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Abstract

We consider the 3D-Navier-Stokes system (NSS) on R3 without external forcing.
After Fourier transform it becomes the system of non-linear integral equations.
For one-parameter families of initial conditions A·c(0)(k)

|k|2 it is known that if |A| is

sufficiently small then NSS has global solution. We show that if c(0) satisfies some
natural conditions at infinity then for sufficiently large A NSS has no local solutions
with this initial condition.
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Consider the 3D-Navier-Stokes System on R3 without external forcing and viscosity
ν = 1. After Fourier transform it can be written as

v(k, t) = e−|k|2tv(0)(k) + i
∫ t

0
e−|k|2(t−s) ds .

∫
R3

< k, v(k − k′, s) > Pk v(k′, s) dk′ . (1)

Here k ∈ R3, v(k, t) ⊥ k for any k and Pk is the orthogonal projection to the subspace
orthogonal to k.

In [1], see also [2], the subspaces Φ(α, ω) were introduced. By definition,
v(k) ∈ Φ(α, ω) iff

1) v(k) = c(k)
|k|α , c(k) ∈ R3, c(k) ⊥ k for |k| ≤ 1 where c(k) is continuous outside k = 0,

sup
|k| ≤ 1, k �=0

| c (k)| = c < ∞;

2) v(k) = d(k)
|k|ω , d(k) ∈ R3, d(k) ⊥ k for |k| ≥ 1 and d(k) is continuous,

sup
|k|≥1

|d(k)| = d < ∞.

We put ‖ v ‖= c + d. With this norm the curve e−t|k|2v(0)(k), v(0)(k) ∈ Φ(α, ω) may
not be continuous at t = 0 in the sense that ‖ v(0)(k)e−t|k|2 − v(0)(k) ‖ may not tend to

zero as t → 0. In the spaces Φ(α, ω), 0 ≤ α < 3, ω > 2 the local existence theorem is
valid (see [1]). More precisely (see [1]),

Theorem 1 Let v(0) ∈ Φ(α, ω). Then for some t0 > 0 depending on α, ω and v(0) there

exists v(k, t) = e−t|k|2v(0)(k) + v(1)(k, t), 0 ≤ t ≤ t0 where v(1)(k, t) ∈ Φ(α, ω) and the
family {v(1)(k, t), 0 ≤ t ≤ t0} is continuous in Φ(α, ω) including t = 0.

This means that ‖ v(1)(k, t) ‖→ 0 as t → 0. In the so-called critical case α = ω = 2
where v(k, t) = c(k,t)

|k|2 , Le Jan and Sznitman (see [3]) and later Cannone and Planchon

(see [4]) proved that if ‖ v(0) ‖ is sufficiently small then there exists global solution of (1)

defined for all t > 0.

In this paper we consider v(0)(k) satisfying some regularity condition at ∞. Namely,

for each r > 0 consider the sphere Sr = {k : |k| = r}. The condition v(k) ⊥ k implies
that for each r we have the vector field on Sr consisting of vectors v(k), |k| = r.

Basic Assumption: There exist a continuous vector field w = {w(k) , |k| = 1} on the unit

sphere such that

max
k∈Sr

| c(0)(k) − w

(
k

|k|
)
| → 0 as |k| → ∞ .
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This assumption implies the existence of the limits of c0)(k) when k → ∞ along any
direction.

Having c(0)(k) satisfying the basic assumption take a one-parameter family of initial

conditions v
(0)
A (k) = A

|k|2 · c(0)(k), A > 0. For sufficiently small A the result by Le Jan
and Sznitman and Cannone and Planchon can be applied and it gives the existence of

global solution vA(k, t). The purpose of this paper is to prove the following theorem.

Main Theorem: Let c(0)(k) satisfy the basic assumption and some non-degeneracy

condition (see below). For all sufficiently large A, A ≥ A1 there does not exist a solution

of (1) v(k, t) = c(k,t)
|k|2 = Ae−t|k|2 c(0)(k)

|k|2 + c(1)(k,t)
|k|2 where sup

k∈R3
�0

|c(1)(k, t)| → 0 as t → 0.

Certainly, c(1)(k, t) may depend on A. To prove the theorem we show that for any

t > 0 and k ∼ O
(

1√
t

)
the solution c(k, t) takes values of order A2 and hence cannot

be small, i.e. ‖ v(k, t) − v(0)(k) ‖∼ O(A2) for all sufficiently small t, where O does not

depend on t.

Proof: We write v(k, t) = Ae−t|k|2c(0)(k)
|k|2 + c(1)(k,t)

|k|2 .

From (1)

c(1)(k, t) = i
∫ t

0
e−(t−s)|k|2 ds · |k|2 ·
[
A2
∫

R3

< k, c(0)(k − k′) > Pk · c(0)(k′)e−s|k−k′|2−s|k′|2 dk′

|k − k′|2 · |k′|2

+ A
∫

R3

< k, c(0)(k − k′) > e−s|k−k′|2 Pkc
(1)(k′, s) dk′

|k − k′|2 · |k′|2 +

+ A
∫

R3

< k, c(1)(k − k′, s) > Pkc
(0)(k′) e−s|k′|2dk′

|k − k′|2 · |k′|2

+ A
∫

R3

< k, c(1)(k − k′, s) > Pkc
(1)(k′, s) dk′

|k − k′|2 · |k′|2 =

def i
∫ t

0
e−(t−s)|k|2 ds · |k|2[I1(k, s) + I2(k, s) + I3(k, s) + I4(k, s)

]
. (2)

Take t > 0 and make the rescaling: s = ξ · t, k = xt−
1
2 .
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Using the formula

a1|k − k′|2 + a2|k′|2 =
1

a−1
1 + a−1

2

|k|2 + a2|k′ − a1

a1 + a2

k|2

we can write

∫ t

0
e−(t−s)|k|2 ds · |k|2 · A2

∫
R3

< k, c(0)(k − k′) > Pk c(0)(k′) e−s|k−k′|2−s|k′|2 dk′

|k − k′|2 · |k′|2

=
∫ 1

0
e−(1−ξ)|x|2 dξ · x2 · A2 · e− ξ

2
·|x|2 ·

∫
R3

< x, c(0)
(

x√
t
− x′√

t

)
> Px · c(0)

(
x′√

t

)
e−ξ|x′−x

2
|2 dx′

|x − x′|2 · |x′|2 . (3)

It follows from the Basic Assumption that

c(0)

(
x√
t
− x′

√
t

)
− w

(
x − x′

|x − x′|
)
→ 0, c(0)

(
x′
√

t

)
− w

(
x′

|x′|
)

→ 0

as t → 0. Therefore (3) converges to the limit

A2
∫
01

e−(1−ξ)|x|2 dξ · |x|2 · e−
ξ
2
|x|2
∫

R3

< x, w
(

x−x′
|x−x′|

)
> Px w

(
x′
|x′|
)

e−ξ|x′−x
2
|2

|x − x′|2 · |x′|2 (4)

Non-degeneracy condition which we meant in the formulation of the theorem just says

that the integral in (1) is non-zero. Thus we have that the first term in (2) for x ∼ 1√
t

is

proportional to A2 and in the main order of magnitude the coefficient near A2 does not
depend on t. In the Appendix 1 we estimate the other terms in (2). The estimates show

that they tend to zero as t → 0 and this gives the statement of the theorem.

Comments.

1. Critical case α = ω = 2 is remarkable because after rescaling main terms do not
depend on t explicitly.

2. For the main theorem only the behavior of c(0)(k) at infinity is important. Therefore

c(0)(k) can tend to zero as k → 0 so that v(0)(k) has the finite energy. But the

enstrophy Ω =
∫
|v(0)(k)||k|2 dk = ∞.

3. The main theorem gives the precise meaning to the intuitive feeling that for suffi-

ciently large A the iteration scheme corresponding to (1) diverges.
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Appendix 1. Estimates of I2, I3, I4

We shall estimate

E2 =
∫ t

0
e−(t−s)|k|2 ds · |k|2 ·

∫
R3

< k, c(0)(k − k′) > e−s|k−k′|2 Pk c(1)(k′, s) dk′

|k − k′|2 · |k′|2

The functions c(0), c(1) satisfy the inequalities:

1. |c(0)(k)| ≤ c(0)

2. |c(1)(k′, s)| ≤ ε(s)

where ε(s) is continuous function on [0, t0] and ε(s) → 0 as s → 0; by this reason we may

assume that ε(s) ≤ ε, 0 ≤ s ≤ t0 for any given ε and appropriate t0.

We have

|E2| ≤
∫ t

0
e−(t−s)|k|2 ds · |k|3 · c(0) · ε ·

∫
R3

dk′

|k − k′|2 · |k′|2 . (5)

It is easy to check that for some constant B1∫
R3

dk′

|k − k′|2 · |k′|2 ≤ B1

|k| .

Therefore, the right-hand side of (5) is not more than∫ t

0
e−(t−s)|k|2 ds · |k|2 · c(0) · ε · B1 ≤ (1 − e−t|k|2) · c(0) · ε · B1 ≤ c(0) · ε B1 .

This is the estimate which we need. The estimation of E3,

E3 =
∫ t

0
e−(t−s)|k|2 ds · |k|2 ·

∫
R3

< k, c(1)(k − k′, s) > e−s|k′|2 Pk c(0)(k′) dk′

|k − k′|2 · |k′|2
is done in a similar way. The estimate of E4,

E4 =
∫ t

0
e−(t−s)|k|2 ds · |k|2

∫
R3

< k, c(1)(k − k′, s) > Pk c(1)(k′, s) dk′

|k − k′|2 · |k′|2

is also simple and |E4| ≤ · ε2 · B1. This completes the proof of the theorem.


