
THE 4-DIMENSIONAL LIGHT BULB THEOREM

DAVID GABAI

Abstract. For embedded 2-spheres in a 4-manifold sharing the same embedded transverse
sphere homotopy implies isotopy, provided the ambient 4-manifold has no Z2-torsion in the
fundamental group. Among other things, this leads to a generalization of the classical light
bulb trick to 4-dimensions, the uniqueness of spanning discs for simple closed curves in S4

and π0(Diff0(S2 ×D2)/Diff0(B4)) = 1.

1. Introduction

In his seminal work on immersions[Sm1] Steven Smale classified regular homotopy classes
of immersions of 2-spheres into Euclidean space and more generally into orientable smooth
manifolds. In [Sm2] he gave the regular homotopy classification of immersed spheres in Rn

and asked:

Question 1.1. (Smale, P. 329 [Sm2]) Develop an analogous theory for imbeddings. Pre-
sumably this will be quite hard. However, even partial results in this direction would be
interesting.

This paper works in the smooth category and addresses the question of isotopy of spheres in
4-manifolds. In that context Smale’s results [Sm1] show that two embeddings are homotopic
if and only if they are regularly homotopic. Given that 2-spheres can knot in 4-space, isotopy
is a much more restrictive condition than homotopy. Indeed, the author is aware of only one
unconditional positive result and that was proved more than 50 years ago: A 2-sphere in a
4-manifold that bounds a 3-ball is isotopic to a standard inessential 2-sphere, [Ce1], [Pa].

Recall that a transverse sphere G to a surface R in a 4-manifold is a sphere with trivial
normal bundle that intersects R exactly once and transversely. The following is the main
result in this paper.

Theorem 1.2. Let M be an orientable 4-manifold such that π1(M) has no 2-torsion. Two
embedded 2-spheres with common transverse sphere are homotopic if and only if they are
ambiently isotopic via an isotopy that fixes the transverse sphere pointwise.

The generalization to multiple pairs of spheres is given in §10.

Here are some applications.

Theorem 1.3. A properly embedded disc in S2 × D2 is properly isotopic to a fiber if and
only if its boundary is standard.
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Theorem 1.4. Two properly embedded discs D0 and D1 in S2×D2 that coincide near their
standard boundaries are properly isotopic rel boundary if and only if they are homologous in
H2(S

2 ×D2, ∂D0).

Let Diff0(X) denote the group of diffeomorphisms of the compact manifold X that are
properly homotopic to the identity.

Corollary 1.5. π0(Diff0(S
2 ×D2)/Diff0(B

4)) = 1.

Remark 1.6. In words, modulo diffeomorphisms of the 4-ball, homotopy implies isotopy for
diffeomorphisms of S2 ×D2.

The classical light bulb theorem states that a knot in S2 × S1 that intersects a S2 × y
transversely and in exactly one point is isotopic to the standard vertical curve, i.e. a x×S1.
The next result is the 4-dimensional version.

Theorem 1.7. (4D-Lightbulb Theorem) If R is an embedded 2-sphere in S2×S2, homologous
to x0×S2, that intersects S2×y0 transversely and only at the point (x0, y0), then R is isotopic
to x0 × S2 via an isotopy fixing S2 × y0 pointwise.

In 1985, under the above hypotheses, Litherland [Li] proved that there exists a diffeomor-
phism pseudo-isotopic to the identity that takes R to x0 × S2 and proved the full light bulb
theorem for smooth m-spheres in S2 × Sm for m > 2. Another version of the light bulb
theorem was proven in 1986 by Marumoto [Ma]. He showed that two locally flat PL m-discs
in an n-sphere, n > m with the same boundary are topologically isotopic rel boundary. Here
we prove that theorem for discs in S4 in the smooth isotopy category.

Theorem 1.8. (Uniqueness of Spanning Discs) If D0 and D1 are discs in S4 such that
∂D0 = ∂D1 = γ, then there exists an isotopy of S4 taking D0 to D1 that fixes γ pointwise.

Remark 1.9. The analogous result for 1-discs in S4 is well known using general position.
The result for 3-discs in S4 implies the smooth 4D-Schoenflies conjecture.

This paper gives two proofs of the 4D-Light Bulb Theorem. The first proof has two steps.
First we give a direct argument showing that R is isotopic to a vertical sphere, i.e. viewing
S2×S2 as S2×S1× [−∞,∞] where each z×S1×∞ and each z×S1×−∞ is identified with
points, then R is transverse to each S2 × S1 × t and intersects each such space in a single
component. This involves an analogue of the normal form theorem of [KSS] and repeated
use of S2× 0 as a transverse 2-sphere. The second step invokes Hatcher’s [Ha] theorem (the
Smale conjecture) to straighten out these intersections.

The proof of Theorem 1.2, and hence a somewhat different one for S2 × S2 makes use of
Smale’s results on regular homotopy of 2-spheres in 4-manifolds [Sm1]. We show that if R0

is homotopic to R1 and both are embedded surfaces, then the homotopy from R0 to R1 is
shadowed by tubed surfaces, i.e. there is an isotopy taking R0 to something that looks like R1

embroidered with a complicated system of tubes. Through various geometric arguments we
show that these tubes can be reorganized and eventually isotoped away. The proof formally
relies on the first proof of the Light Bulb theorem at the very last step, though we outline
how to eliminate the dependence in Remarks 8.3.

Both arguments make extended use of the 4D-Light Bulb Lemma, which is the direct
analogue of the 3D-version where one can do crossing a change using the transverse sphere.
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More is known in other settings. In the topological category a locally flat 2-sphere in S4 is
topologically equivalent to the trivial 2-knot if and only if its complement has fundamental
group Z [Fr], [FQ]. There are topologically isotopic smooth 2-spheres in 4-manifolds that are
not smoothly isotopic, yet become smoothly isotopic after a stabilization with a single S2×S2

[AKMR], [Ak]. Topologically isotopic smooth 2-spheres in simply connected 4-manifolds are
smoothly pseudo-isotopic by [Kr] and after finitely many stabilizations with S2 × S2’s are
smoothly isotopic by [Qu].

The paper is organized as follows. §2 recalls some classical uses of transverse spheres
and proves the Light Bulb Lemma. The Light Bulb theorem is proven in §3 as well as a
generalization. Basic facts about regular homotopy are recalled in §4. The definition of tubed
surface, basic operations on tubed surfaces and notions of shadowing a homotopy by such
are given in §5. Tubed surfaces may have single and double tubes. In §6 it is shown how to
transform pairs of double tubes into pairs of single tubes such that in the end all but at most
one of the double tubes remains and that one is homotopically inessential. This uses the no
Z2-torsion condition. The reader is cautioned that tubes are used in two contexts here, as
tubes that follow curves lying in the surface and tubes that follow arcs with endpoints in the
surface. The latter are dealt with in §6. A crossing change lemma for the former is proven
in §7 enabling distinct tubes to be disentangled. The proof of Theorem 1.2 is completed in
§8 by showing how to unknot a given tube. An extension to higher genus surfaces is given
in §9. In particular it is shown that a closed surface in S2 × S2 homologous to 0× S2, that
intersects 0×S2 transversely in one point, is standard. Applications and questions are given
in §10.

Acknowledgements 1.10. This work was carried out in part while attending many annual
Dublin topology workshops and during preceding visits to Trinity College, Dublin. We thank
Martin Bridgeman for making this possible. Also, this work was partially carried out while
the author was a member of the Institute for Advanced Study. We thank Bob Edwards for
his many constructive comments and for his interest. We thank Abby Thompson for asking
about higher genus surfaces and Remark 3.3.

2. the 4-dimensional light bulb lemma

Unless said otherwise, all manifolds in this paper are smooth and orientable and immer-
sions are self-transverse.

Definition 2.1. A transverse sphere G to the immersed surface R is a sphere with trivial
normal bundle that intersects R transversely in a single point.

All transverse spheres in this paper are embedded. The following is well known. We give
the proof as a warm up to the light bulb trick.

Lemma 2.2. If R is an immersed surface with embedded transverse sphere G in the 4-
manifold M , then the induced map π1(M \R)→ π1(M) is an isomorphism. If R is a sphere,
then the induced maps π1(M \R∪G)→ π1(M) and π1(M \G)→ π1(M) are isomorphisms.

Proof. Surjectivity is immediate by general position. If γ is a loop in M \ R bounding the
singular disc D ⊂ M , then after a small perturbation we can assume that D is transverse
to R. Tubing off intersections with copies of G shows that the map is also injective. For
the second and third cases, we can assume that D is transverse to R ∪ G. First use R to
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tube off intersections of D with G. This proves injectivity for the third case. (If R does
not have a trivial normal bundle or is not embedded, then the resulting disc may have extra
intersections with R.) Tubing with G eliminates all the D ∩ R intersections and so the
induced map in the second case is also injective. �

Lemma 2.3. (4D-Light Bulb Lemma) Let R be an embedded surface with transverse sphere
G in the 4-manifold M and let z = R ∩G. Let α0 and α1 be two smooth compact arcs that
coincide near their endpoints and bound the pinched embedded disc E that is transverse to
R with R ∩ E = y and E ∩ G = ∅. Let ft be an ambient isotopy of M taking α0 to α1 that
corresponds to sweeping α0 across E. Here ft is fixed near ∂α0 and is supported in a small
neighborhood of E. Suppose that N(α0) is parametrized as B3 × I and R ∩ N(E) = C ∪ B
where C is the disc containing y and B ⊂ int(B3)× I. If y and z lie in the same component
of R \ B, then R is ambiently isotopic to g(R) where g|R \ B = id and g|B = f1|B. The
ambient isotopy fixes G pointwise and the isotopy restricted to R is supported in B.

If G has a non trivial normal bundle with even Euler class, then the conclusion holds
except for the assertion that the ambient isotopy fixes G.

If the Euler class is odd, then under the additional hypothesis that B is a union of unknotted
and unlinked annuli parallel to α0, the above conclusion holds with the additional modification
g(B) = f1(B).

Remarks 2.4. i) After an initial isotopy of R supported near N(α0) we can assume that it
is of the form L× I where L is a link in int(B3)× 0. In applications in this paper, L is the
unlink.

ii) The hypothesis does not hold if B separates y from z in R.
iii) In the Euler class odd case, under the original hypothesis, our argument will conclude

that g|N(α0) is the composition of the standard isotopy taking N(α0) to N(α1) followed by
the non trivial element of SO(3) along N(α1).

Proof. Since y lies in the same component of z we can tube off E with a copy of G to obtain
a disc D that coincides with E near ∂E and (D \E)∩ (R∪G) = ∅ and D ∩C = ∅. Since G
has a trivial normal bundle, there exists a framing of the normal bundle of D that coincides
with that of E near ∂E. See Figure 2.1. Therefore, we can isotope B to f1(B) by sweeping
across D rather than E.

When G has a nontrivial normal bundle with Euler class n, then |D ∩G| = n and so the
ambient isotopy taking N(α0) to N(α1) does not fix G. This isotopy is the composition of
the standard one followed by n full twists along N(α1). Since π1(SO(3)) = Z2, the twisting
can be isotopically undone when n is even. When n is odd the twisting can be isotoped to
a single full twist. If the tubes in B are unknotted and unlinked, then they can be isotoped
so that g(B) = f1(B) where g differs from f1 by a Dehn twist along each of the tubes. �

Remark 2.5. The ambient isotopy is supported in a neighborhood of D.

3. Proof of the light bulb theorem for S2 × S2

Definition 3.1. A light bulb in S2 × S2 is a smooth 2-sphere transverse to a S2 × y0 and
intersects S2 × y0 in a single point. View S2 × S2 as a quotient of S2 × (S1 × [−∞,∞])
where each x×S1×−∞ and x×S1×∞ are identified with points and y0 is identified with
(z0, 0) ∈ S1 × [−∞,∞]. We say that the light bulb R is vertical if it is transverse to each
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S2× S1× u, for u ∈ [−∞×∞]. Let Gstd denote the sphere S2× z0× 0 and Rstd denote the
sphere x0 × S1 × [−∞,∞] ⊂ S2 × S2.

To prove the light bulb theorem it suffices to assume that R and Rstd coincide in some
neighborhood U of (x0, z0, 0).

Step 1. The light bulbR is isotopic to a vertical light bulb by an isotopy fixing a neighborhood
of Gstd pointwise.

Step 1A. We can assume that R coincides with Rstd within S2× (z0− ε, z0 + ε)× [−∞,∞]∪
(S2 × S1 × [−∞, 10)) ∪ (S2 × S1 × (10,∞].

Proof. This follows from the fact that R intersects a neighborhood of S2 × y0 × 0 as does
Rstd and a small regular neighborhood of Gstd is naturally ambiently isotopic to S2 × (z0 −
ε, z0 + ε)× [−∞,∞] ∪ (S2 × S1 × [−∞, 10)) ∪ S2 × S1 × (10,∞]). �

From now on we will take U to be the neighborhood of (S2, z0, 0) given in the statement
of Step 1A. Note that U is the complement of S2 × [z0 + ε, z0 − ε] × [−10, 10], where S1 =
[z0 + ε, z0 − ε] ∪ (z0 − ε, z0 + ε).

Step 1B. Via an isotopy fixing R∩U , R can be isotoped to be transverse to each S2×S1×u
except for u = −9,−6, 6, 9. As u increases, p local minimal (with respect to u) appear at
u = −9, p saddles appear at u = −6, R∩S2×S1× u is connected for u ∈ (−6, 6), q saddles
appear when u = 6 and q local maxima appear when u = 9.

Proof. This is essentially the normal form of [KSS]. Here is a brief outline. In the usual
manner R can be isotoped so that it is transverse to each S2×S1×u except for u = −9, 0, 9
where local minimal, saddles, local maxima respectively appear. Up to smoothing of corners,
the local minimal (resp. maxima) correspond to the appearance of discs and the saddles
correspond to the appearance of bands. After further isotopy we can assume that the bands
are disjoint from each other, so for δ small, R∩S2×S1× δ is the result of doing band sums
to R ∩ S2 × S1 ×−δ.

If p (resp. q) is the number of local minima (resp. maxima), then since χ(R) = 2 the total
number of saddles is p + q. Since R is connected there exist p bands such that the result
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of only doing band sums along these bands yields a connected curve. Push these bands to
S2 × S1 ×−6 and push the remaining bands to level to S2 × S1 × 6. �

In what follows we let Cu denote the core curve i.e. the component of R ∩ S2 × S1 × u
which is transverse to S2 × z0 × u. We abuse terminology by calling a core curve such a
curve C without specifying u. After a further isotopy we can assume that all the bands at
u = −6 have one end that attaches to the core curve.

In summary, up to smoothing corners, we can assume that R∩S2×S1× [−10,−5] appears
as follows. For u ∈ [−10,−9), R ∩ S2 × S1 × u is the standard core curve x0 × S1 × u. At
u = −9, discs D1, · · · , Dp appear. Let c1, · · · , cp denote their boundary curves. The surface
R ∩ S2 × S1 × (−9,−6) is the product (C ∪ c1 ∪ · · · ∪ cp)× (−9,−6). Here we again abuse
notation by denoting a ci without specifying its u level. At u = −6, p bands b1, · · · , bp appear
where bi connects C and ci. Again R∩S2×S1× (−6,−5] is a product where each u section
is parallel to R ∩ S2 × S1 ×−6 with the relative interiors of the bands removed.

By a vertical isotopy push the bands b2, · · · , bp up to level −5 and the disc D1 to level
−8. Let π : S2× S1× [−∞,∞]→ S2× S1 be the projection. To complete the proof of Step
1 we will show that after isotopy π(b1) ∩ π(D1) ⊂ π(∂D1). It follows that b1 can be pushed
to level −8 its critical point can be cancelled with the one corresponding to D1. Step 1 then
follows by induction and the usual turing upside down argument to cancel the saddles at
u = 6 with the maxima at u = 9.

Step 1C. There exist pairwise disjoint discs E1, · · · , Ep ⊂ S2 × S1 × −6 spanning c1, · · · cp
such that for all i, π(int(Ei)) ∩ π(b1) = ∅ and Ei ∩ C ∪ U = ∅.

Proof. To start with, for i = 1, · · · , p, let Ei = Di. A given Ei projects to one intersecting
π(b1) in finitely many interior arcs. View b1 as a band starting at c1 and sequentially hitting
the various Ei’s before attaching to C. Again we abuse notation by suppressing the fact that
we should be talking about projections. Starting at the last intersection of b1 with an Ei,
sequentially isotope the Ei’s to remove arcs of intersection at the cost of creating two points
of intersection of an Ei with C. Next by following C but avoiding the arc b1 ∩ C tube off
these intersections with parallel copies of S2× z0 to obtain the desired set of discs which we
still call E1, · · ·Ep. See Figure 3.1 �

Remark 3.2. For the purposes of visualization one can ambiantly isotopeR via level preserv-
ing isotopy supported in S2×S1× [−9.5,−5.5] so that the discs Ei become small and round
and b1 becomes a straight band connecting C and c1, which is disjoint from the interior of the
Ei’s. Furthermore, up to rounding corners, (possibly complicated) discs D2, · · · , Dp appear
at level -9, D1 appears at level -8 and vertical annuli c1 × [−8,−6], c2 × [−9,−6], · · · , cp ×
[−9,−6] emanate from the ∂Di’s. At level -6 R appears as in the first sentence.

Step 1D. We can assume that π(D1) ∩ π(Ei) = ∅ for i > 1.

Proof. Let π−8 denote the projection of S2 × S1 × −6 to S2 × S1 × −8 fixing the first two
factors. By construction ∂D1 = c1 and D1 is disjoint from C ∪ U as well as the ci’s for
i > 1. Assuming that D1 is transverse to the π−8(intEi)’s, i = 1, · · · , p, it follows that for all
i, D1 ∩ π−8(int(Ei)) is a union of pairwise disjoint circles. Starting at the innermost ones in
the various π−8(Ei)’s, compressD1 to obtain the 2-spheres S1, · · · , Sk and a single disc E with
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∂E = c1. After possibly sliding tubes that connect distinct Si’s, it follows that D1 is isotopic,
in S2×S1×−8 \ (C ∪U), to the surface obtained by starting with the disc E and tubing it
to the spheres S1, · · · , Sk. By construction π(E ∪ S1 ∪ · · · ∪ Sk) ∩ π(E1 ∪ · · · ∪ Ep) = π(c1),
(D1 ∪ E ∪ S1 ∪ · · · ∪ Sk) ∩ (C ∪ U) = ∅ and E and the Si’s are pairwise disjoint.

Using the fact that R \ D1 is connected and intersects Gstd transversely once it follows
from the Light Bulb Lemma 2.3 that D1 is isotopic to the surface obtained by homotoping
the tubes that intersect the various π−8(Ei)’s, straight off of these projections when i > 1.
See Figure 3.2. �

To summarize the situation at the moment: At level -9 discs D2, · · · , Dp appear, at level -8
disc D1 appears, vertical annuli c1× [−8,−6], c2× [−9,−6], · · · , cp× [−9,−6] emanate from
the ∂Di’s, a band connects the core to c1×−6 and by Step 1D, for i > 1, π(Ei)∩π(D1) = ∅

We can therefore isotope D2, · · · , Dp so that c2, · · · , cp are far away from D1, E1 and b1.
This means that π(c2), · · · , π(cp) lie in a 3-ball B ⊂ S2×S1 that intersects C in a connected
unknotted arc and B is disjoint from π(D1), π(E1) and π(b1).

Step 1E. Cancel the critical points corresponding to D1 and b1 without introducing new ones,
thereby completing Step 1.

Proof. Note that (S2×S1×−6)\(C∪B∪S2×z0×−6) is diffeomorpic to R3. Therefore, the
discs π(D1) and π(E1) are isotopic rel c1 via an isotopy disjoint from π(C∪B)∪(S2×z0) since
spanning discs for the unknot in R3 are unique up to isotopy. After the corresponding isotopy
of D1, supported in S2 × S1 ×−8 it follows from Remark 3.2 that π(b1) ∩ π(D1) ⊂ π(∂D1).
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i > 1

Therefore, b1 can be pushed down to level −8, hence the critical points corresponding to b1
and D1 can be cancelled. �.

Remark 3.3. Abby Thompson pointed out that the above arguments work for higher genus
surfaces to eliminate critical points of index 0 and 2. So if genus(R) = g, then R can be
isotoped so that 2g bands appear at u = −6 and there are no other critical levels.

From the point of view of S2 ×−6 these bands can be twisted and linked. See §9.

Step 2. A vertical light bulb R homologous to Rstd that agrees with Rstd near Gstd is isotopic
to Rstd via an isotopy fixing a neighborhood of Gstd pointwise.

Remarks 3.4. 1) It is easy to construct a vertical lightbulb homologous to [Rstd] + n[S2 ×
z0× 0] by first starting with Rstd, removing a neighborhood of (x0, z1, 0) and replacing it by
one that sweeps across S2 × z1 n times while u ∈ (−ε, ε) where z1 6= z0.

Proof The proof of Step 1 shows that we can assume that R coincides with Rstd away from
S2×S1×[−10, 10] further it is coincides with Rstd near S2×z0×[−∞,∞]. Thus R is standard
outside a submanifold W of the form S2 × [0, 1] × [−10, 10] and within W corresponds to
a smooth path of embedded smooth paths ρt : D1 → S2 × I for t ∈ [−10, 10], where
ρ−10(D

1) = ρ10(D
1) = (x0, z0, I) and ρt is fixed near the endpoints of D1. By identifying

D1 with (x0, z0, I) we can assume that ρ−10 = ρ10 = id. Note that Rstd corresponds to the
identity path.

By the covering isotopy theorem, ρt, extends to a path φt ∈ Diff(S2× I, rel(∂S2× I)) with
φ0 = id. We first show that such a path can be chosen so that φ10 = id. By uniqueness of
regular neighborhoods we can first assume that restricted to some D2 neighborhood of x0,
in polar coordinates, ρ10(r, θ, s) = (r, θ + h(s)2π, s) for some h : [0, 1] → R with h(0) = 0.
Since [R] = [Rstd] ∈ H2(S

2 × S2) it follows that h(1) = 0 and hence after further isotopy,
that ρ10|D2 × I = id. Since S2 × I \ (int(D2) × I) = B3, we can assume that ρ10 = id, by
[Ce2] or [Ha].

Thus ρt is a closed loop in Diff(S2×I, rel(∂S2×I)) which by Hatcher [Ha] is homotopically
trivial since π1(Ω(O(3)) = π2(O(3)) = π2(R(P 3)) = 0. Here we are using formulation (8)
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(see the appendix of [Ha]) of Hatcher’s theorem which asserts that Diff(D1 × S2 rel ∂) is
homotopy equivalent to Ω(O(3)). Restricting this homotopy to ρt gives the desired isotopy
of ρt to id. �

Conjecture 3.5. The space of light bulbs is not simply connected.

We now extend Theorem 1.7 to multi-light bulbs in #kS
2 × S2

Definition 3.6. Let Wk denote #kS
2 × S2and let (S2 × S2)i denote the i’th summand.

Within (S2 × S2)i, let Gstd
i (resp. Rstd

i ) denote S2 × y0 (resp. x0 × S2). Define a multi-light
bulb R = {R1, · · · , Rk} to be a set of 2-spheres in Yk such that |Ri ∩ Gstd

j | = δij where the
intersections are transverse.

Theorem 3.7. If R = {R1, · · · , Rk} is a multi-light bulb in Wk = #kS
2 × S2 such that for

each i, [Ri] = [Rstd
i ] ∈ H2(#kS

2 × S2), then R is isotopic to {Rstd
1 , · · · , Rstd

k } via an isotopy
fixing Gstd

1 ∪ · · · ∪Gstd
k pointwise.

Proof. Let Gstd = Gstd
1 ∪ · · · ∪Gstd

k and Rstd = Rstd
1 ∪ · · · ∪Rstd

k . We will show that R1 can be
simultaneously isotoped off of each Rstd

j , j > 1 via an isotopy fixing Gstd. If so, then since

(S2× S2)i \Rstd
i ∪Gstd

i = R4, it follows that R1 can be isotoped into (S2× S2)1 again by an
isotopy fixing Gstd. Next apply Theorem 1.7 to isotope R1 to Rstd

1 . Note that this theorem
applies since the S3 which splits off (S2×S2)1 can readily be avoided. By isotopy extension,
this isotopy can be done ambiently. Finally, isotope R\Rstd

1 out of (S2×S2)1 via an isotopy
fixing Rstd

1 ∪ Gstd pointwise. The result then follows by induction on k.
Observe that Z = Wk \ Gstd ∪ R1 ∪ Rstd

2 ∪ · · · ∪ Rstd
k is simply connected. Indeed if γ ⊂

is a closed curve in Z, then since Wk \ Gstd ∪ Rstd
2 ∪ · · · ∪ Rstd

k is simply connected, γ = ∂E
where E is an immersed disc with γ ⊂ Z ∩ R1. Since Gstd

1 is a transverse sphere to R1 we
can also assume that E ∩R1 = ∅.

We now show that R1 can be isotoped off of the Rstd
j ’s, j > 0. Since [R1] = [Rstd

1 ], R1

intersects each Rstd
i algebraically zero times. Suppose R1 ∩ Rsj 6= ∅. In the usual manner

e.g. see [FQ] or [E] we can find a Whitney disc w between them such that int(w) ⊂ Z.
Note that any excess intersections of w with Rstd

j created in the process of fixing the framing

or desingularizing w can be eliminated by tubing with parallel copies of Gstd
j . Use w to

eliminate a pair of intersections between R1 and Rstd
j . Thus all the intersections between R1

and the Rstd
j ’s can be eliminated using Whitney discs. �

4. Regular homotopy of embedded spheres in 4-manifolds

The main result of this section is essentially Theorem D of [Sm1].

Theorem 4.1. (Smale (1957)) Two smooth embedded spheres in an orientable 4-manifold
are regularly homotopic if and only if they are homotopic.

Definition 4.2. Let S be a smooth immersed self transverse surface in the smooth 4-manifold
Z. A finger move is the operation of regularly homotoping a disc in S along an embedded arc
to create a pair of new transverse self intersections. A Whitney move is a regular homotopy
supported in a neighborhood of a Whitney disc to eliminate a pair of self intersections. By
an isotopy of S we mean a regular homotopy through self transverse surfaces. In particular,
no new self intersections are either created or cancelled.
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The next well-known proposition follows by considering a generic regular homotopy and
the usual ordering by index argument.

Proposition 4.3. Let A and B be smooth embedded surfaces in the smooth 4-manifold Z. If
A is regularly homotopic to B, then up to isotopy, the regular homotopy can be expressed as
the composition of finitely many finger moves followed by finitely many Whitney moves. �

Remarks 4.4. i) Upon reversing the points of view of B and A the Whitney moves become
finger moves and vice versa.

ii) If π1(Z) = 1, then any two finger paths are homotopic and hence isotopic.

Corollary 4.5. If A and B are regularly homotopic smooth embedded surfaces in the smooth
4-manifold Z, then there exists an immersed self transverse surface C and systems F of finger
discs and W of Whitney discs so that Whitney moves applied to the finger (resp. Whitney)
discs transforms C to A (resp. B).

5. Shadowing regular homotopies by tubed surfaces

In this section we show that if f0 : A0 → M is an embedding of a smooth surface with
embedded transverse sphere G into a smooth 4-manifold and ft : A0 →M is a generic regular
homotopy supported away from G, then ft can be shadowed by a tubed surface. Roughly
speaking there is a smooth isotopy gt with g0(A0) = f0(A0) such that for t > 0, gt(A0) is
approximately ft(A0) with tubes connecting to copies of G.

This section is motivated by the following lemma. While we have yet to define terms used
in its statement the proof should make clear what they mean. The formal definitions of
shadowed and tubed surface are given after the proof and comprise much of this long section.

Lemma 5.1. Let R be a connected embedded smooth surface in the smooth 4-manifold M .
If R has an embedded transverse sphere G, then a finger move on R disjoint from G can be
shadowed by tubed surfaces disjoint from G.

Proof. Let z = R ∩ G, x, y ∈ R \ G and κ a path from y to x with int(κ) ∩ (R ∪ G) = ∅.
The finger move associated to κ can be shadowed as follows. Let σ ⊂ R \ y be an embedded
path from x to z. Let D be a small disc transverse to R with D ∩R = x. Let T be the disc
disjoint from R which is the union of a tube which starts at ∂D and follows along σ and
then attaches to a parallel copy of G \ int(N(z)) disjoint from G. Let T × I be a product
neighborhood. The shadow isotopy starts off with the finger approaching x, but instead of
crashing through and creating the immersed surface R1, it isotopes through T ×I to become
the surface R2 which is R1 with neighborhoods of two points replaced by T × 0 and T × 1
as in Figure 5.1. �

Definition 5.2. A framed embedded path is a smooth embedded path τ(t), t ∈ [0, 1] in the 4-
manifold M with a framing F(t) = (v1(t), v2(t), v3(t)) of its normal bundle. Let (C(0), x(0))
consist of a smooth embedded circle C(0) with base point x(0) lying in the normal disc to τ
through τ(0) that is spanned by the vectors (v1(0), v2(0)) with x(0) lying in direction v1(0).
Define (C(t), x(t)) a smoothly varying family having similar properties for each t ∈ [0, 1].
Call the annulus (C(t), x(t)), t ∈ [0, 1] the cylinder connecting C(0) and C(1). It should be
thought of as lying very close to τ .
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Definition 5.3. A tubed surface A in the 4-manifold M consists of
i) a self transverse immersion f : A0 → M , where A0 is a closed surface based at z0 with

A1 denoting f(A0). The preimages (x1, y1), · · · , (xn, yn) of the double points are pairwise
ordered. A0 is called the underlying surface and A1 the associated surface to A.

ii) An embedded transverse 2-sphere G to A1, with A1 ∩G = z = f(z0).
iii) For each i, an immersed path σi ⊂ A0 from xi to z0.
iv) immersed paths α1, · · · , αr in A0 with both endpoints at z0 and for each i, pairs of

points (pi, qi) with pi ∈ αi and qi ∈ A0 and a framed embedded path τi ⊂ M from f(pi) to
f(qi) with int(τi) ∩ (G ∪ A1) = ∅.

v) pairs of immersed paths (β1, γ1), · · · , (βs, γs) in A0 where βi goes from z0 to bi and γi goes
from gi to z0 and framed embedded paths λi ⊂M from f(bi) to f(gi) with int(λi)∩(G∪A1) =
∅.
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Curves of the form σi, αj, βk, γl are called tube guide curves and the τp and λq curves
are called framed tube guide curves. All such curves are required to be self transverse and
transverse to each other with interiors disjoint from the z0, xi, qj, bk, gl points and disjoint
from the pj points except where required in iv). At points of intersection and self intersection
of these curves, except z0, one curve is determined to be above or below the other curve. The
various points z0, xi, yj, pk, ql, bm, gn are all distinct.

The curves τi and λj are pairwise disjoint, disjoint from G and intersect A1 only at their
endpoints. There are conditions on the framings of these curves that will be given in Defi-
nition 5.4. This ends the definition of tubed surface.

Conditions i) - iii) are what’s needed to create a tubed surface arising from a finger move
as in Lemma 5.1, though in that case σ is embedded. Tubed surfaces will undergo various
operations in the course of shadowing a regular homotopy. Conditions iv) and v) are needed
to describe tubed surfaces arising from Whitney moves. Crossings of tube guide curves may
occur in preparation for Whitney moves and in the process of transforming pairs of double
tubes to pairs of single tubes in §6.

We now show how a tubed surface gives rise to an embedded surface.

Definition 5.4. Associated to the tubed surface A construct an embedded surface A, called
the realization of A as follows. For each i, remove from A1 a small D2 neighborhood of yi.
Attach to f(∂D2) a disc consisting of a tube ti that follows f(σi) and connects to a slightly
pushed off copy of G \ int(N(z)). See Figure 5.2. If u ∈ σi ∩ σj, u 6= z0, and σi lies above σj
at u, then near f(u), construct tj to lie closer to A1 than does ti. With abuse of notation,

this allows for the case i = j. See Figure 5.3. Let Â be the embedded surface thus far
constructed.

In similar manner associated to the path αi is a 2-sphere Pi with Pi ∩ A1 = ∅, consisting
of two pushed off copies of G \ int(N(z)) tubed together along the path f(αi). Next attach
a tube T (τi) following the framed embedded path τi from C(0) = Pi ∩ ∂N(τi) to C(1) =

Â∩ ∂N(f(qi)). Here we assume that τi approaches f(pi) normally to Â and is parametrized
by [−1/4, 1] and framed so that restricting to [0, 1], C(0) (resp. C(1)) is in the plane
spanned by v1(0) and v2(0) (resp. v1(1) and v2(1)) as in Definition 5.2. This assumption is
the condition on the framing on τi that is required but not explicitly stated at the end of
Definition 5.3. The tube T (τi) is called a single tube. See Figure 5.4. Let Â′ the embedded
surface constructed at this stage.

Next for each i, construct discs D(βi) and D(γi) consisting of pushed off copies of G \
int(N(z)) tubed very close to and respectively along f(βi) and f(γi) with boundary lying

in discs normal to Â′ at f(bi) and f(gi). Roughly speaking the rest of the construction of

A from Â′ proceeds as follows. Appropriately sized 4-balls N(f(bi)) and N(f(gi)) have the

property that ∂N(f(bi)))∩(Â′∪D(βi)) and ∂N(f(gi))∩(Â′∪D(γi)) are Hopf links. Connect

these links by tubes that parallel λi using the normal framing. Here ∂N(f(gi)) ∩ Â′ (resp.

∂N(f(bi)) ∩ Â′) connects to ∂N(f(bi)) ∩D(βi) (resp. ∂N(f(gi)) ∩D(γi)). See Figure 5.5.
More precisely, delete int(N(f(bi))) from D(βi) and continue to call D(βi) the disc that

remains. Next remove int(1/2N(f(bi))) from Â′ and let C(0) = ∂((1/2N(f(bi)))∩ Â′). Also

remove int(N(f(gi))) from Â′ and int(1/2N(f(gi))) from D(γi) and call D(γi) what remains
with C(1) = ∂D(γi). Suppressing the epsilonics, 1/2N(f(gi)) and 1/2N(f(bi)) are half
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radius 4-balls about f(bi) and f(gi) and with respect to that scale, the tubes of D(βi) and
D(γi) are very close to f(βi) and f(γi). See Figure 5.5 b).

We assume that λi approaches Â′ in geodesic arcs near f(gi) and f(bi), and in the two

3-planes spanned by these arcs and Â′, it approaches Â′ at angle π/3 and has angle 2π/3
to f(γi) and to f(βi). We assume that λi is parametrized by [0, 1] and framed so that C(0)
is in the plane spanned by v1(0) and v2(0) as in Definition 5.2. Also x(0) = C(0) ∩ βi and
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f(g  )i f(g  )i
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Figure 5.5

Connect these tubes

Then connect those tubes

v1(0) points towards x(0). Let C(1) = ∂D(γi) with x(1) the point indicated in Figure 5.5
b) and assume that C(1) lies in the plane spanned by v1(1) and v2(1) with x(1) lying in the
arc spanned by v1(1).

As in Definition 5.2 use λi to build a tube connecting C(0) and C(1). Using a tube about

the path x(t), t ∈ [0, 1] connect ∂D(βi) to ∂N(gi) ∩ Â′ as in Figure 5.5 c) to complete the
construction of the realization A of A.

We now describe operations on a tubed surface A that correspond to isotopies of the
realizations.

Definition 5.5. We enumerate tube sliding moves on a tubed surface A corresponding
to redefining the location and crossing information of tube guide curves in the underlying
surface A0.

i) Type 2), 3) Reidemeister moves. See Figure 5.6 a).
ii) Reordering near z. See Figure 5.6 b).
iii) Sliding across a double point. See Figure 5.6 c). There are two cases depending on

whether or not the tube guide κ lies in the sheet through yi or the sheet through xi. In the
former case we require that κ 6= σi.

iv) Sliding across a double tube. See Figure 5.6 d).
v) Sliding across a single tube. Here a tube guide curve κ 6= αi can slide across qi and

over pi. Any tube guide curve can slide under pi. See Figure 5.6 e).

Remark 5.6. Sliding σi across yi is analogous to a handle sliding over itself. Similarly for
sliding βi (resp. γi, resp. αi) across gi (resp. bi, resp. qi).

Lemma 5.7. If A and A′ are tubed surfaces that differ by tube sliding, then their realizations
A and A′ are isotopic.
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Proof. We consider the effect on the realization of A by the various tube sliding moves.
The under/over crossing data in A0 reflects how close one tube is to A1 compared with the
another. As the Reidemeister 2), 3) moves respect this closeness it follows that they induce
an isotopy from A to A′.
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Next we consider reordering near z0. Since G has a trivial normal bundle, there is an S1

worth of directions that it can push off itself. These directions correspond to the directions
that the image of tube guide curve f(κ) ⊂ A1 can approach z. We can assume that the
various perturbed copies of G \ int(N(z)) are equidistant from G at angle that of the angle
of approach of the various f(κ)’s. Let D ⊂ A1 denote a disc which is a small neighborhood
of the bigon that defines the reordering. Let Ki denote the disc consisting of a perturbed
copy Gi of G \ int(N(z)) together with its tube that follows the arc f(κi)∩D. If κj is above
κk as in Figure 5.6 b) and K ′j and K ′k are the discs resulting from the reordering, then there
is an isotopy of A to A′ supported on Kk where Gk is first pushed radially close to G, then
rotated to the angle defined by f(κ′k) and then pushed out.

Next, consider sliding across a double point (f(xi), f(yi)). The corresponding isotopy
involves sliding a tube across an embedded disc D. This is a local operation if κ lies in the
sheet containing xi as in Figure 5.6 c). If the sheet contains yi, then the disc D consists of
copy of G\ int(N(z)) tubed along f(σi). If κ 6= σi, then the tube about f(κ) is disjoint from
D. It follows that A and A′ are isotopic.

Sliding across a double tube follows similarly. E.g. sliding κ across bi involves sliding the
tube about f(κ) across the disc D consisting of a copy of G \ int(N(z)) that connects to a
tube that first follows f(γi) and then λi. This can be done if κ 6= γi.

The same argument shows that a tube guide κ can slide across qi provided κ 6= αi. Sliding
under pi is a local operation. Sliding over pi requires the light bulb trick to disentangle λi
from κ which in turn requires that κ 6= αi. �

We now define operations on tubed surfaces corresponding to finger and Whitney moves.

Definition 5.8. Let A1 be the associated surface to the tubed surface A. To a generic
finger move from A1 to A′1 with corresponding regular homotopy of f to f ′ we obtain a new
tubed surface A′ said to be obtained from A by a finger move. By generic we mean that
the support of the homotopy is away from all the framed tube guide curves and images of
tube guide curves of A. A′ will have the same underlying surface A0 as A and A′1 will be its
associated surface. Let (x1, y1) and (x2, y2) be the new pairs of f ′ preimages of double points
in A0, where both x1 and x2 lie in the same local sheet of A′1. Let σ1 and σ2 be parallel
embedded paths from x1 and x2 to z0 transverse to the existing tube guide paths. The tube
guide locus of A′ to be that of A together with σ1 and σ2 where all crossings of these σi’s
with existing tube guide curves are under crossings. See Figure 5.7.

Remark 5.9. There is flexibility in the construction of A′ from A in the choice of which
pair of points are called xi points and in the choice of the σi paths.

Lemma 5.10. If A′ is obtained from A by a finger move, then their associated realizations
are isotopic.

Proof. This lemma is a restatement of Lemma 5.1. The proof is the same after recognizing
that if we identify A with the surface R in that proof, then A′ is isotopic to the surface
R2. �

Definition 5.11. Let A1 be the associated surface to the tubed surface A. A Whitney move
from A1 to A′1 corresponding to the regular homotopy of f to f ′ with Whitney disc w is said
to be clean if int(w) is disjoint from the framed tube guide curves of A and ∂w intersects
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the images of tube guide curves of A only at double points of A1. Let (x1, y1), (x2, y2) denote
the pairs of points in A0 corresponding to these double points with notation consistent with
that of Definition 5.3. We say that the Whitney move is uncrossed if both f(x1) and f(x2)
lie in the same local sheet of A1 and crossed otherwise. If w is an uncrossed Whitney disc,
then we obtain the tubed surface A′ as indicated in Figure 5.8 and if w is crossed, then A′
is obtained as in Figure 5.9. Accordingly A′ is said to be obtained from A by an uncrossed
or crossed Whitney move.

Remark 5.12. An uncrossed Whitney moves gives to a single tube while a crossed Whitney
move gives rise to a double tube. In the former case two σ curves become an α curve. In
the latter case, the σ curves become β and γ curves.

Lemma 5.13. If A′ is obtained from A by a clean Whitney move, then its realization is
isotopic to that of A. �

Definition 5.14. We define an elementary tubed surface isotopy, or elementary isotopy for
short, on the tubed surface A as any of the following operations on A.

a) The defining data changes smoothly without combinatorial change. In particular, at
no time are there new tangencies or new intersections among the various objects.

b) tube sliding moves.
c) finger moves
d) clean Whitney moves

Lemma 5.15. If A and A′ are tubed surfaces that differ by an elementary isotopy, then
their realizations are isotopic. �

Definition 5.16. Let R0 be an immersed surface in the smooth 4-manifold M with em-
bedded transverse sphere G. Let ft : R → M4 be a generic regular homotopy supported
away from G which is an immersion except at times {ti} where 0 < t1 < · · · < tm < 1. Let
R0 = f0(R), R1, · · · , Rm = f1(R) be such that for i = 1, · · · ,m − 1, Ri is a surface fs(R)
for some s ∈ (ti, ti+1). We say that the regular homotopy ft is shadowed by tubed surfaces
if there exists a sequence R0,R1, · · · ,Rm of tubed surfaces such that for all i, Ri is the
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associated surface to Ri and for i 6= m, Ri+1 is obtained from Ri by elementary isotopies.
The tubed surfaces R0,R1, · · · ,Rm are called ft-shadow tubed surfaces.
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Theorem 5.17. If ft : A0 →M is a generic regular homotopy with f0(A0) an embedded sur-
face, M a smooth 4-manifold, G a transverse embedded sphere to f0(A0) and ft is supported
away from G, then ft is shadowed by tubed surfaces.

Proof. Let 0 < t1 < · · · < tm < 1 be the singular times of ft. If there are no singular times
in [s, s′] and a tubed surface As has been constructed whose associated surface As1 = fs(A0),
then an elementary isotopy of type a) transforms it to one with As

′
1 = fs′(A0). Thus we need

only show how to shadow regular homotopies near singular times. Now each singular time
corresponds to either a finger or Whitney move. Since f0(A0) is embedded, t1 is the time of
a finger move. The shadowing of the initial finger move is given in the proof of Lemma 5.10.
More generally, that lemma shows how to shadow any generic finger move. By induction we
assume that the conclusion holds through time t, where tk−1 < t < tk and tk is the time of
a Whitney move.

Let Ak denote the tubed surface with underlying surface Ak1 = ft(A0). By Lemma 5.15 we
can assume that t is a time just before the Whitney move. Let w be a Whitney disc for the
Whitney move. Being 2-dimensional we can assume that w is disjoint from the framed tube
guide curves to Ak. Suppose that w cancels the ft images of the points {u, v, u′, v′} ⊂ A0,
where A0 is the underlying surface to Ak and ft(u) = ft(v) and ft(u

′) = ft(v
′). Here u and

u′ (resp. v and v′) are the endpoints of disjoint arcs φ and φ′ in A0 which map to ∂w under
ft and (u, v) = (xi, yi) and (u′, v′) = (xj, yj), notation as in Definition 5.3. By switching φ
and φ′ and/or i and j if necessary, we can assume that the first equality is that of an ordered
pair and the second is setwise.

Next we show that after tube sliding moves w becomes a clean Whitney disc, i.e. no tube
guide curve crosses intφ or intφ′. Now xi ∈ ∂φ, so all the tube guide crossings with int(φ)
can be eliminated by sliding across the double point xi. If xj ∈ ∂φ′, then we can clear int(φ′)
of tube guide curves in a similar manner. If ∂φ′ = (yi, yj) and the tube guide κ crosses
int(φ′) we clear it from φ′ as follows. Since i 6= j, it follows that κ 6= σk for some k ∈ {i, j}.
Apply a sequence Reidemeister 2 moves supported in a small neighborhood of φ′ to make κ
adjacent to yk and then slide it across the double point yk.

Since w is now a clean Whitney disc we can shadow the Whitney move by an uncrossed
(if u′ = xj) or crossed (if u′ = yj) Whitney move. Thus Ak+1 is obtained from Ak by a
sequence of tube sliding moves and a clean Whitney move. �

Remarks 5.18. i) If the regular homotopy ft is of the form finger moves followed by Whitney
moves, then the tubed surface following the finger moves can be chosen so that the curves
σi are embedded and pairwise disjoint away from z0.

ii) If f1(A0) is embedded, then the final tubed surface has no σi curves.
iii) There is no restriction on the surface A0. In the next section we require that A0 be a

2-sphere.

6. From double tubes to single tubes

In what follows A is a tubed surface in M with realization A whose underlying surface A1

is an embedded 2-sphere. The goal of the next three sections is to show that if in addition
π1(M) has no 2-torsion and A1 is homotopic to A, then A1 is isotopic to A.
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In this section we show that A can be transformed to A′ with isotopic realizations without
changing A1 so that A′ has at most one double tube, which is homotopically inessential. This
is done by appropriately replacing pairs of double tubes with pairs of single tubes.

Definition 6.1. Let A be a tubed surface with realization A. Let κ denote one of σi, βj or γk
and y the corresponding xi, bj or gk. If we compress the tube in A that follows f(κ) near f(y)
we obtain an immersed surface, one component of which is an embedded 2-sphere T = T (κ),
that is homotopic to the transverse sphere G. This sphere has an induced orientation that
coincides with A away from the compressing disc. Define ε(T ) = ε(κ) = +1 if [T ] = [G] and
−1 otherwise. Here M,A and G are oriented so that < A,G >= +1.

Similarly compressing A near a point of τi gives rise to an embedded surface one component
of which is an embedded 2-sphere T (αi) isotopic to two oppositely oriented copies of G tubed
together along αi.

Lemma 6.2. If T = T (κ) is constructed as above and D is the compressing disc that splits
off T and oriented to coincide with that of T , then ε(T ) =< D′, A > Here D′ is D shrunk
slightly to have boundary disjoint from A. �

Lemma 6.3. If A is a tubed surface, then for all i, [T (βi)] = −[T (γi)] = ±[G] ∈ H2(M)
and for all j, [T (αj)] = 0. �

Sign Convention: By switching βi and γi, if necessary, we can assume that ε(βi) = −1 and
ε(γi) = +1. Orient βi to point from z to bi, λi to point from f(bi) to f(gi) and γi to point
from gi to z.

We next calculate [A] ∈ π2(M). Since A and G are 2-spheres, each element of π1(M) gives
rise to a distinct pair of geometrically dual spheres in M̃ that projects to the pair (A,G).
Thus, π2(M) = π2(M̃) = H2(M̃) which contains the group ring H = H2(G)π1(M) as a
submodule. Since A is a tubed surface, [A] lies in the coset H+ [A1]. Since π1(A1) = 0, each
λi determines a well defined element, [λi] ∈ π1(M). With the above conventions the triple
(βi, λi, γi) gives rise to the element [G][λi] − [G][λi]

−1 ∈ H. On the other hand, each αj, τj
gives rise to the trivial element. We therefore have:

Lemma 6.4. [A] = [A1] +
∑s

i=1[G][λi]− [G][λi]
−1 ∈ π2(M). �

Remark 6.5. If A is homotopic to A1, then
∑s

i=1[G][λi]−[G][λi]
−1 = 0. Therefore, if [λi] = 1

whenever [λi]
2 = 1 holds, then we can reorder the λi’s so that [λ1] = [λ2]

−1, · · · , [λ2p−1] =
[λ2p]

−1 and [λs] = 1 if s = 2p+ 1.

The following is the main result of this section.

Proposition 6.6. Let A be a tubed surface in the 4-manifold M whose underlying surface
A1 is an embedded sphere homotopic to the realization A of A. Assume that π1(M) has no
2-torsion and G denotes the transverse sphere to A1. Then via an isotopy supported away
from G, A is isotopic to the realization A′ of a tubed surface A′ with underlying surface A1

such that A′ has at most one double tube.

Remark 6.7. By Lemma 6.4 the tube path λ corresponding to the unique double tube is
homotopically trivial.
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Proof. By Remark 6.5 we can reorder the λi’s so that [λ1] = [λ2]
−1, · · · , [λ2p−1] = [λ2p]

−1 and
[λs] = 1 if s = 2p+ 1.

We will show that an isotopy of A transforms A to A′ with the same A1 but with two
fewer double tubes. The lemma then follows by induction. To start with we consider another
model for a double tube as shown in Figure 6.1.

x

yz

A            

A1

x

yz

A11

A1

Figure 6.1
a) b)

Db Db

Dg Dg

Remarks 6.8. i) Figures 6.1 a) and b) each show the projection of a neighborhood of a
double tube associated to a path λ into the x, y, z plane. This consists of tubes emanating
from two discs Db and Dg lying in A1 that are respectively neighborhoods of f(b) and f(g),
where λ connects f(b) to f(g). In the figure, Db lies in the x, y plane and the other lies in
the x, t plane. The shaded regions are projections of the tube from Dg into the x, y, z plane.
Except where it is twisted, this tube lies in the x, z, t plane. Its intersection with the x, y, z
plane is the union of the thick solid and dashed lines.

ii) Since π1(SO(3)) = Z2, up to isotopy, there are two ways of constructing a double tube
associated to the path λ with given germs of double tubes near its endpoints. Representatives
are shown in Figures 6.1 a) and b).

Since A1 has the transverse 2-sphere G it follows that the induced map π1(M \(A1∪G))→
π1(M) is an isomorphism. Since homotopy implies isotopy we can isotope λ1 and λ2 to be
anti-parallel. I.e. there exists an embedded square D with opposite edges respectively on A1

and λ1 and λ2. See Figure 6.2 a). Here E and F denote the components of A1∩N(D). Figure
6.2 b) shows how A might intersect N(D). Figure 6.3 shows how to isotope the surface to
effect a change of the framed embedded path corresponding to the non trivial element of
SO(3). Thus we can assume that A appears near λ1 and λ2 as depicted in Figure 6.2 b).
Now A∩N(D) may fail to appear as in Figure 6.2 b) because the images of tube guide paths
may cross the interior of D∩A1, however by doing tube sliding moves in a manner similar to
those in the proof of Theorem 5.17 we can clear such curves from the neighborhood. Thus
we can assume that A ∩N(D) appears as in Figure 6.2 b).

Figure 6.4 shows an isotopy of A, supported in N(D), that transforms a pair of double
tubes as in Figure 6.2 b) into a pair of single tubes as shown in Figure 6.4 c). Call the E-
component of A∩N(D) the one that intersects E and call the other the F-component. Again
in Figure 6.4 the intersection of the E-component with the x, y, z-plane is drawn in thick,
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F

F

E

E

Figure 6.2

λ1

λ2

D

a)

b)

A1

A1

A1

A1

Figure 6.3

a) b)

possibly dashed, lines. The isotopy from Figure 6.2 b) to Figure 6.4 a) is the composition of
three isotopies, the first and third supported in the F -component and the second supported
in the E component. The isotopy to Figure 6.4 b) is supported in the E component. The
isotopy from Figure 6.4 b) to Figure 6.4 c) is as follows. Without changing the projection
into the x, y, z plane, first push the tube emanating from E into the future and then isotope
the tube emanating from F as indicated. �
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Figure 6.4

F

E

a)

b)

c)

7. Crossing Changes

In this section we show that crossing changes involving distinct tube guide curves do not
change the isotopy class of the realization of a tubed surface.

Lemma 7.1. (Crossing Change Lemma) If the tubed surface A′ is obtained from the tubed
surface A by a crossing change involving either distinct tube guide paths or distinct com-
ponents of αi \ pi, then the corresponding realizations A′ and A are isotopic via an isotopy
supported away from the transverse surface G. See Figure 7.1 a).

Proof. Since by Lemma 5.7 changing a tubed surface by type 2) and 3) Reidemeister moves
does not change the isotopy class of the realization, it suffices to assume that the crossing is
adjacent to z0 as in Figure 7.1 b), e.g. see Figure 7.1 c).
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The isotopy from A to A′ is demonstrated in Figure 7.2. Think of D2 × S2 as D2 × S1 ×
[−∞,+∞]/ ∼, where each x×S1×−∞ and each x×S1×+∞ is identified to a point and with
G being the S2 fiber through z, the origin of D2. The various subfigures of Figure 7.2 show a
neighborhood of z ∈ D2×S1× 0. Let N(z) denote a 4-dimensional regular neighborhood of
z. The sets K ′ and K seen in this figure are projections of the components of A∩N(z) that
contain the local tubes about f(κ′) and f(κ). Also A1 ∩N(z) is a D2 × pt× 0. Notice that
only K ′ moves during the isotopy. The isotopy corresponding to Figures 7.2 a) and 7.2 b)
can be also viewed in Figure 7.3. The dark lines in these figures coincide. That figure shows
part of the isotopy seen from the 3-plane orthogonal to A1 that contains K ′. Each subfigure
intersects A1 in a line and K in a circle. The isotopy is supported in a neighborhood of a
S2 × I where the S2 is parallel to G. The passage from Figure 7.2 c) to Figure 7.2 d) is the
light bulb move, whereby a tube T appears to be crossing A at the point y. This requires
that there be a path σ in A from y to z disjoint from T which in turn requires that κ 6= κ′.
The isotopy corresponding to Figures 7.2 d) and e) is essentially the reverse of that from 7.2
a) and 7.2 b). There, the projection of the S2× I to A1 is an arc disjoint from the projection
of K, so K is not in the way during that isotopy. �

8. Proof of Theorem 1.2

Lemma 8.1. Suppose that R0 and R1 are spheres with common transverse sphere G in
the 4-manifold M. If R0 and R1 coincide near G and are homotopic in M , then they are
homotopic with via a homotopy whose support in M is disjoint from G.

Proof. It suffices to show that if a sphere R3 in M \ G is homotopically trivial in M it
is homotopically trivial in M \ G. Let M̃ denote the universal covering of M and G̃ the

preimages of G. By Lemma 2.2 the universal cover M̂ of M \ G = M̃ \ G̃, hence if R̃3

denotes a lift of R3 to M̃ , it suffices to show that R̃3 is homologously trivial in M̂ . Since
R̃3 is homologously trivial in M̃ and G̃ is a union of 2-spheres there exists a bounding cycle
disjoint from G̃. �

Suppose that the embedded spheres R and A1 are homotopic with the common transverse
sphere G. After an initial isotopy and the previous lemma we can assume that R and
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A1 coincide near G and that the homotopy F from R to A1 is supported away from a
neighborhood of G. .

It follows from [Sm1] that R is regularly homotopic to A1 via a homotopy that is also
supported away from a neighborhood of G. See §4. By Theorem 5.17 the homotopy from R
to A1 is shadowed by tubed surfaces. Thus there exists a tubed surface A with realization A
and underlying surface A1 such that R is isotopic to A. It suffices to show that A is isotopic
to A1 via an isotopy supported away from a neighborhood of G.

By the tube cancellation lemma we can assume that A has at most one double tube and
that that tube can be homotoped rel endpoints into A1 via a disc disjoint from G whose
interior is disjoint from A1. In what follows we assume for consistency of notation that there
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exists one such double tube. Using the crossing change and tube sliding Lemmas 7.1 and
5.7 we can assume that each pair (α1, q1), · · · , (αr, qr), (β1, γ1) lies in a distinct sector of A0.
This means there exists a neighborhood D of z0 ∈ A0 parametrized as the unit disc in polar
coordinates so that (αi, qi) lies in the subset of D where ((i−1)/(r+1))2π < θ < (i/(r+1))2π
and (β1, γ1) lies in the region (r/(r+1))2π < θ < 2π. We can further assume that q1 ∈ ∂D. It
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remains to prove Lemma 8.2 after which we can assume that r = 0. We then can homotope,
hence isotope λ1 and thus A to lie in the S2 × S2 factor, hence the result follows from
Theorem 1.7.

Lemma 8.2. Let A be a tubed surface such that a neighborhood D ⊂ A0 of z0 is parametrized
as the unit disc D in polar coordinates and α1 ∪ q1 is contained in the subset of D where
0 < θ < π/2 and that that region is devoid of all other tube guide curves and associated
points. Assume also q1 ∈ ∂D. Then the tubed surface A′ whose data consists of that of A
with α1 ∪ τ1 deleted has realization A′ isotopic to the realization A of A.

Proof. We first fix some terminology. To simplify notation α1, p1, q1, τ1 will be respectively
denoted α, p, q, τ . T (α) will denote the tube about f(α) and Pα will denote the 2-sphere
consisting of two parallel copies of G tubed together along T (α). T (τ) will denote the tube
about τ . So A is the surface obtained from A′ by connecting Pα to A′ by the tube T (τ). We
will let p′ and q′ denote the points respectively on Pα and A′ so that the ends of T (τ) connect
to ∂N(p′) and ∂N(q′). Here p′ orthogonally projects to f(p) ∈ A1, where p ∈ α ⊂ A0. We
let αL, and αR denote the components of α separated by p.

The first observation is that by isotopy extension p′ can be isotoped to any point in T (α)
at the cost of seemingly entangling τ with T (α). See Figures 8.1 a) and b). One cannot
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obviously use the light bulb lemma to remove the intersection of int(τ) with the projection
of T (α) in Figure 8.1 b), since T (τ) separates T (α) from z.

By suitably moving p, the local arcs of α at a given crossing can lie in the different
components αL and αR of α \ p. Thus the proof of the crossing change lemma allows us to
change this crossing as well as any other at the cost of entangling τ with T (α). This process
is illustrated in Figures 8.1 a), b), c). Similarly, at the cost of further such entanglement
we can perform the reordering move, Definition 5.5 ii) to arcs of α. Compare Figure 8.1 d)
and Figure 8.2 a). Thus by crossing changes, Reidemeister 2), 3) moves and the tube sliding
reordering move, we can assume that α is unknotted. It follows that Pα can be isotoped to
an unknotted 2-sphere P , that bounds a 3-ball Q disjoint from A′ ∪G. See Figure 8.2 b).

Further there exists a 4-ball B such that Q ⊂ B, A′∩B = ∅ and τ ∩B is connected. Since
π1(B \ P ) = Z it follows that via isotopy supported within B, A can be isotoped so that
Q ∩ int(T (τ)) = ∅ as in Figure 8.2 c). Use the fact that T (τ) can be rotated about P and
is the frontier of a neighborhood of an arc. It follows that A can be isotoped to A′, thereby
completing the proof. �

Remarks 8.3. With more work one can eliminate reliance on Theorem 1.7. The above
argument was free of Theorem 1.7 when there were no double tubes. Otherwise, it reduced
to the case of no single tubes and one homotopically trivial double tube where β1 ∩ γ1 = ∅.
If β1 and γ1 are unknotted, then a direct argument allows for the elimination of this data
from A, via isotopy of A and hence the result follows. If not, then reverse this procedure
to create a second homotopically trivial double tube. The proof of Proposition 6.6 shows
that these double tubes can be transformed into a pair of single tubes and hence the result
follows.

9. higher genus surfaces

In this section we give a partial generalization of our main result to higher genus surfaces,
that is a full generalization for S2 × S2.

Definition 9.1. Let S be an immersed surface in the 4-manifold M . We say that the
embedded disc D ⊂ M is a compressing disc for S if ∂D ⊂ S and a section of the normal
bundle to ∂D ⊂ S extends to a section of the normal bundle of D ⊂M .

Lemma 9.2. If S is immersed in the 4-manifold M and α ⊂ S is an embedded curve with a
trivial normal bundle in S and is homotopically trivial in M , then α bounds a compressing
disc.

Proof. First span α by an immersed disc D0. Using boundary twisting [FQ] we can replace
D0 by D1 that satisfies the normal bundle condition. Eliminate the self intersections of D1

by applying finger moves. �

Lemma 9.3. Let S be an orientable embedded surface in the 4-manifold M whose components
have pairwise disjoint transverse spheres. Let α1, · · · , αk ⊂ S be pairwise disjoint simple
closed curves, disjoint from the transverse spheres, such that for each component S ′ of S,
S ′ \ {α1, · · · , αk} is connected. Suppose that for each i, αi is homotopically trivial in the
complement of the transverse spheres. Then there exist pairwise disjoint compressing discs
D1, · · · , Dk such that for each i, Di ∩ S = αi.
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Proof. Construct compressing discs A1, · · · , Ak for the αi’s as in Lemma 9.2. These discs
can be chosen to be disjoint from the transverse spheres. Using finger moves they can be
made disjoint from each other. Finally use the transverse spheres to tube off intersections
of the Ai’s with S to create the desired Di’s. �

Definition 9.4. We say that the surface S1 is obtained from S by compressing along D if
S1 = S \ int(N(∂D)) ∪D′ ∪D′′ where D′, D′′ are two pairwise disjoint parallel copies of D.

Lemma 9.5. Surfaces can be compressed along compressing discs. If S1 is obtained by
compressing the embedded surface S along the compressing disc D and D∩S = ∂D, then S1

is embedded. �

Definition 9.6. We say that the surface S ⊂M is G-inessential if the induced map π1(S \
G)→ π1(M \G) is trivial.

The following is a generalization to higher genus surfaces of Theorem 1.2.

Theorem 9.7. Let M be an orientable 4-manifold such that π1(M) has no 2-torsion. Two
homotopic, embedded, G-inessential surfaces S1, S2 with common transverse sphere G are
ambiently isotopic, via an isotopy that fixes the transverse sphere pointwise.

Proof. For each i ∈ {1, 2} let αi1, · · · , αik be a set of pairwise disjoint simple closed curves in
Si whose complement is a connected planar surface containing Si ∩ G. Let Di

1, · · · , Di
k be

associated pairwise disjoint compressing discs with interiors disjoint from Si and let Ti be
the result of compressing Si along these discs. Then Ti is a 2-sphere and Si is obtained from
Ti by attaching k tubes. Each tube S1 × I extends to a solid tube D2 × I which intersects
Ti exactly at D2 × 0 and D2 × 1, which we call the bases of the tube. By construction, these
tubes are pairwise disjoint. After a further isotopy we can assume there are k small pairwise
disjoint 4-balls which intersect Si in a single standard disc and each such disc contains the
bases of a single solid tube.

Since Si is G-inessential, it follows by the light bulb lemma that the solid tubes can be
isotoped to 3-dimensional neighborhoods of tiny standard arcs with endpoints on Ti. Note
that the induced ambient isotopy can be chosen to fix a neighborhood of Ti pointwise.

To complete the proof it suffices to show that T1 and T2 are homotopic and hence isotopic
by Theorem 1.2. To see this, consider the lifts T̃1, T̃2 of T1, T2 to the universal covering M̃
of M which intersect a given lift G̃ of G. Since the Si’s are π1-inessential and homotopic,
their corresponding lifts S̃1, S̃2 are homotopic and hence homologous. It follows that T̃1 and
T̃2 are homologous and hence homotopic and therefore so are T1 and T2. �

Applying to the case of S2 × S2 we obtain:

Theorem 9.8. Let R be a connected embedded genus-g surface in S2 × S2 such that R ∩
S2× y0 = 1. Then R is isotopically standard. I.e. it is isotopic to the standard sphere in its
homology class, with g standard handles attached, via an ambient isotopy that fixes S2 × y0
pointwise. �

10. applications and questions

We begin by stating the main result for multiple spheres.
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Theorem 10.1. Let M be an orientable 4-manifold such that π1(M) has no 2-torsion. Let
G1, · · · , Gn be pairwise disjoint embedded spheres with trivial normal bundles. Let R1, · · · , Rn

be pairwise disjoint embedded spheres transverse to the Gi’s such that |Ri ∩ Gj| = δij. Let
S1, · · · , Sn be another set of spheres with the same properties. If for each i, Ri is homotopic
to Si, then there exists an isotopy of M fixing the Gi’s pointwise such that for all j, Rj is
taken to Sj.

Under corresponding hypotheses, the same conclusion holds when the Ri’s are G-inessential
connected surfaces, where G = {G1, · · · , Gn}.

Proof. The methods of §9 reduce the general case to the case that all the Si’s are spheres.

Proof by induction on n.

Step 1: R1 is ambient isotopic to S1 via an isotopy that fixes the Gi’s pointwise.

Proof After a preliminary isotopy we can assume that R1 and S1 coincide near R1 ∩G and
that the homotopy from R1 to S1 is supported away from a neighborhood of ∪Gi. Step 1
follows by applying Theorem 1.2 to the manifold M \∪ni=2N(Gi). Note that the inclusion of
M \∪ni=2N(Gi)→M induces a fundamental group isomorphism so the no 2-torsion condition
is satisfied. �

Induction Step: Suppose that we have for j < k, Rj = Sj. There exists an isotopy of M
fixing ∪ni=kGi pointwise and supported away from ∪k−1j=1(Gj ∪Sj) such that Rk is taken to Sk.

Proof After a preliminary isotopy we can assume that Rk and Sk coincide near Gk and that
Rk is homotopic to Sk via a homotopy supported away from ∪k−1j=1(Sj ∪ Gj). Next apply

Step 1 to Rk ⊂M \N(∪k−1j=1(Sj ∪Gj)). Again, the argument of Lemma 2.2 implies that the

inclusion M \N(∪k−1j=1(Sj ∪Gj))→M induces a fundamental group isomorphism, so the no
2-torsion condition is satisfied. �

Definition 10.2. An essential simple closed curve in S2 × S1 is said to be standard if it is
isotopic to x× S1 for some x ∈ S2.

Theorem 10.3. Two properly embedded discs D0 and D1 in S2 × D2 that coincide near
their standard boundaries are isotopic rel boundary if and only if they are homologous in
H2(S

2 ×D2, ∂D0).

Proof. Homologous is certainly a necessary condition. In the other direction, after reparame-
terizing, we can assume that ∂D0 = x0×S1 ⊂ S2×S1. LetM = S2×D2∪d(S2×D2) = S2×S2

be obtained by doubling S2×D2 with d(S2×D2) denoting the other S2×D2. This d(S2×D2)
can be viewed as a regular neighborhood N(G) of G = d(S2 × 0). Let Ri denote the sphere
Di ∪ d(x0 × D2) which we can assume is smooth for i = 0, 1. G is a transverse sphere
to the homologous spheres R0 and R1. By Theorem 1.2 there is an isotopy of M fixing a
neighborhood of G pointwise taking R0 to R1. Since R0 and R1 coincide in a neighborhood
of N(G) there is an isotopy of S2×D2 taking D0 to D1 that fixes a neighborhood of S2×S1

pointwise. �

Theorem 10.4. A properly embedded disc D in S2×D2 is properly isotopic to a fiber if and
only if its boundary is standard.
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Proof. After a preliminary isotopy we can assume that ∂D is the standard vertical curve
x0 × S1 which we denote by J . Let F be a D2 fiber of S2 × D2. Now 0 → H2(S

2 ×
D2) → H2(S

2 × D2, J) → H1(J) → 0 is split and exact, so the subgroup H mapping to
the generator [∂F ] of H1(J) equals Z and is represented by the classes [F ] + n[S2 × y0],
where y0 ∈ ∂D2. By properly isotoping D to D′ where ∂D′ = J and so that the track
of the homotopy restricted to the boundary is approximately J ∪ S2 × y0 it follows that
[D′] = [D] + [S2 × y0] ∈ H2(S

2 ×D2, J). Therefore any class in H is represented by a disc
properly isotopic to D. In particular after proper isotopy we can assume that [D] = [F ].
After a further isotopy we can assume that D coincides with F near ∂D. The result now
follows by Theorem 10.3. The other direction is immediate. �

Recall that Diff0(X) denotes the group of diffeomorphisms properly homotopic to the
identity.

Corollary 10.5. π0(Diff0(S
2 ×D2)/Diff0(B

4)) = 1.

Remark 10.6. This means that a diffeomorphism of S2 × D2 properly homotopic to the
identity is isotopic to one that coincides with the identity away from a compact 4-ball disjoint
from S2 × S1.

Proof. If f : S2×D2 → S2×D2 is properly homotopic to the identity, then ∂f : S2× S1 →
S2 × S1 is homotopic to the identity, hence isotopic to the identity by [La]. After another
isotopy we can assume that f |N(S2 × S1) = id. By Theorem 10.4 a further isotopy takes
a fiber z × D2 to itself. By Smale [Sm3] we can additionally assume that f |x × D2 = id.
After a further isotopy we can assume that f |N(S2 × ∂D2 ∪ z ×D2) is the identity. Since
the closure of what’s left is a B4 the result follows. �

The following is an immediate consequence of our main result.

Theorem 10.7. (4D-Lightbulb Theorem) If R is an embedded 2-sphere in S2 × S2, homol-
ogous to x0 × S2, that intersects S2 × y0 transversely and only at the point (x0, y0), then R
is isotopic to x0 × S2 via an isotopy fixing S2 × y0 pointwise. �

Litherland [Li] proved that there exists a diffeomorphism pseudo-isotopic to the identity
that takes R to x0 × S2.

Another version of the light bulb theorem was obtained in 1986 for PL discs in S4 by
Marumoto [Ma] where the isotopy is topological. He makes essential use of Alexander’s
theorem that any homeomorphism of Bn that is the identity on Sn−1 is (topologically)
isotopic to the identity. Here we prove a general form of the smooth version.

Theorem 10.8. (Uniqueness of Spanning Surfaces) If R0 and R1 are smooth embedded
surfaces in S4 of the same genus such that ∂R0 = ∂R1 = γ, where γ is connected, then there
exists a smooth isotopy of S4 taking R0 to R1 that fixes γ pointwise.

Proof. First consider the case that R0 and R1 are discs. After a preliminary isotopy of S4

that fixes γ pointwise, we can assume that R0 and R1 coincide in a neighborhood of their
boundaries. Now S4 \ int(N(γ)) = S2 ×D2. Thus R0 and R1 restrict to properly embedded
discs E0 and E1 in S2 ×D2 that coincide near their boundaries.

We can assume that after a second isotopy [E0] = [E1] ∈ H2(S
2 × D2, γ) also holds.

Indeed, N(∂E0) is determined by monotone maps ft : S1 → S2×S1, where monotone means
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transverse to the S2-factor and f0 corresponds to ∂E0. The second isotopy corresponds to
one f st : S1 × I → S2 × S1 with f s1 = f1 all s and f s0 sweeps across the S2-factor as many
times as needed for s ∈ [0, 1]. It follows by Theorem 10.3 that E0 can be isotoped to E1 via
an isotopy supported away from a neighborhood of S2 × S1.

The general case similarly follows using Theorem 9.8. �

Remark 10.9. By induction Marumoto [Ma] proved more generally that two locally flat
PL m-discs in an n-sphere, n > m with the same boundary are topologically isotopic rel
boundary. Here is an outline of his argument for smooth discs in the n-sphere for the
representative case m = 2, n = 4, where we use [Ce1], [Pa] to avoid his induction steps.
Actually, the below argument works in all dimensions and codimensions since the same is
true of [Ce1], [Pa] and the Alexander isotopy.

Start with D0, D1 where D1 is the standard 2-disc in S4 and ∂D0 = D1. Then by [Ce1],
[Pa] there is a diffeomorphism f : S4 → S4 taking D0 to D1 fixing ∂D0. We can assume that
f fixes pointwise a neighborhood of ∂D0. Next remove a small ball about a point in ∂D0.
After restricting and reparametrizing we obtain a map g : B4 → B4 such that g(E0) = E1

where the Ei’s are the restricted reparametrized Di’s. Here B4 is the unit ball in R4, ∂E0 is a
straight properly embedded arc connecting antipodal points of ∂B4 and g|∂B4 = id. Finally
apply the Alexander isotopy to obtain a topological isotopy of g to the identity which fixes
∂E0 pointwise. �

More generally we have the following uniqueness of spanning discs in simply connected
4-manifolds.

Theorem 10.10. If D0 and D1 are smooth embedded discs in the simply connected 4-
manifold M such that ∂D0 = ∂D1 = γ, then there exists a smooth isotopy of M taking
D0 to D1 fixing γ pointwise if and only if the mapped sphere S = D0 ∪γ D1 is inessential in
M .

Proof. If D0 and D1 are isotopic, then the isotopy sweeps out a contracting ball for S. Con-
versely, after an initial isotopy of D1 we can assume that it coincides with D0 near γ and that
the interior of the mapped 3-ball B defining the contraction of S intersects γ algebraically
zero. Indeed, the second isotopy in the proof of Theorem 10.8 enables modification of the
intersection number. These intersections can be eliminated using immersed Whitney discs.
Next surger γ to obtain the simply connected manifold N so that D0 and D1 give rise to
homotopic spheres R0 and R1 with common transverse sphere G, that coincide near their in-
tersection with G. By Theorem 1.2, R0 and R1 are isotopic via an isotopy fixing G pointwise
and hence D0 and D1 are isotopic rel boundary. �

Remark 10.11. In a similar manner, using Theorems 10.1 and 9.7, one can obtain unique-
ness theorems for certain surfaces spanning simple closed curves in closed 4-manifolds with
no 2-torsion in their fundamental groups.

One can ask the following parametrized form in the smooth category.

Question 10.12. For i = 1, 2 let fi : Dk → S4 be smooth embeddings such that f1|∂Dk =
f2|∂Dk. Is there a smooth isotopy F : S4 × I → S4 such that F0 = idS4 , Ft(f1(x)) = f1(x)
for x ∈ ∂Dk and t ∈ [0, 1] and for y ∈ Dk, F1(f2(y)) = f1(y)?
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Remark 10.13. For k ≤ 3 the unparametrized version implies the parametrized one by
[Ce3] for k=3 and [Sm3] for k = 2 with the k = 1 case being elementary. The point of this
question is to link various theorems, conjectures and questions.

Case k=1: This is the theorem homotopy implies isotopy for curves in 4-manifolds.

Case k=2: This is Theorem 10.8.

Case k=3: This implies the Schoenflies conjecture. Indeed the Schoenflies conjecture is
equivalent to a positive resolution of the question after allowing lifting of the fi’s to some
finite branched covering of S4 over ∂(fi(D

3)). See [Ga].

Case k=4: This is the question of connectivity of Diff0(B
4, ∂).

Question 10.14. Is the Z2-condition necessary for Theorem 1.2?

Remark 10.15. In the context of the statement of Theorem 1.2, if R is an embedded sphere
and M1 → M is a finite cover such that π1(M1) has no 2-torsion, then the preimages of R
are simultaneously isotopically standard, though perhaps not equivariently.

Question 10.16. Does Theorem 10.1 hold without the G-inessential condition? What if
G-inessential is replaced by π1-inessential?

The following are special cases of the long standing questions of whether a sphere R in
CP2 homologous to CP1 is equivalent up to isotopy or diffeomorphism to the standard CP1.
See problem 4.23 [Ki].

Questions 10.17. i) If R is a smooth sphere in CP2 that intersects CP1 once is R isotopically
standard?

ii) [Me] Is (CP2, R) diffeomorphic to (CP2,CP1)?

Remark 10.18. In his unpublished 1977 thesis, Paul Melvin [Me] showed that blowing down
CP2 along CP1 transforms R to a 2-knot T in S4 and Gluck twisting S4 along T yields S4

if and only if (CP2, R) is diffeomorphic to (CP2,CP1). He gave a positive answer to ii) for
0-concordant knots.
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