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ABSTRACT
Wavelet transforms and machine learning tools can be used
to assist art experts in the stylistic analysis of paintings. A
dual-tree complex wavelet transform, Hidden Markov Tree
modeling and Random Forest classifiers are used here for a
stylistic analysis of Vincent van Gogh’s paintings with results
on two stylometry challenges that concern “dating, resp. ex-
tracting distinguishing features”.

1. INTRODUCTION

Stylometry, i.e determining a painter’s style, is a challeng-
ing problem for art historians. Many factors play a role.
Technical analyses of the painting, including of pigments
present, the materials used and the method of their prepa-
ration, the artist’s process as documented in the underlayers
of the painting (observed through Xray and infrared imag-
ing), etc, provide one type of information. Visual inspection
of the painting is of course very important as well, to evalu-
ate and help characterize the visual appearance and style of
the work. However, even the sum of all these analyses may
prove inconclusive for some works.

A new movement in image processing seeks to use com-
putational tools from image analysis and machine learning
to provide an additional source of analysis for such chal-
lenging paintings, based on the assumption that an artist’s
brushwork can be characterized, (at least in part), by sig-
nature features (e.g. those arising from the artist’s habitual
physical movements) and that such distinguishing quantita-
tively measurable characteristics might be found by machine
learning methods and used as an additional piece of evidence
in stylometry tasks. Indeed, early attempts in this area have
already found considerable success [1, 2, 3].

Recent attempts to characterize paintings of particular
style via features discernible by image processing and ma-
chine learning algorithms, have often focused on character-
izing the statistics of the wavelet coefficients of digital scans
of paintings by that artist [1, 4, 5].

This paper uses an approach of this type on a dataset pro-
vided by the Van Gogh Museum and the Kroller-Muller Mu-
seum in the Netherlands, consisting of high resolution scans
of paintings by Vincent van Gogh.

We combine recent image processing and machine learn-
ing techniques, in order to tackle two stylometry problems
proposed by the two museums: extracting distinguishing fea-
tures, and a dating challenge. We show how modeling style
as a hidden variable, controlling the behavior of the image
observables, such as brushstrokes, color patterns, etc, can
improve the accuracy of the style analyzer to a significant
extent. We use a dual-tree complex wavelet transform [6],

that is (almost) shift invariant, to capture quantitatively the
effects observable in the image. Next, using Hidden Markov
Trees [7], an extension of Hidden Markov Variables, com-
bined with the expectation maximization algorithm [8], we
extract the style parameters from the noisy observables. Fi-
nally, using standard machine learning techniques, we feed
the extracted features to appropriate classifiers, and use the
resulting prediction rule for style analysis.

This paper is a sibling of [10], in which similar tech-
niques were used by our team, for authentication purposes
instead of stylistic analysis.

2. APPLICATIONS

2.1 Dating Challenge
In the absence of convincing documentation, the dating of
a painting is based on where it fits in the chronology of the
artist’s style, concerning for example, subject matter, materi-
als used, color palette, compositional style, and brushwork.
Some undocumented paintings have a mixture of features
that seemingly correspond with different periods of their cre-
ator’s artistic development. Such feature mixes pose difficult
dating challenges .

When dating relies on categorizing style and technique
issues, computer-based image processing tasks for magni-
fying the differences in style should prove useful. Further-
more, artificial intelligence and machine learning techniques
can provide the right tools for the final decision task.

The dating challenge concerns the dating of paintings by
Vincent van Gogh that stem from either his Paris phase (end-
ing early in 1888) or his following late Arles period. The
question is to ascertain which features distinguish the two
test sets (taking as benchmark the paintings that are unques-
tionably from the Paris or Arles period), and to use them
subsequently to attempt to associate each of the dating can-
didates with one group or the other.

In distinguishing Van Gogh paintings from these two pe-
riods, art historians rely on several general observations re-
garding shifts in his practice. For instance, small strokes are
more prominent in Paris, while brush handling is broader in
Arles; colors appear more saturated in Arles due to the filling
in of larger areas.

At the initial stage of the challenge, the set of training
examples included 33 images each, from the Paris and the
Arles periods.

At the final stage, three test paintings were provided.
Each test painting exhibits some general features associated
with Arles, as well as others associated with Paris. The final
goal of this challenge was to come up with a high-confidence



Figure 1: Training set examples for the dating challenge.

classification of test images based on the training images pro-
vided. The test paintings for the dating challenge were se-
lected because they represent a real question and have not
been easily or consistently dated in the art historical liter-
ature. Consequently, digital stylistic analysis provides new
and added data that could usefully be taken into account in
attempts to date these works more securely.

2.2 Distinguishing Feature Extraction
At the start of Van Gogh’s years in Paris he discovered the
work of Adolphe Monticelli (1824-1886), in particular his
floral still lifes characterized by impasto brushwork. Soon,
Van Gogh painted still lifes that reflected Monticelli’s brush-
work. Art historians have identified several features in the
brushwork and color schemes shared by Van Gogh’s and
Monticelli’s floral still lifes, that are absent in the works of
their contemporaries. The “distinguishing features extrac-
tion” challenge introduced a small set of floral still lifes by
Monticelli, Van Gogh, and contemporaries; the task was de-
ducing features discernible by image processing and machine
learning algorithms that distinguish Monticelli and Van Gogh
floral still lifes, as a group, from the floral still lifes of con-
temporaries.

In distinguishing styles of painters, art historians rely on
several general statements regarding the painting style, in-
cluding vigorous brushwork, heavy dark outlines, repetitive,
non-overlapping strokes, perspective, brushwork style, color
patterns etc. In Section 4 we show how we can model and
magnify some of these features using image processing tech-
niques, and then use the result for final decision making.

The dataset for this challenge, provided by the Kroller-
Muller Museum and the Van Gogh Museum, were very high-
resolution color scans of the paintings, checkerboarded over
part of their surface for security reasons.

3. STYLE ANALYSIS

3.1 Art Historian Style Analysis
Understanding art historians style recognition methods is the
first step in providing appropriate automatic style recogni-
tion methods. The art history methods should emphasize the
key features characterizing the style; moreover, they should
be robust against the temporal changes in appearance of the
painting due to the deterioration of materials used such as

color shift [1]. The art historian then has to combine the
noisy observations with his/her previous knowledge in order
to come up with a stylometric decision.

Computer-based image processing can assist in this pro-
cess. Wavelet transforms [6] successfully capture local dif-
ferences at different scales of images. Appropriate color
representation can capture local and global color saturation.
Stochastic analysis, often assuming Markov conditions [7],
allow extraction of key features of images from the observed
wavelet coefficients, despite the noise, and provide robust-
ness. Finally pattern recognition tools [11] provide a variety
of different computation classifiers capable of categorizing
images based on the extracted features.

3.2 HSL Color Representation

Figure 2: HSL and XYZ color representation domains

In image precessing and computer graphics, HSL is a
representation of colors, often provided in an RGB color
space, that attempts to describe perceptual color relationships
more accurately than RGB, while remaining computationally
simple [12]. HSL represents each color by its hue, satura-
tion, and luminance forming a double-cone or a sphere (with
white at the top, black at the bottom, and the fully-saturated
colors around the edge of a horizontal cross-section; middle
gray is at its center).

The following transformation converts the color repre-
sentation from the HSL domain to the XYZ domain:

Z = L (1)

X = Scos
(

2πH
360

)
min{2L,2(1−L)}

Y = S sin
(

2πH
360

)
min{2L,2(1−L)}

In the XYZ domain, the color has not only a Cartesian rep-
resentation useful in wavelet analysis; it also provides easily
readable and valuable information about the saturation and
luminance of images, crucial for the style analysis task.

3.3 Dual-Tree Complex Wavelet Transforms
Wavelet transforms [6] separate the details of an image into
different scales. For the task of style analysis dealing with
very high resolution images, this decomposition permits the
extraction of very high resolutional differences, which may
not be observable by human eye. The dual-tree complex
wavelet transform, applied to the XYZ representation of the
images, can detect color patterns well; it is able to separate
into details of different orientations, helpful to characterize
brushstroke directions; finally, it captures local differences,
and is in this respect analogous to the art historians’ scrutiny
in style analysis.



The dual tree complex wavelet transform [6] comprises
two parallel wavelet filter bank trees. Each complex wavelet
coefficient can be written as

ci = ui + jvi, (2)

where the ui,vi each constitute DWT coefficients valid in

their own right. The magnitudes |ci| =
√

u2
i + v2

i are largely
shift invariant; they give rise to a more accurate estimate of
the image at a given location and scale than the DWT.

The CWT has six subbands of coefficients. Each subband
matches the changes in a corresponding direction. Using
complex wavelet transforms, we can thus analyze changes
in images in six different directions. For each direction, the
coefficients form a quad-tree data structure. This means that
any coefficient at a coarser level corresponds to exactly four
coefficients at the next finer level. Figure 3 shows a two-
layer wavelet decomposition of one patch from a self portrait
by Van Gogh, along the six orientations (subbands).

Figure 3: Two-layer wavelet decomposition of one patch
from a self portrait by Van Gogh, along the six orientations.
Wavelet coefficients with larger magnitudes are depicted in
darker gray; smaller magnitude coefficients are lighter

3.4 Hidden Markov Trees
Complex wavelet coefficients capture direction-specific local
differences and are appropriate for style analysis. However,
for the task of style analysis with high resolution images, the
coefficients lie in a very high dimensional space; moreover,
the coefficients are still noisy due to the scanning or other
processing noise. Consequently, standard, robust dimension-
ality reduction and feature extraction techniques are required
in order to reduce the complexity and noise level of the fea-
ture space.

Hidden Markov Trees [7] provides a multiresolution im-
age model that captures the statistical structure of the image.
In each subband, wavelet coefficients form a quad-tree with
structural local dependencies between wavelet coefficients at
different levels. At each scale, hidden variables control the
wavelet coefficients. These hidden variables can take two
states: ”small”, corresponding to smooth regions, or ”large”,
corresponding to edges. The wavelet coefficients are mod-
eled at each scale as samples from a mixture of two Gaus-
sian distributions; one with small variance, controlling the
”smooth” coefficients, and one with large variance, control-
ling the ”edge” coefficients.

Of course there exist dependencies among the size of the
wavelet coefficients at different levels. Hidden Markov Trees
capture these dependencies, by two assumptions:
• Hidden: The dependency is between the hidden variables

controlling the magnitude of the wavelet coefficients.

• Markov: The dependency is local: a hidden variable at
the finer scale depends only on its parent variable at the
coarser scale.

Hence, the quad-tree structures, in the Hidden Markov Tree
model of the subbands, remain independent. The nodes of
the tree are the hidden variables controlling the wavelet co-
efficients, and the observables are the wavelet coefficients
themselves.

For dual-tree complex wavelet coefficients, the hidden
nodes control the magnitude of the wavelet coefficients. Fig-
ure 4 shows the structure of the Hidden Markov Tree for a
subband of wavelet coefficients, the hidden variables, and the
observable wavelet coefficients. At each level, three parame-
ters control the Hidden Markov Tree :
• αT : A 2 × 2 the transition probability matrix

Pr[child|parent].
• σS: Variance of the narrow Gaussian distribution.
• σL: Variance of the wide Gaussian distribution.

Hence, although we are faced with a high number of wavelet
coefficients, there are in this model much fewer parameters
that control the wavelet coefficients. The HMT parameters
can be extracted using the expectation maximization algo-
rithm. We then use the set of extracted HMT parameters at
all levels as the set of features for our classification task. This
is similar to what art historians do, in the sense that each style
has some hidden parameters, and art historians try to capture
them based on their observations, and on their background
knowlege-based model.

L Sσ σ

Figure 4: Quad-tree HMT model of one subband of com-
plex wavelet coefficients. Blue nodes represent hidden layer
variables (Small or Large), and Black nodes represent the
wavelet coefficient. Each layer has is a mixture of two Gaus-
sians with controlling parameters, given by αT ,σL,σS.

3.5 Style Analysis Algorithm
Since we were provided with very high resolution im-
ages, and our approach is based on the local difference
analysis, we divided each image into several 256 × 256
patches. We then treated each patch as an independent
training example. The style analysis algorithm is as fol-
lows:

Divide images onto 256×256 patches.
for Each patch do

Convert the patch to XY Z domain.



Compute complex wavelet coefficients wx,wy,wz.
Compute wavelet norms wr =

√
|wx|2 + |wy|2 + |wz|2

Extract Hidden Markov Tree Parameters Θ , based on
wavelet norms wr using EM algorithm.

end for
Classify the patches using extracted features, with an ap-
propriate classifier and ten fold cross-validation method.

4. RESULTS

4.1 Dating Challenge

Figure 5: An example of a feature selected as significant for
the dating challenge. Usually wavelet coefficients at level 4
and direction 45◦ are larger, in Paris images. These coef-
ficients are magnified in one patch for one Paris image, to
illustrate their meaning.

For the dating challenge, a set of 66 high resolution train-
ing paintings were used. The goal of this challenge was the
dating of three test images corresponding to paintings that
have not been easily or consistently dated in the art historical
literature. First the training images were divided into 4727
patches of 256×256 pixels. Using 10-fold cross-validation,
several state of the art classifiers, such as Adaboost, SVM,
and Random Forest [13] were trained and tested with train-
ing examples; as indicated in Table 1, the Random Forest
classifier had the lowest generalization error. Figure 6 shows
the scatter plot of the prediction made by the above learning
methods on the patches of each painting. Black circles indi-
cate the Paris paintings, while green circles indicate the Arles
paintings. The horizontal axis corresponds to the number of
correctly predicted patches, and the vertical axis corresponds
to the number of incorrectly predicted patches. Again the
Random Forest classifier performs best.

The final decision was then made using the trained Ran-
dom Forest classifier on the patches of the test image, as
shown in Figure 7. The non-checker-boarded part of each
image was divided into as many 256×256 squares as possi-
ble, and each square was allocated to the Arles or Paris class
(or reduced to a tie) according to the classification results of
a Random Forest classifier, trained on the 66 paintings.

As a final note, the obtained results are aligned with the
art historians’ conclusions. Many art historians agree that the
“crab” painting (Figure 7, right) was painted during the Ar-
les period; however, some suggest the Paris period based on
comparison with another painting. The “Willows” painting
(Figure 7, middle) is suggested to be painted in March 1888,
during the Arles period. The “potatoes” painting (Figure 7,
left) was traditionally dated in the Paris period, but was re-
cently suggested to be one of the firsts from the Arles Period,
i.e. from February 1888.

One of the features that highly separates Paris patches
from Arles patches is the variance of the large Gaussian at
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Figure 6: Scatter plot of the prediction made by different
learning methods on the total patches of each painting.

Table 1: Comparison of the generalization performance of
different learning algorithms using cross-validation in the
Dating Challenge. SVM: Support Vector Machine, AB: Ad-
aBoost, DS: Decision Stump, RF: Random Forest)

SVM AB DS RF
66.4% 68.5% 62.12% 73.7%

the fourth level (middle scale) and subband 45◦, meaning
that wavelet coefficients in Paris are usually smaller, which
agrees with the art historian observation that the number of
strokes is greater in Paris than in Arles. Figure 5 highlights
this type of wavelets.

4.2 Extracting Distinguishing Features
In order to obtain the distinguishing features, several learn-
ing classifiers were tried on the HMT parameters, extracted
via the EM algorithm. Since the challenge focused only on
styles for painting flowers, irrelevant patches were removed
from the training examples. In order to make the final de-
cision, several state of the art learning classifiers were ex-
amined. The accuracy of the learning algorithm was mea-
sured in terms of the error-rate in 10-fold cross-validation as
a proxy for the generalization error. Table 1 shows the re-
sults.

Table 2: Comparison of Learning Algorithms in terms of
their generalization error, (SVM: Support Vector Machine,
AB: AdaBoost, BN: Bayes Net, DS: Decision Stump, RF:
Random Forest).

SVM AB BN DS RF
25% 24.9% 29.9% 25.2% 23%

As seen in Table 2, the Random Forest classifier has again
superior accuracy compared to the other classifiers. The de-
cision of the Random Forest classifier is based on a weighted
average of several features, among which we can identify
several superior distinguishing parameters. They are:
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Figure 7: Classification results for the 3 test images in the “
dating challenge”.

1. Pr[large|small]: probability of transition from small co-
efficients to large coefficients at scale 6, and subband
−45◦, as illustrated in Figure 8, right. This feature cor-
responds to very sharp steep brushstrokes in the work of
Van Gogh and Monticelli.

2. Variance of “Large Gaussian”, at level 4, and subband
15◦, as highlighted in Figure 8, left. This feature corre-
sponds to horizontal smoothness in the work of the con-
temporaries.

Figure 8: Distinguishing feature for Van Gogh and Monti-
celli images (right), and the contemporary images (left), In
the Van Gogh and Monticelli images, wavelet coefficients at
level 6 and direction −45◦ are magnified to highlight the fea-
ture. In contemporary images, wavelet coefficients at level 4
and direction 15◦ are magnified to highlight the feature.

Note: in this challenge, we did not consider the very
finest scales in the images. We found they were more in-
dicative for contrast levels than for difference in style or in
brushstroking techniques, so that they could possibly be a
confounding factor if they were included. (This would be
similar to the confounding blur factor in [10].)

5. CONCLUSION

We used a dual-tree complex wavelet transform, and Hidden
Markov Tree modeling for feature selection, and then the

Random Forest classifier for classification in “dating” and
“extracting distinguishing features” of Vincent van Gogh’s
paintings to assist art historians in stylistic analysis. In fu-
ture work, we intend to use additional feature extraction and
classification approaches including entropy considerations.
We will also devise new methods to reduce the likelihood
of overfitting to the training examples, in which will sepa-
rate the training and test paintings, instead of cross-validating
over a mixed bag of patches, provided by all paintings.
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