  x1*+ x2*>3, x1*+ x3*>2, x2*+ x3*>1,  x1*+ x2*+ x3* = k.  The corresponding TG-solution is made up of imputations p*=x*, which makes up the interior of the core.

 

 

11. The case n=2

 

  Suppose that v(1) + v(2) < v(1,2).

From  theorem  2 we can deduce that  the   TG-equilibria  are formed   by   the  demands  x* so that  x*1> v(1),   x*2 > v(2), x*1+x*2=v(1,2).   The  corresponding  payments  are  p* = x* and constitute the interior of the core, that is the set obtainable by removing from this last set the imputations  p1=v(1) and p2=v(2).   It  is easy to verify that for all the cases in  which  the initial hypothesis of super-additivity is not valid, the only TG-equilibrium is x* = (v(1), v(2)) with payment p*=x*.

 

 

12. The case n=3  for simple games

 

  Table  3  shows  TG-equilibria and  TG-solutions  of  all  bunches of the 3-person games in  which  the codomain of  the characteristic function is {0,1}.

 

Table 3. TG-equilibria,  TG-solutions and relations with the core  for the three-person simple games.

	case
	Bunch
	x*
	p*
	core-relation

	12.1
	(i)
	1
	1
	=  core

	12.2
	(i,j)
	 t,1-t

(0<t<1)
	t,1-t
 
	= interior of    

    the core

	12.3
	(i,j),(i,k)
	  t,1-t,1-t
(0( t ( 1)
	t,(1-t)/2,(1-t)/2
	holds

    the core

	12.4
	(j,j),(i,k),(j,k)
	1/2,1/2,!/2
	1/3,1/3,!/3
	=  core

	12.5
	(i,j,k)
	t1,t2,1-t1-t2

t1>0,t2>0

t1+t2<1
	t1,t2,1-t1-t2
	= interior of    

    the core


 

 

 

 

13. A comparison with well-known solutions

 

  This  section  compares  the solutions  obtained  with  the transformed  game  approach in the cases studied  here,  with some well-known solutions.  Owing to restrictions of space, we will only take into consideration those solutions which  help us  to  place the new approach in the  traditional   picture.  For  a  simple presentation of some of these  solutions,  cf. (Gambarelli, 1999).

 

13.1  Some well-known solutions

   Regarding concepts of general solutions, we call:

TG  the TG-solution proposed here,

CO  the core,

NU  the nucleolus (Schmeidler, 1969).

   With regard to the values, we call:

BC  the value obtained as a generalization of the  normalized  index  of

       Banzhaf (1965)  and Coleman (1964) (It  should  be  noted  that a

       forerunner of  this  model was developed by  Luther Martin in the

      1780s, as  mentioned by Riker in (1986)),

NH  the  value  of  Nash-Harsanyi,   that   is   the   cooperative  solution

       introduced by Nash  in  (1953)  and  generalized   by  Harsanyi   in

(1977) (1977)  (John Nash is currently developing  a new  value of

greater interest for games with  more  than  two players),

SH  the value of Shapley (1953),  which in the case of simple  games is

       detailed in the Shapley-Shubik index (1954),

TI    the value of Tijs (1981), or ( -value.

Regarding  the values relating just to simple  games  (i.e. the power indices), we call:

DP   the Deegan and Packel index (1980),

HP   the  Holler  and  Packel  index,  which  was  initially  introduced  in

        (Holler, 1978) and subsequently axiomatized in (Holler and

        Packel, 1983),

JO   the Johnston index (1978),

SY   the Syed index (1990).

 

13.2  Comparison with case n=2

    If  the core is non-empty, then the  TG solution  coincides with  the interior of the core and contains all  other  above quoted  solutions.  If the core is empty, then the   TG-solution coincides with these last ones.

 

13.3  Comparison with case n=3 for simple games

     In  cases (12.1) and (12.4), TG coincides with the core  and with all the solutions given here. In cases (12.2) and (12.5), TG  coincides with the interior of the core and contains  all the other solutions. In case (12.3), TG is disjointed from NU and TI, and contains all other solutions.  For  a better explanation Table 4 gives the solutions   of the  case  (12.3) in decreasing order of win  for  the  first player (increasing, for the other two).

 

13.4  Comparison  with the examples in sections 8 and 10

     As we are considering non-simple games, we do not compare TG with the exclusive  power  indices for simple games. Tables 5  and  6 give  the solutions in decreasing order of win for the  first player  (increasing,  for the other two).  In  the  cases  of intervals  (Table 6) we will use  the related  lower  bounds for purposes of ordering.

 

13.5  Results of the comparisons

     Observe  that  in the example in Table  5  the  TG-solution coincides with CO, NU and TI and is different from SH, BC and NH. On the other hand, in the case of Table 4, TG  comprises all  the others.  In particular, regarding the core,  it  may happen that TG contains CO (see Table 4), or that TG coincides with CO (see Table 5), or that TG is a proper subset   of CO  (see Table 6);  similar behavior patterns are also shown in Table 3.  Therefore the TG-solution is generally  different from the others mentioned here.

 

Table 4. Comparison of the TG-solution of the simple game (12.3)  with other solutions.

 

	Solution
	Player

	
	1
	2
	3

	CO,NU,TI

SH,JO

BC

DP,HP

SY

NH
	1

2/3

3/5

1/2

4/9

1/3
	0

1/6

1/5

1/4

5/18

1/3
	0

1/6

1/5

1/4

5/18

1/3

	TG      *
	1-t
	T/2
	t/2


           *  0 ( t ( 1

 

Table 5. Comparison  of the TG-solution of the game in section 8  with other solutions.

	Solution
	Player

	
	1
	2
	3

	TG,CO,NU,TI

SH

BC

NH
	2

3/2

7/5

1
	1

1

1

1
	0

1/2

3/5

1


 

Table 6. Comparison  of  the  TG-solution of the game  in  section  10 (setting k=4) with other solutions.

 

	Solution
	Player

	
	1
	2
	3

	TG  *

CO  *

TI

SH

BC

NH
	(2,3)

[2,3]

2

11/6

16/9

4/3
	(1,2)

[1,2]

4/3

4/3

4/3

4/3
	(0,1)

[0,1]

2/3

5/6

8/9

4/3


       * p1 + p2 + p3 = 4
 

14. Conclusions

 

  As  Robert  Aumann and Martin Shubik  observed,   the  game transformed  in characteristic form may not retain all  peculiarities  of the original game in normal form  (see  section 2).  Then the transformation from characteristic into  normal form  proposed  in  this paper cannot be unique. It  merely represents strategies and payments of the players,  according to the model shown in section 3. The transformed game is based  on a reversal of the methods usually employed to solve  cooperative games, and leads to solutions which differ from all those mentioned in sections 12 and 13. Furthermore, an aspect of some  interest  regards the possibility  of  considering  the different probabilities of final layout formation (see end of section 4),  therefore giving a more natural model than those mentioned in the introduction.  

    As was seen in section 6, this paper proposes above all the Nash-equilibria solutions of the game  in normal form leading to Pareto-optimal payoffs, and it demonstrates the existence of such solutions for some general classes of games.  There is nothing to prevent other concepts of solution being adopted.  In effect, what is considered the innovative element of this proposal lies simply in the transformation, which enables both the strategic aspect of the solutions as well as the majority of the existing literature on Games in normal form, to be traced back to the Theory of Games in characteristic form.

 

15. Open problems

 

  With  regard to applications, the transformation to  normal form leads to a disadvantage in terms of calculation, as many classic concepts of cooperative solutions are easier to  deal with. There are various specific algorithms for values   (see f.i.  (Gambarelli,  1990)) and for power  indices  (see  f.i. (Gambarelli, 1996)). The operations illustrated in section  7 are  quite simple and easily "automatizable", but the problem of an automatic  research of  the solution,  is still open. In more general terms, the main open problem regards the existence  and construction  of  the TG-solution of the games  having  empty core,  or the interior of the core empty.   Furthermore,  the special  form of payments illustrated in section  5  suggests that  all  TG-solutions  have  common  characteristics  whose properties   are  worth investigating (the same  problem  for values  has been studied for instance in (Gambarelli,  1983), (Gambarelli and Owen,  1994a), (Taylor and Zwicker, 1997), (Freixas and Gambarelli, 1997), (Holler and Widgren, 2001)).  Starting from such  characteristics,  it  would be interesting to also look  for  other concepts  of  solution  able to guarantee the  existence  and uniqueness of the related imputation.  
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