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§1. Introduction

Mathematical hydrodynamics deals basically with Navier-Stokes and Euler systems.
In the d-dimensional case and incompressible fluids these are the systems of (d + 1)
equations for d-dimensional velocity vector u = (u1, . . . , ud) and a scalar function p
called the pressure. In the Navier-Stokes (NSS) case it has the form:

Du

dt
= ν∆u−∇p + f(x, t), (1)

div u = 0 (2)

where ν > 0 is the viscosity, Du
dt

is the vector with the components ∂ui

∂t
+

d∑
k=1

∂ui

∂xk

uk and

f(x, t) is the vector of external forces which is assumed to be a given function of x and
t. Depending on the boundary conditions the system (1), (2) can be considered on the
whole space Rd, on the d-dimensional torus Tord or on a compact domain O. In the
latter case one usually imposes “sticking” boundary condition u|∂O = 0.

If ν = 0 the system (1), (2) becomes Euler system of equations which describes the
dynamics of the ideal liquid. In this paper we shall consider only NSS (1) and (2) with
ν > 0. The Euler system has a very rich structure but we shall not discuss its properties
here. It deserves a special consideration.

NSS is quite rigid. The only natural parameters are the viscosity ν > 0 and the
external forces f(x, t) which may be random. By this reason the analysis of (1), (2)
is usually very difficult. The problem of turbulence can be formulated as a problem of
asymptotic regimes of solutions of NSS as ν → 0. We believe that some of the methods
and results which we shall discuss below can be useful for this notoriously difficulty
problem as well.
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Mathematical hydrodynamics consists of three different parts:

1. One-dimensional hydrodynamics.

2. Two-dimensional hydrodynamics.

3. Three or more-dimensional hydrodynamics.

Each part has its own methods and special features.

We shall discuss each part separately.

§2. One-dimensional Hydrodynamics

Under one-dimensional hydrodynamics we understand the theory of Burgers system
of equations. It is written for d-dimensional unknown vector u = (u1, . . . , ud)

Du

dt
= ν∆u + f(x, t) (3)

and differs from (3) by the absence of the pressure term which changes the whole structure
significantly. Remark that the Burgers system can be written for any d but is mostly
developed for d = 1. For any d the system (3) has an invariant sub-manifold of gradient-
like solutions on which it can be reduced to a heat equation with the help of the so-called
Hopf-Cole substitution. Outside this manifold, solutions of the Burgers system are as
complicated as solutions of the whole NSS.

We shall consider gradient-like solutions of (3) with periodic boundary conditions
and random forcing. Since we are dealing with gradient-like solutions we assume that
the forcing is also the gradient, i.e. f(x, t) = ∇F (x, t) where F is the potential. The
main case here is F (x, t) =

∑
|k|≤K

Bk(t) · exp{2πi < k, x >} which means that the force

acts on finitely many modes. In the random case Bk(t) are independent “white noises”
except some relation which ensures that F is real-valued.

(3) can be considered as a stochastic PDE describing a Markov process with contin-
uous time in the space of continuous in time, periodic in x functions. It was proven in
[Si1] that this Markov process has a unique stationary measure and the corresponding
dynamical system is ergodic and has strong properties of mixing.
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Much more interesting case appears when ν = 0 which is actually the limit ν ↓ 0.
For d = 1, we are dealing with a single quasi-linear equation

∂u

∂t
+

1

2

∂(u2)

∂x
=

∂

∂x

[∑
Bk(t) e2πikx

]
(4)

and periodic boundary condition of period 1. Typical solutions of (4) have discontinuities
which are shock waves. Therefore, a stationary measure for (4) if it exists, should be
a probability measure on the Borel σ-algebra of the Skorokhod space of functions with
discontinuities of the first kind.

This measure was constructed in the paper [EKMS]. We used the so-called Lax-
Oleinik variational method to implement the so-called “One Force - One Solution” prin-
ciple. It means that for a typical realization of the random force we find a particular
solution of (4) which by this reason is also random and is a global attractor in the sense
that an arbitrary solution converges to it.

We now give the description of this solution (details can be found in [EKMS]). Take
an arbitrary piece-wise differentiable function X = {x(t),−∞ < t ≤ 0}, with values in
S1 and consider the formal “action”

A{X} =
∫ s

−∞

[
1

2
ẋ2(t) + F (x(t), t)

]
dt

where F is the potential of external forcing. We call X̄ a one-sided minimizer if A in-
creases if we replace X̄ by an arbitrary perturbation on any compact interval, preserving
the initial point. One of the first results of [EKMS] says that with probability 1 for every
y ∈ S1 there exists a one-sided minimizer X̄y for which X̄(0) = y. Then the attractive

solution has the form u(x, s) = dX̄(s)
dt

, X̄(s) = x. It has many remarkable properties
which surprisingly are proven with the help of hyperbolic theory of dynamical systems.
For example, one can show that with probability 1 the number of points where u(x, s) is
discontinuous is finite. However, it is not known whether the expectation of this number
is finite.

Presumably, statistical properties of solutions of the Burgers equation on the whole
line are more subtle. K. Khanin and Viet.Ha [KV] could extend the theory of [EKMS] to
some class of potentials F (x, t) on the whole line. In the paper by Itturiaga and Khanin
[IK] one could find extensions of the one-dimensional theory to the multi-dimensional
one. It is worth mentioning that the case of F (x, t) being white noise in space and
time is out of reach. For this case Bouchaud, Mezard and Parisi [BMP] suggested that
stationary measure is white noise in space.
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§3. Two-dimensional NSS

The incompressibility condition ∂u1

∂x1
+ ∂u2

∂x2
= 0 allows us to write down the equation for

vorticity ω(x, t) = ∂u2

∂x1
− ∂u1

∂x2
instead of NSS. In the case of periodic boundary conditions

it is convenient to use Fourier series. Then the infinite-dimensional system of equations
for the evolution of Fourier modes ω̂k(t)k ∈ Z2 takes the form

∂ω̂k(t)

∂t
= − ν|k|2 ω̂k(t)− 2πi

∑
`

ω̂`(t) ω̂k−`(t)
〈k, `⊥〉
〈`, `〉

+ f̂k(t) . (5)

where f̂k(t) are the Fourier coefficients of the vorticity of the external force.

In the two-dimensional case and periodic boundary conditions the so-called energy
and enstrophy inequalities ensure the fast decay (in k) of ω̂k(t) at infinity. The first
result of this type was proven by C. Foias and R. Temam in [FT]. In our joint paper with
J. Mattingly [MS] we proposed another proof of a similar result (see also the monograph
by G. Gallavotti [G]). Here is the formulation (see [ES]).

Theorem 1. Let |ω̂k(0)| ≤ D
|k|γ for some γ > 1 and finite D and (for simplicity) f̂k(t)

is different from zero only for finitely many k and bounded. Then for some constant
a > 0, t0 > 0, another constant D′ and all 0 ≤ t ≤ t0

|ω̂k(t)| ≤
D′

|k|γ
e−a·t·|k| .

For t > t0

|ω̂k(t)| ≤
D′

|k|γ
e−a1·|k|

for some constant a1 > 0.

Surprisingly enough, this theorem cannot be applied to the NSS on the whole plane.
Here we are dealing with the non-linear integral equation

∂ω̂(k, t)

∂t
= − ν|k|2 ω̂(k, t) +

1

2π

∫
ω̂(`, t) ω̂(k − `, t)

〈k, `⊥〉
|`|2

d` + f̂(k, t) . (6)

In the recent paper by Arnold, Bakhtin and Dinaburg [ABD] it was shown that under
some assumptions on initial conditions solutions of (6) satisfy the inequalities

|ω̂(k, t)| ≤ D
(

1

|k|γ
+ 1

)
e−a(t)|k| (7)
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for some constants D < ∞, γ > 0 and a(t) = a · t for 0 ≤ t ≤ t0, a(t) = a1 = const for
t > t0.

The estimate (7) shows that solutions can grow near k = 0 and decay exponentially
outside a neighborhood of k = 0.

The growth of solution near k = 0 is related to the flow of energy toward small k
which is called the energy cascade. (See e.g.[DG]). However, the asymptotics of the size
of the neighborhood where this happens remains an open question.

§4. Three-dimensional NSS

For 3D-NSS the existence and uniqueness results for classical solutions were proven for
sufficiently small or large initial conditions (see the recent survey paper by M. Cannone
[C] and the issue of Russian Math. Surveys, vol. 58, N2 dedicated to O. Ladyzenskaya.

In our joint paper with Dinaburg [DS1] we proposed some modification of the NSS
on the whole space which shows similar process of non-linear spreading as NSS but looks
like a quasi-linear system with non-local coefficients. The system in Fourier space is
defined for functions v(k) ∈ R3, k ∈ R3, v(k) ⊥ k and has the form:

d k

dt
= A k ,

(8)

d v

dt
= −ν|k|2 v + A∗v − Πk A∗ v

where Πk is the reflection off the plane orthogonal to k, i.e. Πk e = e− 2
(

k
|k| , e

)
k
|k| .

This system appeared earlier in the works of physicists A. Obukhov, F. Dolzanskii
et. al. but they did not consider this system in connection with the problem of existence
and uniqueness of solutions.

Recently in our joint paper with Dinaburg, we could investigate the character of
decay of solutions of 3-NSS on the whole space when the initial conditions have some
singularities near k = 0 and k = ∞. This will be discussed in a separate paper.
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