ALMOST FILLING LAMINATIONS AND THE CONNECTIVITY OF ENDING LAMINATION SPACE

DAVID GABAI

Abstract. We show that if S is a finite type orientable surface of negative Euler characteristic which is not the 3-holed sphere, 4-holed sphere or 1-holed torus, then $\mathcal{EL}(S)$ is connected and locally path connected.

0. Introduction

The main result of this paper is the following

Theorem 0.1. If S is a finite type orientable surface of negative Euler characteristic which is not the 3-holed sphere, 4-holed sphere or 1-holed torus, then $\mathcal{EL}(S)$, the space of ending laminations, is connected and locally path connected.

Erica Klarrich [K] showed that if S is hyperbolic, then the boundary of the curve complex $\mathcal{C}(S)$ is homeomorphic to the space of ending laminations on S. Therefore we have the

Corollary 0.2. If S is a finite type orientable surface of negative Euler characteristic which is not the 3-holed sphere, 4-holed sphere or 1-holed torus, then $\partial \mathcal{C}(S)$ is connected and locally path connected, where $\mathcal{C}(S)$ is the curve complex of S.

History 0.3. For the thrice punctured sphere S, $\mathcal{C}(S)$ is trivial. It is well known that $\partial \mathcal{C}(S)$ is totally disconnected when S is the 4-holed sphere or 1-holed torus. Peter Storm conjectured that $\partial \mathcal{C}(S)$ is path connected if S is any other finite type hyperbolic surface. See Question 10, [KL]. Saul Schleimer [Sc1] showed if S is a once punctured surface of genus at least two, then $\mathcal{C}(S)$ has exactly one end. With Leininger, he then showed [LS] that $\mathcal{EL}(S)$ is connected if S is any punctured surface of genus at least two or S is closed of genus at least 4. Leininger, Mj and Schleimer [LMS] showed that if S is a once punctured surface of genus at least two then $\mathcal{EL}(S)$ is both connected and locally path connected.

The idea of the proof is as follows. Given measured geodesic laminations λ_0 and λ_1 whose underlying laminations are minimal and filling, construct a path in $\mathcal{ML}(S)$ from λ_0 to λ_1. A generic PL approximation of this path will yield a new path $f_1 : [0, 1] \to \mathcal{ML}(S)$ such that for each t, $f_1(t)$ is an almost filling almost minimal measured lamination. I.e. it has a sublamination $f_1^*(t)$ without proper leaves whose complement supports at most a single simple closed geodesic. A measure of the complexity of this lamination is the length of the complementary geodesic, if one exists. We now find a sequence f_1, f_2, f_3, \cdots such that the minimal length of all complementary geodesics to the $f_n^*(t)$'s $\to \infty$ as $n \to \infty$. In the limit, after taking care to rule out compact leaves, we obtain the desired path in $\mathcal{EL}(S)$

1Partially supported by NSF grant DMS-0504110.
Version 0.52, August 17, 2008.
from λ_0 to λ_1. Since the final path can in some sense be taken arbitrarily close to the original (see Lemma 5.1), we obtain local path connectivity. Proving that the limit path is actually continuous requires control of the passage from f_i to f_{i+1}. Roughly speaking, for each t, $f_i(t)$ lies in a $2\varepsilon_i$-neighborhood of $f_j(t)$, if $j > i$, but not necessarily conversely, so as $j \to \infty$, the $f_j(t)$ become more and more complicated. In actuality we use discrete approximation to control the f_i's. For example, given $t \in [0, 1]$ and $i \in \mathbb{N}$, there exits $t(i)$ such that for $j \geq i$, $f_i(t(i))$ lies in a $2\varepsilon_i$-neighborhood of $f_j(t)$. Neighborhoods are taken in $\text{PT}(S)$, the projective unit tangent bundle.

Central to this work, and perhaps of independent interest, is the following elementary result, contained in Proposition 3.2, which asserts that the forgetful map $\phi : \mathcal{ML}(S) \to \mathcal{L}(S)$, from measured lamination space to the space of geodesic laminations is continuous in a super convergence sense.

Proposition 0.4. If the measured laminations $\lambda_1, \lambda_2, \cdots$ converge to $\lambda \in \mathcal{ML}(S)$, then $\phi(\lambda_1), \phi(\lambda_2), \cdots$ super converges to $\phi(\lambda)$ as subsets of $\text{PT}(S)$.

As an application (of the proof of Theorem 0.1) in §8 we give a new construction of non uniquely ergodic measured laminations.

Acknowledgements 0.5. We thank Saul Schleimer, Chris Leininger and Kasra Rafi for stimulating conversations and beautiful lectures on the curve complex and its boundary. Also Mahan Mj for his constructive comments. In particular all were independently aware of the structure of the balls denoted B_α and their intersections as discussed in §2.

1. Basic definitions and facts

In what follows, S will denote a complete, finite volume hyperbolic surface of genus g and p punctures, such that $3g + p \geq 5$.

We will assume that the reader is familiar with the elementary aspects of Thurston’s theory of curves and laminations on surfaces, e.g. $\mathcal{L}(S)$ the space of geodesic laminations endowed with the Hausdorff topology, $\mathcal{ML}(S)$ the space of measured geodesic laminations endowed with the weak* topology, $\mathcal{PML}(S)$ projective measured lamination space, as well as the standard definitions and properties of of train tracks, e.g. the notions of recurrent and transversely recurrent tracks, branch, fibered neighborhood, carries, etc. See [PH], [H1], [M], [CEG], for basic definitions and expositions of these results as well as the 1976 foundational paper [T] and its elaboration [FLP] and Thurston’s 1981 lecture notes [GT].

All laminations in this paper will be compactly supported in S and isotopic to geodesic ones. For the convenience of the reader, we recall a few of the standard definitions.

Definition 1.1. A lamination is minimal if each leaf is dense. It is filling if all complementary regions are discs or once punctured discs. The closed complement of a lamination \mathcal{L} is the metric closure of $S \setminus \mathcal{L}$ with respect to the induced path metric. A closed complementary region is a component of the closed complement. A lamination is maximal if each closed complementary region is either a 3-pronged disc or a once punctured monogon. $\mathcal{EL}(S)$, also known as ending lamination space will denote the space of minimal filling geodesic laminations on S.

If \mathcal{L} is a filling geodesic lamination, then there are only finitely many ways, up to isotopy, to extend \mathcal{L} to another geodesic lamination. Such extensions, including
the trivial one, are called diagonal extensions. The forgetful map from $\mathcal{ML}(S)$ or $\mathcal{PML}(S)$ to $\mathcal{L}(S)$ will be denoted by ϕ.

Central to this paper are the following definitions.

Definition 1.2. An almost filling lamination is a lamination \mathcal{L} which is the disjoint union of the lamination \mathcal{L}^* and the possibly empty simple closed curve L. Furthermore, each closed complementary region of \mathcal{L}^* is either a pronged disc, a once punctured pronged disc, a twice punctured pronged disc, or a pronged annulus and there is at most one complementary region of the latter two types. I.e. if \mathcal{L} is a geodesic lamination in S, then the complement of \mathcal{L}^* supports at most a single simple closed geodesic. Note that a filling minimal lamination is almost filling. We say that the almost filling lamination \mathcal{L} is almost minimal if \mathcal{L}^* has no proper leaves. We call \mathcal{L}^* the almost minimal sublamination of \mathcal{L}, since \mathcal{L}^* is the union of one or two minimal laminations. Note that \mathcal{L}^* has no compact leaves. Unless explicitly stated otherwise, all almost filling laminations will be almost filling almost minimal. We let $\mathcal{AML}(S) \subset \mathcal{L}(S)$ denote the set of almost filling almost minimal geodesic laminations. A path $f : [0, 1] \to \mathcal{ML}(S)$ (or $\mathcal{PML}(S)$) will be called almost filling if for each t, $\phi(f(t)) \in \mathcal{AML}(S)$.

Remarks 1.3. It is useful to view a geodesic lamination in three different ways. First as a foliated closed subset of S. Second, via its lift to $PT(S)$, the projective unit tangent bundle. Third, let M_∞ denote $(S^1_\infty \times S^1_\infty \setminus \Delta)/\sim$, where Δ is the diagonal and \sim is the equivalence relation generated by $(x, y) = (y, x)$. Since geodesics in hyperbolic 2-space are parametrized by points in M_∞, the preimage of a geodesic lamination in H^2 can be equated with a $\pi_1(S)$-invariant closed subspace of M_∞, but not necessarily conversely. We view the Hausdorff topology on $\mathcal{L}(S)$ in these three ways.

Notation 1.4. If $x \in \lambda$ and $y \in \mu$ where $\lambda, \mu \in \mathcal{L}(S)$, then $d_{PT(S)}(x, y)$ denotes distance measured in $PT(S)$. When the context is clear, the subscript will be deleted or even changed to denote distance with respect to another metric. If \mathcal{L} is a geodesic lamination, then $N_{PT(S)}(\mathcal{L}, \epsilon)$ denotes the closed ϵ-neighborhood of $\mathcal{L} \subset PT(S)$. The subscript or ϵ may be deleted or changed as appropriate.

If X is a space, then $|X|$ denotes the number of components of X.

Definition 1.5. If τ is a train track, then metrize τ by decreeing that each edge has length one. A natural way to split a train track τ to τ_1, called unzipping in the terminology of [PH], is as follows. Let $N(\tau)$ denote a fibered neighborhood of τ with quotient map $\pi : N(\tau) \to \tau$. Let σ be a union of pairwise disjoint, compact, embedded curves in $N(\tau)$ transverse to the ties such that each component of σ has at least one of its endpoints at a singular point of $N(\tau)$. See the top of Figure 1.7.A [PH] for an example when $|\sigma| = 2$. Obtain τ_1, by deleting a small neighborhood of σ from $N(\tau)$ and then contracting each resulting connected tie to a point, as in Figure 1.7.A b [PH]. Call such an unzipping a σ-unzipping. Say the unzipping $\tau \to \tau_1$ has length n (resp. length $\geq n$), if for each component η of σ, length$(\pi(\eta)) \leq n$ with equality if exactly one endpoint lies on a singularity (resp. length$(\pi(\eta)) \geq n$, unless η has both endpoints on a singular tie.) We view the σ-unzipping to be equivalent to the σ'-unzipping if there exists a tie preserving ambient isotopy, henceforth called a normal isotopy, of $N(\tau)$ which takes σ to σ'. We say that the σ'-unzipping is an extension of the σ-unzipping, if after normal isotopy, $\sigma \subset \sigma'$. A sequence τ_1, τ_2, \ldots
is a full unzipping sequence if for each N, there exists $f(N)$ such that the induced unzipping $\tau_1 \to \tau_{f(N)}$ is at least of length N.

We say that τ fully carries the measured lamination λ, if τ carries λ (i.e. up to isotopy $\lambda \subset N(\tau)$ and is transverse to the ties) and each tie nontrivially intersects λ.

Remarks 1.6. i) Note that there are only finitely many length-n unzippings and in particular only finitely many extensions of a length-n unzipping to one of length $n+1$ and every length $\geq n$ unzipping is an extension of a length-n unzipping. If τ_i is an unzipping of τ, then τ carries τ_i. Every splitting or shifting (as defined in [PH]) is also an unzipping.

ii) Let τ be a transversely recurrent train track in S. A theorem of Thurston with proof by Nat Kuhn, as in Theorem 1.4.3 [PH], is "given $\epsilon > 0$, $L > 0$, there exists a hyperbolic metric on S such that the geodesic curvature on τ is bounded above by ϵ and the hyperbolic length of each edge is at least L." Consequently, with respect to our initial hyperbolic metric, if $\tilde{\tau}$ is the preimage of τ in \mathbb{H}^2, then each bi-infinite train path $\sigma \subset \tilde{\tau}$ is a uniform quasi-geodesic in \mathbb{H}^2, hence determines an element of M_{∞}. Similarly if τ_i is carried by τ, then any bi-infinite path in τ_i is isotopic to one in τ, hence by slightly relaxing the constant, any bi-infinite path carried by a train track carried by τ is a uniform quasi-geodesic. Recall, that quasi-geodesics in \mathbb{H}^2 are boundedly close to geodesics.

Definition 1.7. Let $E(\tau) \subset M_{\infty}$ denote those geodesics corresponding to bi-infinite train paths carried by $\tilde{\tau}$. If λ is a geodesic lamination, then let $E(\lambda) \subset M_{\infty}$ denote those geodesics which are leaves of the preimage of λ in \mathbb{H}^2.

Remarks 1.8. By construction $E(\tau)$ is $\pi_1(S)$-equivariant. By Theorem 1.5.4 [PH] $E(\tau)$ is closed in M_{∞}.

Proposition 1.9. Let $\lambda_1, \lambda_2, \cdots$, be a sequence of geodesic measured laminations converging in $\mathcal{ML}(S)$ to the measured lamination λ. Let τ_1, τ_2, \cdots be a full unzipping sequence such that τ_1 is transversely recurrent and for each i and for each $j \geq i$, τ_i fully carries λ_j. Then

i) the Hausdorff limit of the geodesic laminations $\phi(\lambda_i)$ exists and equals \mathcal{L}, the lamination whose preimage $\tilde{\mathcal{L}} \subset \mathbb{H}^2$ is comprised of the geodesics $E = \cap_{i=1}^{\infty} E(\tau_i)$.

ii) $\phi(\lambda)$ is a sublamination of \mathcal{L}.

Remarks 1.10. This is a generalization of Corollary 1.7.13 [PH]. Indeed, if $\lambda = \lambda_1 = \lambda_2 = \cdots$, then our Proposition is exactly Corollary 1.7.13, though stated in different language.

In our setting the limit lamination \mathcal{L} need not carry a measure of full support.

Proof. The proof is close to that of Corollary 1.7.13. Let $\tilde{\tau}_i$ (resp. λ_i) denote the preimage of τ_i (resp. λ_i) in \mathbb{H}^2. Since τ_1 is transversely recurrent, any bi-infinite path in $\tilde{\tau}_i$ or its splittings is a uniform quasi-geodesic. For $j > i$, we view $\tau_j \subset N(\tau_i)$ embedded and transverse to the ties.

We first show that any geodesic $\gamma \in E$ is a limit of a sequence of geodesics $\{\tilde{\gamma}_i\}$ where $\tilde{\gamma}_i$ is a leaf of $\phi(\lambda_i)$ for $i \in \mathbb{N}$. By definition $\gamma = \gamma(t_1) = \gamma(t_2) = \cdots$, where t_i is a bi-infinite train path in τ_i and $\gamma(t_i)$ is the corresponding geodesic. By Corollary 1.5.3 [PH], each t_i is normally isotopic in $N(\tau_1)$ to t_1. It therefore suffices to show
that each compact segment of \(t_i \) is normally isotopic to a segment in \(\lambda_i \) for all \(i \) sufficiently large. This follows from the proof of Lemma 1.7.9 [PH]. That argument shows that if \(\tau_i \) is obtained from \(\tau_i \) by a length \(\geq n \) unzipping; \(\omega \) is a length-\(k \), \(k \leq n/2 \), \(\tau_1 \)-train path normally isotopic in \(N(\hat{\tau}_1) \) to a train path in \(\hat{\tau}_i \); and \(\tau_i \) fully carries the lamination \(\lambda_i \), then there exists a segment \(\kappa \) lying in a leaf \(\hat{\gamma}_i \) of \(\hat{\lambda}_i \) that is normally isotopic in \(N(\hat{\tau}_1) \) to \(\omega \). (Actually the [PH] argument requires only that \(k \leq 2n + 1 \), but using \(k \leq n/2 \) has a somewhat easier proof.) In our setting if \(n \in \mathbb{N} \), then for \(i \) sufficiently large, \(\tau_i \) is obtained from \(\tau_1 \) by a length \(\geq n \) unzipping and \(\tau_i \) carries \(\lambda_i \). It follows that each element of \(\mathcal{E} \) is the limit of a sequence \(\hat{\gamma}_1, \hat{\gamma}_2, \ldots \) as desired. Since each \(\lambda_i \) is a lamination, this implies that each element of \(\mathcal{E} \) projects to an embedded geodesic in \(\mathcal{S} \) and the projection of no two elements cross transversely. Since each \(\mathcal{E}(\tau_i) \) is closed, \(\mathcal{E} \) is closed. Therefore the \(\pi_1(S) \)-equivariant \(\mathcal{E} \) projects to a lamination in \(\mathcal{S} \), which we denote by \(\mathcal{L} \).

Next we show that any convergent sequence of geodesics \(\{\hat{\gamma}_i\} \subset \mathbb{H}^2 \) with \(\hat{\gamma}_i \), a leaf of \(\lambda_i \), has limit lying in \(\mathcal{E} \). Suppose \(\beta_1, \beta_2, \ldots \) is a sequence of leaves respectively of \(\phi(\lambda_1) \), \(\phi(\lambda_2) \), \ldots converging to the geodesic \(\beta \subset \mathbb{H}^2 \). We show that \(\beta \in \mathcal{E} \). Since \(\tau_i \) carries \(\lambda_j \), \(j \geq i \) it follows that for \(j \geq i, \beta_j \subset \mathcal{E}(\tau_i) \). Since each \(\mathcal{E}(\tau_i) \) is closed, \(\beta \in \mathcal{E}(\tau_i) \) all \(i \) and hence \(\beta \in \mathcal{E} \).

We show that \(\mathcal{L} \) is the Hausdorff limit of the \(\phi(\lambda_i) \)'s. Let \(U \subset PT(S) \) be a neighborhood of \(\mathcal{L} \). If for some subsequence, \(\phi(\lambda_{n_i}) \nsubseteq U \), then there exists a sequence of geodesics \(\beta_{n_1}, \beta_{n_2}, \ldots \) converging to \(\beta \notin \mathcal{E} \) such that \(\beta_{n_i} \) is a leaf of \(\phi(\lambda_{n_i}) \). The previous paragraph shows that \(\bigcap_{i=j}^{\infty} \beta_{n_i} \subset \mathcal{E}(\tau_k) \) if \(k \leq n_j \), which implies that \(\beta \in \mathcal{E} \), a contradiction. On the other hand since each leaf of \(\mathcal{L} \) is a limit of leaves of \(\phi(\lambda_i) \) and \(\mathcal{L} \) has finitely many minimal components it follows that given \(\epsilon > 0 \), for \(i \) sufficiently large \(\mathcal{L} \subset N_{PT(S)}(\phi(\lambda_i), \epsilon) \).

To prove ii), note that \(\lambda \) is carried by each \(\tau_i \) and hence \(\mathcal{E}(\lambda) \subset \mathcal{E}(\tau_i) \) all \(i \) and hence \(\mathcal{E}(\tau_i) \subset \mathcal{E} \).

The proof of the Proposition yields the following result.

Corollary 1.11. Under the hypothesis of Proposition 1.9, given \(\epsilon > 0 \) there exists \(N(\epsilon) \in \mathbb{N} \) so that if \(i \geq N(\epsilon) \), then \(\mathcal{E}(\tau_i) \subset N_{PT(S)}(\mathcal{L}, \epsilon) \), where \(\mathcal{E}(\tau_i) \) denotes the union of geodesics in \(\mathcal{S} \) corresponding to elements of \(\mathcal{E}(\tau_i) \).

Proof. Given \(N \in \mathbb{N} \), then for \(i \) sufficiently large, each length \(N \) segment lying in a biinfinite train path of \(\hat{\tau}_i \) is normally isotopic in \(N(\hat{\tau}_i) \) to a segment lying in a leaf of \(\hat{\lambda}_i \). Since biinfinite train paths in the \(\hat{\tau}_j \)'s are uniform quasi-geodesics in \(\mathbb{H}^2 \) and \(\hat{\mathcal{L}} \) is the Hausdorff limit of the \(\phi(\hat{\lambda}_j) \)'s , it follows by elementary hyperbolic geometry that for \(i \) sufficiently large any geodesic \(\sigma \) corresponding to a biinfinite train path in \(\hat{\tau}_i \) satisfies \(\sigma \subset N_{PT(S)}(\hat{\mathcal{L}}, \epsilon) \).}

The curve complex \(\mathcal{C}(S) \) was introduced by Bill Harvey in 1978 [Ha] and it and its generalizations have subsequently played a profound role in surface topology, 3-manifold topology and geometry, algebraic topology, hyperbolic geometry and geometric group theory. In particular Howie Masur and Yair Minsky [MM] showed that \(\mathcal{C}(S) \) is Gromov hyperbolic. See also [B]

Erica Klarrich showed that the boundary \(\partial \mathcal{C}(S) \) of \(\mathcal{C}(S) \) can be equated with \(\mathcal{EL}(S) \) the space of ending laminations of \(S \). These are the geodesic laminations on \(S \) that are both filling and minimal, with the topology induced from \(\mathcal{ML}(S) \) by forgetting the measure. This work was clarified by Ursula Hamenstadt [H1], who
gave a direct combinatorial argument equating ends of quasi-geodesic rays in $\mathcal{L}(S)$ with points of $\mathcal{E}\mathcal{L}(S)$. In the process, she introduced the weak Hausdorff topology on $\mathcal{E}\mathcal{L}(S)$ (defined below) and showed that $\mathcal{E}\mathcal{L}(S)$ with this topology is homeomorphic to $\partial \mathcal{C}(S)$. Consequently the two topologies on $\mathcal{E}\mathcal{L}(S)$ coincide.

Definition 1.12. (Hamenstadt [H1]) The weak Hausdorff topology on $\mathcal{E}\mathcal{L}(S)$ is the topology such that a sequence L_1, L_2, \ldots limits to L if and only if any convergent subsequence in the Hausdorff topology limits to a diagonal extension of L. Said another way, the topology is generated by the following open sets. If $\epsilon > 0$ and $L \in \mathcal{E}\mathcal{L}(S)$, then an ϵ-neighborhood about L in $\mathcal{E}\mathcal{L}(S)$ consists of all $\lambda \in \mathcal{E}\mathcal{L}(S)$ such that $d_H(\lambda, L') < \epsilon$, for some diagonal extension L' of L.

More generally, we say that a sequence $L_1, L_2, \ldots \in \mathcal{L}(S)$ converges to the lamination $L \in \mathcal{E}\mathcal{L}(S)$ with respect to the weak Hausdorff topology if any convergent subsequence in the Hausdorff topology limits to a diagonal extension of L.

The following are three characterizations of continuous paths in $\mathcal{E}\mathcal{L}(S)$.

Lemma 1.13. A function $f : [0, 1] \to \mathcal{E}\mathcal{L}(S)$ is continuous if and only if for each $t \in [0, 1]$ and each sequence $\{s_i\}$ converging to t, $f(t)$ is the weak Hausdorff limit of the sequence $f(s_1), f(s_2), \ldots$. □

Lemma 1.14. A function $f : [0, 1] \to \mathcal{E}\mathcal{L}(S)$ is continuous if and only if for each $\epsilon > 0$ and $s \in [0, 1]$ there exists a $\delta > 0$ such that $|s - t| < \delta$ implies that the maximal angle of intersection between leaves of $f(t)$ and leaves of $f(s)$ is $< \epsilon$. □

Lemma 1.15. A function $f : [0, 1] \to \mathcal{E}\mathcal{L}(S)$ is continuous if and only if for each $\epsilon > 0$ and $s \in [0, 1]$ there exists a $\delta > 0$ such that $|s - t| < \delta$ implies that $f(t) \cap N_{\mathcal{P}\mathcal{L}(S)}(f(s), \epsilon) \neq \emptyset$. □

2. Combinatorics of α-balls and Almost Filling PL Paths

Definition 2.1. If α is a simple closed geodesic in S, then define $\hat{B}_\alpha = \{ \lambda \in \mathcal{M}\mathcal{L}(S) \mid i(\alpha, \lambda) = 0 \}$, where $i(\alpha, \lambda)$ denotes intersection number and let B_α denote the projection of $\hat{B}_\alpha \setminus 0$ to $\mathcal{P}\mathcal{M}\mathcal{L}(S)$. Let $B_{\alpha, \beta}$ (resp. $B_{\alpha, \beta}$) denote $\hat{B}_\alpha \cap B_\beta$ (resp. $B_\alpha \cap B_\beta$).

The main result of this section describes the combinatorial structure of these sets.

Proposition 2.2. If α is a simple closed geodesic in S, then B_α (resp. \hat{B}_α) is a compact (resp. half open) polyhedral ball of codimension-1 in $\mathcal{P}\mathcal{M}\mathcal{L}(S)$ (resp. $\mathcal{M}\mathcal{L}(S)$). If α and β are distinct simple closed geodesics, then $B_{\alpha, \beta}$ (resp. $\hat{B}_{\alpha, \beta}$) is a compact (resp. half open) polyhedral ball of codimension at least two in $\mathcal{P}\mathcal{M}\mathcal{L}(S)$ (resp. $\mathcal{M}\mathcal{L}(S)$).

Remarks 2.3. i) Note that $\mathcal{M}\mathcal{L}(S) = \phi(\mathcal{P}\mathcal{M}\mathcal{L}(S) \setminus \cup_{\alpha \neq \beta \in S} B_{\alpha, \beta})$. where S is the set of simple closed geodesics in S.

ii) By Thurston, $\mathcal{M}\mathcal{L}(S)$ is an open ball of dimension $6g - 6 + 2m$ and has a natural piecewise integral linear structure (PIL) while $\mathcal{P}\mathcal{M}\mathcal{L}(S)$ is sphere of dimension $6g - 7 + 2m$ and has a natural piecewise integral projective structure (PIP). I.e. for $\mathcal{M}\mathcal{L}(S)$ the transition functions are piecewise linear functions with integer coefficients.

Here is a brief description of the PIL structure on $\mathcal{M}\mathcal{L}(S)$ as presented in §2.6 and §3.1 [PH]. A pair of pants decomposition on S, consists of a collection of
$3g - 3 + m$ pairwise disjoint simple closed geodesics. Each closed complementary region is either the sphere with 3-open discs removed, or the once punctured annulus or the twice punctured disc. Given these curves and a parameterization of the complementary regions, construct the associated set of standard train tracks as in §2.6 [PH]. (From now on discussion of the parametrization of the complementary regions will be suppressed.) By elementary linear algebra, if τ is a train track, then $V(\tau)$, the space of transverse measures supported by τ is a cone on a compact polyhedron in some \mathbb{R}^N. By §2.6 [PH] we can identify $V(\tau)$ with a closed subspace of $\mathcal{ML}(S)$. Furthermore, the various $V(\tau)$'s arising from the standard tracks glue together to give the PIL-structure on $\mathcal{ML}(S)$. In particular the maximal standard train tracks correspond to top dimensional cells and have pairwise disjoint interiors.

This structure is natural in the following sense. A different pants decomposition will give rise to a new collection of standard tracks, with change of coordinate maps given by piecewise linear integral maps. For example, by [HT], one can transform any pair of pants decomposition to another via a finite sequence of elementary moves. The transition functions associated to each of the two elementary moves, were computed in Penner’s Thesis and are given explicitly in the Addendum of [PH].

Proof of Proposition 2.2 Since $\mathcal{ML}(S)$ has a natural PIL structure, it suffices to show that B_α and \tilde{B}_α are polyhedral balls with respect to some pants decomposition. Let P be a pants decomposition with curves $(\alpha_1, \alpha_2, \ldots, \alpha_{3g-3+m})$, where $\alpha_1 = \alpha$. Let λ be a geodesic measured lamination. If α is either a leaf of λ or lies in a complementary region, then with respect to *global coordinates* λ corresponds to a point $(0, t_1, t_2, i_3, t_3, \ldots, i_{3g-3+m}, t_{3g-3+m})$, where $i_j \geq 0$, and $t_j \in \mathbb{R}$, unless $i_j = 0$ in which case $t_j \geq 0$. In particular $t_1 \geq 0$. Here $i_j(\lambda) = i(\alpha_j, \lambda)$ and $t_j(\lambda)$ is the twisting of λ about α_j. For a detailed exposition of global coordinates see p. 152, Theorem 3.1.1 and the last paragraph of p. 174 of [PH]. The connection between these coordinates and the homeomorphism between $\mathcal{ML}(S)$ and $\mathbb{R}^{6g - 6 + 2m}$ is given in Proposition 2.6.3 and Corollary 2.8.6 [PH].

The collection of points in $\mathcal{ML}(S)$ with first and second coordinate zero is the set of measured geodesic laminations disjoint from α. It is an open PL ball, denoted \hat{S}_α, of dimension $6g - 6 + 2m - 2$ and is the union of those $V(\tau)$'s for which τ is a standard train track disjoint from α. Each element of \tilde{B}_α is of the form $t_G + \tilde{G}$, where $t \geq 0$ and \tilde{G} is a measured geodesic lamination with support disjoint from α, thus is a half open PL-ball of codimension-1, i.e. it is homeomorphic to $\mathbb{R}^{6g - 6 + 2m - 2} \times [0, \infty) = \hat{S}_\alpha \times [0, \infty)$.

The quotient of $\hat{S}_\alpha \setminus 0$ by projectivizing is a sphere of dimension $6g - 7 + 2m - 2$ denoted S_α. Therefore, B_α is a cone on S_α and is thus a compact PL ball of codimension-1 in $\mathcal{PML}(S)$.

If $\beta \cap \alpha = \emptyset$, then we explicitly describe $\tilde{B}_{\alpha,\beta}$ as follows. Let P be a pants decomposition with $\alpha_1 = \alpha$ and $\alpha_2 = \beta$. If $\lambda \in \tilde{B}_{\alpha,\beta}$, then λ has coordinates $(0, t_1, 0, t_2, i_3, t_3, \ldots, i_{3g-3+m}, t_{3g-3+m})$. As in the previous paragraph, when $t_1 = t_2 = 0$, this gives rise to an open PL-ball $\hat{S}_{\alpha,\beta}$ of codimension-4 in $\mathcal{ML}(S)$ and since $t_1, t_2 \geq 0$, we conclude that $\tilde{B}_{\alpha,\beta}$ is a half open PL ball of codimension-2. Similarly the quotient $S_{\alpha,\beta}$ of $\hat{S}_{\alpha,\beta} \setminus 0$ is a sphere of codimension-4 and $B_{\alpha,\beta}$ is the join of a sphere and an interval (the projective classes supported on $\alpha_1 \cup \alpha_2$), hence is a compact PL-ball of codimension-2.
If $\beta \cap \alpha \neq \emptyset$, then let \mathcal{P} be a pants decomposition where for some $n \geq 2$,
$\{\alpha_n, \alpha_{n+1}, \cdots, \alpha_{3g-3+n}\}$ is a maximal system of simple closed geodesics disjoint from both α and β. We can assume that $\alpha_n, \alpha_{n+1}, \cdots, \alpha_k$ are the curves that can be isotoped into $N_S(\alpha \cup \beta)$. Thus $B_{\alpha,\beta}$ is the join of a PL sphere of dimension $6g - 7 + 2m - 2k$ with a ball of dimension $k - n$, hence is a compact ball of codimension $n + k - 1 \geq 3$. A similar result holds for $\hat{B}_{\alpha,\beta}$.

The proof of the Proposition shows.

Corollary 2.4. If α is a simple geodesic, then B_α is a cone of PL-sphere. If $\lambda \in \hat{B}_\alpha$, then $\lambda = \alpha + G$, where G is a measured lamination with support disjoint from α and $t \geq 0$.

Remark 2.5. A similar description exists for elements of $B_{\alpha,\beta}$ and $\hat{B}_{\alpha,\beta}$.

The above facts about the topology and combinatorics of the B_α’s and their intersections is independently more or less known to the experts.

Definition 2.6. If $x \in \text{int}(\hat{B}_\alpha)$ with $\phi(x) \in \text{AML}(S)$, then $\phi(x)$ is the disjoint union of an almost minimal almost filling lamination \mathcal{L}^* and the simple closed curve α. Let $m_{\mathcal{L}^*}$ (resp. m_α) denote the transverse measure on \mathcal{L}^* (resp. α). Define the escape ray r_x to be the path $r : [0,1] \rightarrow \hat{B}_\alpha$ by $r(t) = (\mathcal{L}^*, m_{\mathcal{L}^*}) + (\alpha, (1-t)m_\alpha)$. So $r(0) = x$, $\phi(r(1)) = \mathcal{L}^*$ and for each $t < 1$, $\phi(r(t)) = \mathcal{L}^* \cup \alpha$.

Definition 2.7. A path $g : [0,1] \rightarrow \mathcal{ML}(S)$ (resp. $\mathcal{PM}(S)$) is PL almost filling if g is piecewise linear, transverse to each \hat{B}_α (resp. B_α) and disjoint from each $\hat{B}_{\alpha,\beta}$ (resp. $B_{\alpha,\beta}$) and hence $\phi(g(t)) \in \text{AML}(S)$ all t. Also $\phi(g(t)) \in \mathcal{EL}(S)$ for $t = 0,1$ as well as ϕ of the vertices of g. We say that g is filling (resp. almost filling) if $\phi(g(t)) \in \mathcal{EL}(S)$ (resp. $\text{AML}(S)$) for all t.

Lemma 2.8. If $x_0, x_1 \in \mathcal{ML}(S)$ with $\phi(x_0), \phi(x_1) \in \mathcal{EL}(S)$, then there exists a PL almost filling path from x_0 to x_1.

Proof. Since the B_α’s countable, PL of codimension-1 and the $B_{\alpha,\beta}$’s are countable, PL of codimension at least two, it follows that the generic PL path is almost filling.

Since generic PL paths are PL almost filling we have

Lemma 2.9. Fix any metric on $\mathcal{ML}(S)$ and $\epsilon > 0$. Let $h : [0,1] \rightarrow \mathcal{ML}(S)$ be continuous, such that $\phi(h(t)) \in \mathcal{EL}(S)$ for $i = 0,1$. Then h is homotopic rel endpoints to a PL almost filling path g such that for each t, $d_{\mathcal{ML}(S)}(g(t), h(t)) < \epsilon$.

3. SUPER CONVERGENCE

The forgetful map $\phi : \mathcal{ML}(S) \rightarrow \mathcal{L}(S)$ is discontinuous, for any simple closed curve viewed in $\mathcal{ML}(S)$ is the limit of filling laminations and any Hausdorff limit of a sequence of filling laminations is filling. The content of this section is that this map is continuous in a super convergence sense.

Definition 3.1. Let X_1, X_2, \cdots be a sequence of subsets of the topological space Y. We say that the subsets $\{X_i\}$ super converge to X if for each $x \in X$, there exists $x_i \in X_i$ so that $\lim_{i \rightarrow \infty} x_i \rightarrow x$. In this case we say X is a sublimit of $\{X_i\}$.
The following is the main result of this section.

Proposition 3.2. i) If the measured laminations \(\lambda_1, \lambda_2, \cdots \) converge to \(\lambda \in \mathcal{ML}(S) \), then \(\phi(\lambda_1), \phi(\lambda_2), \cdots \) super converges to \(\phi(\lambda) \) as subsets of \(PT(S) \).

ii) If in addition \(\phi(\lambda) \in \mathcal{AML}(S) \) and \(\phi(\lambda_i) \in \mathcal{AML}(S) \) all \(i \), then \(L^*_1, L^*_2, \cdots \) super converges to \(L^* \), where \(L^*_1 \) (resp. \(L^* \)) denotes the almost minimal almost filling sublamination of \(\phi(\lambda_i) \) (resp. \(\phi(\lambda) \)).

Proof. Part i) follows immediately from the following Claim and Proposition 1.9.

Claim. After passing to subsequence of \(\{ \lambda_i \} \) there exists a full unzipping sequence \(\tau_1, \tau_2, \cdots \) of transversely recurrent train tracks such that each \(\tau_i \) carries \(\lambda \) and for \(j \geq i \), \(\tau_i \) fully carries \(\lambda_j \).

Proof of Claim. There are finitely many transversely recurrent train tracks such that each \(x \in \mathcal{ML}(S) \) is carried by one of them, e.g. a system of standard train tracks. Therefore one such track \(\tau_1 \) carries infinitely many of the \(\lambda_j \)'s. By deleting edges if necessary we can assume that \(\tau_1 \) fully carries infinitely many of these measured laminations and, after passing to subsequence, these laminations comprise our original sequence. Since each \(V(\tau_1) \) is a closed subspace of \(\mathcal{ML}(S) \) (see Remark 2.3) and \(\lambda \) is the limit of the \(\lambda_j \)'s it follows that \(\tau_1 \) also carries \(\lambda \).

Consider the finitely many train tracks obtained by a length-1 unzipping of \(\tau_1 \). Again one such track \(\tau_2 \) fully carries an infinite subset of \(\{ \lambda_i \}, i \geq 2 \) and hence also \(\lambda \). The claim follows by the usual diagonal argument. \(\square \)

We now prove part ii). First consider the case that \(L^* \) is minimal. Let \(I \) be a compact interval lying in a leaf of \(L^* \). We first show that \(I \) is a sublimit of \(L^*_i \)'s if and only if \(L^* \) is such a sublimit. By inclusion, the latter implies the former. Conversely if \(L^* \) is not a sublimit, then there exists an \(x \in L^* \subset PT(S) \) which is not a limit point of some subsequence of the \(L^*_i \)'s. But the segment \(I \) lies in the leaf \(\sigma \) which is dense in \(L^* \). Thus, if some leaf of \(L^*_i \) is nearly tangent to \(I \), then in \(S \) it must pass very close and tangent to \(L^* \) at \(x \), a contradiction.

If \(I \) is not a sublimit of \(L^*_i \)'s, then after passing to subsequence, there exists an open set \(U \subset S \) such that \(I \subset U \) and for each \(i \), \(U \cap L^*_i = \emptyset \). Otherwise, the \(L^*_i \)'s would intersect \(I \) with some definite angle, but this contradicts the fact that \(I \) is a sublimit of the \(\phi(\lambda_i) \) laminations. This argument applied to all compact intervals in leaves of \(L^* \) plus compactness of \(L^* \) implies that there exists an open set \(V \subset S \) such that \(L^* \subset V \) and \(V \cap L^*_i = \emptyset \) all \(i \) sufficiently large. This contradicts the fact that the complement of an almost filling lamination cannot support an almost filling lamination. Since \(L^* \) is minimal without compact leaves, there exists infinitely many simple closed geodesics in \(S \) that lie in \(V \). This contradicts the fact that the complement of each \(L^*_i \) supports at most a single geodesic.

The other possibility is that \(L^* \) is the union of two minimal components \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \). As above it suffices to show that if for \(i = 1, 2 \) \(I_i \) is a compact interval in a leaf of \(\mathcal{H}_i \), then \(I_1 \cup I_2 \) is a sublimit of the \(L^*_i \)'s. If say \(I_1 \) was not a sublimit, then that argument also shows that there exists an open set \(V \subset S \) such that \(\mathcal{H}_1 \subset V \) and for \(i \) sufficiently large \(V \cap L^*_i = \emptyset \). Since \(V \) supports infinitely many simple closed geodesics we obtain a contradiction as above. \(\square \)

An immediate application is the following discrete approximation Lemma.
Lemma 3.3. Let \(f : [0,1] \to \mathcal{ML}(S) \) be an almost filling path. Let \(\epsilon > 0 \) and \(F \subset [0,1] \) a finite set. Then there exists an open cover \(\mathcal{I} \) of \([0,1]\) by connected sets \(I(1), \ldots, I(n) \) and \(t_1 = 0 < t_2 < \cdots < t_n = 1 \) such that \(F \subset \{ t_1, t_2, \ldots, t_n \} \) and \(t_i \in I(j) \) exactly when \(i = j \). Finally for all \(t \in I(i) \), \(\mathcal{L}^*(t_i) \subset N_{\mathcal{PT}(S)}(\mathcal{L}^*(t), \epsilon) \). Here \(\mathcal{L}^*(t) \) (resp. \(\mathcal{L}^*(t_i) \)) denotes the almost minimal almost filling sublamination of \(f(t) \) (resp. \(f(t_i) \)). \(\square \)

4. A CRITERION FOR CONSTRUCTING CONTINUOUS PATHS IN \(\mathcal{EL}(S) \)

Recall that our compact surface \(S \) is endowed with a fixed hyperbolic metric \(\rho \).

Let \(\{ C_i \}_{i \in \mathbb{N}} \) denote the set of simple closed geodesics in \(S \), ordered so that \(i < j \) implies \(\text{length}_\rho(C_i) \leq \text{length}_\rho(C_j) \).

Definition 4.1. A pointed open covering \(T = (T, \mathcal{I}) \) of \([0,1]\) is a set \(T = \{ t_1 = 0 < t_2 < \cdots < t_n = 1 \} \subset [0,1] \) and an open covering \(\mathcal{I} \) of \([0,1]\) by connected sets \(I(1), I(2), \ldots, I(n) \) such that \(t_i \in I(i) \) and if \(I_i(j) \cap I_i(k) \neq \emptyset \) then \(|j - k| \leq 1 \). A refinement \((T_2, \mathcal{I}_2)\) of \((T, \mathcal{I})\) has the property that \(T_1 \subset T_2 \) and each \(I_2(j) \) is contained in some \(I_1(k) \). The elements of \(T_i \) (resp. \(\mathcal{I}_i \)) are denoted \(t^i_1, \ldots, t^i_n \), (resp. \(I_i(1), \ldots, I_i(n) \)). An infinite pointed open covering sequence \((T_1, T_2, \ldots)\) is a sequence of pointed open covers such that each term is a refinement of the preceding one.

An assignment function \(A \) of an infinite pointed open covering sequence associates to each \(s \in [0,1] \) a nested sequence of open sets \(I_1(j_1) \supset I_2(j_2) \supset \cdots \) with \(s \in \cap_{i=1}^{\infty} I_i(j_i) \) and \(I_i(j_i) \in \mathcal{I}_i \). We let \(s(i) \) denote \(t^i_1 \).

Remark 4.2. It is an elementary exercise to show that any infinite pointed open covering sequence has an assignment function.

The following very technical lemma gives a criterion for constructing a continuous path in \(\mathcal{EL}(S) \) between two elements of \(\mathcal{EL}(S) \).

Lemma 4.3. Let \(f_i : [0,1] \to \mathcal{ML}(S) \), \(i \in \mathbb{N} \) be a sequence of almost filling paths between two given points in \(\mathcal{EL}(S) \). Let \(\epsilon_1, \epsilon_2, \cdots \) be such that for all \(i \), \(\epsilon_i/2 > \epsilon_{i+1} > 0 \) and let \(T_1, T_2, \cdots \) be an infinite pointed open cover sequence with assignment function \(A \). Let \(\mathcal{L}^*(s) \) denote the almost minimal almost filling sublamination of \(\phi(f_n(s)) \).

(*sublimit*) If \(I_i(j) \cap I_{i+1}(k) \neq \emptyset \) and \(t \in I_{i+1}(k) \), then \(\mathcal{L}^*(t^i_j) \subset N_{\mathcal{PT}(S)}(\mathcal{L}^*(t), \epsilon_i) \)

(*filling*) If \(s \in [0,1] \) and \(m \in \mathbb{N} \), then for \(n \) sufficiently large the minimal angle of intersection between leaves of \(\mathcal{L}^*(s(n)) \) with \(C_m \) is uniformly bounded below by a constant that depends only on \(s \) and \(m \). Also for \(m \) fixed, any subsequence of \(C_m \cap \mathcal{L}^*(s(i)), i \in \mathbb{N} \), has a further subsequence which converges in the Hausdorff topology on \(C_m \) to a set with at least \(4g + p + 1 \) points. Here \(g = \text{genus}(S) \) and \(p \) is the number of punctures. (Recall that \(s(n) \) is given by \(A \).)

If all the above hypotheses hold, then there exists a continuous path \(\mathcal{L} : [0,1] \to \mathcal{EL}(S) \) connecting \(f_1(0) \) to \(f_2(1) \) so that for \(s \in [0,1] \), \(\mathcal{L}(s) \) is the weak Hausdorff limit of \(\{ \mathcal{L}^*(s(n)) \}_{n \in \mathbb{N}} \).

Proof. We record the following useful and immediate fact which is a consequence of the sublimit condition and the requirement that for all \(i \), \(\epsilon_{i+1} < \epsilon_i/2 \).
Claim. If \(t \in I_i(j) \) and \(n \geq i \), then \(\mathcal{L}_i^*(t^n_i) \subset N_{PT(S)}(\mathcal{L}_i^*(t), 2\epsilon_i) \).

This claim demonstrating the utility of the sublimit condition shows how a given \(f_i \) imposes structure on \(f_k \) for all \(k \geq i \) and is the key to the proof of continuity. A similar result together with the filling condition are the main ingredients for showing that \(\mathcal{L}(s) \) is the weak Hausdorff limit of the \(L_{n_k}^*(s(n)) \)'s. Here are the details.

Fix \(s \). We construct the minimal and filling \(\mathcal{L}(s) \). Given \(s \in [0,1] \), let \(I_1(j_1) \supset I_2(j_2) \supset \cdots \) be the nested sequence of \(I_i(j) \) intervals given by \(\mathcal{A} \) which contain \(s \). After passing to subsequence we can assume that \(\{ L_{n_k}^*(s(n_i)) \} \) converges in the Hausdorff topology to the lamination \(\mathcal{L}' \). \(\mathcal{L}' \) contains no closed leaves since the filling condition implies that \(\mathcal{L}' \) is transverse to every simple closed geodesic. Let \(\mathcal{L} \) be a minimal sublamination of \(\mathcal{L}' \). If \(\mathcal{L} \) is not filling, then there exists a simple closed geodesic \(C \), disjoint from \(\mathcal{L} \) that can be isotoped into any neighborhood of \(\mathcal{L} \) in \(S \). An elementary topological argument shows that \(|C \cap \mathcal{L}'| < 4g + p + 1 \). This contradicts the second part of the filling condition. We now show that \(\mathcal{L} \) is independent of subsequence. Let \(\mathcal{L}_1 \in \mathcal{E}\mathcal{L}(S) \) be a lamination that is the weak Hausdorff limit of the subsequence \(\{ L_{n_k}^*(s(m_i)) \} \) and let \(\epsilon > 0 \). If \(x \in \mathcal{L}_1 \), then there exists a sequence \(x_{m_i} \in L_{n_k}^*(s(m_i)) \) such that \(\lim_{i \to \infty} x_{m_i} = x \) where the limit is taken in \(PT(S) \). The sublimit property implies that for all \(k > m_i \), there exists \(y_k \in L_{n_k}^*(s(k)) \) such that \(d_{PT(S)}(x_{m_i}, y_k) < \epsilon_{m_i} + \epsilon_{m_i+1} + \cdots + \epsilon_{k-1} < 2\epsilon_{m_i} \). As \(i \to \infty \), \(\epsilon_{m_i} \to 0 \) and \(n_i \to \infty \) so it follows that \(\mathcal{L}_1 \subset \mathcal{L}' \). Since \(\mathcal{L}_1, \mathcal{L} \in \mathcal{E}\mathcal{L}(S) \), we conclude that \(\mathcal{L} = \mathcal{L}_1 \). Denote \(\mathcal{L} \) by \(\mathcal{L}(s) \). We have shown that \(\mathcal{L}(s) \) exists and satisfies the weak Hausdorff limit condition of the conclusion.

We apply Lemma 1.15 to show that \(f \) is continuous. Fix \(s \in [0,1] \) and let \(I_1(j_1) \supset I_2(j_2) \supset \cdots \) be the nested sequence of \(I_i(j) \) intervals given by \(\mathcal{A} \) which contain \(s \). Let \(U \) open in \(PT(S) \) such that \(\mathcal{L}(s) \subset U \). Pick \(z \in \mathcal{L}(s) \) and let \(\epsilon > 0 \) such that \(N_{PT(S)}(z, \epsilon) \subset U \). We will show that for \(t \) sufficiently close to \(s \), \(\mathcal{L}(t) \cap N_{PT(S)}(z, \epsilon) \neq \emptyset \). Choose \(i \), such that \(\epsilon_i < \epsilon/2 \). Since \(\mathcal{L}(s) \) is the weak Hausdorff limit of the \(\mathcal{L}_k^*(s(k)) \) it follows that for \(k \) sufficiently large there exists an \(x_k \in L_k^*(s(k)) \) so that \(d_{PT(S)}(x_k, z) < \epsilon_i \). Assume that \(k > i \). The Claim implies that if \(t \in I_k(j_k) \), then for every \(n \geq k \) there exists \(y_n \in L_n^*(t) \) such that \(d_{PT(S)}(x_k, y_n) \leq 2\epsilon_k \) and hence for some diagonal extension \(\mathcal{L}'(t) \) of \(\mathcal{L}(t) \) there exists \(y \in \mathcal{L}'(t) \) with \(d_{PT(S)}(y, x_k) \leq 2\epsilon_k < \epsilon_i \) and hence \(d_{PT(S)}(y, z) < 2\epsilon_i < \epsilon \).

Assume that \(\epsilon \) is sufficiently small so that the \(\epsilon \)-disc \(D \subset S \), centered at \(z \), is embedded. Since \(\mathcal{L}(s) \) is minimal and has infinitely many leaves, the above argument shows that given \(N \in \mathbb{N} \), there exists a \(\delta > 0 \) so that \(|t-s| < \delta \) implies for some diagonal extension \(\mathcal{L}'(t) \) of \(\mathcal{L}(t) \), \(\mathcal{L}'(t) \cap D \) contains at least \(N \) arcs extremely close to and nearly parallel to the local leaf of \(\mathcal{L}(s) \) through \(z \). Extremely close and nearly parallel mean that if \(\sigma \) is a geodesic path lying between a pair of these arcs, then \(\sigma \cap N_{PT(S)}(z, \epsilon) \neq \emptyset \). It is possible that all of these \(N \) arcs lie in \(\mathcal{L}'(t) \setminus \mathcal{L}(t) \), however, if \(N \) is sufficiently large and \(\gamma \subset D \) is a geodesic transverse to these \(N \) arcs, then \(\gamma \cap \mathcal{L}(t) \neq \emptyset \). Therefore, \(\mathcal{L}(t) \cap N_{PT(S)}(z, \epsilon) \neq \emptyset \).

5. \(\mathcal{E}\mathcal{L}(S) \) is path connected

Let \(\mu_0, \mu_1 \in \mathcal{E}\mathcal{L}(S) \). In this section we produce a sequence of PL almost filling paths in \(\mathcal{M}\mathcal{L}(S) \) that satisfy Proposition 4.3, from which we obtain a path from \(\mu_0 \) to \(\mu_1 \).

By Lemma 2.8 there exists a PL almost filling path \(f_1 : [0,1] \to \mathcal{M}\mathcal{L}(S) \) from \(\mu_0 \) to \(\mu_1 \). Fix \(\epsilon_1 > 0 \). Let \(\mathcal{L}_1^*(t) \) denote the almost minimal almost filling sublaminations.
of \(\phi(f_1(t))\). By Lemma 3.3, there exists a pointed open cover \(\hat{T}_1 = (T_1, \hat{T}_1)\) with \(T_1 = \{t_1, \ldots, t_m\}\) and \(\hat{T}_1 = \{\hat{I}_1(1), \ldots, \hat{I}_1(n)\}\) such that for \(t \in \hat{I}_1(j)\), \(L^*_1(t^j) \subset N(L^*_1(t), \epsilon_1/2)\). By shrinking the \(\hat{I}_1(j)'s\) we can assume that for each \(k\) some open neighborhood \(Y(k)\) of \(t^k\) nontrivially intersects only \(I_1(k)\). By further shrinking the \(\hat{I}_1(j)'s\) we get a new open cover \(I_1 = \{I_1(1), \ldots, I_1(n)\}\) and \(\eta_i > 0\) such that for all \(j, N_{0.1}(I_1(j), \eta_i) \subset \hat{I}_1(j)\). We let \(T_1 = (T_1, \hat{T}_1)\). Since \(f_1\) is transverse to the \(\hat{B}_\alpha's\), it intersects \(\hat{B}_{C_1}\) in at most a finite set of points. By including these points in \(F\) (notation as in Lemma 3.3) we can assume that these points were included in \(T_1\). Without loss we will assume that there exists a unique point \(x\) of intersection, and \(f_1(t^1_1) = x\).

We homotope \(f_1\) to \(f_2\) so that \(f_2 \cap \hat{B}_{C_1} = \emptyset\) as follows. First homotope \(f_1\) to \(f_{1,1}\), via a homotopy supported in \(Y(p)\) so that the image of \(f_{1,1}\) is the image of \(f_1\) together with the escape ray \(r_x\). (See Definition 2.6). I.e. the path \(f_{1,1}\) follows along the image of \(f_1\) until it hits \(x\), then goes all the way out along \(r_x\) and then back along \(r_x\) to \(x\) and then continues away from \(\hat{B}_{C_1}\) as does \(f_1\). Since \(\hat{B}_{C_1}\) is PL ball of codimension-1 a very small perturbation of \(f_{1,1}\) yields \(f_{1,2}\) disjoint from \(\hat{B}_{C_1}\). A generic PL approximation of \(f_{1,2}\) yields a PL almost filling path \(f_2\) disjoint from \(\hat{B}_{C_1}\).

Since \(L^*_1(t^1_1)\) is the almost minimal almost filling lamination associated to any point on \(r_x\), Proposition 3.2 plus compactness implies that if the nontrivial tracks of the homotopy from \(f_1\) to \(f_2\) lay sufficiently close to \(r_x\), then for \(s \in Y(p), L^*_1(t^s_1) \subset N(L^*_1(s), \epsilon_1)\). Since \(f_2([0,1]) \cap \hat{B}_{C_1} = \emptyset, C_1\) nontrivially intersects each \(L^*_2(t)\) transversely. Since the homotopy from \(f_1\) to \(f_2\) is supported in \(Y(p), f_2\) satisfies the sublimit property (i.e. the sublimit property holds for \(i + 1 = 2\)) provided that the, to be defined, cover \(T_2\) has the property that if \(I_2(j) \cap I_1(k) \neq \emptyset\), then \(I_2(j) \subset \hat{I}_1(k)\).

We now choose \(\epsilon_2\) so the (to be constructed) \(f_i's\) will satisfy the filling property. By compactness of \([0, 1]\) and Proposition 3.2 there exists a \(\psi > 0\) that is a uniform lower bound, independent of \(t\), for the maximal angle of intersection between a \(L^*_2(t)\) and \(C_1\). Furthermore, there exists \(\kappa > 0\) so that if \(L\) is a geodesic lamination, \(t \in [0, 1]\) and \(L^*_2(t) \subset N(L, \kappa)\), then \(L \cap C_2 \neq \emptyset\) and the maximal angle of intersection is at least \(\psi/2\). Since \(C_1\) has bounded length, the lower bound \(\psi/2\) on maximal angle of intersection of a geodesic lamination with \(C_1\) implies a lower bound \(\phi\) on minimal angle of intersection.

Let \(N = 4g + p + 1\), where \(g = \text{genus}(S)\) and \(p\) is the number of punctures. Since for every \(t, |L^*_2(t) \cap C_2| = \infty\), the angle condition, compactness, and Proposition 3.2 imply that there exists a \(\psi' > 0\) and \(\kappa' < \kappa\) so that each \(L^*_2(t) \cap C_1\) contains \(N\) points, any two of which are at least distance \(\psi'\) apart, measured along \(C_1\). Furthermore, if \(L\) is a geodesic lamination with \(L^*_2(t) \subset N(L, \kappa')\), then \(L \cap C_2 \neq \emptyset\) and \(L \cap C_1\) contains \(N\) points, any two of which are \(\psi'/2\) apart on \(C_1\). Pick \(\epsilon_2 < \min(\kappa'/2, \epsilon_1/2)\).

If the, to be defined, \(f_i's\) and \(I_i(j)'s\) satisfy the sublimit property and the \(\epsilon_i's\) are chosen so that \(\epsilon_{i+1} < \epsilon_i/2\), then the \(f_i's\) will satisfy the filling property with respect to \(C_1\), independent of choice of assignment function. To see this, first pick \(s \in [0, 1]\) and suppose that \(s \in I_2(g)\). If \(m \geq 2\) and \(s \in I_m(j) \subset I_m\), then by the sublimit property, \(L^*_2(t^m_{j}) \subset N_{\text{PT}(S)}(L^*_m(t^m_j), \epsilon_{m-1} + \cdots + \epsilon_3 + \epsilon_2) \subset N_{\text{PT}(S)}(L^*_m(t^m_j), 2\epsilon_2) \subset N_{\text{PT}(S)}(L^*_m(t^m_j), \kappa)\) and hence \(L^*_m(t^m_j) \cap C_1\) contains \(N\) points spaced in \(C_1\) at least
ψ'/2 apart and the minimal angle of intersection of $L_m(t^m)$ with C_1 is bounded below by ϕ. The filling property for C_1 follows. Let $X_2 = \{t \in [0, 1]|f_2(t) \cap B_{C_2} \neq \emptyset\}$. Apply Lemma 3.3 to f_2 using $\epsilon = \epsilon_2$ and

$$\mathcal{F} = T_1 \cup X_2$$

(henceforth called F_2) to obtain $\tilde{T}_2 = (T_2, \tilde{I}_2)$. Again we can assume that for each $k, \text{some open neighborhood of } t^k_k \text{ nontrivially intersects only } \tilde{I}_2(k)$. By adding appropriate extra points to $F_2, \tilde{I}_2(j) \cap I_1(k) \neq \emptyset$ implies $I_2(j) \subset \tilde{I}_1(k)$. Finally shrink \tilde{T}_2 as before to obtain T_2 and T_2.

Use ϵ_3 and C_2 to construct f_3 from f_2 in the same manner that f_2 was constructed from f_1. Again the resulting f_3 satisfies the sublimit condition provided $I_3(j) \cap I_2(k) \neq \emptyset$ implies $I_3(j) \subset \tilde{I}_2(k)$. Choose ϵ_3 as above so that subsequently constructed f_i’s will satisfy the filling condition with respect to C_2. Define and construct T_3 and T_3 analogous to the constructions of T_2 and T_2.

The proof of path connectivity is now completed by induction. \qed

Our proof shows that in the sublimit sense any path in $\mathcal{ML}(S)$ connecting points in $\mathcal{EL}(S)$ can be perturbed rel endpoints by an arbitrarily small amount to a path in $\mathcal{EL}(S)$. More precisely we have,

Lemma 5.1. If $f : [0, 1] \to \mathcal{ML}(S)$ is a PL almost filling path with $\phi(f(0), \phi(f(1))$ in $\mathcal{EL}(S)$, $\epsilon > 0$ and $\delta > 0$, then there exists a path $g : [0, 1] \to \mathcal{EL}(S)$ from $\phi(f(0))$ to $\phi(f(1))$ such that for each $s \in [0, 1]$ there exists $t \in [0, 1]$ with $|t - s| < \delta$ such that, $L^*(t) \subset N_{\tau t}(g(s'), \epsilon)$, for some diagonal extension $g(s')$ of $g(s)$. Here $L^*(t)$ denotes the almost minimal almost filling sublamination of $f(\tilde{I}(t))$.

Proof. Apply the above proof with $f_1 = f$, $\epsilon_1 < \epsilon/4$ and the mesh of $F < \delta$. Pick $s \in [0, 1]$. With notation as in Proposition 4.3, if n is sufficiently large $L_{n}(s(n)) \subset N_{\tau t}(L^*(s), \epsilon_1)$ for some diagonal extension $L^*(s)$ of $L(s)$. By the sublimit property $L_{1}(s(1)) \subset N_{\tau t}(L^*(s(n)), 2\epsilon_1)$. Since $\delta \leq \text{mesh } T_1, |s - s(1)| \leq \delta$ and the result follows. \qed

6. $\mathcal{EL}(S)$ is locally path connected

In this section we show that if S satisfies the hypothesis of Theorem 0.1, then $\mathcal{EL}(S)$ is locally path connected. It suffices to show that if $\mu \in U$ an open set in $\mathcal{EL}(S)$, then there exists an open set $V \subset U$ containing μ such that for each $L \in V$ there is a path in U from μ to L. Therefore, the path component W of U containing μ is open and path connected.

In order to free the reader of nasty notation and slightly extra technical detail, we first consider the case that μ is maximal, i.e. every complementary region is either a 3-pronged disc or a once punctured monogon.

Let τ_1 be a transversely recurrent train track that fully carries μ and let $\tau_1, \tau_2, \tau_3, \ldots$ be the unique sequence of train tracks, such that τ_{i+1} is a length-i unzipping of τ_1 and τ_{i+1} fully carries μ.

Let $E_i = \{\mathcal{G} \in \mathcal{EL}(S)|\mathcal{G} \text{ is fully carried by } \tau_i\}$. We verify that E_i is open in $\mathcal{EL}(S)$ by showing that any $\mathcal{H} \in \mathcal{EL}(S)$ close in the Hausdorff topology to a diagonal extension of \mathcal{G} is also carried by τ_i. This readily follows from the fact that τ_i is maximal, hence any diagonal extension of \mathcal{G} is carried by τ_i. By Corollary 1.11 by dropping the first terms of the τ_i sequence, we can assume that if $\mathcal{G} \in E_1$, then $\mathcal{G} \subset U$.

We next show that there exists W_1 open in $PT(S)$ so that $\mu \subset W_1$ and if $L \in L(S)$ with $L \cap W_1 \neq \emptyset$, then μ is fully carried by τ_1. Since μ is minimal, if W_1 is a very small neighborhood and $L \cap W_1 \neq \emptyset$, then some large compact segment σ of a leaf of L has the property that it is very close to μ in the Hausdorff topology, so it lies in $N(\tau_1)$, is transverse to the ties and hits each tie multiple times. Using the maximality of τ_1 isotope the rest of L into $N(\tau_1)$ so that the resulting lamination is transverse to the ties, i.e. so that τ_1 fully carries L.

There exists W_2 open in $PT(S)$ so that $\mu \subset W_2$ and if $L \in L(S)$ with $L \cap W_2 \neq \emptyset$, then every sublamination of L is fully carried by τ_1. If false, then there exists a sequence of laminations L_1, L_2, \cdots with sublaminations G_1, G_2, \cdots such that $L_i \cap N(\mu,1/i) \neq \emptyset$, but $G_i \cap W_2 = \emptyset$. After passing to subsequence we can assume the G_i’s converge in the Hausdorff topology to G where $G \cap W_2 = \emptyset$. Since μ is filling, this implies that $G \cap \mu \neq \emptyset$ and G is transverse to μ. Thus for i sufficiently large, there is a lower bound on angle of intersection of G_i with μ. On the other hand μ is approximated arbitrarily well by segments lying in leaves of L_i. Thus for i sufficiently large, L_i has self intersection which is a contradiction.

Let $\epsilon_1 > 0$, be such that $N_{PT(S)}(\mu,\epsilon_1) \subset W_2$. Again by Corollary 1.11 for i sufficiently large, $\hat{E}(\tau_1) \subset N_{PT(S)}(\mu,\epsilon_1/2)$, where $\hat{E}(\tau_1) \subset PT(S)$ is the union of geodesics corresponding to elements of $E(\tau_1)$. Let j be one such i.

We complete the proof of the theorem where the role of V (as in the first paragraph) is played by E_j. Recall that $V(\tau_j)$ (resp. int($V(\tau_j)$)) is the set of measured laminations carried (resp. fully carried) by τ_j. E_j is transversely recurrent since it is an unzipping of τ_1, it is recurrent since it carries μ and is maximal since μ is maximal. Therefore in the terminology of p. 27 [PH], τ_j is complete and hence by Lemma 3.1.2 [PH] int($V(\tau_j)$) is open in $ML(S)$. Let $\mu_0 = \mu$ and $\mu_1 \in E_j$ and for $i = 0,1$ pick $\lambda_i \in \text{int}(V(\tau_j))$ so that $\phi(\lambda_i) = \mu_i$. Each $\lambda \in V(\tau_j)$ is determined by a transverse measure on the branches of τ_j and conversely. Also each of λ_0, λ_1 induces a positive transverse measure on each branch of τ_j. Therefore we can define $e : [0,1] \rightarrow \text{int}(V(\tau_j))$ to be the straight line path from λ_0 to λ_1. Let $f : [0,1] \rightarrow ML(S)$ be a PL almost filling path that closely approximates e and connects its endpoints. Closely means that for each t, $f(t) \in \text{int}(V(\tau_j))$. Using Lemma 5.1 to obtain the path $g : [0,1] \rightarrow E(S)$. We show that $g([0,1]) \subset E_1 \subset U$. With notation as in Lemma 5.1, if $s \in [0,1]$, then there exists $t \in [0,1]$ such that $L^s(t) \subset N_{PT(S)}(g'(s),\epsilon)$, for some diagonal extension $g'(s)$ of $g(s)$. Since $L^s(t)$ is carried by τ_j, each point $x \in L^s(t)$ is $\epsilon/2$ close in $PT(S)$ to a point of μ and by Lemma 5.1 some point y of $g'(s)$ is ϵ close to x, we conclude $d_{PT(S)}(y,z) \leq \epsilon_1$ and hence $g'(s) \cap W_2 \neq \emptyset$. Therefore all sublaminations of $g'(s)$ are fully carried by τ_1, so $g(s)$ is fully carried by τ_1. This completes the proof when μ is maximal.

The general case follows as above except that we must use the various diagonal extensions of μ and its associated train tracks. Here are more details. Let $U \subset E(S)$ be open with $\mu \in U$ and let $\lambda \in ML(S)$ such that $\phi(\lambda) = \mu$. Let τ_1, τ_2, \cdots as above. By dropping a finite number of initial terms we can assume that each τ_i has exactly n recurrent diagonal extensions, $\tau_i^1, \tau_i^2, \cdots, \tau_i^n$ and for each k, the sequence $\tau_i^1, \tau_i^2, \cdots$ is a full unzipping sequence. Furthermore, we can find a sequence of laminations $\lambda_1^k, \lambda_2^k, \cdots \in ML(S)$ such that $\lim_{k \rightarrow \infty} \lambda_i^k \rightarrow \lambda$, λ_i^k is fully carried by τ_i^k and $\phi(\lambda_i^k) = E(\mu^k)$ where μ^k is a diagonal extension of μ. By an elementary topological argument, each such μ^k is carried by some $\{\tau_i^k\}$ sequence where each τ_i^k
is maximal. (Compare with [H2] which shows that a birecurrent train track is contained in a maximal such track.) Let $E_i = \{ G \in \mathcal{E}(S) | G \text{ is fully carried by } \tau^k \}$. Each E_i is open in $\mathcal{E}(S)$ and by Corollary 1.11 after dropping the first N terms of the various sequences we can assume that $E_1 \subset U$.

There exists W_2 open in $PT(S)$ such that $\mu \subset W_2$ and if $\mathcal{L} \in \mathcal{L}(S)$ with $\mathcal{L} \cap W_2 \neq \emptyset$, then every minimal sublamination of \mathcal{L} is fully carried by one of $\tau^1_1, \ldots, \tau^n_1$. Since each diagonal of a μ^k is dense in μ, there exists W_2^1, \ldots, W_2^n open in $PT(S)$ such that for each k, $\mu^k \subset W_2^k$ and if $\mathcal{L} \cap W_2^k \neq \emptyset$, then every minimal sublamination of \mathcal{L} is fully carried by one of $\tau^1_1, \ldots, \tau^1_n$. Let $\epsilon_1 > 0$, be such that $N_{PT(S)}(\mu^k, \epsilon_1) \subset W_2^k$ for each k. Let j be so that for each k, $\tilde{E}(\tau^k_j) \subset N_{PT(S)}(\mu^k, \epsilon_1/2)$.

Let $\mu_0 = \mu$ and $\mu_1 \in E_j$. Let τ^k_j be a maximal track which carries μ_1. For $i = 0, 1$ pick $\lambda_i \in V(\tau^k_j)$ so that $\phi(\lambda_i) = \mu_i$. Define $\epsilon : [0, 1] \to V(\tau^k_j)$ to be the straight line path from λ_0 to λ_1. Since $V(\tau^k_j)$ is a polyhedral ball of codimension-0, and generic PL paths are almost filling, there exists $f : [0, 1] \to V(\tau^k_j)$ a PL almost filling path from λ_0 to λ_1. Using $\epsilon = \epsilon_1/2$ apply Lemma 5.1 to obtain the path $g : [0, 1] \to \mathcal{E}(S)$. We show that $g([0, 1]) \subset E_1 \subset U$. With notation as in Lemma 5.1, if $s \in [0, 1]$, then $\mathcal{L}^*(t) \subset N_{PT(S)}(g'(s), \epsilon)$, for some diagonal extension $g'(s)$ of $g(s)$. Since $\mathcal{L}^*(t)$ is carried by τ^k_j, each point x in $\mathcal{L}^*(t)$ is $\epsilon_1/2$ close in $PT(S)$ to a point of μ^k and by Lemma 5.1 some point y of $g'(s)$ is ϵ close to x, we conclude $d_{PT(S)}(y, z) \leq \epsilon_1$ and hence $g'(s) \cap W_2^k \neq \emptyset$. Therefore each minimal sublamination of $g'(s)$ is fully carried by a τ^m_1, so $g(s)$ is fully carried by some τ^k_j.

\section{Questions}

\textbf{Question 7.1.} If λ and $\lambda' \in \mathcal{PML}(S)$ satisfy $\phi(\lambda), \phi(\lambda') \in \mathcal{E}(S)$, is there a filling path in $\mathcal{PML}(S)$ connecting them?

\textbf{Question 7.2.} Is $\mathcal{E}(S)$ n-connected if S has sufficiently high complexity?

\section{An Application}

An unsuccessful attempt to find a positive solution to Question 7.1 led to the interesting study of how various B_β's can intersect a given B_α which in turn led to a new construction of non uniquely ergodic measured laminations in any finite type surface S not the 1-holed torus, or 3 or 4-holed sphere.

\textbf{Theorem 8.1.} If α and β are pairwise disjoint simple closed curves in the complete, hyperbolic, finite type, orientable surface S, and U_α, U_β are open sets in $\mathcal{PML}(S)$ about α and β, then there exists a 1-simplex Σ in $\mathcal{PML}(S)$ representing a filling non uniquely ergodic measured lamination with the endpoints of Σ respectively in U_α and U_β.

\textit{Proof.} In the statement of the theorem as well as in the proof, simple closed curves are naturally identified with points in $\mathcal{PML}(S)$.

Let α_1 be a simple closed geodesic disjoint from β and close to α. For example, let $\alpha'_1 \neq \alpha$ be any geodesic disjoint from β which intersects α and let α_1 be obtained from α'_1 by doing a high power Dehn twist to α. Let b_1 a simple closed geodesic disjoint from α_1 and very close to β. Let a_2 a simple closed geodesic disjoint from b_1 and extremely close to a_1 and let a_2 a simple closed geodesic disjoint from a_2 and super close to b_1. Continuing in this manner we obtain the sequence a_1, a_2, a_3, \ldots
which converges to λ_α and the sequence b_1, b_2, \cdots converges to λ_β where $\lambda_\alpha, \lambda_\beta$ respectively lie in U_α and U_β.

Since intersection number is continuous on $\mathcal{ML}(S)$, and for each i, a_i and b_i are pairwise disjoint it follows that $i(\lambda_\alpha, \lambda_\beta) = 0$. We now show that with a little care in the choice of the a_i’s and b_i’s that $\phi(\lambda_\alpha) = \phi(\lambda_\beta) \in \mathcal{E}(S)$. Let $V_\alpha \subset U_\alpha$ and $V_\beta \subset U_\beta$ be closed neighborhoods of α and β. We argue as in the proof of Lemma 4.3.

Recall that C_1, C_2, \cdots is an enumeration of the simple closed geodesics in S. If possible choose a_1 to intersect C_1 transversely. We can always do that and have a_1 as close to α as we like, unless $C_1 = \beta$ or β separates C_1 from α. If we must have $a_1 \cap C_1 = \emptyset$, then we can choose $b_1 \in \text{int}(V_\beta)$ so that $b_1 \cap C_1 \neq \emptyset$ and hence in any case, a_2 can be chosen so that $a_2 \cap C_1 \neq \emptyset$. Let $V_2 \subset V_\alpha$ a closed neighborhood of a_2 in $\mathcal{PML}(S)$ so that if $x \in V_2$, then x and C_1 have non trivial intersection number. As above, choose b_2, a_3, b_3, a_4 so that $a_4 \cap C_2 \neq \emptyset$, $a_3 \cup a_4 \subset \text{int}(V_2)$ and $b_2 \cup b_3 \subset \text{int}(V_\beta)$. Choose $V_4 \subset V_2$ a closed neighborhood of a_4 so that $x \in V_4$ implies that x and C_2 have nontrivial intersection number. Inductively construct b_4, b_5, \cdots, a_5, a_6, \cdots. If $\lambda_\alpha = \text{Lim} a_i$, then for all j, $i(\lambda_\alpha, C_j) \neq 0$ and hence $\phi(\lambda_\alpha) \in \mathcal{E}(S)$. By construction $\lambda_\alpha \in U_\alpha$ and $\lambda_\beta = \text{Lim} b_i \in U_\beta$. Since $\lambda_\alpha \in \mathcal{E}(S)$ and has trivial intersection number with λ_β, it follows that $\phi(\lambda_\alpha) = \phi(\lambda_\beta)$. The projection to $\mathcal{PML}(S)$ of a straight line segment in $\mathcal{ML}(S)$ connecting representatives of λ_α and λ_β gives the desired 1-simplex Σ. □
References

[H2] ———, Train tracks and mapping class groups I, preprint.

