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THE 4-DIMENSIONAL LIGHT BULB THEOREM

DAVID GABAI

1. Introduction

In his seminal work on immersions [Sm1] Stephen Smale classified regular homo-
topy classes of immersions of 2-spheres into Euclidean space and more generally into
orientable smooth manifolds. In [Sm2] he gave the regular homotopy classification
of immersed spheres in R

n and asked the following.

Question 1.1 ([Sm2, Smale, p. 329]). Develop an analogous theory for embeddings.
Presumably this will be quite hard. However, even partial results in this direction
would be interesting.

This paper works in the smooth category and addresses the question of isotopy
of spheres in 4-manifolds. In that context Smale’s results [Sm1] show that two
embeddings are homotopic if and only if they are regularly homotopic. Given that
2-spheres can knot in 4-space, isotopy is a much more restrictive condition than
homotopy. Indeed, the author is aware of only one unconditional positive result
and that was proved more than 50 years ago: A 2-sphere in a 4-manifold that
bounds a 3-ball is isotopic to a standard inessential 2-sphere, [Ce1, p. 231], [Pa].

Recall that a transverse sphere G to a surface R in a 4-manifold is a sphere
with a trivial normal bundle that intersects R exactly once and transversely. The
following are the main results of this paper.

Theorem 1.2. Let M be an orientable 4-manifold such that π1(M) has no 2-
torsion. Two embedded 2-spheres with common transverse sphere G are homotopic
if and only if they are ambiently isotopic. If they coincide near G, then the isotopy
can be chosen to fix a neighborhood of G pointwise.

For a fundamental group with 2-torsion, i.e., having a nontrivial element of order
2, the methods of this paper yield the following.

Theorem 1.3. Let M be an orientable 4-manifold and let R1, R0 be homotopic
embedded spheres which coincide near the common transverse sphere G. Then R1

can be put into a normal form with respect to R0 via an isotopy fixing a neighborhood
of G pointwise. (See Definition 5.23 for the description.) Here R1 has double
tubes representing elements {[λ1], · · · , [λn]} where the [λi]’s are distinct nontrivial
2-torsion elements and R1 = R0 if this set is empty. Any finite set of distinct 2-
torsion elements gives rise to an R1 in normal form with double tubes representing
this set and two such R1’s are isotopic if the corresponding set of [λi]’s are equal.
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Remark 1.4. Question 10.14 of the first version of this paper asked about the neces-
sity of the 2-torsion condition. Subsequently, two groups independently established
the necessity of that condition. Hannah Schwartz [Sch] first found an explicit 4-
manifold with a pair of homotopic but not topologically isotopic spheres with a
common transverse sphere. Rob Schneiderman and Peter Teichner [ST] used the
Freedman–Quinn obstruction of Theorem 10.5 of [FQ] to give an obstruction to
topological isotopy and applied it to specific examples 1. Theorem 1.3 leaves open
the possibility that distinct normal form surfaces are isotopic.

Generalizations of these results to multiple pairs of spheres is given in §10. This
generalization implies that if R0, R1 are embedded spheres with a common trans-
verse sphere and M1 → M is a finite cover such that π1(M1) has no 2-torsion, then
the preimages of R1 are simultaneously isotopic to the preimages of R0, though
perhaps not equivariantly.

Here are some applications.

Theorem 1.5. A properly embedded disc in S2 ×D2 is properly isotopic to a fiber
if and only if its boundary is isotopically standard.

Theorem 1.6. Two properly embedded discs D0 and D1 in S2 ×D2 that coincide
near their standard boundaries are properly isotopic rel boundary if and only if they
are homologous in H2(S

2 ×D2, ∂D0).

Let Diff0(X) denote the group of diffeomorphisms of the compact manifold X
that are properly homotopic to the identity.

Corollary 1.7. π0(Diff0(S
2 ×D2)/Diff0(B

4)) = 1.

Remark 1.8. In words, modulo diffeomorphisms of the 4-ball, homotopy implies
isotopy for diffeomorphisms of S2 ×D2.

The classical light bulb theorem states that a knot in S2 × S1 that intersects an
S2 × y transversely and in exactly one point is isotopic to the standard vertical
curve, i.e., an x× S1. The next result is the 4-dimensional version.

Theorem 1.9 (4D-lightbulb theorem). If R is an embedded 2-sphere in S2 × S2,
homologous to x0 × S2, that intersects S2 × y0 transversely and only at the point
(x0, y0), then R is isotopic to x0 × S2 via an isotopy fixing S2 × y0 pointwise.

In 1986, under the above hypotheses, Litherland [Li] proved that there exists a
diffeomorphism pseudo-isotopic to the identity that takes R to x0 ×S2 and proved
the full light bulb theorem for smooth m-spheres in S2 × Sm for m > 2. (There is
an additional necessary condition in that case.) Another version of the light bulb
theorem was proven in 1986 by Marumoto [Ma]. He showed that two locally flat PL
m-discs in an n-sphere, n > m with the same boundary are topologically isotopic
rel boundary. Here we prove the theorem for discs in S4 in the smooth isotopy
category.

Theorem 1.10 (Uniqueness of spanning discs). If D0 and D1 are discs in S4 such
that ∂D0 = ∂D1 = γ, then there exists an isotopy of S4 taking D0 to D1 that fixes
γ pointwise.

1See note added in proof.
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Remark 1.11. The analogous result for 1-discs in S4 is well known using general
position. The result for 3-discs in S4 implies the smooth 4D-Schoenflies conjecture.

This paper gives two proofs of the 4D-light bulb theorem. The first proof has
two steps. First we give a direct argument showing that R is isotopic to a vertical
sphere, i.e., viewing S2×S2 as S2×S1× [−∞,∞] where each z×S1×∞ and each
z × S1 × −∞ is identified with a point; then after isotopy R is transverse to each
S2 × S1 × t and intersects each such space in a single component. This involves
an analogue of the normal form theorem of [KSS] and repeated use of S2 × 0 as a
transverse 2-sphere. The second step invokes Hatcher’s [Ha] theorem (the Smale
conjecture: Diff+(S3) � SO(4)) to straighten out these intersections.

The proof of Theorem 1.2, and hence a somewhat different one for S2×S2 makes
use of Smale’s results on regular homotopy of 2-spheres in 4-manifolds [Sm1]. We
show that if R0 is homotopic to R1 and both are embedded surfaces, then a regular
homotopy from R0 to R1 is shadowed by tubed surfaces, i.e., there is an isotopy
taking R0 to something that looks like R1 embroidered with a complicated system
of tubes together with parallel copies of the transverse sphere. Through various
geometric arguments we show that these tubes can be reorganized and eventually
isotoped away. The proof formally relies on the first proof of the light bulb theorem
at the very last step, though we outline how to eliminate the dependence in Remark
8.2. The proof uses the fact that R0 is a 2-sphere. The Z2-condition is used in
Proposition 6.9.

Both arguments make use of the 4D-light bulb lemma, which is the direct ana-
logue of the 3D-version where one can do a crossing change using the transverse
sphere.

More is known in other settings. In the topological category a locally flat 2-sphere
in S4 is topologically equivalent to the trivial 2-knot if and only if its complement
has fundamental group Z [Fr], [FQ]. There are topologically isotopic smooth 2-
spheres in 4-manifolds that are not smoothly isotopic, yet become smoothly isotopic
after a stabilization with a single S2 × S2 [AKMR], [Ak].

The paper is organized as follows. In §2 we recall some classical uses of transverse
spheres and prove the light bulb lemma. The light bulb theorem is proven in §3.
Basic facts about regular homotopy are recalled in §4. The definition of a tubed
surface, basic operations on tubed surfaces, the notion of shadowing a homotopy
by basic operations, and a normal form for a surface are given in §5. The reader is
cautioned that tubes are used in two contexts here; as tubes that follow curves lying
in the surface and as tubes that follow arcs with endpoints in the surface. The latter
fall into two types; single and double tubes. In §6 it is shown how to transform
certain pairs of double tubes into pairs of single tubes. If there is no Z2-torsion,
then in the end all but at most one of the double tubes remains and that one is
homotopically inessential. If π1(M) has 2-torsion, then there may be additional
double tubes representing distinct 2-torsion elements of π1(M). A crossing change
lemma is proven in §7 enabling distinct tubes following curves in the surface to be
disentangled. In §8 the proof of Theorems 1.2 and 1.3 is completed. An extension to
higher genus surfaces is given in §9. In particular it is shown that a closed oriented
surface in S2 ×S2 homologous to 0× S2, that intersects S2 × 0 transversely in one
point, is isotopically standard. Applications and questions are given in §10.
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2. The 4-dimensional light bulb lemma

Unless said otherwise, all manifolds in this paper are smooth and orientable and
immersions are self-transverse.

Definition 2.1. A transverse sphere G to the immersed surface R is a sphere with
a trivial normal bundle that intersects R transversely in a single point.

All transverse spheres in this paper are embedded. The following is well known.
We give the proof as a warm up to the light bulb lemma.

Lemma 2.2. If R is an immersed surface with embedded transverse sphere G in the
4-manifold M , then the induced map π1(M \R) → π1(M) is an isomorphism. If R
is a sphere, then the induced maps π1(M \R∪G) → π1(M) and π1(M \G) → π1(M)
are isomorphisms.

Proof. Surjectivity is immediate by general position. If γ is a loop inM\R bounding
the singular disc D ⊂ M , then after a small perturbation we can assume that D is
transverse to R. Tubing off intersections with copies of G shows that the map is also
injective. Using transverse spheres to remove intersections goes back to Norman
[No]. For the second and third cases, we can assume that D is transverse to R∪G.
First use R to tube off intersections of D with G. This proves injectivity for the
third case. (If R does not have a trivial normal bundle or is not embedded, then
the resulting disc may have extra intersections with R.) Tubing with G eliminates
all the D ∩ R intersections and so the induced map in the second case is also
injective. �

The light bulb lemma basically says that in the presence of a transverse sphere
one can do an ambient isotopy of a surface R as is shown in Figure 2.1, without
introducing any self-intersections.

Figure 2.1

Lemma 2.3 (4D-light bulb lemma). Let R be an embedded surface with transverse
sphere G in the 4-manifold M and let z = R ∩ G. Let α0 and α1 be two smooth
compact arcs that coincide near their endpoints and bound the pinched embedded
disc E that is transverse to R with R ∩ E = y and E ∩ G = ∅. See Figure 2.2 a).
Let ft be an ambient isotopy of M taking α0 to α1 that corresponds to sweeping α0

across E. Here ft is fixed near ∂α0 and is supported in a small neighborhood of E.
Suppose that N(α0) is parametrized as B3 × I and R ∩N(E) = C ∪B, where C is
the disc containing y and B ⊂ int(B3) × I. If y and z lie in the same component
of R \B, then R is ambiently isotopic to g(R) where g|R \B = id and g|B = f1|B.
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The ambient isotopy fixes G pointwise and the isotopy restricted to R is supported
in B.

If G has a non-trivial normal bundle with even Euler class, then the conclusion
holds except for the assertion that the ambient isotopy fixes G.

If the Euler class is odd, then under the additional hypothesis that B = L× I ⊂
int(B3) × I, where L is an unlink in int(B3) the above conclusion holds with the
additional modification g(B) = f1(B), where g differs from f1 by a Dehn twist along
each of the tubes. In general g|N(α0) is the composition of the result of the standard
isotopy taking N(α0) to N(α1), followed by the non-trivial element of π1(SO(3))
along N(α1).

Remarks 2.4. i) After an initial isotopy of R supported near N(α0) we can assume
that it is of the form L× I where L is a link in int(B3)× 0.

ii) The hypothesis does not hold if B separates y from z in R.
iii) Note that a right Dehn twist on a tube is isotopic to a left Dehn twist.

Figure 2.2

Proof. Since y lies in the same component of z we can tube off E with a copy of
G to obtain a disc D that coincides with E near ∂E and D ∩ (R ∪ G) = ∅. Since
G has a trivial normal bundle, there exists a framing of the normal bundle of D
that coincides with that of E near ∂E. See Figure 2.2. Therefore, we can isotope
B to f1(B) by sweeping across D rather than E. This isotopy is supported in a
neighborhood of D that is disjoint from a neighborhood of G.

When G has a nontrivial normal bundle with Euler class n, then |D ∩ G| = n
and so the ambient isotopy taking N(α0) to N(α1) does not fix G. This isotopy is
the composition of the standard one followed by n full twists along N(α1). Since
π1(SO(3)) = Z2, the twisting can be isotopically undone when n is even. When
n is odd the twisting can be isotoped to a single full twist. If the tubes in B are
unknotted and unlinked, then they can be isotoped so that g(B) = f1(B) where g
differs from f1 by a Dehn twist along each of the tubes. �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

614 DAVID GABAI

3. The light bulb theorem for S2 × S2

Theorem 3.1. If R is a 2-sphere in S2 × S2, homologous to x0 × S2, transverse
to S2 × y0, R∩ (S2 × y0) = (x0, y0), and coincides with x0 × S2 near (x0, y0), then
R is smoothly isotopic to x0 × S2 via an isotopy fixing a neighborhood of S2 × y0
pointwise.

Definition 3.2. A light bulb in S2 × S2 is a smooth 2-sphere transverse to an
S2 × y0 and intersects S2 × y0 in a single point. View S2 × S2 as a quotient of
S2 × (S1 × [−∞,∞]) where each x× S1 ×−∞ and x× S1 ×∞ are identified with
points and y0 is identified with (z0, 0) ∈ S1×[−∞,∞]. We say that the light bulb R
is vertical if it is transverse to each S2×S1×u for u ∈ [−∞×∞]. Let Gstd denote
the sphere S2×z0×0 and let Rstd denote the sphere x0×S1× [−∞,∞] ⊂ S2×S2.

To prove the light bulb theorem it suffices to assume that R and Rstd coincide
in some neighborhood U of (x0, z0, 0).

Step 1. The light bulb R is isotopic to a vertical light bulb by an isotopy fixing a
neighborhood of Gstd pointwise.

Step 1A. We can assume that R coincides with Rstd within S2 × (z0 − ε, z0 + ε)×
[−∞,∞] ∪ (S2 × S1 × [−∞, 10)) ∪ (S2 × S1 × (10,∞].

Proof. This follows from the fact that R intersects a neighborhood of S2×z0×0 as
does Rstd and a small regular neighborhood of Gstd is naturally ambiently isotopic
to S2 × (z0 − ε, z0 + ε)× [−∞,∞]∪ (S2 × S1 × [−∞, 10))∪ S2 × S1 × (10,∞]). �

From now on we will take U to be the neighborhood of (S2, z0, 0) given in the
statement of Step 1A. Note that U is the complement of S2×[z0+ε, z0−ε]×[−10, 10],
where S1 = [z0 + ε, z0 − ε] ∪ (z0 − ε, z0 + ε).

Step 1B. Via an isotopy fixing R ∩ U , R can be isotoped to be transverse to each
S2×S1×u except for u = −9,−6, 6, 9. As u increases, p local minima (with respect
to u) appear at u = −9, p saddles appear at u = −6, R ∩ S2 × S1 × u is connected
for u ∈ (−6, 6), q saddles appear when u = 6, and q local maxima appear when
u = 9.

Proof. This is the analogy of the normal form of [KSS] in our setting, stated in the
smooth category. See [CKS, pp. 6-8] for a modern proof of [KSS]. Swenton [Sw]
more or less shows uniqueness of the normal form up to a certain set of moves.

What follows is a brief outline of the proof in our setting. In the usual manner
R can be isotoped so that it is transverse to each S2 × S1 × u except for u =
−9, 0, 9 where local minima, saddles, and local maxima, respectively, appear. As
in the above papers, up to smoothing of corners, the local minima (resp., maxima)
correspond to the appearance of discs and the saddles correspond to the appearance
of bands. After further isotopy, as in Figure 1.3 of [CKS], we can assume that the
bands are disjoint from each other, so for δ small, R ∩ S2 × S1 × δ is the result of
doing band sums to R ∩ S2 × S1 ×−δ.

If p (resp., q) is the number of local minima (resp., maxima), then since χ(R) = 2
the total number of saddles is p + q. Since R is connected there exist p bands
such that the result of only doing these band sums to the curves corresponding to
R ∩ S2 × S1 ×−δ yield a connected curve. Push these bands to S2 × S1 ×−6 and
push the remaining bands to S2 × S1 × 6. �
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In what follows we let Cu denote the core curve, i.e., the component of R∩S2×
S1 × u which is transverse to S2 × z0 × u, u 
= −6, 6. Define C−6 = limt→−6− Ct.
We abuse terminology by calling a core curve such a curve C without specifying u.
After band sliding we can assume that all the bands at u = −6 have one end that
attaches to the core curve.

In summary, up to smoothing corners, we can assume that R∩S2×S1×[−10,−5]
appears as follows. For u ∈ [−10,−9), R ∩ S2 × S1 × u is the standard core curve
x0 × S1 × u. At u = −9, discs D1, · · · , Dp appear. Let c1, · · · , cp denote their
boundary curves. The surface R∩S2×S1× (−9,−6) is the product (C ∪ c1∪ · · ·∪
cp) × (−9,−6). Here we again abuse notation by denoting a ci without specifying
its u level. At u = −6, p bands b1, · · · , bp appear where bi connects C and ci. Again
R∩S2×S1×(−6,−5] is a product where each u section is parallel to R∩S2×S1×−6
with the relative interiors of the bands removed.

By a vertical isotopy we push the bands b2, · · · , bp up to level −5 and the disc D1

to level −8. Let π : S2 × S1 × [−∞,∞] → S2 × S1 be the projection. To complete
the proof of Step 1 we will show that after isotopy π(b1) ∩ π(D1) ⊂ π(∂D1). It
follows that b1 can be pushed to level −8 and its critical point can be cancelled
with the one corresponding to D1. Step 1 then follows by induction and the usual
turning upside down argument to cancel the saddles at u = 6 with the maxima at
u = 9.

Step 1C. There exist pairwise disjoint discs E1, · · · , Ep ⊂ S2 × S1 × −6 spanning
c1, · · · , cp such that for all i, π(int(Ei)) ∩ π(b1) = ∅ and Ei ∩ C ∪ U = ∅.

Proof. To start with, for i = 1, · · · , p, let Ei = Di. A given Ei projects to one
intersecting π(b1) in finitely many interior arcs. View b1 as a band starting at c1 and
sequentially hitting the various Ei’s before attaching to C. Again we abuse notation
by suppressing the fact that we should be talking about projections. Starting at
the last intersection of b1 with an Ei, sequentially isotope the Ei’s to remove arcs
of intersection at the cost of creating two points of intersection of an Ei with C.
This type of argument was used in [Gi] and [Go]. Next by following C but avoiding
the arc b1 ∩ C tube off these intersections with parallel copies of S2 × z0 to obtain
the desired set of discs which we still call E1, · · ·Ep. See Figure 3.1. �

Remark 3.3. For the purposes of visualization one can ambiently isotope R via level
preserving isotopy supported in S2 ×S1 × [−9.5,−5.5] so that the discs Ei become
small and round and b1 becomes a straight band connecting C and c1, which is
disjoint from the interior of the Ei’s. Furthermore, up to rounding corners, possibly
complicated discs D2, · · · , Dp appear at level −9, a possibly complicated disc D1

appears at level −8, and vertical annuli c1×[−8,−6], c2×[−9,−6], · · · , cp×[−9,−6]
emanate from the ∂Di’s. At level −6, R appears as in the first sentence of this
remark.

Step 1D. We can assume that π(D1) ∩ π(Ei) = ∅ for i > 1.

Proof. Let π−8 denote the projection of S2 × S1 × −6 to S2 × S1 × −8 fixing the
first two factors. By construction ∂D1 = c1 and D1 is disjoint from C ∪ U as well
as the ci’s for i > 1. Let Fi denote π−8(Ei). We show how to isotope D1 off F2.
Let α0 ⊂ S2 × S1 ×−8 be an arc transverse to int(F2). Then N(α0) = D2 × I × I
where D2 × I × 1/2 ⊂ S2 × S1 × −8. Next isotope D1 so that N(F2) ∩ D1 ⊂
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Figure 3.1

(1/2D2) × I × 1/2 and D1 ∩ (D2 × I × 1/2) is of the form L × I × 1/2, where L
is a union of circles. Here we identify α0 with t0 × I × 1/2 where t0 /∈ 1/2D2. Let
α1 ⊂ S2 × S1 × −8 be an arc disjoint from R ∪ F2 ∪ · · · ∪ Fp whose ends coincide
with those of α0, such that α0 ∪ α1 bounds a pinched disc E ⊂ S2 × S1 ×−8 that
only intersects R in a point of ∂F2. Using the fact that R \ D1 is connected and
intersects Gstd transversely once it follows from the light bulb Lemma 2.3 that R is
isotopic to the surface obtained by isotoping D1 ∩N(α0) across E into N(α1) via
an isotopy supported in D1 ∩ int(N(α0)). This isotopy moves D1 off F2 without
introducing new intersections with other Fi’s. See Figure 3.2. Step 1D now follows
by induction. �

To summarize the situation at the moment: At level −9 discsD2, · · · , Dp appear,
at level −8 disc D1 appears, vertical annuli c1 × [−8,−6], c2 × [−9,−6], · · · , cp ×
[−9,−6] emanate from the ∂Di’s, a band connects the core to c1×−6 disjoint from
int(E1), and by Step 1D, for i > 1, π(Ei) ∩ π(D1) = ∅.

We can therefore isotope D2, · · · , Dp and hence
⋃

i>1 ci × [−9,−6] so that
c2, · · · , cp are far away from D1, E1, and b1. This means that π(c2), · · · , π(cp)
lie in a 3-ball B ⊂ S2 × S1 that intersects C in a connected unknotted arc and B
is disjoint from π(D1), π(E1), and π(b1).

Step 1E. Cancel the critical points corresponding to D1 and b1 without introducing
new ones, thereby completing Step 1.
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Figure 3.2

Proof. Note that (S2 × S1 × −6) \ (C ∪ B ∪ S2 × z0 × −6) is diffeomorpic to R3.
Therefore, the discs π(D1) and π(E1) are isotopic rel c1 via an isotopy disjoint
from π(C ∪ B) ∪ (S2 × z0) since spanning discs for the unknot in R3 are unique
up to isotopy. After the corresponding isotopy of D1, supported in S2 × S1 × −8,
it follows from Remark 3.3 that π(b1) ∩ π(D1) ⊂ π(∂D1). Therefore, b1 can be
pushed down to level −8, hence the critical points corresponding to b1 and D1 can
be cancelled. �

Remark 3.4. The content of Steps 1B-1E is that excess critical points of a boundary
standard I × I ⊂ (S2 × I) × [−10, 10] can be cancelled rel ∂. Cancelling critical
points of submanifolds of product manifolds to the extent possible is a long sought
after goal. E.g., under suitable hypothesis in higher dimensions results have been
obtained in [Sh] and [Pe]. In dimension 4, Scharlemann [Sc] showed that a smooth
2-sphere in R4 with at most four critical points is smoothly isotopically standard.

Remark 3.5. Abby Thompson pointed out that the above arguments work for higher
genus surfaces to eliminate critical points of index 0 and 2. So if genus(R) = g,
then R can be isotoped so that 2g bands appear at u = −6 and there are no other
critical levels.

From the point of view of S2 × −6 these bands can be twisted and linked. See
§9.

Step 2. A vertical light bulb R homologous to Rstd that agrees with Rstd near Gstd

is isotopic to Rstd via an isotopy fixing a neighborhood of Gstd pointwise.

Remark 3.6. It is easy to construct a vertical lightbulb homologous to [Rstd] +
n[S2 × z0 × 0] by first starting with Rstd, removing a neighborhood of (x0, z1, 0)
and replacing it by one that sweeps across S2×z1 n times, while u ∈ (−ε, ε), where
z1 
= z0.

Proof. The proof of Step 1 shows that we can assume that R coincides with Rstd

away from S2×S1×[−10, 10] and coincides with Rstd near S2×z0×[−∞,∞]. Thus
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R is standard outside a submanifold W of the form S2× [0, 1]× [−10, 10] and within
W corresponds to a smooth path of embedded smooth paths ρt : D

1 → S2 × I for
t ∈ [−10, 10], where ρ−10(D

1) = ρ10(D
1) = (x0, I) and ρt is fixed near the endpoints

of D1. By identifying D1 with (x0, I) we can assume that ρ−10 = ρ10 = id. Note
that Rstd corresponds to the identity path.

By the covering isotopy theorem, ρt, extends to a path

φt ∈ Diff(S2 × I, rel(∂S2 × I))

with φ−10 = id. We first show that such a path can be chosen so that φ10 =
id. By uniqueness of regular neighborhoods we can first assume that restricted to
some D2 neighborhood of x0, in polar coordinates, φ10(r, θ, s) = (r, θ + h(s)2π, s)
for some h : [0, 1] → R with h(0) = 0. Since [R] = [Rstd] ∈ H2(S

2 × S2) it
follows that h(1) = 0 and hence after further isotopy, that φ10|D2 × I = id. Since
S2 × I \ (int(D2)× I) = B3, we can assume that φ10 = id, by [Ce2] or [Ha].

Thus φt is a closed loop in Diff(S2 × I, rel ∂(S2 × I)) which by Hatcher [Ha]
is homotopically trivial since π1(Ω(O(3)) = π2(O(3)) = π2(R(P

3)) = 0. Here we
are using formulation (8) (see the appendix of [Ha]) of Hatcher’s theorem which
asserts that Diff(D1×S2 rel ∂) is homotopy equivalent to Ω(O(3)). Restricting this
homotopy to ρt gives the desired isotopy of ρt to id. �
Theorem 3.7. Let D denote x0 × D2 ⊂ S2 × D2. A properly embedded disc
D0 ⊂ S2 ×D2 that coincides with D near ∂D is isotopic to D rel ∂D if and only
if it is homologous to D in H2(S

2 ×D2, ∂D).

Proof. Homologous is certainly a necessary condition. Let

M = S2 ×D2 ∪ d(S2 ×D2) = S2 × S2

be obtained by doubling S2 × D2 with d(S2 × D2) denoting the other S2 × D2.
This d(S2 ×D2) can be viewed as a regular neighborhood N(G) of G = d(S2 × 0).
Let R denote the sphere D0 ∪ d(x0 ×D2) and Rstd denote D ∪ d(x0 ×D2). G is a
transverse sphere to the homologous spheres R and Rstd. By Theorem 1.9 there is
an isotopy of M fixing N(G) pointwise taking R to Rstd. Restricting to S2 ×D2

yields the desired isotopy. �
Conjecture 3.8. The space of light bulbs is not simply connected.

4. Regular homotopy of embedded spheres in 4-manifolds

The main result of this section is essentially Theorem D of [Sm1]. First recall
[Sp] that a smooth immersion f : M → N is a smooth map of maximal rank at
each x ∈ M . A smooth regular homotopy F : M × I → N is a smooth map such
that each Ft is an immersion.

Theorem 4.1 (Smale (1957)). Two smooth embedded spheres in an orientable 4-
manifold are regularly homotopic if and only if they are homotopic.

Definition 4.2. Let S be a smooth immersed self-transverse surface in the smooth
4-manifold Z. A finger move is the operation of regularly homotoping a disc in
S along an embedded arc to create a pair of new transverse self-intersections. A
Whitney move is a regular homotopy supported in a neighborhood of a framed
Whitney disc to eliminate a pair of oppositely signed self-intersections. By an
isotopy of S we mean a regular homotopy through self-transverse surfaces. In
particular, no new self-intersections are either created or cancelled.
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See [FQ] for more details of these operations.

Proposition 4.3 (e.g., [FQ, pp. 19-20], [Qu, p. 353]). Let A and B be smooth
embedded surfaces in the smooth 4-manifold Z. If A is regularly homotopic to B,
then up to isotopy, the regular homotopy can be expressed as the composition of
finitely many finger moves, Whitney moves, and isotopies. �

Remark 4.4. It is well known by the usual reordering argument that if A is regularly
homotopic to B, then the regular homotopy can be chosen to consist of finger moves
followed by Whitney moves in addition to intermediate isotopies. See §4 of [Mi] for
reordering in the context of Morse functions.

5. Shadowing regular homotopies by tubed surfaces

In this section we show that if f0 : A0 → M is an embedding of a smooth surface
with embedded transverse sphere G into a smooth 4-manifold M and ft : A0 → M
is a generic regular homotopy supported away from G, then ft can be shadowed by
a tubed surface. Roughly speaking there is a smooth isotopy gt : A0 → M with
g0(A0) = f0(A0) such that when ft is self-transverse, gt(A0) is approximately ft(A0)
with tubes connecting to copies of G. As ft(A0) undergoes a finger or Whitney
move, gt(A0) changes by isotopy that adds tubes that connect to copies of G or
modifies existing tubes. In particular, if f1(A0) = A1 is an embedding, then A0 is
isotopic to A1 with tubes connecting to copies of G. Sections 6–8 are about how
to eliminate or normalize these tubes by isotopy. In this paper there are different
types of tubes. Tubes may follow arcs in a surface as in the proof of Lemma 2.3,
but they may follows paths in M away from A1.

This section is motivated by the following lemma.

Lemma 5.1. Let R be a connected embedded smooth surface in the smooth 4-
manifold M . If R has an embedded transverse sphere G and R1 is obtained from R
by a finger move, then R is isotopic to a surface R2 consisting of R1 tubed to two
parallel copies of G.

Proof. Let z = R∩G, x, y ∈ R\G and let κ be a path from y to x with int(κ)∩(R∪
G) = ∅. Let σ ⊂ R \ y be an embedded path from x to z and let Rt be a regular
homotopy starting at R corresponding to a finger move along κ that is supported
very close to κ. Then R1 has two points of self-intersection and a Whitney move
along the obvious Whitney disc E undoes the finger move, up to isotopy supported
in the neighborhood of the finger.

Let D be a small disc transverse to R with D ∩ R = x. Let T be the disc
disjoint from R which is the union of a tube that starts at ∂D and follows σ
and then attaches to a parallel copy G′ of G \ int(N(z)) disjoint from G. The
tube should lie very close to σ and G′ should be very close to G. Let R2 be the
embedded surface obtained from R1 by removing two discs D′, D′′ and attaching
parallel copies of T as in Figure 5.1. The key observation is that R2 is isotopic
to R via an isotopy supported near the union of T and the 4-ball B which is
the support of the finger move. This isotopy is essentially the following one. If
F = I × I × 0 ∪ I × I × ε ∪ 0 × I × [0, ε] and H is the closed complement of F
in ∂(I × I × [0, ε]), then up to rounding corners, F is isotopic to H via an isotopy
supported in I × I × [0, ε]. In our setting the product between the two copies of T
corresponds to I × I × [0, ε] and, after a small isotopy, N(E) ∩ R2 corresponds to
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F . Now isotope F to the corresponding H. The resulting surface is readily seen to
be isotopic to R via an isotopy supported in B. �

Figure 5.1

Remarks 5.2. Reversing the above isotopy gives an isotopy R′
t from R to R2. Both

Rt and R′
t start at R, the former ends at an immersed surface and the latter at an

embedded one R′
1 obtained from the immersed one by removing some discs near

the double points and tubing off with copies of G. In what follows we will have a
regular homotopy Rt that starts at an embedded surface R. We will construct an
isotopy R′

t starting at R such that, except at times near finger and Whitney moves,
the immersed surface will be closely approximated by an embedded surface R′

t not
counting a multitude of discs, which are essentially tubes that connect to parallel
copies of G. For reasons of organization, we define a tubed surface as the data
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needed to define such a surface with tubes, rather than the surface itself. Unlike
the model case of Lemma 5.1, the tubes may follow intersecting paths in the surface
or embedded paths away from the surface. Note that if a tube T1 (resp., T2) follows
path κ1 ⊂ R′

t (resp., κ2 ⊂ R′
t) and κ1 ∩ κ2 
= ∅, then T1 ∩ T2 = ∅, provided that

one of the tubes is closer to R′
t than the other.

If R1 is embedded, then the resulting tubed surface R′
1 (or more precisely what

we call its realization) will look like R1 together with a jumble of tubes connecting
to parallel copies of G. Most of this paper is about how to clean up the mess, i.e.,
to show that under appropriate hypotheses this surface is actually isotopic to R1

or some normal form. The rest of the chapter is organized as follows. We first
give a definition of tubed surface, second describe how to construct an embedded
surface, called the realization, from tubed surface data, third describe moves on the
data that give isotopic surfaces, fourth use all this to show how to shadow a regular
homotopy, and fifth describe tubed surfaces that are in normal form.

Remarks 5.3. Given an embedded path φ ⊂ M with φ∩R = ∂φ and whose ends are
orthogonal to the possibly disconnected surface R, then we can tube R\ int(N(∂φ))
by attaching an annulus T that follows φ. Up to isotopy supported inN(φ) there are
two ways to do this if R is oriented and the new surface maintains the orientation
induced from R. That is because π1(SO(3)) = Z2 and we can insist by construction
that for t ∈ I, T∩B3×t is an equator where N(φ) = B3×I. While the resulting two
surfaces are equivalent as unparametrized surfaces, we keep the distinction since
we may want to tube up other things such as links. In general there are four ways
up to isotopy. Thus we have the next definition which enables us to keep track of
how to attach tubes to pairs of circles and more generally to attach pairs of tubes
to pairs of Hopf bands.

Definition 5.4. A framed embedded path is a smooth embedded path τ (t), t ∈ [0, 1]
in the 4-manifold M with a framing F(t) = (v1(t), v2(t), v3(t)) of its normal bundle.
Let (C(0), x(0)) consist of a smooth embedded circle C(0), with base point x(0), ly-
ing in the normal disc to τ through τ (0) that is spanned by the vectors (v1(0), v2(0))
with x(0) lying in direction v1(0). Define (C(t), x(t)) a smoothly varying family
having similar properties for each t ∈ [0, 1]. Call the annulus (C(t), x(t)), t ∈ [0, 1]
the cylinder connecting C(0) and C(1). It should be thought of as lying very close
to τ .

As a warmup to the following long definition, the reader is encouraged to look
at Figures 5.8 and 5.9 which show how different types of tubes can arise in the
course of an isotopy and thus the need for an elaborate definition. See Figures
5.2–5.5 which show some of the data in the definition of a tubed surface and exhibit
realizations of this data.

Definition 5.5. A tubed surface A in the 4-manifold M consists of
i) a generic self-transverse immersion f : A0 → M , where A0 is a closed surface

based at z0 with A1 denoting f(A0). The preimages (x1, y1), · · · , (xn, yn) of the
double points are pairwise ordered. A0 is called the underlying surface and A1 the
associated surface to A.

ii) An embedded transverse 2-sphere G to A1, with A1 ∩G = z = f(z0).
iii) For each i = 1, · · · , n, an immersed path σi ⊂ A0 from xi to z0. See Figure

5.2 for views in A0 and A1.
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iv) Immersed paths α1, · · · , αr in A0 with both endpoints at z0 and for each
i = 1, · · · , r, pairs of points (pi, qi) with pi ∈ αi and qi ∈ A0 and a framed embedded
path, τi ⊂ M from f(pi) to f(qi) with int(τi) ∩ (G ∪ A1) = ∅. See Figure 5.4.

v) Pairs of immersed paths (β1, γ1), · · · , (βs, γs) in A0 where βi goes from z0 to
bi and γi goes from gi to z0 and framed embedded paths λi ⊂ M from f(bi) to
f(gi) with int(λi) ∩ (G ∪ A1) = ∅. See Figure 5.5.

Curves of the form σi, αj , βk, γl are called tube guide curves and the τp and λq

curves are called framed tube guide curves. The union of all of these curves is the
tube guide locus. The σi, αj , βk, γl curves are required to be self-transverse and
transverse to each other with interiors disjoint from the z0, xi, qj , bk, gl points and
disjoint from the pj points except where required in iv). At points of intersection
and self-intersection of these curves, except z0, one curve is determined to be above
or below the other curve. The various points z0, xi, yj , pk, ql, bm, gn are all distinct.

The curves τi and λj are pairwise disjoint, disjoint from G, and intersect A1 only
at their endpoints. Additional conditions on the framings of the τi and λj curves
will be given in Construction 5.7. They dictate the placement of the C(0) and C(1)
curves. This ends the definition of a tubed surface.

Remark 5.6. The data i) - iii) are what’s needed to create a tubed surface arising
from a finger move as in Lemma 5.1. Data iv) and v) are needed to describe tubed
surfaces arising from Whitney moves. Crossings of tube guide curves may occur in
preparation for Whitney moves and in the process of transforming pairs of double
tubes to pairs of single tubes in §6.

We now show how a tubed surface gives rise to an embedded surface.

Construction 5.7. Associated to the tubed surface A construct an embedded
surface A, called the realization of A, as follows. For each i, remove from A1 the
image of a small D2 neighborhood of yi. Attach to f(∂D2) a disc D(σi) consisting
of a tube T (σi) that follows f(σi) and connects to a slightly pushed off copy of
G \ int(N(z)). See Figure 5.2. These copies of G are sufficiently close to G so
that the closed product region between each of them and G is disjoint from all the
framed tube guide curves. If u ∈ σi∩σj , u 
= z0, and σi lies above σj at u, then near
f(u), construct T (σj) to lie closer to A1 than does T (σi). With abuse of notation,

this allows for the case i = j. See Figure 5.3. Let Â be the embedded surface thus
far constructed.

In a similar manner, associated to the path αi is a 2-sphere P (αi) with P (αi) ∩
A1 = ∅, consisting of two parallel copies of G \ int(N(z)) connected by a tube
T (αi) that follows the path f(αi). Again these copies of G are sufficiently close
to G that the closed product region between each of them and G is disjoint from
all the framed tube guide curves. Next attach a tube T (τi) following the framed

embedded path τi from C(0) = P (αi)∩∂N(τi) to C(1) = Â∩∂N(f(qi)). Note that
the previous condition implies that T (τi) attaches to the tube part of P (αi). Here

we assume that τi approaches f(pi) normally to Â and is parametrized by [−1/4, 1]
and framed so that restricting to [0, 1], C(0) (resp., C(1)) is in the plane spanned
by v1(0) and v2(0) (resp., v1(1) and v2(1)) as in Definition 5.4. This assumption is
the condition on the framing on τi that is required but not explicitly stated at the
end of Definition 5.5. The tube T (τi) is called a single tube. See Figure 5.4. Let Â′

be the embedded surface constructed at this stage.
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Figure 5.2

Figure 5.3

Next for each i, construct discs D(βi) and D(γi) consisting of slightly pushed off
copies of G \ int(N(z)) tubed very close to and, respectively, along f(βi) and f(γi)

with boundary lying in discs normal to Â′ at f(bi) and f(gi). Roughly speaking

the rest of the construction of A from Â′ proceeds as follows. Appropriately sized
4-balls N(f(bi)) and N(f(gi)) have the property that ∂N(f(bi)))∩(Â′∪D(βi)) and

∂N(f(gi))∩ (Â′∪D(γi)) are Hopf links. Connect these links by tubes that parallel

λi such that ∂N(f(gi))∩ Â′ (resp., ∂N(f(bi))∩ Â′) connects to ∂N(f(bi))∩D(βi)
(resp., ∂N(f(gi)) ∩D(γi)). See Figure 5.5.

More precisely, delete int(N(f(bi))) from D(βi) and continue to call D(βi)

the disc that remains. Next remove int(1/2N(f(bi))) from Â′ and let C(0) =

∂((1/2N(f(bi))) ∩ Â′). Also remove int(N(f(gi))) from Â′ and int(1/2N(f(gi)))
from D(γi) and call D(γi) what remains. Now bend D(γi) near ∂D(γi) in the
direction of λi and then let C(1) = ∂D(γi). See Figure 5.5 b). Suppressing the
epsilonics, 1/2N(f(gi)) and 1/2N(f(bi)) are half radius 4-balls about f(bi) and
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Figure 5.4

Figure 5.5

f(gi) and with respect to that scale, the tube of D(βi) is very close to f(βi) and
the tube of D(γi) is very close to f(γi) together with a short segment of λi.

We assume that λi approaches Â′ in geodesic arcs near f(gi) and f(bi), and in

the two 3-planes spanned by these arcs and Â′, it approaches Â′ orthogonally. We
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assume that λi is parametrized by [0, 1] and framed so that C(0) is in the plane
spanned by v1(0) and v2(0) as in Definition 5.4. Also x(0) = C(0) ∩ βi and v1(0)
points towards x(0). Again C(1) = ∂D(γi) with x(1) the point indicated in Figure
5.5 b) and assume that C(1) lies in the plane spanned by v1(1) and v2(1) with x(1)
lying in the arc spanned by v1(1).

As in Definition 5.4 use λi to build a tube connecting C(0) and C(1). Using a

tube that follows the path x(t), t ∈ [0, 1] connect ∂D(βi) to ∂N(gi)∩Â′ as in Figure
5.5 c). The union of these two tubes, a Hopf link ×I, is called a double tube. This
completes the construction of the realization A of A.

Remark 5.8. The single and double tubes do not link with other parts of the
realization. In particular, except for the spots where they attach to and/or near the
associated surface A1, the single tubes and double tubes stay a uniformly bounded
distance away from A1 and the transverse sphere G. Further, the tubes following
the σ, α, β, γ curves stay within this distance to the associated surface and the
parallel copies of G also stay within this uniform distance to G.

We now describe operations on a tubed surface A that correspond to isotopies
of the realizations.

Definition 5.9. We enumerate tube sliding moves on a tubed surface A corre-
sponding to redefining the location and crossing information of tube guide curves
in the underlying surface A0.

i) Type 2), 3) Reidemeister moves on tube guide curves. See Figure 5.6 a).
ii) Reordering tube guide curves near z0. See Figure 5.6 b).
iii) Sliding a tube guide curve across a double point. See Figure 5.6 c). There are

two cases depending on whether or not the tube guide κ lies in the sheet through
yi or the sheet through xi. In the former case we require that κ 
= σi.

iv) Sliding across a tube guide curve κ across a double tube. See Figure 5.6 d).
Here κ 
= γi (resp., βi) can slide over bi (resp., gi).

v) Sliding tube guide curves across a single tube. Here a tube guide curve κ 
= αi

can slide across qi and over pi. Any tube guide curve can slide under pi. See Figure
5.6 e).

Remark 5.10. Sliding σi across yi has the self-referential problem analogous to a
handle sliding over itself. Similarly for sliding βi (resp., γi, resp., αi) across gi
(resp., bi, resp., qi).

Lemma 5.11. If A and A′ are tubed surfaces that differ by tube sliding, then their
realizations A and A′ are isotopic.

Proof. We consider the effect on the realization of A by the various tube sliding
moves. The under/over crossing data in A0 reflects how close one tube is to A1

compared with another. As the Reidemeister 2), 3) moves respect this closeness it
follows that they induce an isotopy from A to A′.

Next we consider reordering near z0. Since G has a trivial normal bundle, there
is an S1 worth of directions that it can push off itself. These directions correspond
to the directions that the image of tube guide curve f(κ) ⊂ A1 can approach z.
We can assume that the various parallel copies of G \ int(N(z)) are equidistant
from G at an angle of that of the angle of approach of the various f(κ)’s. Let
D ⊂ A1 denote a disc which is a small neighborhood of the bigon that defines the
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d)

Sliding across a single tube

e) 

Figure 5.6

reordering. Let Ki denote the disc consisting of a parallel copy Gi of G \ int(N(z))
together with its tube that follows the arc f(κi)∩D. If κj is above κk as in Figure
5.6 b) and K ′

j and K ′
k are the discs resulting from the reordering, then there is an

isotopy of A to A′ supported on Kk where Gk is first pushed radially close to G,
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then rotated to the angle defined by f(κ′
k) and then pushed out. Here κ′

k is the
reordered κk.

The proof that A is isotopic to A′ for the operations of Figures 5.6 c i), d), e i)
are all the same. Here we are sliding a tube in A that parallels a curve f(κ) ⊂ A
across a disc. In the case of Figure 5.6 c i) (resp., Figure 5.6 d)) that disc includes
the disc D(σi) (resp., D(γ) or D(β)). In the case of Figure e i) that disc includes
P (αi) minus an open disc.

The proof that A is isotopic to A′ for the operations of Figures 5.6 c ii) and e
iii) are the same and are local operations. Here we are sliding a tube paralleling a
curve f(κ) ⊂ A across a small disc. The slid tube is very close to A, closer than
other tubes in the vicinity.

The proof that A is isotopic to A′ for the operation of Figure 5.6 e ii) requires
Lemma 2.3 for we want Remark 5.8 to continue to hold. Let T (τi) (resp., T (κ))
denote the tube in A that parallels τi (resp., κ 
= αi). Sliding T (κ) over f(p)
entangles T (τi) with T (κ). The entangled T (τi) is the tube being isotoped using
Lemma 2.3. Lemma 2.3 requires that there be a path, in the notation of that
lemma, from y to z. This requires that κ 
= αi. �

We now define operations on tubed surfaces corresponding to finger and Whitney
moves.

Definition/Construction 5.12. Let A1 be the associated surface to the tubed
surface A. To a generic finger move from A1 to A′

1 with corresponding regular
homotopy from f to f ′ we obtain a new tubed surface A′ said to be obtained from
A by a finger move. By generic we mean that the support of the homotopy is away
from all the framed tube guide curves and images of tube guide curves of A. A′

will have the same underlying surface A0 as A and A′
1 will be its associated surface.

Let (x1, y1) and (x2, y2) be the new pairs of f ′ preimages of double points in A0,
where both f ′(x1) and f ′(x2) (resp., f

′(y1) and f ′(y2)) lie in the same local sheet
of A′

1. Let σ1 and σ2 be parallel embedded paths from x1 and x2 to z0 transverse
to the existing tube guide paths. The tube guide locus of A′ consists of that of
A together with σ1 and σ2 where all crossings of these σi’s with pre-existing tube
guide curves are under crossings. See Figure 5.7.

Remark 5.13. There is flexibility in the construction of A′ from A in the choice of
which pair of points are called xi points and in the choice of the σi paths.

Lemma 5.14. If A′ is obtained from A by a finger move, then their associated
realizations are isotopic.

Proof. This lemma is a restatement of Lemma 5.1 in our setting. The proof is the
same after recognizing that the support of the isotopy in the target is contained in
the support of the finger move together with a small neighborhood of the product
region between the discsD(σ1) andD(σ2), with notation as in Construction 5.7. �

Definition/Construction 5.15. Let A1 be the associated surface to the tubed
surface A. A Whitney move from A1 to A′

1 corresponding to the regular homotopy
from f to f ′ with Whitney disc w is said to be tube locus free if int(w) is disjoint
from the framed tube guide curves of A and ∂w intersects the images of tube guide
curves of A only at double points of A1. Let (x1, y1), (x2, y2) denote the pairs of
points in A0 corresponding to these double points with notation consistent with
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Figure 5.7

that of Definition 5.5 and let E1, E2 denote the local discs involved in the Whitney
move. We say that the Whitney move is uncrossed if both f(x1) and f(x2) lie in
the same Ei and crossed otherwise. If w is an uncrossed Whitney disc, then we
obtain the tubed surface A′ as indicated in Figure 5.8 and if w is crossed, then A′

is obtained as in Figure 5.9. Accordingly A′ is said to be obtained from A by an
uncrossed or crossed Whitney move.

Remark 5.16. An uncrossed Whitney move gives rise to a single tube while a crossed
Whitney move gives rise to a double tube. In the former case two σ curves become
an α curve. In the latter case, the σ curves become β and γ curves.

Lemma 5.17. If A′ is obtained from A by a tube locus free Whitney move, then
its realization is isotopic to that of A. �

Definition 5.18. We define an elementary tubed surface isotopy, or elementary
isotopy for short, on the tubed surface A as any of the following operations on A.

a) The defining data changes smoothly without combinatorial change. In par-
ticular, at no time are there new tangencies or new intersections among the various
objects.

b) Tube sliding moves.
c) Finger moves.
d) Tube locus free Whitney moves.

Lemma 5.19. If A and A′ are tubed surfaces that differ by an elementary isotopy,
then their realizations are isotopic.

Proof. a) Smooth changes in the defining data induce smooth changes in the real-
izations.

b) This is Lemma 5.11.
c) This is Lemma 5.1.
d) This is illustrated in Figures 5.8 and 5.9. �

Definition 5.20. Let R0 be an immersed surface in the smooth 4-manifold M
with embedded transverse sphere G. Let ft : R → M4 be a generic regular ho-
motopy supported away from G which is a self-transverse immersion except at
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Figure 5.8

times {ti} where 0 = t0 < t1 < · · · < tm−1 < tm = 1 and i /∈ {0,m}. Let
R0 = f0(R), R1, · · · , Rm = f1(R) be such that for i = 1, · · · ,m− 1, Ri is a surface
fs(R) for some s ∈ (ti, ti+1). We say that the regular homotopy ft is shadowed
by tubed surfaces if there exists a sequence R0,R1, · · · ,Rm of tubed surfaces such
that for all i, Ri is the associated surface to Ri and for i 
= m, Ri+1 is obtained
from Ri by elementary isotopies. The tubed surfaces R0,R1, · · · ,Rm are called
ft-shadow tubed surfaces.

Theorem 5.21. If ft : A0 → M is a generic regular homotopy with f0(A0) an em-
bedded surface, M a smooth 4-manifold, G a transverse embedded sphere to f0(A0),
and ft is supported away from G, then ft is shadowed by tubed surfaces.

Proof. Define the tubed surface A0 as follows. A0 is the underlying surface, f0 :
A0 → M is the self-transverse immersion with f0(A0) = A0

1 the associated surface.
The tube guide locus = ∅. Let 0 < t1 < · · · < tm−1 < 1 be the nonself-transverse
times of ft. If there are no singular times in [s, s′] and a tubed surface As has been
constructed whose associated surface As

1 = fs(A0), then an elementary isotopy of

type a) transforms it to one with As′

1 = fs′(A0). Thus we need only show how
to shadow regular homotopies near nonself-transverse times. Now each nonself-
transverse time corresponds to either a finger or Whitney move. Since f0(A0) is
embedded, t1 is the time of a finger move. The shadowing of the initial finger
move is given in the proof of Lemma 5.14. More generally, that lemma shows how
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Figure 5.9

to shadow any finger move. By induction we assume that the conclusion holds
through time t, where tk−1 < t < tk and tk is the time of a Whitney move.

Let Ak−1 denote the tubed surface with underlying surface Ak−1
1 = ft(A0). By

Lemma 5.19 we can assume that t is a time just before the Whitney move. Let
w be a Whitney disc for the Whitney move. Being 2-dimensional we can assume
that w is disjoint from the framed tube guide curves to Ak−1. Suppose that w
cancels the ft images of the points {u, v, u′, v′} ⊂ A0, where ft(u) = ft(v) and
ft(u

′) = ft(v
′). Here u and u′ (resp., v and v′) are the endpoints of disjoint arcs φ

and φ′ in A0 which map to ∂w under ft and (u, v) = (xi, yi) and (u′, v′) = (xj , yj),
with notation as in Definition 5.5. By switching φ and φ′ and/or i and j if necessary,
we can assume that the first equality is that of an ordered pair and the second is
setwise.

Next we show that after tube sliding moves w becomes a tube locus free Whitney
disc, i.e., no tube guide curve crosses intφ or intφ′. Now xi ∈ ∂φ, so all the tube
guide crossings with int(φ) can be eliminated by sliding across the double point xi.
If xj ∈ ∂φ′, then we can clear int(φ′) of tube guide curves in a similar manner. If
∂φ′ = (yi, yj) and the tube guide κ crosses int(φ′) we clear it from φ′ as follows.
Since i 
= j, it follows that κ 
= σp for some p ∈ {i, j}. Apply a sequence of
Reidemeister 2) moves supported in a small neighborhood of φ′ to make κ adjacent
to yp and then slide it across the double point yp.

Since w is now a tube locus free Whitney disc we can shadow the Whitney move
by an uncrossed (if u′ = xj) or crossed (if u′ = yj) Whitney move. Thus Ak is
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obtained from Ak−1 by a sequence of tube sliding moves and a tube locus free
Whitney move. �

Remarks 5.22. i) If the regular homotopy ft is of the form finger moves followed by
Whitney moves, then the tubed surface following the finger moves can be chosen
so that the curves σi are embedded and pairwise disjoint away from z0.

ii) If f1(A0) is embedded, then the final tubed surface has no σi curves.
iii) There is no restriction on the surface A0. Below and in the next section we

require that A0 be a 2-sphere.

The rest of this section is relevant for 4-manifolds M whose fundamental group
has 2-torsion. See Figure 5.10.

Figure 5.10

Definition 5.23. We say that the tubed surface A is in normal form if in addition
to the conditions of Definition 5.5 we have

a) The immersion f : A0 → M is an embedding with associated surface A1 =
f(A0) and A0 is a 2-sphere.

b) There are no α curves.
c) The paths β1, γ1, β2, γ2, · · · , βn, γn are embedded and cyclicly arrayed in A0

about the common endpoint z0.
d) The framed embedded paths λ1, λ2, · · · , λn represent distinct nontrivial 2-

torsion elements of π1(M).
We say that the surface A is in normal form with respect to the embedded surface

A1 representing elements [λ1], · · · , [λn] if A is the realization of A with data as in
a)-d). We say two normal forms are equivalent if they represent the same set of
elements.

The following result is immediate by our realization construction.

Proposition 5.24. If A1 is an embedded 2-sphere with transverse sphere G and
given any finite set of distinct nontrivial 2-torsion elements of π1(M), then there
exists an embedded 2-sphere A in normal form with respect to A1 representing these
elements of π1(M). �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

632 DAVID GABAI

Lemma 5.25. The isotopy class of the realization is independent of the cyclic
ordering of the (βi, γi)’s arrayed about z0 ∈ A0.

Proof. Using the tube sliding operations any two adjacent pairs (βi, γi), (βi+1, γi+1)
can be permuted. �

Remark 5.26. In §8 we will show that the isotopy class is also independent of the
choice of framings on the framed tube guide curves. Thus equivalent normal form
surfaces are isotopic, as stated in Theorem 1.3.

6. From double tubes to single tubes

In what follows A is a tubed surface in M with realization A whose associated
surface A1 is an embedded 2-sphere. In this section we show that A can be trans-
formed toA′ with isotopic realizations without changing A1 so that, if π1(M) has no
2-torsion, then A′ has at most one double tube, which is homotopically inessential.
If π1(M) has 2-torsion, then A′ may additionally have finitely many double tubes
representing distinct elements of order 2. This is done by appropriately replacing
pairs of double tubes with pairs of single tubes.

Lemma 6.1. Suppose that R0 and R1 are spheres with common transverse sphere
G in the 4-manifold M. If R0 and R1 coincide near G and are homotopic in M ,
then they are homotopic via a homotopy whose support in M is disjoint from G, in
particular the homotopy is basepoint preserving.

Proof. Let K : S2 × I → M be a homotopy from R0 to R1. Let E ⊂ R0 be a
disc containing R0 ∩G that coincides with a disc of R1. After an initial homotopy
making K transverse to G we see that K−1(G) is 1-manifold with exactly one
component ψ that goes from S2 × 0 to S2 × 1. By the 3-dimensional light bulb
theorem ψ is unknotted, so after reparametrization of S2 × I, we can assume that
K is a basepoint preserving homotopy. Next, replace K by another, also called
K, such that there exists a disc D ⊂ S2 where Kt|D is independent of t with
K0(D) = 1

2E.
To complete the proof it suffices to show that if a sphere R3 in M \ G is ho-

motopically trivial in M it is homotopically trivial in M \ G. The relevant R3 is
obtained from R0 ∪ R1 by deleting 1

2E from each and gluing along the result-

ing boundaries. Let M̃ denote the universal covering of M and let G̃ be the
preimage of G. By Lemma 2.2 the universal cover of M \ G is M̃ \ G̃, hence if

R̃3 denotes a lift of R3 to M̃ , it suffices to show that R̃3 is homologously triv-
ial in M̃ \ G̃. Let Z ⊂ M̃ be a 3-chain transverse to G̃ with ∂Z = R̃3. Since

H1(G̃) = 0, [Z ∩ ∂N(G̃)] = [(Z ∩ G̃) × ∂D2] = 0 ∈ H2(∂N(G̃)) and hence by re-

placing Z|N(G̃) by one supported in ∂N(G̃) with the same boundary, there exists

a 3-chain Z ′ with ∂Z ′ = R̃3 and Z ′ ∩ G̃ = ∅. �

Remark 6.2. If A is a tubed surface whose associated surface A1 is an embedded
sphere, then we can view double tubes as representing elements of π1(M) as follows.
First A1 itself can be viewed as the basepoint for π1(M). Recall Lemma 2.2. Next
a double tube corresponds to a path λi in M from some bi ∈ A1 to some gi ∈ A1.
Thus the double tube gives rise to an element of π1(M).

Definition 6.3. Let A be a tubed surface with realization A. Let κ denote one of
σi, βj , or γk and let y be the corresponding xi, bj , or gk. If we compress the tube
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in A that follows f(κ) near f(y) we obtain an immersed surface, one component
of which is an embedded 2-sphere P = P (κ), that is homotopic to the transverse
sphere G. This sphere has an induced orientation that coincides with A away from
the compressing disc. Define ε(P ) = ε(κ) = +1 if [P ] = [G] and −1 otherwise. Here
M,A, and G are oriented so that 〈A,G〉 = +1.

Similarly compressing A near a point of τi gives rise to an embedded surface
one component of which is an embedded 2-sphere P (αi) isotopic to two oppositely
oriented copies of G tubed together along αi.

Lemma 6.4. If P = P (κ) is constructed as above and D is the compressing disc
that splits off P and oriented to coincide with that of P , then ε(P ) = 〈D′, A〉. Here
D′ is D shrunk slightly to have boundary disjoint from A. �
Lemma 6.5. If A is a tubed surface, then for all i, [P (βi)] = −[P (γi)] = ±[G] ∈
H2(M) and for all j, [P (αj)] = 0. �
Remark 6.6. Up to isotopy there are four framings on the framed embedded path
λi, hence four ways of constructing a double tube from λi. See Figure 5.5 and
Remark 5.3. Note that two give 1 = ε(P (βi)) = −ε(P (γi)) while two give −1 =
ε(P (βi)) = −ε(P (γi)).

Sign Convention. By switching βi and γi, if necessary, we can assume that
ε(βi) = −1 and ε(γi) = +1. Orient βi to point from z to bi, λi to point from f(bi)
to f(gi), and γi to point from gi to z.

We next calculate [A] ∈ π2(M). Since A and G are 2-spheres, each distinct

element of π1(M) gives rise to a distinct pair of geometrically dual spheres in M̃ ,

the universal cover of M , that projects to the pair (A,G). Thus, π2(M) = π2(M̃) =

H2(M̃) which contains the group ring H = H2(G)π1(M) as a submodule. Since
A is a tubed surface, [A] lies in the coset H + [A1]. Since π1(A1) = 0, each λi

determines a well defined element, [λi] ∈ π1(M). With the above conventions the
triple (βi, λi, γi) gives rise to the element [G][λi] − [G][λi]

−1 ∈ H. On the other
hand, each αj , τj gives rise to the trivial element. We therefore have the following.

Lemma 6.7. [A] = [A1] +
∑s

i=1[G][λi]− [G][λi]
−1 ∈ π2(M). �

Remarks 6.8. i) If A is homotopic to A1, then
∑s

i=1[G][λi]− [G][λi]
−1 = 0. There-

fore, if [λi] = 1 whenever [λi]
2 = 1 holds, then we can reorder the λi’s so that

[λ1] = [λ2]
−1, · · · , [λ2p−1] = [λ2p]

−1 and [λs] = 1 if s = 2p+ 1.
ii) In the 2-torsion case we can reorder the λi’s so that [λ1] = [λ2]

−1, · · · , [λ2p−1]
= [λ2p]

−1, and [λ2p+1], [λ2p+2], · · · , [λs] represent distinct 2-torsion elements of
π1(M), though possibly [λs] = 1. Distinctness follows by observing that a 2-torsion
element is its own inverse, hence all but at most one of the λi’s representing the
same 2-torsion element lies within the first 2p elements.

The following is the main result of this section. It’s the crucial point in the proof
of Theorem 1.2 where the no 2-torsion condition is used. It also essentially uses
that A1 is a 2-sphere.

Proposition 6.9. Let A be a tubed surface in the 4-manifold M whose associated
surface A1 is an embedded sphere homotopic to the realization A of A. Let G
denote the transverse sphere to A1. Then via an isotopy supported away from G,
A is isotopic to the realization A′ of a tubed surface A′ with associated surface A1

such that if π1(M) has no 2-torsion, then A′ has at most one double tube, in which



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

634 DAVID GABAI

case the unique double tube is homotopically trivial. If π1(M) has 2-torsion, then
A′ additionally may have n ≥ 0 double tubes, each representing distinct 2-torsion
elements of π1(M).

Proof. By Remark 6.8 we can reorder the λi’s so that [λ1] = [λ2]
−1, · · · , [λ2p−1] =

[λ2p]
−1 and [λ2p+1], [λ2p+2], · · · , [λs] are distinct 2-torsion elements of π1(M) with

possibly [λs] = 1. Thus if π1(M) has no 2-torsion, then s = 2p or 2p + 1 in which
case all but at most one of the double tubes are paired up. The remaining one, if it
exists, is homotopically trivial. We will show that an isotopy of A transforms A to
A′ with the same A1 but with the double tubes λ1, λ2 eliminated. The proposition
then follows by induction on the number of double tubes.

We now decipher Figures 6.1, 6.2 b), 6.3, and 6.4 which are crucial to the proof.
Each figure describes the intersection of a properly embedded planar surface with
a 4-ball B3 × I. In all cases the surface consists of two components one called F
which lies entirely in the present B3 × 1

2 and the other E. In Figures 6.1 a),b) and
6.3 a),b) F is an annulus which looks like a square with a tube attached, while in
Figures 6.2 b) and 6.4 a),b),c) F looks like a square with a pair of pants attached,
hence is a pair of pants. In Figures 6.1 a),b) and Figures 6.3 a),b) E is an annulus
comprised of a square E1 with a tube U attached. Here E1 is of the form α × I,
where α× 1

2 ⊂ B3 × 1
2 is a properly embedded horizontal arc. If x = E1 ∩ F , then

U follows an arc β ⊂ F from x to some y ∈ F ∩ B3 × 1
2 . Thus E is obtained by

attaching U to E1 \ int(D(x)) along ∂D(x), where D(x) is a neighborhood of x in
E1. Note that U is defined similarly to part of T (σi) defined in Construction 5.7.
In both Figures 6.1 and 6.3 the dark, possibly dotted, lines indicate E ∩ B3 × 1

2 .
The shaded regions indicate the parts of U which lie in the future or past. Note
that E is symmetric with respect to reflection in the I-factor. The E of Figure 6.2
b) is similar, except that it is a pair of pants consisting of two tubes attached to
E1.

We now describe the pairs of pants E of Figures 6.4 a),b),c), henceforth, respec-
tively, denoted Ea, Eb, Ec. Let δa, δb, δc denote properly embedded horizontal arcs
in the F ’s of Figures 6.4 a),b),c), each parallel to the bottom edge of the square
referred to in the previous paragraph. Let Ua, Ub, Uc denote properly embedded
tubes in B3 × I, following the arcs δa, δb, δc. Up to a small isotopy of Ea near the
junction of Ua and ta, our Ea, Eb, Ec are obtained by, respectively, attaching tubes
Ta, Tb, Tc between Ua, Ub, Uc, and E1. These tubes follow arcs ta, tb, tc, respectively,
from Ua, Ub, Uc to E1. Here ta, tb ⊂ B3 × 1

2 . We again follow the convention that

dark, possibly dotted, lines indicate the intersection of E with B3 × I. Here the
shaded regions indicate the parts of the joined Ua ∪ Ta, Ub ∪ Tb, Uc ∪ Tc which lie
either in the future or past. Note that both Ea and Eb are symmetric with respect
to reflection in the I factor. Ec is similarly constructed. Here the projection of tc
to B3 × 1

2 equals tb. It coincides with tb near Ub and thereafter lies in the future.

Similarly the projection of Tc to B3 × 1
2 equals Tb. It coincides with Tb near Ub

and away from a small neighborhood of the coincidence locus lies completely in the
future.

We resume the proof of the proposition. To start with we consider another
model for a double tube as shown in Figure 6.1. See Remarks 6.10 i) for further
explanation of this figure.

Remarks 6.10. i) Fixing an orientation on M and G our sign conventions determine
an orientation on A1 and hence A ∩ A1 as well as the orientations on A near the
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Figure 6.1

ends of a double tube associated to λi. The orientation near gi is induced from A1

and the orientation on T (γi) is determined from the fact that ε(γi) = 1. Similarly,
for the bi end of the double tube, except that ε(βi) = −1. Therefore, by Remark
5.3, up to isotopy, there are two rather than four, ways of constructing a double
tube associated to λi. Representatives are shown in Figures 6.1 a) and b).

ii) Figures 6.1 a) and b) each show the projection into the x, y, z plane of a
neighborhood of a double tube associated to λ. This consists of tubes emanating
from two discs Db and Dg lying in A1 that are, respectively, neighborhoods of f(b)
and f(g), where λ connects f(b) to f(g). In the figure, Db lies in the x, y plane
and Dg lies in the x, t plane. Here Dg corresponds to the horizontal lines at the
top of the subfigures. The shaded regions are projections of the tube from Dg into
the x, y, z plane. The preimage of the interior of each shaded region consists of two
components, one in the future and one in the past. Except where it is twisted, this
tube lies in the x, z, t plane. Its intersection with the x, y, z plane is the union of
the thick solid and dashed lines.

Since A1 has the transverse 2-sphere G it follows from Lemma 2.2 that the
induced map π1(M \ (A1 ∪ G)) → π1(M) is an isomorphism. Since homotopy
implies isotopy we can isotope λ1 and λ2 to be anti-parallel. I.e., there exists an
embedded square D with opposite edges, respectively, on A1 and λ1 and λ2. See
Figure 6.2 a). Here E1 and F1 denote the components of A1 ∩N(D). Note that F1

lies in the present and E1 is of the form α× I ⊂ B3 × I where α× 1
2 is a horizontal

arc in the present.
We now show that it suffices to assume that A ∩N(D) appears as in Figure 6.2

b). Figure 6.3 shows how to isotope the surface to effect a change of the framed
embedded path corresponding to the nontrivial element of π1(SO(3)). Thus we can
assume that A appears near λ1 and λ2 as depicted in Figure 6.2 b). Now A∩N(D)
may fail to appear as in Figure 6.2 b) because the images of tube guide paths may
cross the interior of D ∩ A1, however by doing tube sliding moves in a manner
similar to those in the proof of Theorem 5.21 we can clear such curves from the
neighborhood.

We now do an isotopy of A, supported in N(D), that transforms a pair of double
tubes as in Figure 6.2 b) into a pair of single tubes as shown in Figure 6.4 c). Call
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F

F1

E

E1

λ1

λ2
D

a)

b)

Figure 6.2

Figure 6.3

the E-component of A ∩ N(D) the one that intersects E1 and call the other the
F-component. Keeping in mind that in Figures 6.2 and 6.4 the intersection of the
E-component with the present is drawn in thick possibly dashed lines, isotope the A
of Figure 6.2 b) to that of Figure 6.4 a) via a t-coordinate preserving isotopy. Note
that during the isotopy the projections to the present of the E and F components
can intersect provided the intersections avoid the thick lines. Next isotope A as in
Figure 6.4 b) to that of Figure 6.4 c). Note that this isotopy is supported in the E
component. The isotopy from Figure 6.4 b) to Figure 6.4 c) is as follows. Without
changing the projection to the present, first push most of the tube we earlier called
Tb into the future and then isotope the F component as indicated. �
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Figure 6.4

7. Crossing changes

In this section we show that crossing changes involving distinct tube guide curves
do not change the isotopy class of the realization of a tubed surface.

Lemma 7.1 (Crossing change lemma). If the tubed surface A′ is obtained from
the tubed surface A by a crossing change involving either distinct tube guide paths
or distinct components of αi \ pi, then the corresponding realizations A′ and A are
isotopic via an isotopy supported away from the transverse surface G. See Figure
7.1 a).

Proof. Let κ and κ′ denote either the distinct tube guide paths or the different
components of αi \ pi. Since by Lemma 5.11 changing a tubed surface by type
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Figure 7.1

2) and 3) Reidemeister moves does not change the isotopy class of the realization,
it suffices to assume that the crossing is adjacent to z0 as in Figure 7.1 b), e.g.,
see Figure 7.1 c). Let D0 ⊂ A0 be a small disc neighborhood of z0 that contains
the crossing and D = f(D0). We can assume by Remark 5.8 that there are no
framed embedded paths in N(G) = D×G. We shall see that except when Lemma
2.3 is invoked, the isotopy from A to A′ is supported in N(G). Identify N(G)
with D × S2 = D × S1 × [−∞,+∞]/ ∼, where each x × S1 × −∞ and each
x×S1 ×+∞ is identified to a point. Also f(z0) = z = (0, t0, 0) and D is identified
with D × t0 × 0 which we continue to call D. By making κ′ very close to z0 and
the slightly pushed off copy of G corresponding to κ very close to G we can assume
that A∩N(G) consists of exactly three components D,K, and K ′ where the latter
two, respectively, arise from κ and κ′.

The isotopy from A to A′ is demonstrated in Figure 7.2. The various subfigures
of Figure 7.2 show a 3-dimensional subset H of the form D×[t0−ε, t0+ε]×0 and the
projection of (G∪A)∩ (H× [−∞,∞]) to H, where the A changes by isotopy as we
progress from a) to f). Before offering more detail we decipher the figure. Common

to each of a)-f) are D,G∩H and the projection of K̂ = K ∩ (H × [−∞,∞]) to H.

Each figure also contains the projection of K̂ ′ to H, where K̂ ′ = K ′∩(H×[−∞,∞])
and K ′ ⊂ D ×G. We abuse notation by calling K ′ a surface that changes during
the progression of a) to f). In each of a)-f) the projection of K (resp., K ′) to D is
an arc. K is obtained by attaching a tube Tu to the sphere u×G, where u ∈ D and
Tu follows a path tu ⊂ D from u to ∂D. We again use the convention that thick
lines indicate intersection with the present, i.e., H and that the shaded points of
Tu indicate those coming from the past or future. In each of a)-f) K ′ is an annulus.
In a), e), f) it is a tube T that follows a properly embedded arc in D. To make
T and Tu look more distinct we shaded them differently. In Figures 7.2 e) and f)
(resp., a)) T lies closer (resp., further) to D than Tu. Compare Figures 7.2 a) and f)
with Figure 5.3. Finally, the K ′’s of Figure 7.2 b) and c) are obtained by attaching
three tubes to the spheres u1×G and u2×G. One tube T ′ connects the spheres to
each other. The other tubes, respectively, follow paths in D from u1 and u2 to ∂D.
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Figure 7.2

For all a)-f) each of G,D,K, and K ′ are invariant under the reflection of [−∞,∞]
about 0.

We return to the proof of the lemma. Figure 7.2 a) shows the projections of the
components of A ∩H × [−∞,∞] to H. Let δ = f(κ′) ∩D. The preimage W of δ
in D × S2 is an I × S2 which intersects A in three components; an annulus from
K ′, an S1 from K, and the arc δ, all of which are shown in the Figure 7.3 a). From
this point on, the support of the isotopy, in the source, is within K ′. The isotopy
from Figures 7.2 a) to 7.2 b) is supported in W and can be viewed in more detail in
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Figure 7.3

Figure 7.3, where corresponding dark lines in Figures 7.2 a), b) and Figure 7.3 a),
b) coincide. The dots on W ∩K in Figure 7.3 are the intersections of the dark lines
on K with W . The passage from Figure 7.2 b) to Figure 7.2 c) is the 4-dimensional
light bulb move, Lemma 2.3, whereby the tube T ′ appears to be crossing A at the
point y. This requires that there be a path σ in A from y to z disjoint from T ′

which in turn requires that κ 
= κ′. The isotopy from Figure 7.2 c) to d) simply
squeezes the indicated tubes, and commutes with the previous one. The isotopy
corresponding to Figures 7.2 d) and e) is essentially the reverse of that from 7.2 a)
and 7.2 b). Here the projection of the S2 × I, corresponding to this isotopy, to D
is an arc disjoint from the projection of K to D, so K is not in the way during that
isotopy. �

8. Proof of Theorems 1.2 and 1.3

Suppose that the embedded spheres R and A1 are homotopic with the common
transverse sphere G. After an initial isotopy fixing G setwise, we can assume that
they coincide near G. By Lemma 6.1 we can assume that the homotopy from R
to A1 is supported away from a neighborhood of G. It follows from [Sm1] that
R is regularly homotopic to A1 via a homotopy that is also supported away from
a neighborhood of G. See §4. By Theorem 5.21 the homotopy from R to A1 is
shadowed by tubed surfaces. Thus there exists a tubed surface A with realization
A, underlying surface A0 and associated surface A1 = f(A0) such that R is isotopic
to A.

To prove Theorem 1.2 it suffices to show that A is isotopic to A1 via an isotopy
supported away from a neighborhood of G. To prove Theorem 1.3 it suffices to
show that A can be isotoped into normal form with respect to A1 and two surfaces
A and A′ in normal form with respect to A1 are isotopic with support away from
G if their framed tube guide curves represent the same set of 2-torsion elements.
By Proposition 5.24 all finite sets of nontrivial 2-torsion elements can be realized.

By Proposition 6.9 we can assume that A has finitely many double tubes, each
representing distinct 2-torsion elements of π1(M) plus at most one double tube
which is homotopically trivial. In what follows we assume for consistency of nota-
tion that there exists one such double tube and it’s associated to (β0, γ0). Using
the crossing change and tube sliding Lemmas 7.1 and 5.11 we can assume that
each pair (α1, q1), · · · , (αr, qr), (β0, γ0), (β1, γ1), · · · , (βn, γn) lies in a distinct sec-
tor of A0. This means there exists a neighborhood D0 of z0 ∈ A0 parametrized



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

THE 4-DIMENSIONAL LIGHT BULB THEOREM 641

Figure 8.1

as the unit disc in polar coordinates so that (αi, qi) lies in the subset of D0 where
((i − 1)/(r + n + 1))2π < θ < (i/(r + n + 1))2π and (βi, γi) lies in the region
((r + i)/(r + n+ 1))2π < θ < ((r + i + 1)/(r + n+ 1))2π. We can further assume
that q1 ∈ ∂D0. This requires that R0 is a 2-sphere.

After r applications of the next lemma we can assume that r = 0 and that the
remaining data defining A is unchanged.

Lemma 8.1. Let A be a tubed surface such that a neighborhood D0 ⊂ A0 of z0 is
parametrized as the unit disc in polar coordinates and α1 ∪ q1 is contained in the
subset of D0 where 0 < θ < π/2 and that that region is devoid of all other tube guide
curves and associated points. Assume also q1 ∈ ∂D0. Then the tubed surface A′

whose data consists of that of A with α1 ∪ τ1∪ q1 deleted has realization A′ isotopic
to the realization A of A.

Proof. We first fix some terminology. To simplify notation α1, p1, q1, τ1 will be,
respectively, denoted α, p, q, τ . D = f(D0) and T (α) will denote the tube about
f(α). P (α) will denote the 2-sphere consisting of two parallel copies of G tubed
together along T (α). T (τ ) will denote the tube about τ . So A is the surface
obtained from A′ by connecting P (α) to A′ by the tube T (τ ). We will let p′ and q′
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denote the points, respectively, on P (α) and A′ so that the ends of T (τ ) connect
to ∂N(p′) and ∂N(q′), where neighborhoods are taken in A. Here p′ orthogonally
projects to f(p) ∈ A1, where p ∈ α ⊂ A0, and q′ = f(q). We let αL, and αR denote
the components of α separated by p.

Before continuing we offer commentary on Figure 8.1 a). That figure shows the
3-dimensional slice D × [t0 − ε, t0 + ε] × 0 ⊂ N(D) = D × [t0 − ε, t0 + ε] × [−ε, ε].
Let π : N(D) → D× [t0 − ε, t0 + ε]× 0 be the projection. Shown are π(G∩N(D)),
π(P (α)∩N(D)), and π(τ ∩N(D)). Here π(τ ∩N(D)) ⊂ D× [t0−ε, t0+ε]×0. Note
that π(P (α)∩N(D)) consists of two vertical arcs together with an immersed strip
connecting them. The cross sectional height of the strip indicates how far or close
the corresponding tube is from D, i.e., away from where T (α) joins copies of G, a
disc transverse to D at x ∈ f(α) intersects T (α) in a circle whose radius is equal
to the height of the strip. We follow the convention of Construction 5.7 illustrated
in Figure 5.3 whereby an undercrossing of α corresponds to a segment of a strip
that is thinner than the other segment it intersects. Again, thick lines denote the
intersection of P (α) ∩ N(D) with the present and points are shaded if they come
from the past or future. The different shading of the strip is for visual purposes
only, to help see it as it twists and turns.
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The first observation is that by isotopy extension p′ can be isotoped to any point
in T (α) at the cost of seemingly entangling τ with T (α). See Figures 8.1 a) and b).
One cannot obviously use the light bulb lemma to remove the intersection of int(τ )
with the projection of T (α) in Figure 8.1 b), since T (τ ) separates T (α) from z.

By suitably moving p, the local arcs of α at a given crossing can lie in the different
components αL and αR of α \ p. Thus the proof of the crossing change lemma
allows us to change this crossing as well as any other at the cost of entangling τ
with T (α). This process is illustrated in Figures 8.1 a), b), c). Similarly, at the cost
of further such entanglement we can perform the reordering move, Definition 5.9 ii)
to arcs of α. Compare Figure 8.1 d) and Figure 8.2 a). Thus by crossing changes,
Reidemeister 2), 3) moves and the tube sliding reordering move, we can assume that
α has no crossings. It follows that P (α) can be isotoped to an unknotted 2-sphere
P , that bounds a 3-ball Q disjoint from A′ ∪ G. See Figure 8.2 b). Further there
exists a 4-ball B such that Q ⊂ B, A′ ∩B = ∅, B ∩G = ∅, and τ ∩B is connected.
While it can be avoided, we note that any entanglement with A1 can be eliminated
by Lemma 2.3. Since π1(B \ P ) = Z and T (τ ) can be rotated about P it follows
that via isotopy supported within B, A can be isotoped so that Q ∩ int(T (τ )) = ∅
as in Figure 8.2 c). It follows that A can be isotoped to A′, thereby completing the
proof of Lemma 8.1. �

We now assume that r = 0. LetA′ be the tubed surface obtained fromA with the
data (β0, γ0) and λ0 deleted. We now show that the realization A of A is isotopic to
the realizationA′ ofA′. Since λ0 can be homotoped rel endpoints into the associated
surface A1, Lemma 2.2 and Remark 5.8 imply that λ0 can be isotoped to lie near the
sector of f(D0) containing f(β0 ∪ γ0), via an isotopy supported away from G∪A1.
Hence via isotopy supported away from G, A can be isotoped so that the double
tube following λ0 and D(β0) ∪D(γ0) lie in a small regular neighborhood N(G′) of
a parallel translate G′ of G. Here N(G′) = G′ ×D2, where A1 ∩N(G′) = z′ ×D2

and N(G′)∩G = ∅. Also A coincides with A′ outside of G′ ×D2, A coincides with
both A′ and A1 near ∂N(G′) and [A ∩N(G′)] = [z′ ×D2] ∈ H2(N(G′), z′ × ∂D2).
By Theorem 3.7 A is isotopic to A′ via an isotopy supported within N(G′). This
completes the proof of Theorem 1.2. �

Remark 8.2. With more work one can eliminate reliance on Theorem 3.7. By
Lemmas 7.1 and 5.11 we can assume that β0 and γ0 are pairwise disjoint. If each
is embedded, then a direct argument allows for the elimination of this data from
A, via isotopy of A. If either β0 or γ0 are not embedded, then construct A′ whose
data equals that of A except that an adjacent sector contains β−1, γ−1 which are
disjoint and embedded and whose framed embedded path λ−1 is homotopically
trivial. As noted above the realizations A and A′ of A and A′ are isotopic by a
direct argument. The proof of Proposition 6.9 shows that the pair of double tubes
associated to λ0 and λ−1 can be transformed into a pair of single tubes and these
tubes and their associated data can be eliminated via isotopy as in the proof of
Theorem 1.2 without using Theorem 3.7.

We now complete the proof of Theorem 1.3. We have a tubed surface A whose
data consists of (β1, γ1), · · · , (βn, γn) and framed tube guide paths λ1, · · · , λn rep-
resenting distinct nontrivial 2-torsion elements of π1(M). As above we can assume
that the (βi, γi)’s lie in distinct sectors of D0 ⊂ A0. Let A′ be a tubed surface with
data (β′

1, γ
′
1), · · · , (β′

n, γ
′
n) each lying in distinct sectors and where β′

i, γ
′
i are disjoint
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and embedded. Further each λ′
i is homotopic to λi, though its framing is allowed

to be arbitrary.
We now show that the realizations A and A′ of A and A′ are isotopic. Using

the idea of the previous remark we show how to replace β1, γ1, λ1 by β′
1, γ

′
1, and

λ′
1 without changing the isotopy class of the realization. The proof that A and A′

are isotopic then follows by induction. First observe that there are adjacent sectors
of D0 containing the ray of angle 0, which are disjoint from (βn, γn) and (β1, γ1).
Let A′′ be the tubed surface whose data consists of that of A with (β−1, γ−1)
and (β0, γ0) added to these sectors where for i ∈ {−1, 0}, βi and γi are disjoint
and embedded. Further the framed tube guide curves λ−1 and λ0 represent the
homotopy class of λ1, with the framing given by λ′

1. See Figure 8.3. Now the
underlying surface A′′ of A′′ is isotopic to A since the proof of Proposition 6.9
shows how to transform the pair of double tubes associated to λ−1 and λ0 to single
tubes and these single tubes can be eliminated as usual. Similarly A′′ is isotopic to
A′ since the pair of double tubes associated with λ0 and λ1 can be transformed into
a pair of single tubes. These single tubes can then be eliminated as usual. Further,
(β−1, γ−1) can now be rotated into the position of (β′

1, γ
′
1) and λ−1 can be isotoped

to λ′
1. By construction λ−1 has the same framing as that of λ′

1. It follows that A
is isotopic to A′.

In summary, if R and A are embedded spheres in M with the common transverse
sphere G, then R can be isotoped into normal form with respect toA as in Definition
5.23. If A′ and A′′ are in normal form with respect to A and represent the same
set of elements, then Lemma 5.25 shows that after isotopy we can assume that for
all i, λ′

i is homotopic to λ′′
i . Thus after isotopy we can assume that A′ and A′′ are

realizations of tubed surfaces A′ and A′′ such that for all i, (α′
i, β

′
i) = (α′′

i , β
′′
i ) and

λ′
i = λ′′

i , however the framings of the λi’s might differ. The previous paragraph
shows that changing the framing of a λ′′

i does not change the isotopy class of
the realization. It follows that A′ and A′′ are isotopic and hence equivalent normal
forms are isotopic. By Proposition 5.24 any finite set of distinct nontrivial 2-torsion
elements can be represented by a surface in normal form with respect to A. This
completes the proof of Theorem 1.3. �
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9. Higher genus surfaces

In this section we give a partial generalization of our main result to higher genus
surfaces, that is, a full generalization for S2 × S2.

Definition 9.1. Let S be an immersed surface in the 4-manifold M . We say that
the embedded disc D ⊂ M is a compressing disc for S if ∂D ⊂ S and a section of
the normal bundle to ∂D ⊂ S extends to a section of the normal bundle of D ⊂ M .

Lemma 9.2. If S is immersed in the 4-manifold M and α ⊂ S is an embedded
curve with a trivial normal bundle in S and is homotopically trivial in M , then α
bounds a compressing disc.

Proof. First span α by an immersed disc D0. Using boundary twisting [FQ] we
can replace D0 by D1 that satisfies the normal bundle condition. Eliminate the
self-intersections of D1 by applying finger moves. �
Lemma 9.3. Let S be an orientable embedded surface in the 4-manifold M whose
components have pairwise disjoint transverse spheres. Let α1, · · · , αk ⊂ S be pair-
wise disjoint simple closed curves, disjoint from the transverse spheres, such that
for each component S′ of S, S′ \ {α1, · · · , αk} is connected. Suppose that for each
i, αi is homotopically trivial in the complement of the transverse spheres. Then
there exist pairwise disjoint compressing discs D1, · · · , Dk such that for each i,
Di ∩ S = αi.

Proof. Construct compressing discs A1, · · · , Ak for the αi’s as in Lemma 9.2. These
discs can be chosen to be disjoint from the transverse spheres. Using finger moves
they can be made disjoint from each other. Finally use the transverse spheres to
tube off unwanted intersections of the Ai’s with S to create the desired Di’s. �
Definition 9.4. We say that the surface S1 is obtained from S by compressing
along D if S1 = S \ int(N(∂D)) ∪D′ ∪D′′ where D′, D′′ are two pairwise disjoint
parallel copies of D.

Lemma 9.5. Surfaces can be compressed along compressing discs. If S1 is obtained
by compressing the embedded surface S along the compressing disc D and D ∩ S =
∂D, then S1 is embedded. �
Definition 9.6. We say that the surface S ⊂ M is G-inessential if the induced
map π1(S \G) → π1(M \G) is trivial.

The following is a generalization to higher genus surfaces of Theorem 1.2.

Theorem 9.7. Let M be an orientable 4-manifold such that π1(M) has no 2-
torsion. Two homotopic, embedded, G-inessential surfaces S1, S2 with common
transverse sphere G are ambiently isotopic. If they coincide near G, then the isotopy
can be chosen to fix a neighborhood of G pointwise.

Proof. For each i ∈ {1, 2} let αi
1, · · · , αi

k be a set of pairwise disjoint simple closed
curves in Si whose complement is a connected planar surface containing Si∩G. Let
Di

1, · · · , Di
k be associated pairwise disjoint compressing discs with interiors disjoint

from Si and let Ti be the result of compressing Si along these discs. Then Ti is a
2-sphere and Si is obtained from Ti by attaching k tubes. Each tube S1×I extends
to a solid tube D2 × I which intersects Ti exactly at D2 × 0 and D2 × 1, which we
call the bases of the tube. By construction, these tubes are pairwise disjoint. After
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a further isotopy we can assume there are k small pairwise disjoint 4-balls each of
which intersects Si in a single standard disc and each such disc contains the bases
of a single solid tube.

Since Si is G-inessential, it follows by the light bulb lemma that the solid tubes
can be isotoped to 3-dimensional neighborhoods of tiny standard arcs with end-
points on Ti. Note that the induced ambient isotopy can be chosen to fix a neigh-
borhood of Ti pointwise.

To complete the proof it suffices to show that T1 and T2 are homotopic and
hence isotopic by Theorem 1.2. To see this, consider the lifts T̃1, T̃2 of T1, T2 to the
universal covering M̃ of M which intersect a given lift G̃ of G. Since the Si’s are
π1-inessential and homotopic, their corresponding lifts S̃1, S̃2 are homotopic and
hence homologous. It follows that T̃1 and T̃2 are homologous and hence homotopic
and therefore so are T1 and T2. �

Applying to the case of S2 × S2 we obtain the following.

Theorem 9.8. Let R be a connected embedded genus g surface in S2 × S2 such
that R ∩ S2 × y0 = 1. Then R is isotopically standard. I.e., it is isotopic to the
standard sphere in its homology class, with g standard handles attached, which we
denote by R0. If R and R0 coincide near S2 × y0, then the isotopy can be chosen
to fix a neighborhood of S2 × y0 pointwise. �

10. Applications and questions

We begin by stating the main result for multiple spheres.

Theorem 10.1. Let M be an orientable 4-manifold such that π1(M) has no 2-
torsion. Let G1, · · · , Gn be pairwise disjoint embedded spheres with trivial normal
bundles. Let R1, · · · , Rn be pairwise disjoint embedded spheres transverse to the
Gi’s such that |Ri ∩ Gj | = δij. Let S1, · · · , Sn be another set of spheres with the
same properties and coinciding with the Ri’s near the Gi’s. If for each i, Ri is
homotopic to Si, then there exists an isotopy of M fixing a neighborhood of the Gi’s
pointwise such that for all j, Rj is taken to Sj.

Under corresponding hypotheses, the same conclusion holds when the Ri’s and
Si’s are G-inessential connected surfaces, where G = ∪n

i=1Gi.

Proof. The methods of §9 reduce the general case to the case that all the Ri’s and
Si’s are spheres.

Proof by induction on n.

Step 1. R1 is ambient isotopic to S1 via an isotopy that fixes the Gi’s pointwise.

Proof. After a preliminary isotopy we can assume that R1 and S1 coincide near
R1∩G and that the homotopy from R1 to S1 is supported away from a neighborhood
of ∪Gi. Step 1 follows by applying Theorem 1.2 to the manifold M \

⋃n
i=2 N(Gi).

Note that the inclusion of M \
⋃n

i=2 N(Gi) → M induces a fundamental group
isomorphism so the no 2-torsion condition is satisfied. �

Induction Step. Suppose that we have for j < k, Rj = Sj . There exists an isotopy

of M fixing
⋃n

i=k Gi pointwise and supported away from
⋃k−1

j=1 (Gj ∪ Sj) such that
Rk is taken to Sk.
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Proof. After a preliminary isotopy we can assume that Rk and Sk coincide near Gk

and that Rk is homotopic to Sk via a homotopy supported away from
⋃k−1

j=1 (Sj∪Gj).

Next apply Step 1 to Rk ⊂ M \N(
⋃k−1

j=1 (Sj ∪Gj)). Again, the argument of Lemma

2.2 implies that the inclusion M \N(
⋃k−1

j=1 (Sj ∪Gj)) → M induces a fundamental
group isomorphism, so the no 2-torsion condition is satisfied. �

An analogous argument combined with the proof of Theorem 1.3 yields the
corresponding result for manifolds with 2-torsion in their fundamental groups.

Theorem 10.2. Let M be an orientable 4-manifold. Let G1, · · · , Gn be pairwise
disjoint embedded spheres with trivial normal bundles. Let R1, · · · , Rn be pairwise
disjoint embedded spheres transverse to the Gi’s such that |Ri ∩ Gj | = δij. Let
S1, · · · , Sn be another set of spheres with the same properties and coinciding with
the Ri’s near the Gi’s. If for each i, Ri is homotopic to Si, then there exists an iso-
topy of M fixing a neighborhood of the Gi’s pointwise such that each Ri can be put
into normal form with respect to Si. Here each Ri has double tubes representing el-
ements {[λi

1], · · · , [λi
ni
]}, where for fixed i the [λi

j ]’s are distinct nontrivial 2-torsion
elements of π1(M) and Ri = Si if this set is empty. Finally, for each i any finite
set of distinct 2-torsion elements gives rise to an Ri in normal form with double
tubes representing this set and two sets of Ri’s are isotopic if their corresponding
sets of [λi

j ]’s are pairwise equal. �

Definition 10.3. An essential simple closed curve in S2×S1 is said to be standard
if it is isotopic to x× S1 for some x ∈ S2.

Theorem 10.4. Two properly embedded discs D0 and D1 in S2×D2 that coincide
near their standard boundaries are isotopic rel boundary if and only if they are
homologous in H2(S

2 ×D2, ∂D0).

Proof. Homologous is certainly a necessary condition. In the other direction, after
reparameterizing, we can assume that ∂D0 = x0×S1 ⊂ S2×S1. LetM = S2×D2∪
d(S2 ×D2) = S2 × S2 be obtained by doubling S2 ×D2 with d(S2 ×D2) denoting
the other S2 × D2. This d(S2 × D2) can be viewed as a regular neighborhood
N(G) of G = d(S2 × 0). Let Ri denote the sphere Di ∪ d(x0 ×D2) which we can
assume is smooth for i = 0, 1. G is a transverse sphere to the homologous spheres
R0 and R1. By Theorem 1.2 there is an isotopy of M fixing a neighborhood of G
pointwise taking R0 to R1. Since R0 and R1 coincide in a neighborhood of N(G)
there is an isotopy of S2×D2 taking D0 to D1 that fixes a neighborhood of S2×S1

pointwise. �

Theorem 10.5. A properly embedded disc D in S2 ×D2 is properly isotopic to a
D2 fiber if and only if its boundary is isotopic to the standard vertical curve.

Proof. After a preliminary isotopy we can assume that ∂D is the standard vertical
curve x0 × S1 which we denote by J . Let F be a D2 fiber of S2 × D2. Now
0 → H2(S

2 ×D2) → H2(S
2 ×D2, J) → H1(J) → 0 is split and exact, so the coset

H mapping to the generator [∂F ] ofH1(J) equals Z and is represented by the classes
[F ] + n[S2 × y0], where y0 ∈ ∂D2. By properly isotoping D to D′ where ∂D′ = J
and so that the track of the homotopy restricted to the boundary is approximately
J ∪ S2 × y0 it follows that [D′] = [D] + [S2 × y0] ∈ H2(S

2 ×D2, J). Therefore any
class in H is represented by a disc properly isotopic to D. In particular after proper
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isotopy we can assume that [D] = [F ]. After a further isotopy we can assume that
D coincides with F near ∂D. The result now follows by Theorem 10.4. The other
direction is immediate. �

Recall that Diff0(X) denotes the group of diffeomorphisms properly homotopic
to the identity.

Corollary 10.6. π0(Diff0(S
2 ×D2)/Diff0(B

4)) = 1.

Remark 10.7. This means that a diffeomorphism of S2×D2 properly homotopic to
the identity is isotopic to one that coincides with the identity away from a compact
4-ball disjoint from S2 × S1.

Proof. Let D denote a x×D2 and let f : S2×D2 → S2×D2 be properly homotopic
to the identity. Since homotopic diffeormorphisms of S2 × S1 are isotopic [La],
f(∂D) is isotopic to ∂D in S2 × S1 and hence isotopically standard. Next apply
Theorem 10.5 to isotope f so that f(D) = D. After a further isotopy, using
[Sm3], we can assume that f |D = id and after another that f |N(D) = id. Since
a diffeomorphism of D2 × S1 that fixes a neighborhood of the boundary pointwise
is isotopic to the identity rel ∂ it follows that we can be further isotope f so
that ∂f is also the identity. After another isotopy we can additionally assume
that f |N(∂(S2 × D2)) = id. Since the closure of what’s left is a B4, the result
follows. �

The following is an immediate consequence of our main result.

Theorem 10.8 (4D-lightbulb theorem). If R is an embedded 2-sphere in S2 ×S2,
homologous to x0 × S2, that intersects S2 × y0 transversely and only at the point
(x0, y0), then R is isotopic to x0 × S2 via an isotopy fixing S2 × y0 pointwise. �

Litherland [Li] proved that there exists a diffeomorphism pseudo-isotopic to the
identity that takes R to x0 × S2.

Another version of the light bulb theorem was obtained in 1986 for PL discs in
S4 by Marumoto [Ma] where the isotopy is topological. He makes essential use of
Alexander’s theorem that any homeomorphism of Bn that is the identity on Sn−1 is
(topologically) isotopic to the identity. Here we prove a general form of the smooth
version.

Theorem 10.9 (Uniqueness of spanning surfaces). If R0 and R1 are smooth em-
bedded surfaces in S4 of the same genus such that ∂R0 = ∂R1 = γ, where γ is
connected, then there exists a smooth isotopy of S4 taking R0 to R1 that fixes γ
pointwise.

Proof. First consider the case that R0 and R1 are discs. After a preliminary isotopy
of S4 that fixes γ pointwise, we can assume that R0 and R1 coincide in an annular
neighborhood of their boundaries. Now S4 \ int(N(γ)) = S2 ×D2. Thus R0 and
R1 restrict to properly embedded discs E0 and E1 in S2 × D2 that coincide near
their boundaries.

Arguing as in the proof of Theorem 10.5 we can assume that after an isotopy
of R0, [E0] = [E1] ∈ H2(S

2 ×D2, γ) also holds. This isotopy fixes ∂R0 pointwise
but moves its annular neighborhood. Here are more details. Let α0 denote ∂E0 ⊂
S2×S1. Let A0 be the annulus bounded by α0 and ∂R0. An isotopy of α0 induces
an isotopy of A0 fixing γ pointwise that extends to R0 by isotopy extension. The
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resulting R′
0 has annular boundary coinciding with that of R1 and the class of the

resulting E′
0 in the coset H ⊂ H2(S

2 ×D2, γ) changes according to the number of
times the isotopy of α0 algebraically sweeps across the S2 factor. Here H is as in
the proof of Theorem 10.5.

It follows by Theorem 10.4 that E0 can be isotoped to E1 via an isotopy sup-
ported away from a neighborhood of S2 × S1.

The general case similarly follows using Theorem 9.8. �
Remark 10.10. By induction Marumoto [Ma] proved more generally that two locally
flat PL m-discs in an n-sphere, n > m with the same boundary are topologically
isotopic rel boundary. Here is an outline of his argument for smooth discs in the
n-sphere for the representative case m = 2, n = 4, where we use [Ce1], [Pa] to
avoid his induction steps. Actually, the below argument works in all dimensions
and codimensions since the same is true of [Ce1], [Pa], and the Alexander isotopy.

Start with D0, D1 where D1 is the standard 2-disc in S4 and ∂D0 = ∂D1. Then
by [Ce1], [Pa] there is a diffeomorphism f : S4 → S4 taking D0 to D1 fixing ∂D0.
We can assume that f fixes pointwise a neighborhood of ∂D0. Next remove a
small ball about a point in ∂D0. After restricting and reparametrizing we obtain
a map g : B4 → B4 such that g(E0) = E1 where the Ei’s are the restricted
reparametrized Di’s. Here B4 is the unit ball in R4, ∂E0 is a straight properly
embedded arc connecting antipodal points of ∂B4, and g|∂B4 = id. Finally apply
the Alexander isotopy to obtain a topological isotopy of g to the identity which
fixes ∂E0 pointwise. �

More generally we have the following uniqueness of spanning discs in simply
connected 4-manifolds.

Theorem 10.11. If D0 and D1 are smooth embedded discs in the simply connected
4-manifold M such that ∂D0 = ∂D1 = γ, then there exists a smooth isotopy of M
taking D0 to D1 fixing γ pointwise if and only if the mapped sphere S = D0 ∪γ D1

is inessential in M .

Proof. If D0 and D1 are isotopic, then the isotopy sweeps out a contracting ball for
S. Conversely, after an initial isotopy of D1 we can assume that it coincides with
D0 near γ and that the interior of the mapped 3-ball B defining the contraction
of S intersects γ algebraically zero. Indeed, the second isotopy in the proof of
Theorem 10.9 enables modification of the intersection number. These intersections
can be eliminated using immersed Whitney discs. Next surger γ to obtain the
simply connected manifold N so that D0 and D1 give rise to homotopic spheres
R0 and R1 with common transverse sphere G, that coincide near their intersection
with G. By Theorem 1.2, R0 and R1 are isotopic via an isotopy fixing G pointwise
and hence D0 and D1 are isotopic rel boundary. �
Remark 10.12. In a similar manner, using Theorems 10.1 and 9.7, one can obtain
uniqueness theorems for certain surfaces spanning simple closed curves in closed
4-manifolds with no 2-torsion in their fundamental groups.

One can ask the following parametrized form in the smooth category.

Question 10.13. For i = 1, 2 let fi : Dk → S4 be smooth embeddings such
that f1|∂Dk = f2|∂Dk. Is there a smooth isotopy F : S4 × I → S4 such that
F0 = idS4 , Ft(f1(x)) = f1(x) for x ∈ ∂Dk and t ∈ [0, 1] and for y ∈ Dk, F1(f2(y)) =
f1(y)?
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Remark 10.14. For k ≤ 3 the unparametrized version implies the parametrized one
by [Ce3] for k=3 and [Sm3] for k = 2 with the k = 1 case being elementary. The
point of this question is to link various theorems, conjectures, and questions.

Case k = 1. This is the theorem homotopy implies isotopy for curves in 4-manifolds.

Case k = 2. This is Theorem 10.9.

Case k = 3. This implies the Schoenflies conjecture. Indeed the Schoenflies con-
jecture is equivalent to a positive resolution of the question after allowing lifting of
the fi’s to some finite branched covering of S4 over ∂(fi(D

3)). See [Ga].

Case k = 4. This is the question of connectivity of Diff0(B
4, ∂).

Question 10.15. Does Theorem 10.1 hold without the G-inessential condition?
What if G-inessential is replaced by π1-inessential?

The following are special cases of the longstanding questions of whether a sphere
R in CP2 homologous to CP1 is equivalent up to isotopy or diffeomorphism to the
standard CP1. See problem 4.23 of [Ki].

Questions 10.16. i) If R is a smooth sphere in CP2 that intersects CP1 once is R
isotopically standard?

ii) [Me]. Is (CP2, R) diffeomorphic to (CP2,CP1)?

Remark 10.17. In his unpublished 1977 thesis, Paul Melvin [Me] showed that blow-
ing down CP2 along CP1 transforms R to a 2-knot T in S4 and Gluck twisting S4

along T yields S4 if and only if (CP2, R) is diffeomorphic to (CP2,CP1). He gave a
positive answer to ii) for 0-concordant knots.
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Note added in proof

R. Schneiderman & P. Teichner, Homotopy versus isotopy: spheres with duals in
4-manifolds [ST2] shows that Freedman - Quinn is the obstruction.
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[Ce2] Jean Cerf, Sur les difféomorphismes de la sphère de dimension trois (Γ4 = 0)
(French), Lecture Notes in Mathematics, No. 53, Springer-Verlag, Berlin-New York,
1968. MR0229250

[Ce3] Jean Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et
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(2) 97 (1973), 57–81, DOI 10.2307/1970877. MR314054

[Li] Rick Litherland, A generalization of the lightbulb theorem and PL I-equivalence of links,

Proc. Amer. Math. Soc. 98 (1986), no. 2, 353–358, DOI 10.2307/2045711. MR854046
[Ma] Yoshihiko Marumoto,On higher-dimensional light bulb theorem, Kobe J. Math. 3 (1986),

no. 1, 71–75. MR867805
[Me] Paul Michael Melvin, Blowing up and down in 4-manifolds, ProQuest LLC, Ann Arbor,

MI, 1977. Thesis (Ph.D.)–University of California, Berkeley. MR2627246
[Mi] John Milnor, Lectures on the h-cobordism theorem, Notes by L. Siebenmann and J.

Sondow, Princeton University Press, Princeton, N.J., 1965. MR0190942
[No] R. A. Norman, Dehn’s lemma for certain 4-manifolds, Invent. Math. 7 (1969), 143–147,

DOI 10.1007/BF01389797. MR246309

https://www.ams.org/mathscinet-getitem?mr=3381446
https://www.ams.org/mathscinet-getitem?mr=3355110
https://www.ams.org/mathscinet-getitem?mr=2060067
https://www.ams.org/mathscinet-getitem?mr=140120
https://www.ams.org/mathscinet-getitem?mr=0229250
https://www.ams.org/mathscinet-getitem?mr=292089
https://www.ams.org/mathscinet-getitem?mr=804721
https://www.ams.org/mathscinet-getitem?mr=1201584
https://www.ams.org/mathscinet-getitem?mr=580602
https://www.ams.org/mathscinet-getitem?mr=131877
https://www.ams.org/mathscinet-getitem?mr=543335
https://www.ams.org/mathscinet-getitem?mr=701256
https://www.ams.org/mathscinet-getitem?mr=672939
https://www.ams.org/mathscinet-getitem?mr=520548
https://www.ams.org/mathscinet-getitem?mr=561244
https://www.ams.org/mathscinet-getitem?mr=314054
https://www.ams.org/mathscinet-getitem?mr=854046
https://www.ams.org/mathscinet-getitem?mr=867805
https://www.ams.org/mathscinet-getitem?mr=2627246
https://www.ams.org/mathscinet-getitem?mr=0190942
https://www.ams.org/mathscinet-getitem?mr=246309


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

652 DAVID GABAI

[Pa] Richard S. Palais, Extending diffeomorphisms, Proc. Amer. Math. Soc. 11 (1960), 274–
277, DOI 10.2307/2032968. MR117741

[Qu] Frank Quinn, Isotopy of 4-manifolds, J. Differential Geom. 24 (1986), no. 3, 343–372.
MR868975

[Ro] C. P. Rourke, Embedded handle theory, concordance and isotopy, Topology of Manifolds
(Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 431–
438. MR0279816

[Pe] Bernard Perron, Pseudo-isotopies de plongements en codimension 2 (French), Bull. Soc.
Math. France 103 (1975), no. 3, 289–339. MR394701

[Sc] Martin Scharlemann, Smooth spheres in R4 with four critical points are standard, In-
vent. Math. 79 (1985), no. 1, 125–141, DOI 10.1007/BF01388659. MR774532

[ST] R. Schneiderman and P. Teichner, personal communication.
[ST2] R. Schneiderman and P. Teichner, Homotopy versus isotopy: spheres with duals in 4-

manifolds, preprint, arXiv:1904.12350v3.
[Sch] H. Schwartz, Equivalent non-isotopic spheres in 4-manifolds, to appear in Journal of

Topology, arXiv:1806.07541.
[Sh] R. W. Sharpe, Total absolute curvature and embedded Morse numbers, J. Differential

Geom. 28 (1988), no. 1, 59–92. MR950555
[Sm1] Stephen Smale, A classification of immersions of the two-sphere, Trans. Amer. Math.

Soc. 90 (1958), 281–290, DOI 10.2307/1993205. MR104227
[Sm2] Stephen Smale, The classification of immersions of spheres in Euclidean spaces, Ann.

of Math. (2) 69 (1959), 327–344, DOI 10.2307/1970186. MR105117
[Sm3] Stephen Smale, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc. 10 (1959),

621–626, DOI 10.2307/2033664. MR112149
[Sp] David Spring, The golden age of immersion theory in topology: 1959–1973. A mathe-

matical survey from a historical perspective, Bull. Amer. Math. Soc. (N.S.) 42 (2005),
no. 2, 163–180, DOI 10.1090/S0273-0979-05-01048-7. MR2133309

[Sw] Frank J. Swenton, On a calculus for 2-knots and surfaces in 4-space, J. Knot The-
ory Ramifications 10 (2001), no. 8, 1133–1141, DOI 10.1142/S0218216501001359.
MR1871221

Department of Mathematics, Princeton University, Princeton, New Jersey 08544

Email address: gabai@math.princeton.edu

https://www.ams.org/mathscinet-getitem?mr=117741
https://www.ams.org/mathscinet-getitem?mr=868975
https://www.ams.org/mathscinet-getitem?mr=0279816
https://www.ams.org/mathscinet-getitem?mr=394701
https://www.ams.org/mathscinet-getitem?mr=774532
https://arxiv.org/abs/1904.12350v3
https://arxiv.org/abs/1806.07541
https://www.ams.org/mathscinet-getitem?mr=950555
https://www.ams.org/mathscinet-getitem?mr=104227
https://www.ams.org/mathscinet-getitem?mr=105117
https://www.ams.org/mathscinet-getitem?mr=112149
https://www.ams.org/mathscinet-getitem?mr=2133309
https://www.ams.org/mathscinet-getitem?mr=1871221

	1. Introduction
	2. The 4-dimensional light bulb lemma
	3. The light bulb theorem for 𝑆²×𝑆²
	4. Regular homotopy of embedded spheres in 4-manifolds
	5. Shadowing regular homotopies by tubed surfaces
	6. From double tubes to single tubes
	7. Crossing changes
	8. Proof of Theorems 1.2 and 1.3
	9. Higher genus surfaces
	10. Applications and questions
	Acknowledgments
	Note added in proof
	References

