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Prepared for the MSRI hot topics workshop on superstrong approximation (Feb. 2012).

My aim is to give an overview of the developments in the theory and its applications.

Naturally there is some overlap with Lubotzky’s recent Colloquium Lectures [Lu1].

See also Green’s note [Gr] on group theoretic combinatorics that is closely related to

some of what is discussed below.

1. The Fundamental Expansion Theorem

The Chinese Remainder Theorem for SLn(Z) asserts, among other things, that for

q ≥ 1, the reduction πq : SLn(Z) −→ SLn(Z/qZ) is onto. Far less elementary is the

extension of this feature to G(Z) where G is a suitable matrix algebraic group defined

over Q. The general form of this phenomenon for arithmetic groups is known as strong

approximation and it is well understood [P-R].

There is a quantification of the above that is not as well known as it should be,

as it turns out to be very powerful in many contexts. We call this “superstrong” ap-

proximation and it asserts that if we choose a finite symmetric (s ∈ S if s−1 ∈ S)

generating set S of SLn(Z), then the congruence Cayley graphs (Xq, S) form an ex-

pander family as q goes to infinity (see [H-L-W] for the definition and properties of

expanders). Here the vertices x of the |S|-regular connected graph (Xq, S) are the

elements of SLn(Z/qZ) and the edges run from x to sx, s ∈ S. The proof of this

expansion property for SL2(Z) has its roots in Selberg’s 3/16 lower bound for the first

eigenvalue λ1 of the Laplacian on the hyperbolic surface Γ\H, Γ a congruence sub-

group of SL2(Z), ([Se]). This bound is an approximation to the Ramanujan/Selberg

Conjecture for automorphic forms on GL2/Q. The generalizations of the expansion

property to G(Z) where G is say a semisimple matrix group defined over Q is also

known thanks to developments towards the general Ramanujan Conjectures that have

been established ([B-S], [Cl], [Sa1]). This general expansion for these G(Z)’s also goes

by the name ‘property τ ’ for congruence subgroups [Lu2].

Let Γ be a finitely generated subgroup of GLn(Z) (more generally later on we allow

it to be in GLn(K) where K a number field) and denote its Zariski closure: Zcl(Γ ), by

G. If Γ is of finite index in G(Z), then the discussion above of strong and superstrong
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approximation can be applied. However, if Γ is of infinite index in G(Z), then Vol

(Γ\G(R)) =∞ and the techniques used to prove both of these properties don’t apply.

In this case we call Γ “thin”. It is remarkable that under suitable natural hypotheses,

strong approximation continues to hold in this thin context. The first result in this

direction is [M-V-W], and Weisfeiler extended it much further. More recent and effec-

tive treatments of this can be found in [N1] and [L-Pi]. An example of the statement

of strong approximation in this context is: suppose that Zcl(Γ ) = SLn , then there

is a q0 = q0(Γ ) such that for (q, q0) = 1, πq : Γ −→ SLn(Z/qZ) is onto. That

the expansion property might continue to hold for thin groups was first suggested by

Lubotzky in the 90’s ([L-W]). Thanks to a number of major developments by many

people ([S-X], [Ga], [He], [B-G1], [B-G-S1], [P-Sz], [B-G-T], [V]), the general expansion

property is now known. The almost final version (almost because of the restriction that

q be squarefree) is due to Salehi and Varju [S-V].

The Fundamental Expansion Theorem. Let Γ ≤ SLn(Q) be a finitely generated

group with a symmetric generating set S. Then the congruence graphs (πq(Γ ), S), for q

squarefree and coprime to a finite set of primes (which depend on Γ ), are an expander

family, iff Go the identity component of G := Zcl(Γ ), is perfect (i.e. [Go, Go] = Go).

Moreover the determination of the expansion constant is in principle effective—if not

feasible.∗

I will not review the techniques leading to the proof of this theorem (they have

been discussed in many places including Kowalski and Tao’s blogs) other than to point

out that it involves three steps, the opening, the middlegame and the endgame. The

endgame establishes the expansion by combining sufficiently strong (but still quite

crude) upper bounds for the number of closed circuits in these graphs with largeness

properties of the dimensions of the irreducible representations of the finite groups

G(Z/qZ). In some cases (indeed all for which reasonable bounds for the expansion

are known) the proof involves the endgame only ([S-X], [Ga]). In the general case, the

upper bounds for the number of closed circuits is derived combinatorially. The opening

and middlegame involve showing that smaller subsets of G(Z/pZ) grow substantially

when multiplied by themselves at least three times ([He] and the extensions [P-Sz] and

∗Matching to some extent in this general setting the quality of expansion that is known when Γ is
arithmetic, remains an open problem.
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[B-G-T]). A critical ingredient in the early treatments was the ‘sum-product’ theorem

([B-K-T]) in finite fields. The middlegame is concerned with moderately large sets

and is further handled by the crucial “flattening lemma” [B-G1]. The latter also has

its roots in combinatorics appealing to the Balog-Szemeredi Theorem ([Ba-Sz], [Go]).

When q is not prime, the analysis and combinatorics is far more complicated and

difficult due to the many subgroups of G(Z/qZ). It is handled in [B-G-S1] for SL2 and

in [V] in general.

2. Applications

2.1. The affine sieve and diophantine analysis. The impetus for developing the

expansion property for thin groups arose in connection with diophantine problems

(in particular sieve problems for values of polynomials) on orbits of such thin groups

([B-G-S1]). Both strong approximation and superstrong approximation are crucial

ingredients in executing a Brun combinatorial sieve in this setting. The theory is by

now quite advanced and in particular the basic theorem of the affine sieve has been

established in all cases where it is expected to hold ([S-S]).

For various special examples, such as for integral Apollonian packings, which has

turned out to be one of the gems of the theory ([Sa2]), much more can be said thanks

to special features. Firstly, in this case one can develop an archimedian count for the

number of points in an orbit in a large region. This is done by combining spectral

methods (using techniques which when Γ is a geometrically finite subgroup of O(n−
1, 1)(R) go back to [Pa], [Su] and [L-P]) with ergodic theoretic methods ([K-O], [O-S],

[L-O], [Vino]). For the diophantine applications, one needs an archimedian spectral gap

for the induced congruence groups, rather than the combinatorial expansion. [B-G-S2]

establishes the transfer of this information from the combinatorial to archimedian

setting in this infinite volume case.

Two recent highlights of these developments are the ‘almost all’ local to global results

[B-K1] and [B-K2]. The first concerns integral Apollonian packings and the question is

which numbers are curvatures? The expected local to global conjecture ([G-L-M-W-Y],

[F-S]) is proven for all but a zero density set of integers (the Conjecture asserts that

there are only a finite number of exceptions). Prior to that [B-F] had shown that the

number of integers that are achieved is of positive density. The second development

concerns the Zaremba problem which asserts that if A ≥ 5, the set of integers q ≥ 1

for which there is a 1 ≤ b ≤ q, (b, q) = 1 and for which the coefficients of the continued
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fraction of b/q are bounded by A, consists of all of N. In [B-K2] the theory of thin

subgroups of SL2(Z) is extended to thin semi (sub) groups (one has to abandon direct

spectral methods and replace them by dynamical ones [Lal], [B-G-S2]). In [B-K2] it

is shown that for A ≥ 50, the set of exceptions to the Zaremba conjecture is of zero

density in N.

2.2. Random Elements in Γ . It is well known that for any reasonable notion of

randomness, the random f ∈ Q[x] is irreducible and has Galois group the full sym-

metric group on the degree of f symbols. In [Ri] the study of such questions for the

characteristic polynomial fγ of a random element γ in Sp(2g,Z) and more general Γ ’s,

was initiated. The random element in Sp(2g,Z) is generated by running a symmetric

random walk with respect to a measure µ whose support generates Sp(2g,Z). The

expansion property is used via a sieving argument to show that the probability that

fγ is reducible is exponentially small. This and some generalizations are then coupled

with the theory of the mapping class group M to show that the random element in

M is pseudo Anosov. These irreducibility questions and much more,† are extended

and refined especially in terms of the sieves that are applied, in the monograph [Ko].

Again, strong and superstrong approximation plays a central role.

In a different direction [L-M] examine some group theoretic questions for linear

groups using a random walk and a sieve. An example of what they show is: Let Γ be

a finitely generated subgroup of GLn(C) which is not virtually solvable, then the set

of proper powers P :=
∞
∪
m=2
{γm : γ ∈ Γ}, is exponentially small (in terms of hitting P

in a long random walk). In particular, this resolved an open question as to whether

finitely many translates of P can cover Γ , the answer being no.

2.3. Gonality and Heegaard Genus. A compact Riemann surface of genus g can

be realized as a covering of the plane of degree at most g + 1 (Riemann-Roch). The

gonality d(X) of X is the minimal degree of such a realization. Unlike g(X), d(X) is a

subtle conformal invariant. In [Z] (and later [A1]) the differential geometric inequality

of [Y-Y] is extended to the setting of X = Γ\H, a finite area quotient (orbifold) of

the hyperbolic plane. If A(X) is its area and λ1(X) its first Laplace eigenvalue, then

(2.1) d(X) ≥ λ1(X)A(X)

8π
.

†For example to showing that it is very unlikely that a random three dimensional manifold in the
Dunfield-Thurston model [D-T], has a positive first Betti number.
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This together with the known bounds towards the Ramanujan/Selberg conjectures for

congruence (arithmetic) X’s (see [B-B] for the best bounds for GL2/K, K a number

field which is what is relevant here) imply that for these X’s, the ratio of any two of

d(X), A(X) and (g(X) + 1) is bounded universally from above and below.

There is a generalization of (2.1) to finite volume quotients X = Γ\Hm (orbifolds) of

hyperbolic m-space [A-B-S-W]. This is stated in terms of [L-Y]’s notion of conformal

volume. It gives an inequality between Vol(X), λ1(X) and the conformal volume of a

piecewise conformal map of X into Sn. Again, this together with the known universal

lower bounds for λ1(X) when X is congruence arithmetic ([B-S], [Cl]) gives a linear in

the volume, lower bound for the conformal volume of a conformal map of X to Sm.

This has a nice application to reflection groups. A discrete group of motions of Hm is

called a reflection group if it is generated by reflections (a reflection of Hm is a non-

trivial isometry which fixes an m− 1 dimensional hyperplane). Using the inequalities

mentioned above, one shows ([L-M-R] for m = 2 and [A-B-S-W] for m > 2) that the

set of maximal arithmetic reflection groups is finite for each m. Now Vinberg [Vi] and

[P] have shown that for m ≥ 1000, a reflection group can never be a lattice. Thus the

totality of all maximal arithmetic reflection groups is finite.

(2.1) has interesting applications to diophantine equations. As observed in [A2] and

[Fr], Faltings’ finiteness theorem for rational points on subvarieties of abelian varieties

[Fa] can be used to prove finiteness of rational points on curves, whose coordinates lie

in the union of all number fields of a bounded degree, as long as one can show the

gonality of the curve is large enough. For example, if X0(N)/Q is the familiar modular

curve of level N and if D is given, then for N ≥ 230D‡, the set of points on X0(N)

with coordinates in the union of all number of fields of degree at most D, is finite!

Recently [E-H-K] have applied similar reasoning to a diophantine problem on a tower

of curves. It arises from questions of reducibility and symmetry of specializations of

members of a 1-parameter family of varieties. The curves that arise (as the parameter)

are determined by the monodromy group Γ of the family (see below), and it lies

in Sp(2g,Z) and is assumed to be Zariski dense in Sp(2g). In order to show that the

gonalities of the curves in question increase quickly enough, they use the combinatorial

‡This follows from (1) and explicit Ramanujan bounds.
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expansion that is provided by the Fundamental Expansion Theorem. Typically it is

not known if Γ is thin or not in this context(see Section 3), but the beauty of the

Fundamental Theorem is that one does not need to know!

There is an inequality similar to (2.1) for the Heegaard genus of a hyperbolic 3-

manifold X. It is known that such an X can be decomposed into two handle bodies

with common boundary a surface of genus h (called a Heegaard splitting). The minimal

genus of such a surface in a splitting is called the Heegaard genus of X which we denote

by g(X). Like the gonality, it is a much more subtle (this time topological) invariant

of X than its volume. In [La] (see Theorem 4.1 and [Bu]) it is shown that for complete

X of finite volume

(2.2) g(X) ≥ min[λ1(X), 1] · Vol(X)

32π
.

Applying this together with the universal lower bounds for λ1 for congruence arithmetic

X’s, shows that the Heegaard genus of a congruence hyperbolic three manifold is in

order of magnitude, a linear function of its volume. In particular, any arithmetic 3-

manifold has an infinite tower (by congruence subgroups) of coverings whose Heegaard

genus grows linearly with the volume. One can ask if the same is true for any hyperbolic

3-manifold and the answer is yes as was shown in [L-L-R]. Using local rigidity of lattices

in SL2(C) one can realize Γ where X = Γ\H3, as a finitely generated subgroup of

SL2(K), where K is some number field. If Γ is not arithmetic then Γ is thin (in

SL2(OK) perhaps allowing denominators at finitely many places), since its projection

on the identity embedding of K into C is discrete. Using the Fundamental Expansion

Theorem gives a lower bound on λ1 for a ‘congruence tower’ of Γ and one then applies

(2.2).

A related application of the expansion is to some questions in knot theory. Answering

a question of Gromov, Pardon [Par] recently showed that there are isotopy classes of

knots in S3 which have arbitrary large distortion. In fact he shows that torus knots have

this property. In [Gr-Gu] a large family of knots with large distortion is constructed

using hyperbolic 3–manifolds X. Such an X can be realized as a degree 3 cover of S3

branched over a knot K ([Hi], [Mo]). [Gr-Gu] show that the distortion δ(K) of this K

satisfies δ(K)� Vol(X)λ1(X), (the implied constant being universal). From this and

the lower bound for λ1 when X varies over congruence arithmetic 3-manifolds (or a

congruence thin tower and using the fundamental expansion theorem) one concludes



7

that K and all knots isotopic to it has arbitrarily large distortion by choosing such X

of large volume.

2.4. Rotation Groups. Let Γ = 〈σ1, σ2, · · · , σt〉 be a finitely generated subgroup of

the group SO3(R). There is an archimidedian analogue of the expander property for

the congruence graphs in this setting and which likewise has many applications ([Lu3],

[Sa3]). Define Tσ to be the averaging operator on functions on the two sphere S2 by:

(2.3) Tσf(x) =
t∑

j=1

[f(σjx) + f(σ−1
j x)].

Tσ is self adjoint on L2(S2, dA), where dA is the rotation invariant area element on

S2, and its spectrum is contained in [−2t, 2t]. The spectral gap property is that

2t (which is an eigenvalue with eigenvector the constant function) is a simple and

isolated point of the spectrum. It is not hard to see that this property depends only

on Γ and not on the generators. It is conjectured that Γ has such a spectral gap iff

the Zcl(Γ ) = SO3 (which in this case is equivalent to the topological closure of Γ

being SO3(R)). A lot is known towards this conjecture. The first example of a Γ

with a spectral gap was given by Drinfeld [Dr] and this provided the final step in the

solution of the Ruziewicz problem; that the only finitely additive rotationally invariant

measure defined on Lebesque measurable subsets of S2, is a multiple of dA. His proof

of the spectral gap makes use of an arithmetic such Γ together with the full force of

automorphic forms and the solution of the Ramanujan Conjectures for holomorphic

cusp forms on the upper half plane. In [G-J-S] many thin Γ ’s are shown to have a

spectral gap. The best result known is the analogue of the Fundamental Expansion

Theorem in this context ([B-G2], [B-G3]), and it suffices for most applications. It

asserts that if the matrix elements of members of Γ are algebraic, then the Conjecture

is true for Γ . Like the very thin cases of the Fundamental Expansion Theorem, part of

the proof here relies on additive combinatorics. This time one needs the full force of the

proof of the local Erdos-Volkmann ring conjecture ([E-M], [Bo])—that a subset of R
which is closed under addition and multiplication has Hausdorff dimension zero or one.

As far as some concrete applications of the spectral gap for these groups, we mention

the speed of equidistribution of directions associated with general quaquaversal tilings

of three dimensional space ([D-S-V], [R-S1]) and constructions of quantum gates in the

theory of quantum computation (the Solovay-Kitaev Theorem; see [H-R-C]).
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3. Ubiquity of Thin Groups

Given a finitely generated group Γ in GLn(Z), one can usually compute G = Zcl(Γ )

without too much difficulty. On the other hand, deciding if Γ is thin can be formi-

dable. In fact one is flirting here with questions that have no decision procedures

(I thank Rivin for alerting me to these pitfalls that are close by). For example if

Γ = SL2(Z)× SL2(Z) then there is no decision procedure to determine if an element

A ∈ Γ is in the group generated by a general set of say seven elements [Mi]. Even

for Gromov hyperbolic groups, the question of whether a finitely generated subgroup

generates a finite index subgroup, has no decision procedure ([Rip], [B-M-S]). Merci-

fully strong and superstrong approximation only ask about Zcl(Γ ). Still one is curious

about thinness when applying these theorems and sometimes for good reason. For

example, in the affine sieve setting, the quality of the expansion impacts the results

dramatically (see [N-S] for the cases when Γ is a lattice) while the diophantine orbit

problems become more standard ones of integer points on homogeneous varieties, when

Γ is a lattice. Whether the typical Γ is thin or not is not so clear, and may depend

on how Γ arises.

3.1. Schottky, Ping-Pong: Schottky groups in which the generators play ping-pong

([T], [B-Ge]) are one of the few classes of discrete groups whose group theoretic struc-

ture is very simple. If one chooses A1, A2, . . . , A` independently and at random in

SLn(Z)(n ≥ 2), then with high probability Γ = 〈A1, . . . , A`〉 will be free on these

generators, Zariski dense in SLn and thin. If the Aj’s are chosen at the m–th step of

a µ–random walk (m→∞) and support (µ) generates SLn(Z), then this was proved

in [Ao]. A more geometric version is proven in [F-R] where the A’s are chosen inde-

pendently and uniformly by taking them from the set of B’s with max(‖B‖, ‖B−1‖)
less than X. Here ‖ ‖ is any Euclidian norm on the space of matrices and X −→ ∞.

Not only is Γ thin but it is very thin in the sense that the Hausdorff dimension of the

limit set of Γ acting on Pn−1(R) is arbitrarily small.

3.2. Nonarithmetic Lattices. If Γ ≤ G with G 6= SL2(R), is an irreducible nonar-

ithmetic lattice in a semisimple real groupG, then Γ is naturally thin in the appropriate

product by its conjugates. The argument is the same as the one in Section 2.3 using

local rigidity. The certificate of being thin is that Γ is discrete in the factor corre-

sponding to G. Examples of this kind which come from monodromy of hypergeometric
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differential equations in several variables are given in [D-M] and in one variable in

[C-W]. It appears that these were the first examples of thin monodromy groups (see

section 3.5 below). Other examples of thin monodromy groups in products of SL2’s

are given in [N2] and these examples aren’t even finitely presented. Teichmuller curves

in the moduli space M2 of curves of genus 2, give via Abel-Jacobi, curves in A2 whose

monodromies (inclusion of fundamental groups) are thin ([Mc1]). Here too the Zariski

closure is a nontrivial product in Sp4 and the thinness follows from having a discrete

projection.

3.3. Reflection Groups in Hyperbolic Space. Let f be an integral quadratic form

in n-variables and of signature (n − 1, 1). For n ≥ 3, Of (Z) the group of integral

automorphs of f is a lattice in G = Of (R). The reflective subgroup Rf is the subgroup

of Of (Z) which is generated by all the hyperbolic reflections which are in Of (Z). Rf

is a normal subgroup of Of (Z) and if it is nontrivial, then Zcl(Rf ) = Of . Vinberg [Vi]

and Nikulin [Ni] have examined the question of when Rf is of finite index in Of (Z)

(they call such an f reflective). In particular, in [Ni] it is shown that there are only

finitely many f ’s (up to integral equivalence) which are reflective. Thus for all but

finitely many f ’s, Rf , if it is nontrivial, is a thin group in GLn(Z) (albeit infinitely

generated). Note that Nikulin’s theorem fails for n = 2. If f is a binary quadratic

form, then f is reflective iff it is ambiguous in the sense of Gauss (see [Sa4]) and Gauss

determined the ambiguous forms in his study of genus theory.

3.4. Rotation Groups. An interesting family of rotation groups are the groups

Γ (m,n), m ≥ 3, n ≥ 3 generated by σm and τn where

σm =

 cos 2π/m sin 2π/m 0

− sin 2π/m cos 2π/m 0

0 0 1

 , τn =

1 0 0

0 cos 2π/n sin 2π/n

0 − sin 2π/n cos 2π/n

 .
That is Γ (m,n) is a subgroup of SOf (R), f(x1, x2, x3) = x2

1 + x2
2 + x2

3, generated by

two rotations about orthogonal axes and of orders m and n respectively. These arise in

the theory of quaquaversal tilings of 3–space and their generalizations ([C-R], [R-S1]).

As abstract groups, these are free products of two cyclic (or dihedral) groups amal-

gamated over a similar such group (except for Γ (4, 4) which is finite and which we

avoid), see [R-S2]. This description can be used to decide the question of whether

Γ (m,n) is thin or not and also to show that thin is the rule rather than the exception.
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If K = Q(cos 2π/m, sin 2π/m, cos 2π/n, sin 2π/n), then K is a totally real Galois ex-

tension of Q with abelian Galois group Gm,n. It is plain that Γ (m,n) is a subgroup of

SOf (O[1
2
]), where O is the ring of integers of K. Moreover, since Γ (m,n) is infinite, the

powers of 2 in the denominators of the matrix entries of Γ (m,n) must be unbounded

(otherwise Γ (m,n) would be a discrete subgroup of the compact group
∏
υ|∞

SOf (Kv)).

Hence the smallest S-arithmetic group to contain a subgroup commensurable with

Γ (m,n) is SOf (OS) where OS are the S-integers of K, and S consists of the places of

K dividing 2. Our thinness question is whether Γ (m,n) is of finite or infinite index

in the latter. If |S| ≥ 2, then any finite index subgroup of SOf (OS) is a lattice in the

higher rank group,
∏
υ|(2)

SOf (Kv). By well known rigidity properties of such lattices

[Ma] (or one can argue with vanishing of first cohomology groups) and the description

of Γ (m,n) mentioned above, it follows that Γ (m,n) cannot be such a lattice. That is

if |S| ≥ 2, then Γ (m,n) is thin and the former holds most of the time (for example

if Gm,n is not cyclic then |S| ≥ 2). If |S| = 1, then Γ (m,n) may be arithmetic and

it is so in some special cases.§ Perhaps the most interesting cases where |S| = 1 are

when m = 4 and n = 2ν , ν ≥ 3, for which 2 is totally ramified. These have been

investigated in [Ro] and [Ser]. Serre shows that for ν = 3 and 4, Γ (4, 2ν) is arithmetic

(in fact Γ (4, 2ν) = SOf (O[1
2
])) while for ν ≥ 5, it is thin. The thinness is proven by

comparing the Euler characteristics χ(SOf (O[1
2
])) and χ(Γ (4, 2ν)), the first using a

Tamagawa number computation and the second from the abstract group description

of Γ (4, 2ν).

3.5. Mondromy Groups. The oldest and perhaps most natural source of finitely

generated linear groups comes from monodromy in all of its guises. These include the

very classical case of monodromy of the hypergeometric differential equation which we

discuss further below, as well as that of a family of varieties varying over a base with

its monodromy action on cohomology. For large families, and in cases where the mon-

odromy has been computed, it appears almost always to be arithmetic. The question

as to whether such monodromy groups are arithmetic was first raised in [Gr-Sc]. For

example for the universal family of smooth projective hypersurfaces of degree d and

dimension n in projective space, the monodromy representation on Hn(X0,Z), X0 a

§The quaquaversal tiling [C-R] has symmetry group Γ (3, 6) which is arithmetic [Ser], while the
Dite/Kart tiling [R-S1] has symmetry Γ (10, 4) for which K = Q(cos π

10 ), G10,4 = Z/2Z × Z/2Z and
|S| = 2, hence the latter is thin.
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base hypersurface, is an arithmetic subgroup of GL(Hn(X0))(Z); see [Be] where the

exact level in G(Z) is determined. For smaller families such as cyclic covers of P1,

which have recently been studied in [Mc2] in connection with the thinness question,

the story is similar. More precisely, consider the family of curves (in affine coordinates)

given by

(3.1) Ca : yd = (x− a1)(x− a2) · · · (x− an+1),

where the parameters a vary so that ai 6= aj, for i 6= j. The fundamental group of

the space of a’s is the pure braid group and it has a monodromy representation on

H1(C,Z) ∼= Z2g, g the genus of Ca, and again C is a fixed base curve. Answering

a question in [Mc2], [Ve1] shows that if n ≥ 2d, then the image of the monodromy

representation of the braid group in GL(H1(C))(Z) is arithmetic. This generalizes a

result of [A’c] for d = 2. The proof is based on another result of [Ve2] which asserts that

for Q rank two or higher arithmetic groups, a Zariski dense subgroup which contains

enough elements from opposite horospherical subgroups is necessarily arithmetic. If

n < 2d, then as observed in [Mc2], there are examples based on the nonarithmetic

lattices of [D-M] in SU(2,1) which are thin (one such is n = 3 and d = 18).

The thinness story for monodromy groups of one parameter families is less clear. We

discuss in some detail the very rich examples of the classical hypergeometric equation.

Let α, β ∈ Qn and consider the nFn−1 algebraic hypergeometric equation:

(3.2) Du = 0

where D = (θ+β1− 1)(θ+β2− 1) · · · (θ−βn− 1)− z(θ+α1) · · · (θ+αn) and θ = z d
dz

.

The equation is regular outside {0, 1,∞} and the fundamental group π1(P1−{0, 1,∞})
has a representation in GLn gotten by analytic continuation of a basis of solutions

to (3.2) along curves in the thrice punctured sphere. Its image in GLn is denoted

by H(α, β) and is the monodromy group in question (defined up to conjugation in

GLn). H(α, β) is generated by the local monodromies A,B,C (C = A−1B) gotten

from loops about 0,∞ and 1 respectively, see Beukers and Heckman [B-H] for a de-

tailed description. We restrict to H’s which can be conjugated into GLn(Z), which is

equivalent to the characteristic polynomials of A and B being products of cyclotomic

polynomials.¶ Such H(α, β)’s are self-dual and according to [B-H], their Zariski clo-

sures G(α, β), are either finite, On or Spn, and they determine which it is explicitly

¶We assume further that (α, β) are primitive in the sense of [B-H].
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in terms of α and β. Our interest is whether H(α, β) is of finite or infinite index in

G(α, β)(Z). Other than the cases where H(α, β) (or equivalently G(α, β)) are finite,

all of which are listed in [B-H], there are few cases where H(α, β) itself is known.

Recently Venkatamarana [Ve1] has shown that for n even and

α =

(
1

2
+

1

n+ 1
,
1

2
+

2

n+ 1
, · · · , 1

2
+

n

n+ 1

)
β =

(
0,

1

2
+

1

n
,
1

2
+

2

n
, · · · , 1

2
+
n− 1

n

)
,(3.3)

H(α, β) is arithmetic (here G(α, β) = Sp(n)). He deduces this by showing that for

these exact parameters, the monodromy representation of π1(P1 − {0, 1,∞}) factors

through a representation of the braid group on (3.1) with d = 2. In particular the

arithmeticity follows from the arithmeticity of the latter.

The very fruitful Dwork family (see [Ka], [H-S-T]) n ≥ 4 even, and

α = (0, 0, · · · , 0),

β =

(
1

n+ 1
,

2

n+ 1
, · · · , n

n+ 1

)
,(3.4)

is apparently different. Again G(α, β) = Sp(n) and for n = 4, the local monodromies

are

(3.5) A =


0 0 0 −1

1 0 0 −1

0 1 0 −1

0 0 1 −1

 and C =


1 0 0 5

0 1 0 −5

0 0 1 5

0 0 0 1

 .
Very recently [B-T] have shown that A and C in (3.5) play generalized ping-pong

on certain subsets of P3, from which it follows that H(α, β) ∼= Z/5Z ∗ Z. From rigid-

ity, or the first cohomology properties of finite index subgroups of Sp(4,Z), it fol-

lows that H(α, β) must be thin. It seems likely that H(α, β) is thin for the whole

Dwork family, i.e, n ≥ 4, but other than showing that the corresponding A and

C’s play ping-pong, there appear to be no known means of proving this and no in-

finite family of thin H(α, β)’s with G(α, β) symplectic is known. For n = 4 there

are 112 such H(α, β)’s in Sp(4,Z) [Si-Ve]. Using extensions of the technique in

[Ve1] it is shown in [Si-Ve] that of these, 63 are arithmetic. Of these 3 [namely



13(
(0, 0, 0, 0),

(
1
6
, 1

6
, 5

6
, 5

6

))
,
(
(0, 0, 0, 0),

(
1
6
, 1

4
, 3

4
, 5

6

))
and

(
(0, 0, 0, 0),

(
1
10
, 3

10
, 7

10
, 9

10

))
] corre-

spond to the 14 hypergeometrics associated with certain Calabi-Yau three folds [C-Y-Y].

Of the other 11, 7 are shown to be thin in [B-T], again by finding ping-pong sets in P3.

This leaves 4 of these Calabi-Yau’s for which the thinness question is open. It would be

interesting to understand the geometric significance, if there is one, for H(α, β) being

thin or not in these families.

What is lacking above is a certificate for H(α, β) being thin that can be applied for

example to families (i.e. n → ∞). A robust such certificate has been provided in the

case that G(α, β)(R) is of rank one and n > 3 [F-M-S]. In these cases G(α, β), as a

group defined over Q is Of , where f is a rational quadratic form in an odd number

of variables and of signature (n − 1, 1) (over R). We call these (α, β)’s hyperbolic

hypergeometrics and besides a (long) list of sporadic examples, they come in seven

infinite parametric families [F-M-S]. Our conjecture for these is that thin rules, that

is for all but finitely many of the hyperbolic hypergeometrics, H(α, β) is thin. This is

proved in [F-M-S] for a number (but not all) of the seven families. For example for n

odd consider the two families:

α =

(
0,

1

n+ 1
,

2

n+ 1
, · · · , n− 1

2(n+ 1)
,
n+ 3

2(n+ 1)
, · · · , n

n+ 1

)
β =

(
1

2
,

1

n
,

2

n
, · · · , n− 1

n

)
,(3.6)

and

α =

(
1

2
,

1

2n− 2
,

3

2n− 2
, · · · 2n− 3

2n− 2

)
β =

(
0, 0, 0,

1

n− 2
,

2

n− 2
, · · · n− 3

n− 2

)
.(3.7)

Both of these families are hyperbolic hypergeometrics and for both H(α, β) is thin for

n ≥ 5 and is arithmetic for n = 3.

The proof is based on the following principle: if ψ : G(Z)→ K is a morphism onto

a group K for which |ψ(H(α, β))\K| = ∞, then certainly H(α, β) is of infinite index

in G(Z). Now in the higher rank cases there are no useful such ψ’s (by the Margulis

normal subgroup theorem [Ma] in these cases if K is infinite then ker(ψ) is finite),

however, in the rank one case such ψ’s may exist and yield a certificate of thinness.
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Indeed in this hyperbolic case if Rf is the Vinberg reflection subgroup described in

3.3, then as mentioned there, except for finitely many f ’s, Kf := Of (Z)/Rf is infinite.

To use this one needs to analyze the image of H(α, β) in Kf . The key observation is

that up to the finite index the hyperbolic hypergeometrics are generated by Cartan

Involutions.‖ These are linear reflections of Qn which induce isometries on hyperbolic

space given by geodesic inversions in a point [the hyperbolic reflections are generated

by root vectors v in Zn outside the light cone (f(v) > 0) while the Cartan involu-

tions by root vectors w in Zn inside the light cone, in fact f(w) = −2]. In order to

examine the image of a group generated by such Cartan involutions in Kf , consider

the “minimum distance graph,” Xf . Its vertices are the integral Cartan root vectors

V−2(Z) = {v ∈ Zn : f(v) = −2}, and v and w are joined if f(v, w) = −3. One can

show that the components of Xf consist of finitely many isomorphism types and each

is the Cayley graph of a finitely generated Coxeter group. The main lemma [F-M-S]

asserts that if Σ ⊂ V−2(Z) is a connected component of Xf then the image of the group

generated by the Cartan involutions rv with roots v ∈ Σ, is a finite subgroup of Kf .
∗∗

This together with Vinberg and Nikulin’s theorems gives a robust certificate for the

thinness of these hyperbolic hypergeometric monodromies. As far as I know (3.6) and

(3.7) give the first family of thin monodromy groups in high dimensions for which G

is simple.

We end with some comments about the arithmetic Ramanujan Conjectures. The

gonality of a congruence arithmetic surface being linear in its genus and the Heegaard

genus of a congruence hyperbolic three manifold being linear in its volume, as well as

the proof that there are only finitely many maximal arithmetic reflection groups, all

appeal to the uniform lower bounds for λ1 for all such manifolds. This follows from

what is known towards the Ramanujan Conjectures but it does not follow from the

fundamental expansion theorem since the latter only applies to one tower at a time.

As far as the general Ramanujan Conjectures, some progress has been made since the

report [Sa1]. Namely in [Ar] a precise formulation of the Ramanujan Conjectures for

these groups is given, and moreover it is shown (assuming forms of the fundamental

lemma which themselves should be theorems before too long) that these conjectures

‖The local monodromy C about 1 is always a pseudo reflection and in these cases yields a Cartan
involution.
∗∗The proof makes use of the quite special feature of the binary form g = x2 + 3xy + y2, of being
integrally equivalent to −g (called reciprocal in [Sa4]).
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will follow if one can prove the Ramanujan Conjectures for GLm.

Acknowledgement: These brief notes cover a lot of ground. I thank my collaborators,

the people whose work is quoted and the many mathematicians with whom I have

discussed aspects of the theory connected with these thin groups. Thanks to the

referee for pointing me to the relevant applications in [Gr-Gu].
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[P-Sz] L. Pyber and E. Szabó, Growth in finite simple groups of Lie type, available at arXiv:1101.4556,
[P] M. Prokhorov, Izv. Akad. Nauk SSSR 50 (1986), 413–424.
[Ri] I. Rivin, D.M.J. 142 (2008), 353–379.
[Rip] E. Rips, BLMS 14 (1982), 45–47.
[R-S1] C. Radin and L. Sadun, Jnl. of Algebra 202 (1998), 611-633.
[R-S2] C. Radin and L. Sadun, T.A.M.S. 351 (1999), 4469–4480.
[Ro] G. Robinson, Jnl. of Alg. 306 (2006), 201–207.
[Sa1] P. Sarnak, Notes on the generalized Ramanujan Conjectures, Clay Math. Proc. 4, AMS, (2005).
[Sa2] P. Sarnak, Am. Math. Monthly 118 (2011), 291–306.
[Sa3] P. Sarnak, Cambridge Tracts in Math. 99 (1990).
[Sa4] P. Sarnak, Reciprocal Geodesics Clay Math. 7 (2007), 217–237.
[Se] A. Selberg, Proc. Symp. Pure Math., VIII (1965), 1–15.



18

[Ser] J. P. Serre, Le groupe quaquaversal, vu comme groupe S-arithmétique, Oberwolfach reports 6
(2009).

[Su] D. Sullivan, Pub. IHES 50 (1979), 171–202.
[S-V] A. Salehi and P. Varju, Expansion in perfect groups, to appear, GAFA (2012).
[Si-Ve] S. Singh and T. Venkataramana, “Arithmeticity of certain symplectic hypergeometric groups,”
ArXiv:1208.6460 (2012).

[S-X] P. Sarnak and X. Xue, DMJ 64 (1991), 207–227.
[S-S] A. Salehi and P. Sarnak, Affine linear sieve, available at arXiv:1109.6432.
[T] J. Tits, J. Alg. 20 (1972), 250–270.
[Y-Y] P. Yang and S. T. Yau, Ann. Sc. Norm. Sup Pisa 7 (1980), 55–63.
[V] P. Varju, Expansion in SLd(OK/I), I square-free, available at arXiv:1101.3664.
[Ve1] T. Venkataramana, Arithmeticity of the braid group at roots of unity, available at
arXiv:1204.4778V2.

[Ve2] T. Venkataramana, Pacific Jnl. Math. 166 no. 1, (1994), 193–212.
[Vi] E. Vinberg, Trudy Moscow MAT. OBS, 47 (1984), 68–102.
[Vino] I. Vinogradov, Effective bisector estimate with application to Apollonian circle packings, avail-
able at arXiv:1204.5498 (2012).

[Z] P. Zograf, J. Math. Sc. 36 (1994), 106–114.


