
KNOTTED 3-BALLS IN S4

RYAN BUDNEY
DAVID GABAI

Abstract. The unknot U in S4 has non-unique smooth spanning 3-balls up to isotopy
fixing U. Equivalently there are properly embedded non-separating 3-balls in S1 × B3

not properly isotopic to {1} × B3. More generally there exist non-separating 3-spheres
in S1 × S3 not isotopic to {1} × S3 and non trivial elements of Diff0(S1 × S3). Along the
way we introduce barbell diffeomorphisms, implantations and twistings to construct and
modify diffeomorphisms homotopic to the identity. We also introduce a 2-parameter cal-
culus of embeddings of the interval into 4-manifolds and introduce a framed cobordism
method as well as a direct method for showing that certain 2-parameter families are ho-
motopically non trivial and diffeomorphisms are isotopically nontrivial. Extensions to
higher dimensional manifolds are obtained.

1. Introduction

This paper introduces the study of knotted 3-balls in 4-manifolds, in particular the
4-sphere and S1× B3. Let S4 be the unit sphere in R5. Define a standard 3-ball in S4 to be
a great 3-ball, i.e. a geodesic 3-ball with boundary a great 2-sphere. A knotted ball in S4

means a smoothly-embedded 3-ball ∆1 ⊂ S4 whose boundary is a great 2-sphere which
is not isotopic keeping the boundary fixed, to a standard 3-ball ∆0. The requirement
that the boundary be constrained throughout the isotopy is necessary since any two
embedded k-balls in the interior of a connected n-manifold are ambiently isotopic [Ce1]
p. 231, [Pa]. The existence of knotted 3-balls in S4 contrasts with the uniqueness of
spanning discs for the unknot in S3 and uniqueness for spanning discs for circles in S4,
[Ga1]. This paper works in the smooth category and unless otherwise said, all mappings
are smooth.

We say N is a reducing 3-ball in S1 × B3 if N is a properly-embedded submanifold,
diffeomorphic to B3 such that the complement (S1 × B3) \ N is connected. By properly-
embedded we mean that N ∩ ∂(S1 × B3) = ∂N. A reducing 3-ball N is knotted if it
is not properly isotopic to the linear reducing 3-ball, {1} × B3. All reducing 3-balls
are properly homotopic to {1} × B3. The study of reducing 3-balls up to isotopy is
equivalent to the study of such balls that coincide with {1} × B3 near the boundary
since Allen Hatcher has proven that the space of non-separating embeddings of S2 in
S1 × S2 has the homotopy-type of S1 ×O(3) [Ha2].
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Isotopy classes of reducing 3-balls in S1× B3 admit an abelian group structure coming
from an operation similar to boundary connect-sum, that we call concatenation defined
as follows. Starting with two reducing 3-balls in S1 × B3 whose boundary is {1} × S2,
one glues the two copies of S1 × B3 together along S1 × H where H is a hemisphere in
∂B3. This produces a new 4-manifold canonically diffeomorphic to S1× B3 together with
a new reducing 3-ball. We will see in Sections 3 and 9 that concatenation has inverses,
i.e. it is a group, with the unit being the linear reducing sphere. A less abstract way to
describe concatenation would be to take f1, f2 : B3 → S1 × B3 and assume B1, B2 ⊂ B3

are disjoint 3-balls. One can assume fi(p) ∈ S1 × Bi provided p ∈ Bi and fi(p) = (1, p)
otherwise. Define the sum of f1 and f2 to be equal to fi on B3 \ Bj where {i, j} = {1, 2}.
Isotopy classes of oriented 3-balls in S4 where the embeddings are required to be linear
on the boundary also have a group structure, defined in essentially the same way, and
these groups are isomorphic. The key point is that the closed complement (the exterior)
of the unknotted S2 in S4 is diffeomorphic to S1 × B3.

We use the convention that if M is a manifold with boundary, then Diff(M fix ∂)
denotes the diffeomorphisms of M that are the identity on the boundary. Similarly,
we use the notation Diff0(M) to denote the subgroup of diffeomorphisms homotopic
to the identity. We shall see in §3 and §9 that the diffeomorphism groups Diff0(S4),
Diff(S1 × B3 fix ∂) and Diff0(S1 × S3)) are abelian and act transitively respectively on
3-balls with common boundary, reducing balls with common boundary and reducing
3-spheres. (Actually, Diff(S1 × Bn fix ∂) is a (n + 1)-fold loop space compatible with
the group multiplication [Bu1].) This leads to the theorem S1 × B3 and equivalently
the closed complement of the unknot in S4, have up to isotopy, infinitely many distinct
fiberings over S1 as does S1 × S3.

A diffeomorphism φ : S1 × B3 → S1 × B3 properly homotopic to the identity, gives
rise to the 3-ball ∆1 = φ({1} × B3) which is unknotted if and only if φ is properly
isotopic to a map supported in a 4-ball. The group of isotopy classes of oriented 3-balls
that are linear on their boundary is isomorphic to π0(Diff(S1× B3 fix ∂)/ Diff(B4 fix ∂)).
Similarly, Diff0(S1× S3)/ Diff(B4 fix ∂) is isomorphic to the group of reducing 3-spheres in
S1 × S3. See Theorem 3.13 and Theorem 3.12.

The main result of this paper is a construction of an infinite family of linearly inde-
pendent elements of π0(Diff(S1× B3 fix ∂)/ Diff(B4 fix ∂)) with explicit constructions of
the corresponding knotted 3-balls in S1 × B3 and hence S4. Furthermore, these diffe-
ormorphisms extend to a linearly independent set in Diff0(S1 × S3)/ Diff(B4 fix ∂). The
techniques of this paper also construct subgroups of πn−3 Diff(S1 × Bn fix ∂) whenever
n ≥ 3.

Denote the component of the unknot in Emb(S2, S4) by Embu(S2, S4). A consequence
of the above results is that Embu(S2, S4) does not have the homotopy type of the sub-
space of linear embeddings. The latter has the homotopy type of the Stiefel manifold
V5,3 = SO5/SO2 while the former has a non-finitely-generated fundamental group. See
Theorem 10.1.

We give a framework for approaching the smooth 4-dimensional Schönflies prob-
lem, describing the set of counter-examples as the fixed points of an endomorphism
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π0 Emb(B3, S1× B3)→ π0 Emb(B3, S1× B3). The endomorphism is given by lifting such
an embedding to a non-trivial finite-sheeted covering space of S1 × B3. The non-trivial
elements of π0 Emb(B3, S1 × B3) we construct in this paper all belong to the kernel of
iterates of this endomorphism.

The paper is organized as follows. In Section §2 we compute the homotopy group
πn−2 Emb(S1, S1 × Sn) and show that it contains an infinitely-generated free abelian
group provided n ≥ 3, giving explicit generators θk, k ≥ 2. This result extends the work
of Dax [Da] who among other things computed π1(Emb(S1, S1× S3)) in terms of certain
cobordism groups and Arone-Szymik [AS], who show π1 and π2 of Emb(S1, S1 × S3)
contain infinitely-generated free abelian groups. For n = 3 we describe other generators
in terms of embeddings of tori T : S1 × S1 → S1 × S3. In §3 we compute the three and
five dimensional rational homotopy groups of C3[S1 × B3] and use them to define the
W3 invariant of π2 Emb(I, S1 × B3) which takes values in a quotient of π5C3[S1 × B3].
We define G(p, q) a 2-parameter family of Emb(I, S1 × B3) and show that W3[G(p, q)]
is equal to the class of the standard Whitehead product tp

1 tq
2[w23, w13]. We also describe

fibration sequences relating various embedding spaces and diffeomorphism groups and
also show that Diff(S1 × B3 fix ∂) and Diff0(S1 × S3) respectively act transitively on re-
ducing balls and spheres. In §4 we introduce geometric methods for working with
2-parameter families of Emb(I, M4). In particular, we introduce a bracket operation that
produces a 2-parameter family from two 1-parameter families that are null homotopic
and have disjoint domain and range supports. In §5 we introduce the barbell map β of
S2×D2\S2×D2 which we call the barbell neighborhood NB. β fixes ∂NB pointwise hence
induces homotopically trivial diffeomorphisms of 4-manifolds called implantations when
NB is embedded in a 4-manifold and β is pushed forward. We describe the implanta-
tions of S1× B3 fix ∂ induced from the generating elements θk. We also compute β(∆0) of
the standard separating 3-ball ∆0. This is used in §6 to produce two parameter families
θ̂k in Emb(I, S1 × B3) arising from the θk’s. We then show how to modify these families
when twisting the implantation. In §7 we compute the class [θ̂k] ∈ π2 Emb(I, S1 × S3)
as the sum of elements of a (k− 1)× (k− 1)-matrix Ak with entries a sum of G(p, q)’s.
This matrix is skew symmetric and hence [θ̂k] = 0. In §8 we show that the effect of
twisting the θk implantation is to modify Ak by row and column operations. By twisting
the θk implantations we produce the δk implantations, k ≥ 4, whose homotopy classes
are shown to be linearly independent by the W3 invariant. Together with the triviality
of the [θ̂k]’s we conclude that the δk implantations in Diff0(S1 × S3) are linearly inde-
pendent up to isotopy. In §9 we discuss the relation between knotted 3-balls and the
smooth 4-dimensional Schoenflies conjecture. More applications are given in §10 and
questions and conjectures are given in §11. In the Appendix we give a direct argument
that W3[G(p, q)] is equivalent to the standard Whitehead product tp

1 tq
2[w23, w13] up to

sign independent of p and q.
Independently, Tadayuki Watanabe [Wa2] has constructed an invariant

Z1 : π1B Diff(S1 × B3 fix ∂)/π1B Diff(B4 fix ∂)→ A1(R[t±1])

and has shown it to be non-trivial on some diffeomorphisms created via his graph
surgery construction.
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2. Embeddings of circles in S1 × Sn

In this section we describe a range of low-dimensional homotopy groups of Emb(S1, S1×
Sn). These results were essentially known to Dax [Da], who used a Haefliger-style
parametrized double-point elimination process to describe the low-dimensional homo-
topy groups of a variety of embedding spaces. Given an element of an embedding space
f ∈ Emb(S1, S1× Sn) we will denote the path-component of Emb(S1, S1× Sn) containing
f by Emb f (S1, S1 × Sn).

We begin with the least technical elements in Theorem 2.5, describing for n ≥ 3, three
epimorphisms:

W0 : π0 Emb(S1, S1 × Sn)→ Z

W1 : π1 Emb f (S1, S1 × Sn)→ Z

W2 : πn−2 Emb f (S1, S1 × Sn)→ ΛW0( f )
n

The epimorphisms W1 and W2 are defined for all components of the embedding space.
The group ΛW0

n is defined as a quotient of the Laurent polynomial ring Z[t±1], and
contains a free abelian subgroup of infinite rank. It can also contain 2-torsion.

For this definition we consider the Laurent polynomial ring Z[t±1] to be only a group.
We define ΛW0

n to be the quotient group, Z[t±1] modulo the subgroup generated by the
relations

〈tk + (−1)ntW0−1−k = 0 ∀k, t0 = 0, t−1 = 0〉.

The group ΛW0
n is the free abelian group on the generators

GW0 = {t
k : k ∈ Z, k ≥ W0 − 1

2
, k /∈ {−1, 0, W0, W0 − 1}}
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with the sole exception when n is even, |W0| > 2 and W0 is odd. In this case one has

the same generating set GW0 , but t
W0−1

2 represents 2-torsion. The remaining tk are free

generators, i.e. ΛW0
n ' Z2 ⊕

(
⊕

k>W0−1
2 ,tk∈GW0

Z

)
.

The definitions of the maps W0, W1 and W2 will be elementary applications of basic
transversality theory.

Definition 2.1. Let π : S1 × Sn → S1 be defined as π(z, v) = z. Given an embedding
f : S1 → S1 × Sn, define W0( f ) = deg(π ◦ f ) ∈ Z. This is the degree of the map
π ◦ f : S1 → S1.

S1

f ##

π◦ f
// S1

S1 × Sn

π

;;

The value W0( f ) only depends on the homotopy class of f . Provided n ≥ 3, the
homotopy class of f agrees with the isotopy class, by transversality. Thus

W0 : π0 Emb(S1, S1 × Sn)→ Z

is a bijection. An embedding f : S1 → S1 × Sn satisfying π( f (z)) = zn ∀z ∈ S1 would
have W0( f ) = n.

Definition 2.2. Given F : S1 → Emb(S1, S1 × Sn) we define

W1(F) = deg(F̂) ∈ Z

where F̂ : S1 → S1 is defined as F̂(z) = π(F(z)(1)), i.e. we consider F(z) ∈ Emb(S1, S1×
Sn) and we evaluate it at 1 ∈ S1.

We can consider W1 to be a function

W1 : π1 Emb f (S1, S1 × Sn)→ Z.

As a thought experiment, argue that given [F] ∈ π1 Emb(S1, S1×Sn) satisfying W1(F) =
k, one can assume π(F(z)(1)) = zk ∀z ∈ S1. More generally, one can show Emb(S1, S1 ×
Sn) ' S1 × Emb∗(S1, S1 × Sn) where Emb∗(S1, S1 × Sn) is the subspace of Emb(S1, S1 ×
Sn) where π ◦ F(1) = 1. From this perspective, W1 is simply the induced map from the
projection onto the first factor, i.e. Emb(S1, S1 × Sn)→ S1.

An appealing way to think of the invariants W0 and W1 is via the inclusion Emb(S1, S1×
Sn) → Map(S1, S1 × Sn), i.e. we are including the embedding space in the space of all
continuous functions from S1 to S1 × Sn. Notice that W0 and W1 extend to invariants of
π0 Map(S1, S1× Sn) and π1 Map(S1, S1× Sn) respectively. Moreover, as invariants of the
homotopy-groups of Map(S1, S1 × Sn) they are isomorphisms, since Map(S1, S1 × Sn)
splits as a direct product of two free loop spaces, Map(S1, S1 × Sn) ≡ L(S1) × L(Sn).
A simple general position argument tells us that the inclusion Emb(S1, S1 × Sn) →
Map(S1, S1 × Sn) induces an epi-morphism on πn−2 and an isomorphism on πk for
k < n − 2. The rough idea is that if one has a map from a k-dimensional manifold
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φ : M→ Map(S1, S1× Sn) one constructs the track of the map φ : M× S1 → M× S1× Sn

given by φ(p, z) = (p, φp(z)). By transversality, this map can be uniformly approxi-
mated by a smooth embedding if 2(k + 1) < k + 1 + n, i.e. k ≤ n − 2 (see for ex-
ample Theorem 2.13 [Hir]). Such an approximation is no longer a track-type function
on the nose, but given that the approximation is uniform in (at least) the C1-topology,
and the fact that diffeomorphisms of M form an open subset of the space of maps
Map(M, M), one can apply a diffeomorphism of M (close to IdM) to generate an approx-
imation that is the track of an embedding. The first two non-trivial homotopy-groups
of Map(S1, S1 × Sn) are π0 and π1, both infinite cyclic. The next non-trivial homotopy-
group is πn−1 Map(S1, S1 × Sn) ' Z.

The next invariant W2 has the form

W2 : πn−2 Emb f (S1, S1 × Sn)→ ΛW0( f )
n .

By the previous paragraph, it measures the lowest-dimensional deviation between the
homotopy-types of Emb(S1, S1 × Sn) and Map(S1, S1 × Sn).

Definition 2.3. Let C2(M) denote the configuration space of pairs of distinct points in
M,

C2(M) = {(p1, p2) ∈ M2 : p1 6= p2}.
Denote the cocircular pair subspace of C2(S1× Sn) by CC = {(z1, p1), (z2, p2) ∈ C2(S1×

Sn) : p2 = p1}. The cocircular pair subspace is (n+ 2)-dimensional, having co-dimension
n in C2(S1 × Sn). Given F : Sn−2 → Emb(S1, S1 × Sn), assume the induced map

F̂ : Sn−2 × C2S1 → C2(S1 × Sn)

is transverse to CC, where F̂(v, z1, z2) = (F(v)(z1), F(v)(z2)). In such a situation we will
associate W2(F) ∈ ΛW0( f )

n .
Our polynomial will be akin to the transverse intersection number of F̂ with CC, but

we include an enhancement into the definition. The set F̂−1(CC) is Σ2 invariant, and Σ2
acts freely on C2(S1). The invariant W2(F) will be a sum of monomials associated to the
points of F̂−1(CC)/Σ2. Given a point q = (v, z1, z2) ∈ F̂−1(CC) we associate an element
Lq(F) ∈ Z[t±1] and define

W2(F) = ∑
[q]∈F̂−1(CC)/Σ2

Lq(F) ∈ ΛW0
n .

We define Lq(F) = εtk, where ε ∈ {±1} is the local oriented intersection number of F̂
with CC at q. Observe the map

Sn × C2(S1) 3 (w, z1, z2) 7−→ ((z1, w), (z2, w)) ∈ C2(S1 × Sn)

is a diffeomorphism between Sn × C2(S1) and CC. This is how we give CC its orienta-
tion. This map is also Σ2-equivariant. The monomial degree k is computed via a pair of
conventions. If (z1, z2) ∈ C2(S1), let [z1, z2] denote the counter-clockwise oriented arc in
S1 that starts at z1 and ends at z2. Similarly, given a point of CC, ((z1, p1), (z2, p1)), the
cocircular arc with this boundary is denoted [z1, z2]× {p1}. When thinking of S1× Sn we
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refer to this as the vertical orientation. The monomial degree k is obtained by concate-
nating F(v)([z1, z2]) with the opposite-oriented cocircular arc in S1 × Sn associated to
F̂(v, z1, z2), and taking the degree of the projection to the S1 factor of S1 × Sn. We depict
an example in Figure 1, with the concatenation appearing in green. The unused portion
of the vertical circle is in red. In this example W0( f ) = 6, and Lq(F) = εt2.

F(v)(z1)

F(v)(z2)

F(v)
S1

S
n

Figure 1. Example computation of monomial exponent, Lq(F) = ±t2.

Notice that W2 naturally factors as W∗2 : πn−2 Emb∗f (S
1, S1 × Sn) → ΛW0( f )

n after
projecting-out the S1 factor, using the product decomposition Emb(S1, S1 × Sn) ' S1 ×
Emb∗(S1, S1 × Sn).

Given (v, z1, z2) ∈ F̂−1(CC) then we also have (v, z2, z1) ∈ F̂−1(CC) and one can check

L(v,z2,z1)
(F) = (−1)n+1tW0−1L(v,z1,z2)(F).

We use the notation · to denote the Z-linear mapping · : Z[t±1] → Z[t±1] satisfying
tk = t−k. Thus W2(F) is well-defined for F. The relation t0 = 0 in ΛW0

n was chosen to
ensure W2(F) is a homotopy-invariant of F. We use a compactification of configuration
spaces to check homotopy-invariance.

Our manifold compactification of C2(S1) is diffeomorphic to an annulus S1 × [−1, 1].
The boundary circles correspond to ‘infinitesimal’ configurations of pairs of points in S1;
one component where the direction vector from z1 to z2 agrees with the orientation of
S1, and the other being the reverse.

The Fulton-MacPherson compactified configuration space has the rather simple model
of M2 blown up along its diagonal C2[M] = Bl∆M M2. Typically this is made formally
precise by defining C2[M] to be the closure of the graph of a function [Si2], such as
φ : C2(M) → Sk where φ(p, q) = p−q

|p−q| , assuming M ⊂ Rk+1. This compactifica-
tion is functorial under embeddings of manifolds. The inclusion C2(M) → C2[M] is
a homotopy-equivalence, i.e. C2[M] is diffeomorphic to M2 remove an open tubular
neighbourhood of the diagonal ∆M = {(p, p) : p ∈ M}. There is a canonically-defined
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onto smooth map C2[M] → M2, where the pre-image of ∆M is ∂C2[M], which is canon-
ically isomorphic to the unit tangent bundle of M. The interior of C2[M] is mapped
diffeomorphicly to M2 \ ∆M.

We now prove the homotopy-invariance of W2(F). Consider what happens in a ho-
motopy of F. The boundary of I × Sn−2 × C2[S1] consists of the temporal part (∂I) ×
Sn−2 × C2[S1] and the annular part I × Sn−2 × ∂C2[S1]. The only monomial degrees that
run off the annular part of the boundary are t−1, t0, tW0−1, tW0 . For example, t0 runs off
the annular part if in our transverse family we have a tangent vector to our knot point-
ing in the vertical direction, oriented counter-clockwise. Similarly, t−1 can run off the
boundary if we produce a tangent vector in the vertical direction, oriented clockwise.
The monomials tW0−1 and tW0 are symmetric, after re-labelling the points of the domain
(z1, z2)↔ (z2, z1).

Thus if we consider W2(F) to be an element of the quotient group ΛW0
n , it is a homotopy-

invariant.
In Theorem 2.5 and Section 3 we need the notion of a half-ball.

Definition 2.4. Let Hn = {(x1, · · · , xn) ∈ Rn : x1 ≤ 0} and define the half-ball HBn =
Bn ∩ Hn. HBn is a manifold with corners. As such, it is a stratified space with two
co-dimension one strata, the round boundary HBn ∩ ∂Bn and the flat boundary HBn ∩ ∂Hn.
These two boundaries meet at the corner (co-dimension two) stratum {0} × Sn−2.

S1

S
n

i(HB2)

f

Figure 2. Constructing θ f ,k.

Theorem 2.5. Let f ∈ Emb(S1, S1 × Sn). Provided n ≥ 3 both W1 and W2 are epimorphisms.
When n = 3 the map

W1 ×W2 : π1 Emb f (S1, S1 × S3)→ Z⊕ΛW0
3

is an epimorphism, i.e. W∗2 : π1 Emb∗f (S
1, S1 × S3)→ ΛW0

3 is an epi-morphism.
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Proof. That W1 is an epimorphism follows from the splitting Emb f (S1, S1 × Sn) ' S1 ×
Emb∗f (S

1, S1 × Sn), as it is the degree of the projection to the S1 factor.
To argue that W2 is an epimorphism, we start with the fixed degree W0 near-linear

embedding f : S1 → S1 × Sn, depicted in black in Figure 2.
Imagine an immersed half-ball i : HB2 → S1 × Sn that is an embedding with the

exception of a regular double point on the round boundary. We demand i−1( f (S1))
coincides with the flat boundary of HB2. As in Figure 2 we demand that the map from
the flat part of the boundary of i(HB2) to the vertical S1 factor has no critical points. We
further demand that the arc in HB2 connecting the double points projects to a degree k
map in the vertical S1 factor, and that (as in Figure 2) the double-point occurs near the
bottom of the flat boundary.

We modify the embedding f , creating a new immersed curve S1 → S1 × Sn by replac-
ing the arc f (S1) ∩ i(∂ f HB2) with i(∂rHB2), i.e. we cut out the flat boundary of i(HB2)
from f (S1) and replace it with the round boundary. This immersed curve is depicted in
Figure 2 as the union of the solid black vertical broken curve (depicting f with the flat
boundary removed), with the solid red curve (depicting the round boundary of i(HB2)).
Call this immersed curve θ̃ f ,k : S1 → S1 × Sn. Given that n ≥ 3, we can assume the
projection of θ̃ f ,k to Sn is also an immersion, and embedding at all but the single double
point.

The sum of the tangent spaces at the double-point of θ̃ f ,k is 2-dimensional, so the
orthogonal complement is (n− 1)-dimensional, having an Sn−2-parameter family of unit
normal vectors. Using a bump function, given a unit normal vector one can perturb one
strand of i(∂rHB2) at the double-point, creating an embedded circle in S1 × Sn. This
gives us our family of resolutions,

θ f ,k : Sn−2 → Emb f (S1, S1 × Sn).

The fact that the projection of θ̃ f ,k to Sn was an embedding with the sole exception of
the single double-point allows us to conveniently identify the cocircular points in our
family θ f ,k : Sn−2 → Emb f (S1, S1 × Sn), giving us W2(θ f ,k) = tk − tk−1. �

We have an involution of Emb(S1, S1× Sn) that negates the W0 invariant. One descrip-
tion is the process that sends the embedding f ∈ Emb(S1, S1 × Sn) to z 7−→ f (z−1). Call
this embedding f . Then we have θ f ,k = θ f ,−k−1, i.e. the θ elements are symmetric about
−1/2.

Another family i : HB2 → S1 × Sn to consider is one where i is an embedding. We
demand that i(HB2) intersects f along the flat boundary, and also at a single point along
the round boundary – a regular double point. Consider the case where the projection
of the embedding i to the S1 factor is not onto, i.e. it is constrained to an interval in
the S1 factor. Then i connects one strand of f to adjacent strands. Let’s say to the k-th
strand (using the cyclic ordering) with k ∈ {0, 1, · · · , W0− 1}, assuming W0 > 0. Call the
resolved family of knots γ f ,k : Sn−2 → Emb(S1, S1× Sn). Given that, we have W2(γ f ,k) =

tk − tk−1. Recall that ΛW0
n = Z[t±1]/〈t−1, t0, tk + (−1)ktW0−1−k ∀k〉. Thus {γ f ,k : k ∈
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{0, 1, · · · , W0− 1}} spans the same subspace of ΛW0
n as the monomials {t, t2, · · · , tW0−2},

i.e. all the intermediate monomials that were not killed by the definining relations of
ΛW0

n .
We give an alternative way to visualize elements of π1 Emb f (S1, S1× S3) with W2 6= 0

by embedded tori, where f denotes the standard generator of π1(S1), i.e. the W0 = 1
component. Each generator will be represented by an embedded torus T ⊂ S1 × S3

which contains the curve γ0 = S1 × {y0}. Such a torus T gives rise to an element
z of π1 Emb(S1, S1 × S3) by fibering T by parametrized smooth circles {γt|t ∈ [0, 1]}
with γ0 = γ1. Once γ0 is chosen, what really matters is which way to go around the
torus. To do this and control W1, we choose an oriented simple closed curve µw ⊂
T, homotopically trivial in S1 × S3, that intersects γ0 transversely once at some point
w = (x0, y0) ∈ S1 × S3. The homotopy condition implies that that W1(z) = 0 and the
orientation informs us that γ0 is required to spin about T so that w follows µw in the
oriented direction. Denote by (T, µw) the represented element of π1 Emb f (S1, S1 × S3).

S
1

Figure 3. (a) Vertical torus in S3 × S1. Vertical fibers represent trivial
element in π1 Emb(S1, S3 × S1), in the component with W0 = 1.

(b) Sphere linking tube in 4-space.

The standard vertical torus T∗, shown in Figure 3(a) represents the trivial element
of π1 Emb(S1, S1 × S3). Figures 4 (a) and (b) describe embedded tori corresponding
to t2 and t3 respectively. In our diagrams, µw ⊂ {x0} × S3, with S3 being depicted
horizontally as in Figure 3 (b). In a similar manner we obtain a torus corresponding to
tn, |n| ≥ 1. Each of our tori is constructed by tubing T∗ with an unknotted, unlinked
2-sphere as follows. Emanating from the boundary of a small disc on T∗ the tube first
links the sphere, then goes n ∈ N times around the S1 factor before finally connecting
to the 2-sphere. Figures 4 (a) and (b) show the projection of T to S1 × (S2 × 0) where S3

is identified with S2 × [−∞, ∞], where each component of S2 × {±∞} is identified to a
point. By construction T ⊂ S1× (S2×{0}), except for where the tube links the 2-sphere.
See Figure 3(b) for a detail. The crossing convention for the tube and sphere informs us
that the part of the tube that projects to the right side of the 2-sphere lives a bit in the
past (i.e. in S1 × (S2 × [−1, 0)) and the part of the tube on the left lives in the future. By
construction, the 2-sphere bounds a 3-ball B ⊂ S1× (S2× {0}) that intersects the tube is
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a single simple closed curve. By either reversing the way the tube links the 2-sphere, or
reversing the orientation on µw we obtain the inverse of the generator. See Figure 6(b).

Proposition 2.6 relates the generators α f ,k and θ f ,k, described above. To make this
proposition precise, and not simply up to a choice of sign, we need to provide an orienta-
tion to the parametrizing sphere Sn−2 of our generators θ f ,k : Sn−2 → Emb f (S1, S1× Sn).
The parametrizing sphere came up as the unit normal sphere to the sum of the tangent
spaces at the double point. Given this proposition is only for n = 3, our Sn−2 is a circle.
We choose the orientation consistent with the rotation from above the double point (i.e.
the positive vertical direction) to the into the page direction. This gives us the formula
below.

Figure 4. (a) Torus representing α f ,1 with W0( f ) = 1, W2 = t2 − t0 = t2 6= 0
(b) Torus representing α f ,2 with W0( f ) = 1, W2 = t3 − t1 = t3 6= 0

Proposition 2.6. α1,i = θ1,i+1 − θ1,i.

Proof. The proof is by directly constructing a homotopy between representatives. We
demonstrate it for i = 1 with the general case being similar. As above, we view S1 × S3

as a quotient of S1 × S2 × [−∞, ∞]. In what follows all the figures, except for f) live in
S1 × S2 × {0}. Figure 5(a) depicts the constant loop κa

t , t ∈ I, with each κa
t representing

the standard W0 = 1 curve κ. Now Figure 5(b) also represents the W2 = 0 loop κb
t .

Here κb
t = κa

t for t ∈ [0, 1/8] ∪ [7/8, 1]. During t ∈ [1/8, 1/4] it sweeps to the curve
shown in b) and stays there for t ∈ [1/4, 3/4] before sweeping back to κ. Next we modify
this loop to κc

t representing −θ1,1. Consider the half disc E1. Here ∂ f (E1) ⊂ κb
1/2 and

∂r(Ei) locally links κb
1/2. Define κc

t = κb
t , t ∈ [0, 1/4] ∪ [3/4, 1]. During t ∈ [1/4, 1/2],

keeping endpoints fixed, ∂ f (E1) sweeps across E1 to end at ∂r(E1). The interior of each
arc, for t ∈ (1/4, 1/2) is pushed slightly into the future, i.e. into S1 × S2 × s for s > 0.
During t ∈ [1/2, 3/4], keeping endpoints fixed ∂r(E1) is pushed back to ∂ f (E1). Here
for t ∈ (1/2, 3/4), the interior of each arc is pushed into the past. We next modify this
loop to κd

t representing −θ1,1 + θ1,2 as shown in Figure 5(d). We have abused notation
by calling one of the half discs of d) also E1. Again, keeping endpoints fixed the arcs
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Figure 5. Associated to Proposition 2.6

∂ f (E1)∪ ∂ f (E2) sweep to ∂r(E1)∪ ∂r(E2) and then back again with interiors of arcs in the
first (resp. second) part of the motion in the future (resp. past). Note, that the twist in the
half disc E2, which lies in S1× S2× 0, gives rise to θ1,2 rather than its inverse. The loop κd

t
is homotopic to κe

t where here the half disc E is used. Again, the homotopy is supported
in [1/4, 3/4] and κe

t has the feature that keeping endpoints fixed ∂ f (E) sweeps, pushed
slightly into the future, across E to ∂r(E), and then sweeps back to ∂ f (E) again with
interiors of arcs pushed slightly into the past. Thus Figure 5(f) also represents κe

t , with
the sphere being the image of the track of ∂ f (E) as it sweeps to ∂ f (E) and back. Finally,
it is readily checked that κe

t represents α1,1. �

Figure 6. (a) Torus with W2 = t2 + t3

(b) All three tori with W2 = −t2

We describe how to represent composition of generators when f = κ, the general case
being similar. First some terminology. Let p : T∗ → µw be the vertical projection. By
construction, each generator is obtained by removing a small disc D from T∗ \ κ and
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replacing it by a disc D′. Further each knotted disc lies in a small neighborhood of
a 1-complex which itself lies in a neighborhood of p−1(δ), for some interval δ ⊂ µw.
Squeezing, expanding or rotating this interval and correspondingly modifying the discs
D and D′ does not change the based homotopy class of (T, µw) provided that the ex-
panding or rotating is supported away from w. The composition of generators β0 and β1
is represented as follows. First find tori (T0, µw), (T1, µw) constructed as above respec-
tively representing β0, β1 so that T0 coincides with T1 near µw and the latter having a
fixed orientation. Further, assume that each Ti is standard away from a neighborhood of
p−1(δi) where δ0 ∩ δ1 = ∅ and δ0 proceeds δ1 when starting at x ∈ µw. To obtain (T, µw)
representing β0 ∗ β1, modify T∗ near both p−1(δi), i = 0, 1 according to T0 and T1. See
Figure 6(a). To see that β0 ∗ β1 is homotopic to β1 ∗ β0 observe that the two tori represent-
ing these classes are isotopic via an isotopy fixing κ ∪ µw pointwise. We conclude that
any word in the generators is realizable by an embedded torus and π1 Emb f (S1, S1× S3)
is abelian.

Proposition 2.7. Let f : S1 → S1 × S3 be the standard vertical embedding with W0( f ) = 1.
Let p : S1 × S3 → S1 × S3 the m-fold cyclic cover, let {αi|i > 0} denote the generators of
π1(Emb f (S1, S1 × S3)) as in Theorem 2.5 and let α̃i denote the p∗ pull back of αi. Then α̃n = 1
if m does not divide n and α̃n = mαn/m if m divides n.

Proof. Represent αn by the torus Tn as in §2. Then α̃n is represented by p−1(Tn) = Rn.
Now Tn is constructed from the standard vertical torus T∗ and an unknotted 2-sphere
K by removing small discs DT, DK from T∗ and K, and then adding a tube Y that starts
at ∂DT, links through K, goes n times about the S1 direction before connecting to ∂DK.
Therefore Rn is obtained by removing m small discs from T∗ and one from each of the
preimages of K and then connecting their boundaries by the m preimages Y1, · · · , Ym of
Y. I.e. Rn is obtained by removing m standard discs from T∗ and replacing them by m
other ones. Now assume that m divides n. Then the sphere Ki that Yi links is also the
sphere to which Yi connects. Note that if DT

i (resp. DK
i ) is the preimage of DT (resp. DK)

whose boundary is tubed to Yi, then ((T∗ ∪ Ki) \ (DT
i ∪DK

i )) ∪Yi is a torus representing
αn/m. After an isotopy of Rn supported near the DT

i ’s we can assume that the projection
π : T∗ → µw has the property that π(DT

1 ), · · · , π(DT
n ) are disjoint intervals. (Recall that

µw ⊂ T∗ is an oriented loop intersecting each vertical S1 fiber once.) It follows that
Rn represents an element β of π1(Emb(S1, S1 × S3)) which corresponds to the standard
vertical circle sweeping around T∗ and going over one knotted disc at a time. Since there
are m such discs it follows that β = mαn/m.

Now assume that m does not divide n. In that case each tube Yi links a sphere distinct
from the one to which it connects. Again isotope Rn near the DT

i ’s so that the projection
π : T∗ → µw has the property that π(DT

1 ), · · · , π(DT
n ) are disjoint intervals. Again let β

be the element represented by Rn. Here the discs swept over by β can be individually
isotoped back to their DT

i ’s without intersecting T∗. It follows that β = 1. �

We return to the problem of determining if our invariants W0, W1 and W2 are complete
invariants of the low-dimensional homotopy groups of Emb(S1, S1 × Sn).
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Lemma 2.8. The homotopy groups of C2(S1 × Sn) are:

π1C2(S1 × Sn) ' Z2

πmC2(S1 × Sn) ' πmSn ⊕ πm(Sn)[t±1]

for m ≥ 2. The symbol πm(Sn)[t±1] denotes the Laurent polynomials with coefficients in the
group πm(Sn), thus when m = n it is the Laurent polynomial ring with integer coefficients.

The boundary of C2(S1 × Sn) can be canonically identified with S1 × Sn × Sn using our
preferred trivialization of T(S1 × Sn). Thus π1∂C2(S1 × Sn) ' Z and πn∂C2(S1 × Sn) ' Z2.
We compute the induced map on the above homotopy groups for the inclusion map ∂C2(S1 ×
Sn) → C2(S1 × Sn). To make sense of this map we need a common choice of basepoint. Identify
∂C2(S1 × Sn) with the unit sphere bundle of S1 × Sn. Our basepoint will be the direction vector
pointing in the counter-clockwise direction of S1, based at (1, ∗) where ∗ ∈ Sn is any basepoint
choice for Sn.

The induced map on π1 is identified with the diagonal map ∆ : Z → Z2, ∆(t) = (t, t). The
induced map on πn is identified with Z2 → Z⊕Z[t±1], which in matrix form is(

1 0
0 1− t−1

)
.

The above computation requires a choice of common basepoint in ∂C2(S1× Sn) and C2(S1× Sn),
and is valid for any such choice.

These isomorphisms follow from the fact that the fiber bundle

Bl∗(S1 × Sn)→ C2[S1 × Sn]→ S1 × Sn

has a section. There are several sections available: (1) using the trivialization of T(S1 ×
Sn) or (2) using the antipodal map of S1 or Sn or the combination of the two. All of these
sections are homotopic. The section (1) is the only choice that allows for a common
base-point in C2(S1 × Sn) and its boundary.

Theorem 2.9. The invariant

W1 ⊕W2 : π1 Emb f (S1, S1 × S3)→ Z⊕ΛW0
3

is an isomorphism for all f ∈ Emb(S1, S1 × S3). Stated another way, W∗2 : π1 Emb∗f (S
1, S1 ×

S3)→ ΛW0
3 is an isomorphism for all f ∈ Emb∗f (S

1, S1×S3), i.e. the components of Emb(S1, S1×
S3) have infinitely-generated, free-abelian fundamental groups.

We also prove an analogous theorem for Emb(S1, S1 × Sn) with n ≥ 4.

Theorem 2.10. For n ≥ 4, the first three non-trivial homotopy groups of the embedding space
Emb(S1, S1 × Sn) are given by the maps:

(1) W0 : π0 Emb(S1, S1 × Sn)→ Z which is an isomorphism.
(2) W1 : π1 Emb f (S1, S1 × Sn) → Z which is also an isomorphism, for any choice of path-

component, i.e. f ∈ Emb(S1, S1 × Sn).
(3) W2 : πn−2 Emb f (S1, S1 × Sn) ' ΛW0

n and it is also an isomorphism, for any choice of
path component f ∈ Emb(S1, S1 × Sn).
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As was described between Definitions 2.2 and 2.3, a general-position argument tells
us the forgetful map Emb(S1, S1 × Sn) → Map(S1, S1 × Sn) is an isomorphism on all
homotopy groups πk for k < n − 2, and an epi-morphism on πn−2. Moreover, the
space Map(S1, S1× Sn) splits as the product of two free loop-spaces Map(S1, S1× Sn) '
L(S1) × L(Sn), which proves claims (1) and (2) in Theorem 2.10. The primary role of
Theorems 2.9 and 2.10 is the description of the first homotopy-group of the embedding
space Emb(S1, S1 × Sn) that differs from that of the mapping space Map(S1, S1 × Sn).
By Theorem 2.5 we know this happens in dimension n − 2. The homotopy group
πn−2 Emb f (S1, S1 × Sn) contains a large abelian subgroup, detected by the W2 invari-
ant. The purpose of Theorems 2.9 and 2.10 is to argue W2 (and W1 if n = 3) detects all
non-trivial elements of πn−2 Emb f (S1, S1 × Sn), provided n ≥ 3.

We will use a tool called functor calculus in the context of embedding spaces Emb(M, N)
to prove Theorems 2.9 and 2.10. Although everything needed to prove these two theo-
rems is present in the work of Dax [Da], we choose to use embedding calculus to situate
the proof in a contemporary context. It should be noted that Theorems 2.9 and 2.10 are
not essential to any of the results highlighted in the introduction.

The embedding calculus gives us a sequence of maps out of embedding spaces

Emb(M, N)→ Tk Emb(M, N)

where M is an m-dimensional manifold and N is an n-dimensional manifold. The k-
th evaluation map Emb(M, N) → Tk Emb(M, N) is known to be k(n − m − 2) + 1− m-
connected. This means that for any choice of path-component of Emb(M, N) the induced
map πj Emb(M, N)→ πjTk Emb(M, N) is an isomorphism for j < k(n−m− 2) + 1−m
and an epimorphism for j = k(n−m− 2) + 1−m. This connectivity result is only valid
provided n ≥ m + 3, i.e. it requires embeddings to be of co-dimension 3 or larger. In
our case, M = S1 is a 1-manifold and N = S1 × Sn−1, thus the k-th evaluation map is
k(n− 3)-connected. This tells us that we need only compute πn−2

(
T2 Emb(S1, S1 × Sn)

)
to verify Theorems 2.9 and 2.10.

Our invariant W2 is almost defined on T2 Emb(S1, S1×Sn). Specifically, T2 Emb(S1, S1×
Sn) is described as a homotopy pull-back of three familiar spaces in Corollary 4.3 of the
paper of Goodwillie and Weiss [GW2]. Readers unfamiliar with homotopy pull-backs,

or homotopy-limits of diagrams of the form X
f
// Z Y

g
oo , see Definition 3.2.4 of

the book [MV] which provides useful context. In short, such a homotopy pullback is

denoted holim( X
f
// Z Y

g
oo ). This is the space of triples

{(x, α, y) : x ∈ X, α : [0, 1]→ Z, y ∈ Y, s.t. α(0) = f (x), α(1) = g(y)}.

The element α is a continuous path between f (x) and g(y). We will describe T2 Emb(S1, S1×
Sn) as a homotopy pullback of a diagram of three spaces, as in Corollary 4.3 of [GW2].

(1) Map(S1, S1× Sn), i.e. this is the space of continuous functions from S1 to S1× Sn.
(2) MapΣ2((S1)2, (S1× Sn)2), this is the space of Σ2-equivariant continuous functions

from (S1)2 to (S1 × Sn)2, where the Σ2-action on the two spaces comes from
permuting coordinates.
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(3) ivmapΣ2((S1)2, (S1 × Sn)2), this is the space of strictly isovariant maps. This is a
subspace of (2) where the maps f have the additional properties that f−1(∆S1×Sn) =

∆S1 , i.e. the diagonal subspace of (S1)2 is the only subspace sent to the diagonal
subspace of (S1 × Sn)2, where ∆M = {(p, p) : p ∈ M} ⊂ M2. The other condition
is the derivative of f is fibrewise injective from the normal bundle of ∆S1 (in (S1)2)
to the normal bundle of ∆S1×Sn (in (S1 × Sn)2).

The result of Goodwillie and Weiss [GW2] is that T2 Emb(S1, S1× Sn) is the homotopy
pullback of the diagram

ivmapΣ2((S1)2, (S1 × Sn)2) // MapΣ2((S1)2, (S1 × Sn)2) Map(S1, S1 × Sn)oo

where the first map is set-theoretic inclusion. The second map Map(S1, S1 × Sn) →
MapΣ2((S1)2, (S1 × Sn)2) is given by repetition i.e. if f ∈ Map(S1, S1 × Sn) then the
equivariant map of pairs is given by (z1, z2) 7−→ ( f (z1), f (z2)).

Proposition 2.11. The forgetful map T2 Emb(S1, S1 × Sn)→ ivmapΣ2((S1)2, (S1 × Sn)2) in-
duces an isomorphism on homotopy groups πk for k ≤ n− 2, on all path components. Moreover,
the space of isovariant maps ivmapΣ2((S1)2, (S1 × Sn)2) is homotopy-equivalent to the space of
stratum-preserving Σ2-equivariant maps C2[S1]→ C2[S1 × Sn].

Proof. The forgetful map holim( X
f
// Z Y

g
oo ) → X is the map that maps a triple

(x, α, y) 7−→ x. As is described in Example 3.2.8 [MV], the fibre over a point x∗ ∈ X

is holim( {x∗}
f
// Z Y

g
oo ), and this can be identified with the homotopy-fibre of

g : Y → Z over f (x∗).
In our case we are interested in the forgetful map from the homotopy limit of

ivmapΣ2((S1)2, (S1 × Sn)2) // MapΣ2((S1)2, (S1 × Sn)2) Map(S1, S1 × Sn)oo

to ivmapΣ2((S1)2, (S1 × Sn)2). Let’s investigate the homotopy-groups of

hofibW0

(
Map(S1, S1 × Sn)→ MapΣ2((S1)2, (S1 × Sn)2)

)
.

Given that this map is the repetition map, it is split. The splitting comes from restric-
tion to the Σ2-fixed subspaces of (S1)2 and (S1 × Sn)2 respectively, i.e. the diagonals.
This tells us that the homotopy-groups of hofib are the kernel of the induced maps
πk Map(S1, S1 × Sn) → πk MapΣ2((S1)2, (S1 × Sn)2)). These groups are trivial when
k ≤ n− 2, since πk Map(S1, S1 × Sn), with the exceptions of k = 0 or k = 1, in which
case the repetition map is injective. Thus the map

πn−2T2 Emb(S1, S1 × Sn)→ πn−2

(
ivmapΣ2((S1)2, (S1 × Sn)2)

)
is always an isomorphism.

Regarding the claim that the space of strictly isovariant maps is homotopy-equivalent
to the space of stratum-preserving Σ2-equivariant maps C2[S1] → C2[S1 × Sn], recall
that a map of Fulton-Macpherson compactified configuration spaces descends to a map
(S1)2 → (S1 × Sn)2. Given that our initial map was assumed to be Σ2-equivariant, the
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induced map will be as well. Lastly, using the uniqueness of collar neighbourhoods
theorem, one can assume all our maps C2[S1] → C2[S1 × Sn] are fibrewise linear with
respect to the distance parameter from the boundary – this is enough to guarantee our
induced map (S1)2 → (S1 × Sn)2 is isovariant. Similarly, given a strictly isovariant map,
one can lift it to a unique map of the Fulton-Macpherson compactified configuration
spaces. �

Proof. (of Theorem 2.9) The space C2[S1] is simply an annulus, i.e. diffeomorphic to
S1× [−1, 1]. The space C2[S1× S3] is diffeomorphic to (S1× S3)× Bl1(S1× S3), given by
the map

C2(S1 × S3) 3 (z1, p1), (z2, p2) 7−→ (z1, p1), (z1z−1
2 , p1p−1

2 ) ∈ S1 × S3 × (S1 × S3) \ {1}.

The blow-up Bl1(S1 × S3) deformation-retracts to its 3-skeleton S1 ∨ S3.
The boundary of C2[S1 × S3] is canonically diffeomorphic to the unit tangent bundle

of S1 × S3. Due to the triviality of T(S1 × S3) we can think of the unit tangent bundle of
S1 × S3 as S1 × S3 × S3.

The fundamental group π1C2[S1 × S3] is free abelian on two generators, see Lemma
2.8. The natural set of generators are given by the winding numbers of the first and
second points of the configurations about the S1 factor of S1× S3. Consider the covering
space of C2[S1 × S3] corresponding to the homomorphism π1C2[S1 × S3] → Z given by
taking the difference between the two winding numbers. We denote this covering space
by C̃2[S1 × S3]. By design, any stratum-preserving map C2[S1]→ C2[S1 × S3] lifts to this
covering space, C2[S1]→ C̃2[S1 × S3]. Since C2[S1 × S3] fibers over S1 × S3, this covering
space does as well, but the fiber is the universal cover of Bl∗(S1 × S3), which could be
described as BlZ×{1}(R× S3), giving

C̃2[S1 × S3] ' BlZ×{1}(R× S3)× S1 × S3.

Consider a map S1 × C2[S1] → C̃2[S1 × S3] ≡ BlZ×{1}(R × S3) × S1 × S3. We can
assume this map is null in the rightmost S3 factor, as it is homotopic to a map that
factors through a 2-dimensional domain. Thus we have reduced the computation of
the fundamental group of this mapping space to understanding the space of stratum-
preserving maps

C2[S1]→ BlZ×{1}(R× S3)× S1.

If we take the degree of the projection to the S1 factor we recover W0. Given a family
S1×C2[S1]→ BlZ×{1}(R× S3)× S1, the homotopy-class of the projection to the S1 factor
is determined by the W0 and W1 invariants.

Consider the projection C2[S1] → BlZ×{1}(R × S3). By design, one boundary stra-
tum is in the blow-up sphere corresponding to k× {1}, and the other stratum is in the
blow-up sphere corresponding to (k+W0)×{1}. The space BlZ×{1}(R× S3) has the ho-
motopy type of an infinite wedge of 3-spheres, perhaps best thought of as the 3-skeleton
of
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(
R× S3

)
\ (Z× {1}) ' (R× {−1}) ∪

(
ti∈Z{

1
2
+ i} × S3

)
.

To describe the equivariance condition on our lift C2[S1] → BlZ×{1}(R× S3), the rel-
evant Σ2-action on the target space is induced by the map (t, p) 7−→ (2j + W0 − t, p−1).
Choosing j = 0 gives us the same convention as in Theorem 2.5. This computation is
done by considering the diffeomorphism C2(S1 × S3) → (S1 × S3)× ((S1 × S3) \ {1}).
The involution of C2(S1 × S3) in the Σ2-action sends (z1, p1), (z2, p2) to (z2, p2), (z1, p1).
Conjugating this involution by our identification gives us the map (z1, p1), (z2, p2) →
(z−1

2 z1, p−1
2 p1), (z−1

2 , p−1
2 ), which, on the fiber lifts to the above map.

Homotopy classes of maps to wedges of spheres, via the Ponyriagin construction,
are characterized by their intersection numbers with the points antipodal to the wedge
point. Our maps are equivariant, so our framed points in the domain satisfy a symmetry
condition. Our space BlZ×{1}(R× S3) equivariantly deformation retracts to the above 3-
skeleton. The Σ2-stabilizer is a single point if W0 is even, and a pair of points (W0

2 ,±1) ⊂
{W0

2 } × S3 if W0 is odd. Since the Σ2-action on the domain is fixed-point free, all this
tells us is the degree associated to this intermediate sphere is even. Thus, if W2 is
zero, we can equivariantly homotope our map so that its image is disjoint from the
antipodal points to all the wedge points of the S3 factors. We can therefore assume our
map C2[S1] → R× {−1} ∪

(
ti∈Z{ 1

2 + i} × S3
)

is homotopic to a map to the interval
[0, W0]× {−1}. �

Proof. (of Theorem 2.10) The proof roughly mimics Theorem 2.9. Unfortunately, the
bundle C2(S1 × Sn) → S1 × Sn is generally not trivial, so we do not have access to quite
as simple an argument, but we take some inspiration from it.

As with Theorem 2.9 we need only consider equivariant stratum-preserving maps
C2[S1]→ C2[S1 × Sn] to compute πn−2 Emb(S1, S1 × Sn). So we consider a map

Sn−2 × C2[S1]→ C2[S1 × Sn]

with n ≥ 4.
The composite with the bundle projection map C2[S1 × Sn]→ S1 × Sn factors through

the projection to S1, and is given by the W1 invariant. Thus our map lifts

Sn−2 × C2[S1]→ C̃2[S1 × Sn].

As with the proof of Theorem 2.9 the fiber of the map C̃2[S1× Sn]→ S1× Sn can be iden-
tified with BlZ×{1}(R×Sn), which is similarly identified with R×{−1}∪

(
ti∈Z{1

2 + i} × Sn
)

.
Here our argument diverges from the proof of Theorem 2.9. While the action of Σ2 on

C2(S1) is free, it has the invariant subspace of antipodal points on S1.
By restricting to the subspace of antipodal points, we get a fibration from the space of

stratum-preserving equivariant maps C2[S1]→ C2[S1×Sn] to the space MapsΣ2(S1, C2[S1×
Sn]) of equivariant maps. This mapping space can be thought of as the space of maps
S1 → S1 × Sn where antipodal points are required to map to distinct points. By a
transversality argument, any k-dimensional family of maps to the free loop space L(S1×
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Sn) can be perturbed to have this property, provided k < n. Thus through dimension
n− 2, this space has the same homotopy groups as L(S1 × Sn) ' L(S1)× L(Sn), which
are the homotopy groups of Z× S1. i.e. this recovers our W0 and W1 invariants.

We are considering the fibration from the space of stratum-preserving equivariant
maps

C2[S1]→ C2[S1 × Sn]

to the space MapsΣ2(S1, C2[S1 × Sn]). The fiber is precisely the space of maps of an
annulus S1 × [0, 1] to C2[S1 × Sn] that restrict to a fixed map on one boundary circle,
and which send the other boundary circle to ∂C2(S1 × Sn). We lift this map to the fiber
R× {−1} ∪

(
ti∈Z{1

2 + i} × Sn
)

. From this perspective we can see that the W2 invariant
is well-defined for an (n− 2)-parameter family, and there are no further invariants. �

Theorem 2.12. To each element of π1 Emb(S1, S1 × S3), there is an explicitly constructible
embedded torus that represents that element via the spinning construction. �

3. Bundles of Embeddings and Diffeomorphism Groups

Rationally, the first three non-trivial homotopy groups of Emb(I, S1 × Bn) are in di-
mensions 0, n− 2 and 2n− 4. In this section we construct invariants of these homotopy
groups, specifically the W2 and W3 invariants,

W2 : πn−2 Emb(I, S1 × Bn)→ Z[t±1]/〈t0〉

W3 : π2n−4 Emb(I, S1 × Bn)→ Q[t±1
1 , t±1

3 ]/R
where R is the hexagon relation. Note that W2 was defined in Section 2. We re-use
the notation here as this also is an invariant of the 2nd non-trivial homotopy group of
an embedding space. We derive these invariants from a computation of the (rational)
homotopy of configuration spaces in S1 × Bn. This allows us to detect diffeomorphisms
of S1 × B3 via the scanning construction π0 Diff(S1 × B3 fix ∂)→ π2 Emb(I, S1 × B3). To
conclude the section we relate homotopy-type of Diff(S1× Bn fix ∂) to that of the space of
co-dimension two unknots in Emb(Sn−1, Sn+1), and the homotopy-type of Emb(Bn, S1×
Bn) via some simple fiber sequences.

The rational homotopy groups of the configuration spaces of points in Euclidean space
were first described by Milnor and Moore [MM]. Their result is that the rational homo-
topy groups Q⊗ π∗Ck(Bn+1) are isomorphic to the primitives of H∗(ΩCk(Bn+1); Q) via
a Hurewicz-style map. The generators of πnCk(Bn+1) we denote wij. The class wij has
all k points stationary, with the exception of point j that orbits around point i. The
Whitehead bracket operation [·, ·] : πnX× πmX → πm+n−1X is the obstruction to a map
f ∨ g : Sn ∨ Sm → X, extending to Sn × Sm → X. We identify Sn ∨ Sm with all but the
top-dimensional cell of Sn × Sm, i.e. Sn ∨ Sm = Sn × {∗} ∪ {∗} × Sm. Thus the White-
head product is the characteristic map of the top-dimensional cell Sn+m−1 → Sn ∨ Sm

composed with f ∨ g. The Whitehead bracket is bilinear, graded symmetric, i.e. [y, x] =
(−1)nm[x, y] and it satisfies a Jacobi-like identity.

(−1)pr[[ f , g], h] + (−1)pq[[g, h], f ] + (−1)rq[[h, f ], g] = 0,
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where f ∈ πpX, g ∈ πqX, h ∈ πrX with p, q, r ≥ 2.

The theorem of Milnor and Moore implies Q⊗ π∗Ck(R
n+1) is generated by the wij

classes, subject to the relations
• wii = 0 ∀i
• wij = (−1)n+1wji ∀i 6= j
• [wij, wlm] = 0 when {i, j} ∩ {l, m} = ∅.
• [wij + wil, wl j] = 0 for all i, j, l.

The latter relation should be viewed a generalized ‘orbital system’ map Sn × Sn →
Ck(Bn+1) where there is an earth-moon pair corresponding to points l and j respectively,
orbiting around the sun corresponding to point i. This relation can be rewritten as

[wij, wjk]− [wjk, wki] = 0.

Thus we have the equality of the three cyclic permutations,

[wij, wjk] = [wjk, wki] = [wki, wij].

To compute the rational homotopy groups of Ck[S1 × Bn] we start by considering the
inclusion Ck[Bn+1] → Ck[S1 × Bn] induced by an embedding Bn+1 → S1 × Bn. This
allows us to define classes wij ∈ πnCk[S1× Bn]. The bundle Ck(S1× Bn)→ Ck−1(S1× Bn)
is split, with fiber the homotopy-type of a wedge of a circle and (k− 1)-copies of Sn, we
again have that the homotopy groups of Ck(S1 × Bn) are rationally generated by the
elements tl.wij where {t1, · · · , tk} ⊂ π1Ck[S1 × Bn] are the standard generators of the
fundamental group, the free abelian group of rank k.

Proposition 3.1. The n-th homotopy group of Ck[S1 × Bn] has generators tm
l wij for i, j, m ∈

Z, l ∈ {1, 2, · · · , k}. The relations are
• wii = 0,
• wji = (−1)n+1wij,
• tl.wij = wij if l /∈ {i, j},
• ti.wij = t−1

j .wij.

The rational homotopy-groups of Ck[S1 × Bn] are generated by the Whitehead products of the
elements tm

l .wij. These satisfy the relations

• [wij, wlm] = 0 if {i, j} ∩ {l, m} = ∅,
• [wij, wjl] = [wjl, wli] = [wli, wij],
• tl.[ f , g] = [tl. f , tl.g].

The above computation should be viewed as a slight rephrasing of the argument given
in Cohen-Gitler [CG]. Observe

tα1
1 · · · t

αm
m .wij = t

αi−αj
i .wij.

Thus we also have
tα1
1 · · · t

αm
m [wij, wjl] = [t

αi−αj
i wij, t

αj−αl
j wjl].
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As a Q[t±1
1 , · · · , t±1

k ]-module, we have (assuming k ≥ 3)

Q⊗ π2n−1Ck[S1 × Bn] '
⊕

i<j<l

Q[t±1
1 , · · · , t±1

k ]/〈titjtl − 1 = tm − 1 = 0 ∀m /∈ {i, j, l}〉⊕

⊕
i<j

0≤l if n even
1≤l if n odd

Q[t±1
1 , · · · , t±1

k ]/〈titj − 1 = tm − 1 = 0 ∀m /∈ {i, j}〉.

The top summands, i.e. for each i < j < l are generated by the [wij, wjl] brackets, the
bottom summands are generated by the [wij, tl

iwij] brackets.

We outline a general ‘closure argument’ that produce invariants of the homotopy
groups πn−2 Emb(I, S1 × Bn) and π2n−4 Emb(I, S1 × Bn). For this computation the 2nd

stage of the Taylor tower suffices. We will use Dev Sinha’s mapping-space model [Si1],
analogously to how it is used in [BCSS].

Sinha’s model for the k-th stage of the tower for Emb(I, M) is denoted AMk. This
consists of the stratum-preserving aligned maps Ck[I, ∂]→ C′k[S

1 × Bn, ∂] where
• Ck[I, ∂] is the subspace of Ck+2[I] consisting of points of the form (0, t1, · · · , tn, 1)

with 0 ≤ t1 ≤ · · · ≤ tn ≤ 1. In general Ck[I, ∂] is the (k + 2)nd Stasheff polytope,
whose vertices correspond to the ways of bracketing a word with (k + 2)-letters
into a tree of nested binary operations, i.e. all the ways of expressing associativity
in a word of length (k + 2). The edges are applications of the associativity rule.
Thus the 3rd Stasheff polytope is an interval. The 4th Stasheff Polytope is the
pentagon. In general it is a truncated simplex.
• Ck[M, ∂] is the subspace of Ck+2[M] consisting of points of the form (b0, p1, · · · , pn, b1)

where b0, b1 ∈ ∂M are the basepoints of the embedding space, i.e. provided
we demand the maps in the embedding space Emb(I, M) sends 0 7−→ b0 and
1 7−→ b1.

To visualize Ck[I, ∂], one first considers the naive compactification of Ck(I), i.e. the
simplex.

Ck(I) = {(t1, · · · , tk) : 0 ≤ t1 ≤ · · · ≤ tk ≤ 1}
The space Ck(I) is the point-set topological closure of the path-component of Ck(I) where
the points are linearly ordered by <. To obtain the Stasheff polytope from the n-simplex,
one iteratively truncates (blows up) strata corresponding to collisions of more than two
points. Thus for C2[I, ∂] we blow up the 0 = t1 = t2 stratum, since t1 and t2 are colliding,
but they are also colliding with the initial point. Similarly we blow up the t1 = t2 = 1
stratum. Given that no other collisions occur, these are the only additional strata in the
compactification. Similarly in C3[I, ∂], but now there are the blow-ups from 0 = t1 = t2,
t1 = t2 = t3, t2 = t3 = 1, and the two relatively high co-dimension blow-ups 0 = t1 =
t2 = t3 and t1 = t2 = t3 = 1.

We will only be interested in the 2nd and 3rd stages of the embedding calculus in
this paper, and given that the behaviour of our mappings will be fibrewise linear on
the ‘truncations’ of Ck[I], we will often simply consider Tk Emb(I, S1 × Bn) to simply
be stratum-preserving aligned maps Ck[I] → C′k[S

1 × Bn], i.e. suppressing extraneous
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combinatorial details to keep the technicalities light. Readers should be aware these
additional constraints must always be considered, to ensure these simplified mapping
spaces have the desired homotopy-type.

Elements of the 2nd stage can be restricted to the faces of C2[I] giving loops in the three
boundary sub-strata of C′2[S

1 × Bn] corresponding to the collisions t1 = 0, t1 = t2 and
t2 = 1. These sub-strata are diffeomorphic to C′1[S

1 × Bn], i.e. the unit tangent bundle
of S1 × Bn which is diffeomorphic to S1 × Bn × Sn. Given that elements of πn−2ΩSn are
trivial, we can homotope any map Sn−2 × C2[I] → C′2[S

1 × Bn] to standard linear maps
on the boundary facets. These null-homotopies can be attached to the original map with
domain Sn−2 × C2[I] to give us a map out of an adjunction. This new map is standard
on the boundary.

In our case, we are only interested in the component of Emb(I, S1 × Bn) where the
interval winds a net zero number of times about the S1 factor. After the adjunction we
have a map from a space diffeomorphic to Bn to the space C′2[S

1 × Bn], and this map is
constant on the boundary.

The important part of this construction is we used a choice of null-homotopies to
construct the map Sn → C′2[S

1 × Bn]. If we choose different null-homotopies, we should
check how the resulting map may differ.

Proposition 3.2. (Closure Argument 1) Given an element of [ f ] ∈ πn−2 Emb(I, S1× Bn) we
form the closure of the evaluation map ev2( f ) ∈ πn−2T2 Emb(I, S1 × Bn) which is a map of the
form

ev2( f ) : Sn → C′2[S
1 × Bn].

The homotopy group πnC′2[S
1 × Bn] is isomorphic to a direct sum Z[t±1]⊕Z2. One can think

of this isomorphism via the splitting C′2[S
1 × Bn] ' C2[S1 × Bn] × (Sn)2. There are three

inclusions of C′1[S
1 × Bn] into C′2[S

1 × Bn] coming from the three facets p1 = {1} × {−1},
p1 = p2 and p2 = {1} × {1} respectively, corresponding to the three facets of C2[I] via the
stratum-preserving condition. These inclusions induce subgroups generated by (t0, 1, 1), (0, 1, 0)
and (0, 0, 1) respectively. Thus there is a well-defined homomorphism

πn−2 Emb(I, S1 × Bn)→ Z[t±1]/〈t0〉

by counting all monomials the Laurent-polynomial part of πnC′2[S
1 × Bn] ' Z[t±1]⊕Z2 other

than t0. This map is an epimorphism.

Proof. Consider the construction of the closure ev2( f ). We attach null-homotopies to the
three face maps of ev2( f ) : Sn−2 × C2[I] → C′2[S

1 × Bn]. We use the notation C2[I]1=2
to denote the t1 = t2 substratum of C2[I], and similarly C′2[S

1 × Bn]1=2 will denote the
substratum of C′2[S

1 × Bn] where the two points collide. Similarly, 1 = 0 will be our no-
tation to indicate the first point is at its initial point in C2[I] and C2[S1× Bn] respectively.
We will use the simplicial identifications between C1[I] and the three boundary facets
(0 = 1, 1 = 2, 2 = 3), that is we identify C1[I] with C2[I]0=1 via the map t 7−→ (0, t), sim-
ilarly we identify C1[I] with C2[I]1=2 via the map t 7−→ (t, t). We use the isomorphism
πnC′2[S

1× Bn] ' Z[t±1]⊕Z2 to talk about elements of πnC′2[S
1× Bn]. The generators of
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Z[t±] we denote ti ∀i. The generators of the remaining Z2 factor are denoted α1, α2. No-
tice if we attach a different null-homotopy to the i = i + 1 face of C2[I] we are modifying
the homotopy-class of ev2( f ) by adding a multiple of:

• (0, 1, 0), if i = 0,
• (t0, 1, 1), if i = 1,
• (0, 0, 1), if i = 2.

Thus the closure is a well-defined element of a group isomorphic to Z[t±1]/〈t0〉, with
generators tiw12. Using an argument similar to Theorem 2.5 we can argue these maps
are epimorphisms. �

We call the homomorphism from Proposition 3.2 the W2-invariant,

W2 : πn−2 Emb(I, S1 × Bn)→ Z[t±1]/〈t0〉.
The subscript 2 indicates the domain is the 2nd non-trivial (rational) homotopy-group
of the space Emb(I, S1 × Bn). One can go a step further than Proposition 3.2 and argue
that W2 is an isomorphism. Roughly speaking, the idea is that given any based map
Sn → C′2[S

1 × Bn], we reinterpret the function as having domain Bn−2 × C2[I] with the
boundary collapsed. One then appends three copies of the standard null-homotopy of
ev1(i) where i is the constant family i : Sn−2 → Emb(I, S1 × Bn). This gives us a map
back from Maps(Sn, C′2[S

1 × Bn]) to Maps(Sn−2, Maps(C2[I], C′2[S
1 × Bn]), which is an

element of Maps(Sn−2, T2 Emb(I, S1 × Bn)) provided we began with something in the
image of W2, proving W2 is injective.

We can perform the same kind of analysis for [ f ] ∈ π2n−4 Emb(I, S1 × Bn). These
elements are detected by 3rd-stage of the Embedding Calculus, which are maps of the
form C3[I]→ C′3[S

1× Bn]. In general, when we restrict these maps to the boundary facets
of C3[I], the resulting map S2n−4×C2[I]→ C′2[S

1× Bn] may not be null-homotopic. That
said, such maps are torsion. This allows us to perform the above construction rationally,
i.e. if the order of the map ev2( f ) : S2n−4×C2[I]→ C′2[S

1× Bn] is m, we can perform the
same analysis to construct a closure of ev3(m f ), thus 1

m ev3(m f ) would be a well-defined
rational-homotopy invariant of [ f ], provided we mod-out by the boundary subgroups, in
this case they come from the inclusions of the four facets of C3[I], t1 = 0, t1 = t2, t2 = t3
and t3 = 1. To do this we need to describe the change in homotopy-class to 1

m ev3(m f )
due to attaching different null-homotopies to ev3(m f ) : S2n−4 × C3[I]→ C′3[S

1 × Bn].
As we have seen π2n−1C′2[S

1 × Bn] is isomorphic to π2n−1(S1 ∨ Sn) ⊕⊕2 π2n−1Sn.
Modulo torsion, the generators of π2n−1(S1 ∨ Sn) are the Whitehead products of ele-
ments tkw12 for k ∈ Z. This gives us the result that π2n−1C′2[S

1 × Bn], mod torsion, is
isomorphic to Z[t±1

1 , t±1
2 ]/〈t1t2 − 1 = 0〉 as a module over the group-ring of the funda-

mental group. The generator of π2n−1C′2[S
1 × Bn] corresponding to a monomial tα

1tβ
2 is

tα
1tβ

2 w12. By attaching a homotopy-class of maps S2n−4 × I × C2[I] → C′2[S
1 × Bn] to a

closed-off S2n−4 × C3[I]→ C′3[S
1 × Bn] we change the homotopy class by adding:

(1) [tα
2w23, tβ

2 w23]. This comes from the t1 = 0 face. Thus the generator tα
1w12 is

mapped to tα
2w23, and a Whitehead bracket [tα

1w12, tβ
1 w12] is mapped to [tα

2w23, tβ
2 w23].
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(2) [tα
1w12, tβ

1 w12] to [tα
1w13 + tα

2w23 + a1w21, tβ
1 w13 + tβ

2 w23 + a1w21]. This comes from
the t1 = t2 face map, i.e. the inclusion C′2[S

1 × Bn] → C′3[S
1 × Bn] that doubles

the first point, i.e. (p1, p2) 7−→ (p1, ε+p1, p2), where the perturbation ε+p1 is in
the direction of the velocity vector. The integer a1 is the degree of this velocity
vector map. This map sends w12 to w13 + w23 + a1w21, t1 to t1t2 and t2 to t2.
The 2nd stage of the Taylor tower induces a null-homotopy of the velocity vector
map, so we can assume a1 = 0, but it is of interest that the following computation
gives the same answer for a1 6= 0. Thus it sends [tα

1w12, tβ
1 w12] to [tα

1w13 + tα
2w23 +

a1w21, tβ
1 w13 + tβ

2 w23 + a1w21]. Expanding this bracket using bilinearity we get

=
(
−tα−β

1 t−β
3 + (−1)n−1tβ−α

1 t−α
3

)
[w12, w23] + [tα

1w13, tβ
1 w13]+

a1

(
(−1)nt−β

3 + (−1)n−1t−β
3 + t−α

1 − t−α
1

)
[w12, w23]

where the latter row comes from collecting the terms involving a1, and clearly
these terms sum to zero.

(3) [tα
1w12 + tα

1w13 + a2w23, tβ
1 w12 + tβ

1 w13 + a2w23]. This is for the t2 = t3 facet. This
corresponds to the map C′2[S

1× Bn]→ C′3[S
1× Bn] that doubles the second point,

i.e. (p1, p2) 7−→ (p1, p2, ε+p2). This map sends w12 to w12 + w13 + a2w23, t1 to
t1 and t2 to t2t3. Thus [tα

1w12, tβ
1 w12] 7−→ [tα

1w12 + tα
1w13 + a2w23, tβ

1 w12 + tβ
1 w13 +

a2w23]. Like the previous case, this simplifies to

=
(
−tα

1tα−β
3 + (−1)n+1tβ

1 tβ−α
3

)
[w12, w23] + [tα

1w13, tβ
1 w13]+

a2

(
tβ
1 − tβ

1 + (−1)ntα
1 + (−1)n+1tα

1

)
[w12, w23].

Again, the terms with a2 cancel.
(4) [tα

1w12, tβ
1 w12]. This is for the t3 = 1 facet. This corresponds to the inclusion

C′2[S
1 × Bn] → C′3[S

1 × Bn] that maps (p1, p2) to (p1, p2, (1, 0)), thus it sends
w12 7−→ w12 and t1 7−→ t1, t2 7−→ t2, thus it acts trivially on [tα

1w12, tβ
1 w12].

Thus our invariant via closure 1
m ev3(m f ) of π2n−4 Emb(I, S1 × Bn) takes values in

Q⊗ π2n−1C′3[S
1 × Bn]/R

where R is the subgroup generated by the above four inclusions. Notice (1) kills the
summand corresponding to the w23 brackets, and (4) kills the summands corresponding
to the w12 brackets. Using relation (1) and (4) we can simplify (2) and (3) into rela-
tions between w13 brackets and brackets of the form [w12, w23], giving us the proposition
below.

Proposition 3.3. (Closure Argument 2) Given an element of [ f ] ∈ π2n−4 Emb(I, S1 × Bn)
such that ev2( f ) : S2n−4 → T2Emb(I, S1 × Bn) is null, we form the closure of the evaluation
map ev3( f ) : S2n−4 → T3 Emb(I, S1 × Bn) which is a based map of the form

ev3( f ) : S2n−1 → C′3[S
1 × Bn].
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The homotopy-class of this map, as a function of the homotopy-class [ f ] is well-defined modulo a
subgroup we call R. Using the notation of Proposition 3.1, R is generated by the torsion subgroup
of π2n−1C′3[S

1 × Bn] together with the elements(
tα−β
1 t−β

3 − tα
1tα−β

3 + (−1)n−1
(

tβ
1 tβ−α

3 − tβ−α
1 t−α

3

))
[w12, w23] ∀α, β ∈ Z,

[tα
2w23, tβ

2 w23] ∀α, β,

[tα
1w12, tβ

1 w12] ∀α, β,

[tα
1w13, tβ

1 w13] +
(

tα−β
1 t−β

3 + (−1)ntβ−α
1 t−α

3

)
[w12, w23] ∀α, β.

Since π2n−4T2 Emb(I, S1 × Bn) is torsion, there is a homomorphism, called the closure op-
erator

π2n−4 Emb(I, S1× Bn)→ Q[t±1
1 , t±1

3 ]/〈tα−β
1 t−β

3 − tα
1tα−β

3 = (−1)n
(

tβ
1 tβ−α

3 − tβ−α
1 t−α

3

)
∀α, β ∈ Z〉

given by mapping f 7−→ 1
m ev3(m f ).

Proof. The relations are given in the comments preceding the Proposition. Relations (1)
and (4) kill [tα

2w23, tβ
2 w23] and [tα

1w12, tβ
1 w12] respectively. Using Relations (1) and (4) we

can simplify relations (2) and (3) to 3-term relations, both expressing [tα
1w13, tβ

1 w13] in the
Z[t±1 , t±2 ]-linear span of [w12, w23]. Comparing the two gives the relation(

tα−β
1 t−β

3 − tα
1tα−β

3 + (−1)n−1
(

tβ
1 tβ−α

3 − tβ−α
1 t−α

3

))
[w12, w23] = 0.

�

It is important to note that in Proposition 3.3 we are allowing the attachment of dis-
tinct null-homotopies on all four boundary facets of S2n−4 × C3[I]. This is because the
elements of the 3rd stage of the Taylor tower restrict to potentially different maps on the
four faces.

One way of interpreting the closure argument is we are studying the map between the
stages of the Taylor tower, and using it to construct invariants of the homotopy groups
of Emb(I, S1 × Dn). The homotopy-fiber of the map between the stages Tk → Tk−1 is
called the k-th layer, denoted Lk, and its homotopy-type was characterized by Michael
Weiss (see [GKW]) as a certain space of sections. In our case it has the interpretation of
an iterated loop space of a homotopy limit of a cubical diagram of configuation spaces.
One can turn the long exact sequence · · · → πiLk → πiTk → πiTk−1 → · · · into a short
exact sequence centered on πiTk. This tells us that πiTk is an extension over a subgroup
of πiTk−1 by a quotient group of πiLk. The quotient group of πiLk has been the subject of
much study. In her thesis [Ko1] Kosanovic computed an explicit map from the quotient
group of πiLk to the kernel of πi Emb(I, M) → πiTk−1 for the smallest i with πiLk non-
trivial for the case of the embedding spaces of the form Emb(I, M) with M a 3-manifold.
She has recently [Ko3] generalized this to the case dim(M) ≥ 3. This can be viewed
as a systematic procedure to express our ‘closures’ as linear combinations of Whitehead
products.
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The map that applies the rationalized closure operator to [ f ] ∈ π2n−4 Emb(I, S1 × Bn)
we denote W3, i.e.

W3([ f ]) =
1
m

ev3(m f ) ∈ Q⊗ π2n−1C′3[S
1 × Bn]/R.

By design, if ev2( f ) ∈ π2n−1T2 Emb(I, S1 × Bn) is null, the invariant W3 lives in the lift

W3([ f ]) = ev3( f ) ∈ π2n−4 Emb(I, S1 × Bn)/R.

Proposition 3.4 concerns the structure of this group.

Proposition 3.4. Let W̄ denote the subspace of π2n−1(C3(S1 × Bn)) generated by the White-
head products tp

1 tq
2[w13, w23], p, q ∈ Z. Let W be the quotient of W̄ by the subspace K gener-

ated by (tp
1 tq

2 − tq
1tq−p

2 + (−1)n(tp
1 tp−q

2 − tq
1tp

2))[w13, w23]. Then the induced map from W to
π2n−1(C3(S1 × Bn))/R is an isomorphism. The quotient π2n−1(C3(S1 × Bn))/R is a direct
sum of a free-abelian group and a 2-torsion group.

Proof. The map W̄ → π2n−1C3(S1 × Bn)/R being an isomorphism follows from Proposi-
tion 3.3 after noting that tm

1 tn
3 [w12, w23] = tm

1 tn
3 [w23, w31] = (−1)ntm−n

1 t−n
2 [w13, w23]. Con-

sider the relator(
tα−β
1 t−β

3 − tα
1tα−β

3 + (−1)n−1
(

tβ
1 tβ−α

3 − tβ−α
1 t−α

3

))
[w12, w23] = 0.

If we replace the indices (α, β) by (α− β,−β) the above relator becomes(
tα
1tβ

3 − tα−β
1 tα

3 + (−1)n−1
(

t−β
1 t−α

3 − t−α
1 tβ−α

3

))
[w12, w23] = 0,

suppressing the Whitehead bracket we rewrite the polynomial relator as

tα
1tβ

3 + (−1)n−1t−β
1 t−α

3 = tα−β
1 tα

3 + (−1)n−1t−α
1 tβ−α

3 .

Notice the map (α, β) 7−→ (−β,−α) is an involution of Z2, while the map (α, β) 7−→
(α− β, α) has order 6, moreover if we conjugate the latter by the former we get (α, β) 7−→
(β, β − α), which is the inverse of the mapping (α, β) 7−→ (α − β, α) i.e. these two
mappings generate the dihedral group of the hexagon. One can also see this directly, by
observing the orbit of (1, 0) under this group action is the planar hexagon

{(1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), (0,−1)}.
This allows us to quickly write-out the consequences of our relator.

tα
1tβ

3 + (−1)n−1t−β
1 t−α

3 = tα−β
1 tα

3 + (−1)n−1t−α
1 tβ−α

3(1)

= t−β
1 tα−β

3 + (−1)n−1tβ−α
1 tβ

3(2)

= t−α
1 t−β

3 + (−1)n−1tβ
1 tα

3(3)

= tβ−α
1 t−α

3 + (−1)n−1tα
1tα−β

3(4)

= tβ
1 tβ−α

3 + (−1)n−1tα−β
1 t−β

3(5)

Since the map (α, β) 7−→ (α − β, α) is of order 6 and conjugate to a rotation, all of its
orbits have six elements with the exception of the origin. Thus the orbits of our dihedral
group can be trivial, as in the case of (0, 0), or they have at least six elements. The orbits
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have only six elements provided any of the following equations hold α± β = 0, α = 0,
β = 0, 2α = β or 2β = α. This could be thought of as any of the vertices of the hexagon,
or mid-points of the edges of the hexagon. Observe at the origin (α, β) = 0 the hexagon
relation is trivial, thus for the (α, β) = 0 orbit, the quotient group is free abelian of rank
one.

In the case of a 12-element orbit, no generator is mentioned more than once in the
relators, so the quotient is a free abelian group of rank 7 = 12− 5. For the 7 generators
one can take the vertices of the hexagon, i.e. the orbit of (α, β) under (α, β) 7−→ (α− β, α),
plus one generator obtained by taking a vertex of the hexagon and applying (α, β) 7−→
(−β,−α) to it.

In the case of a 6-element orbit the quotient is isomorphic to either Z4 or Z3 ⊕Z2,
depending on which 6-element orbit one considers, and the parity of n. For example,
consider the case α = 0, then our relations are

t0
1tβ

3 + (−1)n−1t−β
1 t0

3 = t−β
1 t0

3 + (−1)n−1t0
1tβ

3(6)

= t−β
1 t−β

3 + (−1)n−1tβ
1 tβ

3(7)

= t0
1t−β

3 + (−1)n−1tβ
1 t0

3(8)

= tβ
1 t0

3 + (−1)n−1t0
1t−β

3(9)

= tβ
1 tβ

3 + (−1)n−1t−β
1 t−β

3 .(10)

Thus for n odd (still in the α = 0 case) this quotient is isomorphic to Z4, while for n
even, it is isomorphic to Z3⊕Z2. Similarly if we take 2α = β we get quotient Z3⊕Z2 if
n is odd, and Z4 if n is even. Notice these two cases suffice as our relations are invariant
under the rotations of the hexagon. We could further deduce the 2α = β case using
the mirror reflections of the hexagon. In this case, the symmetry does not preserve our
system of equations, it preserves them after changing the parity of n. �

Remark 3.5. For n odd the coefficients of defining relations in K have the form
tp
1 tq

2 + tp
1 tp−q

2 = tq
1tp

2 + tq
1tq−p

2 .

Figure 7. Chord diagram for G(p, q)

Example 3.6 is a computation of W3(G(p, q)). An alternative computation, given in
greater detail appears in Appendix Section 12. The techniques we use here are expanded
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upon in [BG2]. We begin by giving a careful definition of the homotopy-class G(p, q) :
S2n−4 → Emb(I, S1 × Bn).

We interpret the chord diagram in Figure 7 as defining an immersion I → S1× Bn with
four regular double-point pairs that we will resolve to create families of embeddings.
Two of the double points are decorated in blue, and the other two are decorated in red.
The chord decorations p, q indicate that the ‘shortcut’ loop S1 → S1× Bn, when projected
to the S1 factor has degree p or q respectively. The immersion is represented in Figure 8
(left).

Resolving this immersion would give us a map

Ĝ(p, q) : Sn−2 × Sn−2 × Sn−2 × Sn−2 → Emb(I, S1 × Bn).

We pre-compose Ĝ(p, q) with the map ∆ : Sn−2 × Sn−2 → Sn−2 × Sn−2 × Sn−2 × Sn−2

given by ∆(v, w) = (M(v), v, M(w), w) where M : Sn−2 → Sn−2 is a map with deg(M) =
−1. The choice of degree is governed by the signs in our chord diagram. The composite
Ĝ(p, q) ◦ ∆, when restricted to Sn−2 ∨ Sn−2 is null, giving us, after a small homotopy of
Ĝ(p, q) ◦ ∆, a commutative diagram

Sn−2 × Sn−2

**

Ĝ(p,q)◦∆
// Emb(I, S1 × Bn)

Sn−2 × Sn−2/Sn−2 ∨ Sn−2 ≡ S2n−4

G(p,q) 33
.

We proceed computing the homotopy-class of 1
m ev3(m · G(p, q)) in steps. We will see

that ev2(G(p, q)) is null-homotopic, thus m = 1. In general, one can prove an analogous
theorem to Proposition 3.2, computing π2n−4T2 Emb(I, S1 × Bn) precisely. The exponent
of this group can be shown to be equal to |π2n−2Sn|. The group π2n−2Sn is one of
the stable homotopy groups of spheres, and is known to be finite. When needing to
compute the order of ev2( f ) precisely, one constructs the closure as in Proposition 3.2,
giving the map ev2( f ) : S2n−2 → C′2[S

1 × Bn]. The homotopy group π2n−2C′2[S
1 × Bn]

can be described in terms of homotopy-groups of spheres via the homotopy-equivalence
C′2[S

1 × Bn] ' S1 × (S1 ∨ Sn)× (Sn)2 giving

π2n−2C′2[S
1 × Bn] ' π2n−2Sn[t±1]⊕

⊕
2

π2n−2Sn.
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q

p

p

q

+ −

+ −

q

p

p

q

Figure 8. Immersion for G(p, q) (left) and one resolution (right)

The homotopy-class of a map S2n−2 → (S1 ∨ Sn)× (Sn)2 is determined by the homo-
topy classes of the projections: (a) S2n−2 → S1 ∨ Sn and (b) (two maps) S2n−2 → Sn. By
the Pontriagin construction, the latter two maps are determined by framed cobordism
classes of (n− 2)-manifolds in R2n−2, taking the pre-image of any point that is not the
base-point of the sphere. The projection S2n−2 → S1 ∨ Sn is determined by a framed
cobordism class of a countable collection of disjoint (n− 2)-manifolds in R2n−2. A sim-
ple way to construct these manifolds is to take the cohorizontal manifolds, i.e. fix a
unit direction ζ ∈ Bn. Define tiCo2

1 consisting of pairs of points (p1, p2) ∈ C2[R
1 × Bn]

such that the displacement vector ti.p2 − p1 is a positive multiple of ζ. Then given
S2n−2 → C′2[S

1 × Bn] we lift the map to the universal cover of C′2[S
1 × Bn], interpreted

as the submanifold of C′2[R
1 × Bn] such that the points have disjoint Z-orbits. We take

the pre-image of tiCo2
1. This manifold family (as a function of i) is precisely what we

need to detect the Laurent polynomial associated to the homotopy-class of the projec-
tion S2n−4 → S1 ∨ Sn.

tb

ta

pi pj pk

tbwkj

tawij

a

b

0

R

Figure 9. Collinear manifolds intersecting πnCk[S1 × Bn] generators.

Rationally the class ev3(G(p, q)) ∈ π2n−1C′3[S
1 × Bn] is a linear combination of White-

head products, by Proposition 3.1. To determine the linear combination, we use an idea
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from [BCSS], where it was shown that certain collinear (trisecant) manifolds can detect
Whitehead products in π2n−1C3(R

n+1). The key property of the collinear manifolds is
they (a) they suffice to detect the generators of πnC3[R

n+1], and (b) there is more than one
path-component to these manifolds, allowing one to go further and detect Whitehead
products [w12, w23]. This allowed the authors in [BCSS] to express the type-2 Vassiliev
invariant of knots as a linking number of trisecant manifolds, and further as a count of
quadrisecants. Consider Col1

α,β to be the submanifold of C3[R× Bn] where the points
(p2, tα.p1, tβ.p3) sit on a straight line in R × Bn in that linear order. Similarly, define
Col3

α,β to be the submanifold of C3[R× Bn] such that (tα.p1, tβ.p3, p2) sit on a straight
line, in that linear order. These two manifolds are disjoint, moreover the former man-
ifold detects the homotopy-class tα

2w12, and the latter detects tβ
2 w32, thus the preimage

of the disjoint pair (Col1
α,β, Col3

α,β) by the map [tα
2w12, tβ

2 w23] : S2n−1 → C3[S1 × Bn] is a
2-component Hopf link in S2n−1. This is a non-trivial framed cobordism class of disjoint
manifold pairs, as the linking number of the two components is ±1. Moreover, this
linking number is zero if we use the map [tp

2 w12, tq
2w23] provided (p, q) 6= (α, β).

The invariant W3 is therefore computable via the linking numbers of the pre-images
of the collinear manifolds, i.e. one computes the linking numbers of the pre-images of
Col1

α,β and Col3
α,β via the lift of ev3(G(p, q)) : S2n−1 → C′3[S

1 × Bn] to the universal cover

of C′3[S
1 × Bn]. This is the coefficient of tα

1tβ
3 [w12, w23] in W3(G(p, q)).

Unfortunately the above is a relatively delicate visualisation task. See [BCSS] for ex-
amples of how one can directly compute linking numbers of trisecant manifolds. We use
a variation of an argument of Misha Polyak [Po]. Polyak gave a direct argument showing
that the quadrisecant formula of [BCSS], itself a linking number of trisecant manifolds,
can be turned into a Polyak-Viro formula, i.e. a count involving only cohorizontal man-
ifolds. Interestingly, Polyak’s argument is done using maps out of 4-point configuration
spaces, while ours uses submanifolds of 3-point configuration spaces.

There is cobordism of the manifold pair (Col1
α,β, Col3

α,β) and (tαCo1
2− tα−βCo1

3, tβ−αCo3
1−

tβCo3
2). A cobordism between these two families is given by the parabolic spline family.

Specifically, fix a direction vector ζ ∈ Rn+1. Let Vζ be the orthogonal compliment to ζ

in Rn+1. Let L ⊂ Vζ be a line, and Q : L → R.ζ be a quadratic function whose second
derivative with respect to arc-length on L is given by ε. Thus when ε = 0 the graph of
the function Q can be any line in Rn+1 except those parallel to the ζ direction. Thus as
a family parametrized by ε ∈ [0, ∞] we have a cobordism between (Col1

α,β, Col3
α,β) and

(tαCo1
2 − tα−βCo1

3, tβ−αCo3
1 − tβCo3

2).
There is an important technical issue here as the family is not disjoint when ε = ∞,

as it allows for triple points in the ζ direction. This does not pose a problem for us,
since generically we can assume in our family S2n−4 × C3[I]→ C3[S1 × Bn] the direction
vectors of collinear triples form a closed co-dimension 1 subset of Sn, i.e. the compliment
is open and dense, thus generically we can choose ζ to be disjoint from this set. So we
can compute the coefficient of tα

1tβ
3 [w12, w23] in W3(G(p, q)) as the linking number of the

pre-image of the above pairs, for ev3(G(p, q)).
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Our strategy then, given f : S2n−4 → Emb(I, S1 × Bn) is to first construct the framed
cobordism class representing ev2( f ) : S2n−4× C2[I]→ C′2[S

1× Bn] in the language of co-
horizontal manifolds. This allows us to explicitly construct a null-cobordism correspond-
ing to a null-homotopy of ev2( f ). We then move on to study ev3( f ) : S2n−4 × C3[I] →
C′3[S

1× Bn]. The null-cobordisms associated to ev2( f ) can now be attached to the bound-
ary of ev3( f )−1(tkCoj

i), giving us a framed cobordism representation of ev3( f ), where
f = G(p, q).

Example 3.6. W3(G(p, q)) = tp
1 tq

2[w23, w31] = tp−q
1 t−q

3 [w12, w23].

By careful choice of the immersion defining G(p, q) we can arrange that there is a
unique parameter value in S2n−4 where the embedding lives in R3 × {0} and the as-
sociated planar diagram has eight regular double-points. Moreover, we can ensure the
locus of parameters in S2n−4 such that the associated embedding has double points is
the wedge of two embedded copies of Bn−2 in S2n−4, parallel to the coordinate axis,
i.e. considering S2n−4 to be Bn−2 × Bn−2 with the boundary collapsed. The resolution
with the eight regular double points is depicted in Figure 8. Four of the double points
persist along the red coordinate axis (i.e. a copy of Bn−2) and the remaining four persist
along the blue coordinate axis. Considering the evaluation map ev2 : S2n−4 × C2[I] →
C2[S1× Bn], the submanifold of S2n−4×C2[I] mapping to cohorizontal points is depicted
in Figure 10. This manifold is the disjoint union of four embedded spheres, diffeomor-
phic to t4Sn−2. There are two such spheres along the blue coordinate axis, consisting
of the sphere where the 2nd point is above the 1st, and the sphere where the reverse is
true; the 1st point is above the 2nd. Similarly there are two such spheres corresponding to
the red coordinate axis. These sphere are essentially linearly-embedded in S2n−4×C2[I],
having disjoint convex hulls, i.e. they are unlinked. Moreover, these spheres bound four
disjointly-embedded balls, t4Bn−1 → S2n−4 × C2[I].

RBn

BBn

r21

b12

b21

r12

c2i

1
4 8 12 16

Figure 10. Preimages of cohorizontal manifolds ev2(G(p, q)) : S2n−4 ×
C2[I]→ C2[S1 × Bn]
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Our ‘units’ for C2[I] in Figure 10 are the indices {1, 2, · · · , 16} for the cohorizontal
points, along the parametrization of the embedded interval, suitably rescaled. The four
spheres in the preimage are trivially framed, thus the disjoint balls they bound gives a
null-cobordism. Thus Figure 10 depicts the framed cobordism classes of ẽv2( f )−1(tiCo2

1)

and ẽv2( f )−1(tiCo1
2) for all i. The bounding discs can be thought to be depicted in

the black arcs connecting the red and blue cohorizontal points, but these also trace out
the cohorizontal points through the end homotopies. The bounding discs for the Co2

1
manifolds determine null-homotopies of the maps S2n−4 × C2[I] → C2[S1 × Bn], while
we assert that the corresponding bounding discs for the Co1

2 manifolds determined by
the null-homotopy are as depicted.

In Figure 11 we depict projections of the manifolds ev3(G(p, q))−1(tlCoj
i) ⊂ S2n−1. The

domain of ev3(G(p, q)) is a copy of S2n−1 but we think of this sphere as a ball with its
boundary collapsed to a point. The ‘ball’ being B2n−4 × C3[I] with four triangular cylin-
ders B2n−4 × C2[I]× I attached, due to the null-homotopies. The projection in Figure 11
is to the C3[I] (union triangular cylinders) factor. We use 0 ≤ t1 ≤ t2 ≤ t3 ≤ 1 as our
coordinates for C3[I]. In the figure t1 and t3 are the planar coordinates, with t2 pointing
out of the page. One therefore obtains Figure 11 from Figure 10 by considering how
the cohorizontal points from Figure 10 induce cohorizontal points on the boundary of
Figure 11. One then fills in the interior arcs: for example if there is a Co2

1 point on the
t2 = t3 boundary facet of C3[I], then there will be an entire straight line parallel to the
t3-axis. Thus the Co3

1 interior arcs will be orthogonal to the page in this projection. One
then appends the null-cobordisms to the boundary facets of C3[I].

For example, the manifold labelled tpCo1
3 consists of three parts in the figure. There are

two arcs parallel to the coordinate t2-axis, these are represented by the short arcs between
the nearby pairs of blue points. In B2n−4 × C3[I] this represents two disjoint (n − 1)-
balls. There are also two longer diagonal arcs labelled tpCo1

3, one overcrossing t−qCo3
2

and one undercrossing. The overcrossing indicates the null-cobordism coming from the
attachment on the t2 = t3 face of B2n−4 × C3[I], while the undercrossing represents the
null-cobordism attached on the t1 = t2 face.

Pairwise these linking numbers are all zero, with the sole exception of the pair (Co1
3, Co3

2),
which gives tp−q

1 t−q
3 [w12, w23]. We have suppressed the diagrams for the linking numbers

of the preimages of the pairs (Co1
3, Co3

1), (Co1
2, Co3

1), and (Co1
2, Co3

2), as their computations
are analogous.
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c2i

t1

c23c31

c2i

t1

c31c23

p12

q12

t3 t3

mp21

mq21

Figure 11. Linking cohorizontal manifold preimages for ev3(G(p, q)) :
S2n−1 → C′3[S

1 × Bn]

Proposition 3.7. The homotopy group πn−3 Diff(S1 × Bn fix ∂) is abelian, for all n ≥ 3.

Proof. A diffeomorphism of S1 × Bn can be isotoped canonically so that its support is
contained in S1× εBn where 1 ≥ ε > 0, i.e. we can effectively rescale the diffeomorphism
radially in the Bn factor. Using conjugation by a translation in the Bn factor, one can show
that up to isotopy, diffeomorphisms of S1× Bn can be assumed to have support in S1×U
where U is any open subset of Bn. �

Let Diff0(S1 × Sn) denote the subgroup of Diff(S1 × Sn) of elements homotopic to the
identity. This is a subgroup of index 8 in Diff(S1 × Sn) and index two in the subgroup
acting trivially on H∗(S1 × Sn).

Theorem 3.8. Any two elements of Diff0(S1 × Sn), the group of diffeomorphisms homotopic to
the identity, commute up to isotopy.

Proof. Any element of Diff0(S1 × Sn) is isotopic to one that fixes a neighborhood of
S1 × {y0} pointwise. Thus commutativity follows as in the proof of the first part of
Proposition 3.7. �

Let Emb(HBi, Bn) denote the space of smooth embeddings HBi → Bn that restricts
to the standard inclusion x 7−→ (x, 0) on the round boundary ∂rHBi = HBi ∩ ∂Bi. De-
note the corresponding framed embedding space by Emb f r(HBi, Bn). This space consists
of pairs ( f , ν) where f ∈ Emb(HBi, Bn) and ν is a trivialization of the normal bundle
to f that restricts to the canonical trivialization on HBi ∩ ∂Bi. Both Emb(HBi, Bn) and
Emb f r(HBi, Bn) are contractible spaces, the proofs are analogous to the homotopy clas-
sification of collar neighbourhoods. The role these embedding spaces play is as the total
spaces of fiber bundles. The half-ball is defined in Definition 2.4.
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The first fiber bundle to consider is Emb(HBi, Bn)→ Embu(Bi−1, Bn) where u denotes
the unknot component of Emb(Bi−1, Bn), i.e. the path-component of the linear embed-
ding. This bundle is in principle useful, but the fiber is embeddings of HBi into Bn

which are fixed on their boundary, which is not a very familiar space. By taking the
derivative ∂

∂x1
along the boundary Bi−1 we see this space fibers over Ωi−1Sn−i with fiber

homotopy-equivalent to Emb(Bi, Sn−i× Bi). This latter space is the space of embeddings
Bi → Sn−i × Bi which restricts to the inclusion p 7−→ (∗, p) on ∂Bi, where ∗ ∈ Sn−i is
some preferred point. These fiber bundles were used in an analogous way by Cerf [Ce2]
in his appendix, Propositions 5 and 6.

Alternatively we can form the bundle

Emb(Bi, Sn−i × Bi)→ Emb(HBi, Bn)→ Emb+
u (Bi−1, Bn)

where the base space consists of embeddings Bi−1 → Bn together with a normal vector
field along the embedding i.e. ∂

∂x1
. The fiber of this bundle is technically the embeddings

of HBi into Bn which agree with the standard inclusion (and its derivative) along ∂HBi.
This fiber has the same homotopy type as Emb(Bi, Sn−i × Bi).

Similarly, we have the corresponding bundles for the framed embedding spaces

Emb f r(Bi, Sn−i × Bi)→ Emb f r(HBi, Bn)→ Emb f r
u (Bi−1, Bn).

Given that the total space is contractible, this allows us to describe the unknot compo-
nent of these embedding spaces as classifying spaces.

Lemma 3.9.
B Emb f r(Bi, Sn−i × Bi) ' Emb f r

u (Bi−1, Bn)

B Emb(Bi, Sn−i × Bi) ' Emb+
u (Bi−1, Bn)

We take a moment to unpack some of the underlying geometric ideas involved in the
lemma.

There is an isomorphism of homotopy groups

πk Emb(Bi, Sn−i × Bi)→ πk+1 Emb+
u (Bi−1, Bn)

moreover, this map has an explicit geometric description. To do this, we need the exact
fiber of the bundle Emb(HBi, Bn)→ Emb+

u (Bi−1, Bn). This is the space of embeddings of
HBi into Bn which agrees with the standard inclusion p 7−→ (p, 0) and its derivative on
the full boundary of HBi. Denote this space by Emb∂(HBi, Bn). Serre’s homotopy-fiber
construction tells us that Emb∂(HBi, Bn) is homotopy-equivalent to

HF = {α : [0, 1]→ Emb(HBi, Bn) s.t. α(0) = ∗, α(1) ∈ Emb∂(HBi, Bn)}.
In the above, ∗ denotes the basepoint of Emb(HBi, Bn), i.e. the standard inclusion p 7−→
(p, 0). The homotopy-equivalence between HF → Emb∂(HBi, Bn) is given by associating
α(1) to α. The homotopy-equivalence between HF and Ω Emb+

u (Bi−1, Bn) is given by
associating α to α where α(t) = α(t)|Bi−1 .

For the sake of those not familiar with these methods we describe the homotopy-
equivalence directly. For this we need to adjust our model slightly. We replace the space
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Emb(HBi, Bn) with the homotopy-equivalent space of embeddings Hi → Rn where the
support is constrained to be in HBi, i.e. the maps are the standard inclusion p 7−→ (p, 0)
outside of HBi. Similarly, Emb+

u (Bi−1, Bn) would be the space of embeddings Ri−1 → Rn

with a normal unit vector field, the embeddings and normal vector required to be stan-
dard outside of Bi−1. From this perspective, the fiber Emb(HBi, Bn) → Emb+

u (Bi−1, Bn)
is the space of embeddings Hi → Rn where the support is not only contained in HBi,
but the embedding and its derivative in the normal direction is required to be standard
on ∂Hi. Observe the explicit deformation-retraction of Emb(HBi, Bn) to a point, given by
associating to f ∈ Emb(HBi, Bn) the path (as a function of t), ft ∈ Emb(HBi, Bn) where

ft(x1, x2, · · · , xk) = f (x1 − t, x2, · · · , xk) + (t, 0, · · · , 0).

Thus the map Emb∂(HBi, Bn) → Ω Emb+
u (Bi−1, Bn) in this model is the one that asso-

ciates to f ∈ Emb∂(HBi, Bn) the path ft ∈ Emb+
u (Bi−1, Bn) given by

ft(x2, · · · , xk) = f (1− t, x2, · · · , xk) + (t, 0, · · · , 0).

The vector field being ∂ f
∂x1

(1− t, x2, · · · , xk). So it would be reasonable to call this map
slicing the embedding.

We mention a few elementary consequences of Lemma 3.9.

SOn ' Emb f r
u (B0, Bn) ' B Emb f r(B1, Sn−1 × B1).

For embeddings with 1-dimensional domains we have

Emb+
u (B1, Bn) ' B Emb(B2, Sn−2 × B2).

The space Emb+
u (B1, Bn) is a bundle over Embu(B1, Bn), and this space is equal to

Emb(B1, Bn) when n ≥ 4. The fiber of this bundle is ΩSn−2, provided n ≥ 4. This bundle
is known to be trivial. One trivialization can be expressed as a splitting at the fiber
Emb+(B1, Bn)→ ΩSn−2. To construct it, use the null-homotopy of the Smale-Hirsch map
[Bu1] Emb+(B1, Bn) → ΩSn−1. Given that the normal vector field is orthogonal to the
Smale-Hirsch map, one can use the holonomy on Sn−1 to homotope the normal vector
field canonically to a map orthogonal to the x1-axis, giving the map Emb+(B1, Bn) →
ΩSn−2, and the splitting

Emb+(B1, Bn) ' Emb(B1, Bn)×ΩSn−2.
Substituting i = n into Lemma 3.9 we get the theorem of Cerf [Ce1]

Theorem 3.10.
Embu(Bn−1, Bn) ' B Diff(Bn fix ∂).

Raising the codimension by one, and provided n ≥ 2 we get the identification

Emb+
u (Bn−2, Bn) ' B Emb(Bn−1, S1 × Bn−1).

When n ≥ 2, π0 Emb(Bn−1, S1× Bn−1) is a monoid under concatenation, isomorphic as
a monoid to π1 Emb+

u (Bn−2, Bn), therefore with inverses. When n ≥ 3, π0 Emb(Bn−1, S1×
Bn−1) is a commutative monoid under concatenation, therefore an abelian group, iso-
morphic to π1 Emb+

u (Bn−2, Bn).
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The space Emb(Bn−1, S1 × Bn−1) has a concatenation operation, which could also be
thought of as an action of the operad of (n− 1)-discs. The space Emb+

u (Bn−2, Bn) sim-
ilarly has a concatenation operation with one less degree of freedom. It can be en-
coded as an action of the operad of (n− 2)-discs. These discs actions turn the two sets
π0 Emb(Bn−1, S1 × Bn−1) and π1 Emb+

u (Bn−2, Bn) into commutative monoids with the
concatenation operation, provided n ≥ 3. Moreover, one can see that the concatenation
operation and concatenation of loops are the same operation on π1 Emb+

u (Bn−2, Bn).
Thus, the isomorphism π0 Emb(Bn−1, S1 × Bn−1) ' π1 Emb+

u (Bn−2, Bn) is an isomor-
phism of groups, which must be abelian. Lastly, notice that Emb+

u (Bn−2, Bn) fibers over
Embu(Bn−2, Bn) with fiber Ωn−2S1, provided n ≥ 4. So for all n we have a homotopy-
equivalence

Corollary 3.11.
Embu(Bn−2, Bn) ' B Emb(Bn−1, S1 × Bn−1).

Since the concatenation operation on Emb(Bn−1, S1 × Bn−1) turns π0 Emb(Bn−1, S1 ×
Bn−1) into a group, it makes sense to consider the fiber bundle

Diff(Bn+1 fix ∂)→ Diff(S1 × Bn fix ∂)→ Emb(Bn, S1 × Bn).

Every embedding Bn → S1 × Bn that is standard p 7−→ (1, p) on ∂Bn is the fiber of
some trivial smooth fiber bundle S1× Bn → S1 with fiber Bn, by Lemma 3.9 and isotopy
extension. Thus Diff(S1 × Bn fix ∂) acts transitively on Emb(Bn, S1 × Bn). We record the
observation.

Theorem 3.12. The group Diff(S1× Bn fix ∂) acts transitively on Emb(Bn, S1× Bn). Moreover
every reducing ball Bn → S1 × Bn is the fiber of some smooth fiber bundle S1 × Bn → S1.

Alternatively attach a Sn−1 × D2 to obtain Sn+1 where the reducing ball is now an
n-ball ∆1 with boundary a standard (n− 1)-sphere. By the Cerf - Palais theorem there is
a diffeomorphism of this sphere taking ∆1 to a standard n-ball fixing ∂∆1 pointwise.

Theorem 3.13. The group Diff(S1 × Sn) acts transitively on the non-separating n-spheres in
S1 × Sn. Moreover, every non-separating n-sphere is the fiber of a fiber bundle S1 × Sn → S1.

Proof. Provided n < 3 this is classical. When n ≥ 3 observe that complementary to a
non-separating sphere there is an embedding S1 → S1 × Sn that intersects the sphere
precisely once and transversely. Since dim(S1 × Sn) ≥ 4, we can isotope our embedding
to be equal to S1 × {∗} and similarly isotope our non-separating sphere. If we drill a
neighbourhood of S1 × {∗} out of S1 × Sn we have constructed S1 × Bn, and our non-
separating sphere is converted to a reducing ball. The result follows from Theorem
3.12. �

Let S1
0 denote a fixed S1×{x0} ⊂ S1×Sn. Let Emb0(S1× Bn, S1×Sn) (resp. Emb0(S1, S1×

Sn)) denote the component of Emb(S1, S1 × Sn) that contains the standard inclusion to
S1 × N(x0) (resp. S1 × {x0}), where N(x0) ⊂ Sn is a closed regular neighborhood of
x0 ∈ Sn. Note that the restriction map Emb0(S1 × Bn, S1 × Sn) → Emb0(S1, S1 × Sn)
is a fiber-bundle with fiber having the homotopy-type of one path-component of the
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free loop space of SOn. The map Diff(S1 × Sn fix N(S1
0)) → Diff(S1 × Bn fix ∂) given by

deleting the interior of N(S1
0) is a homotopy-equivalence.

Lemma 3.14. The locally trivial fiber bundle Diff(S1 × Sn fix N(S1
0)) → Diff0(S1 × Sn) →

Emb0(S1 × Bn, S1 × Sn) induces a long exact homotopy sequence whose final terms are

· · · → π1 Emb0(S1, S1 × Sn; S1
0)

p→ π0 Diff(S1 × Bn fix ∂)
φ→ π0 Diff0(S1 × Sn)→ 0

Here p is induced by isotopy extension and φ is induced by extension which is the identity on the
complementary S1 × Bn. �

Most of the rest of the paper will be spent showing that there is a homomorphism
π0 Diff(S1 × B3 fix ∂) → π2 Emb(I, S1 × B3) which when composed with W3 gives rise
to a homomorphism, of the same name, W3 : π0 Diff(S1 × B3 fix ∂) → (π5(C3(S1 ×
B3))/torsion)/R such that W3 ◦ p is trivial. Furthermore, there exists an infinite set
of elements of π0 Diff(S1 × B3 fix ∂) whose W3 images are linearly independent. From
this we will obtain the following result whose proof will be completed in §8. A sharper
form of this result is given as Theorem 8.5.

Theorem 3.15. Both the group π0(Diff(S1 × B3 fix ∂)/ Diff(B4 fix ∂)) and
π0(Diff0(S1 × S3))/ Diff(B4 fix ∂)) contain an infinite set of linearly independent elements.

4. 2-Parameter Calculus

This section introduces techniques for working with 1 and 2-parameter families of
embeddings of the interval into a 4-manifold.

4.1. Spinning. We start by setting conventions for the operation we call spinning that
other authors call double point resolution. Spinning about arcs is an operation that
generates πD

1 Emb(I, M; J0), the Dax subgroup, i.e. the subgroup represented by loops
that are homotopically trivial in Maps(I, M; J0) [Ga2]. Here J0 is an oriented properly
embedded [0, 1] in the oriented 4-manifold M with 1J0 a fixed parametrization.

Definition 4.1. Let Q be an oriented 2-sphere in M with Q∩ J0 = ∅. Given an embedding
λ : [0, 1] → int(M) with λ ∩ J0 = λ(0) and λ ∩ Q = λ(1), we obtain a based loop αt in
Emb(I, M; J0) by using λ to drag J0 around Q. Let γ0 ⊂ J0 be a small arc containing
λ(0). αt is defined so that for t ∈ [0, .25], γt := αt(γ0) is a small arc containing λ(4t),
where γ.25 is an embedded arc in Q. During [.25, .75], keeping endpoints fixed, γt rotates
around Q. I.e. view Q = S1 × [0, 1] with S1 × 0 and S1 × 1 identified to points and for
t ∈ [.25, .75], γt = θt × [0, 1] for monotonically increasing θt. Finally during t ∈ [.75, 1],
γt returns to γ0 following the reverse of λ. Corners are rounded so that each αt is
smooth. The local picture of spinning about Q is shown in Figure 12. The direction
of the spinning is determined by the rule that (motion of γt, orientation of γt) gives
the orientation of Q. Any loop in Emb(I, M; J0), isotopic to one constructed as above is
called a λ-spinning of J0 about Q. The spinning that goes about Q in the opposite direction
is called a −λ-spinning of J0 about Q.
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Q

=γ
.75

γγ
.25 .50

Figure 12.

Lemma 4.2. Spinning depends only on the orientation of J0, the orientation of Q and the relative
path homotopy class of λ, i.e. if λv ⊂ Maps(I, M) is a path homotopy of λ0 := λ to λ1, then we
require that int(λv) ∩Q = ∅. �

If λ is an embedded arc from J0 to the oriented arc τ ⊂ M \ J0, then let B be a 3-ball
normal to τ at λ(1) oriented so that (orientation of τ, orientation of B)=orientation of
M. B is called a normal 3-ball. Let Q = ∂B oriented with the outward first boundary
orientation and λ′ = λ \ int(B)). Define the λ spinning about τ to be the λ’-spinning about
Q. Chord diagram notation for this spinning and its inverse are shown in Figure 13a).
The sign denotes whether this is a positive or negative spinning. Band/lasso notation
is shown in Figure 13b). The band = ∪{γt|t ∈ [0, 1/4]} with λ′ being the core of the
band and a lasso is a circle in Q containing, up to a small isotopy and rounding corners,
γ1/4. α1/4 and α3/4 are shown in Figure 13d) and α1/2 in Figure 13c). The positive (resp.
negative) spinning corresponding to the band β and lasso κ will be denoted σ(β, κ) (resp.
−σ(β, κ)). We call β ∩ J0 the base of the band and β ∩ κ the top of the band. We orient the
core of the band to point from the base to the top.

lasso

band

band

 �

J0

τ

±

 �

ττ

 �

τ

±±

 �

ττ

 �

τ

J0 J0

J0

α.�� α.�� α.��=

a) b)

d)c)

Figure 13.

For this section and the next we view V = S1 × B3 as D2 × S1 × [−1, 1] with the
product orientation. Let I0 be a properly embedded arc in V. When τ ⊂ I0, or very
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close to it, the λ of Figure 13) will be replaced by n ∈ Z = π1(S1 × B3; I0), where
I0 is viewed as the basepoint. Unless said otherwise all charts of V will be of the form
(D2× [0, 1])× [−1, 1], where the S1-direction is the [0, 1]-direction. Spinnings will almost
always be about oriented arcs τ in a D2 × I × 0 with the band ⊂ D2 × S1 × 0. Here the
normal ball B intersects D2 × I × 0 in a 2-disc called the lasso disc with the lasso its
boundary. We call B the lasso 3-ball and Q the lasso sphere. In this paper, given a lasso,
the lasso disc, sphere and 3-ball will be clear from context. The spinning will be denoted
L/H (resp. H/L) if the homotopy from γ1/4 to γ3/4 first goes into the past (resp. future)
and then into the future (resp. past).

We now give an oriented intersection theoretic way to decide whether or not a spin-
ning of I0 about an oriented arc τ is positive or negative. First, orient the band β to be
coherent with its intersection with I0 as in Figure 14 and then orient the lasso disc to be
coherent with β as in Figure 14.

I0I0

 

This red arc 
orients the band

+ denotes the induced

orientations on the 

band and lasso disc

-ε3
-ε2

+1 intersection

I.e. (v1,v2) is a positive basis

Figure 14.

Lemma 4.3. The spinning is positive if and only if the spinning is L/H (resp. H/L) and the
oriented intersection number of τ with the lasso disc is +1 (resp. -1).

Proof. Let (ε1, · · · , ε4) denote the standard orientation of D2× I× [−1, 1]. We can assume
that ε1 defines the orientation of τ so that the orientation of a normal ball B is given by
(ε2, ε3, ε4). We can also assume that the band and lasso appear as in Figure 14), i.e. so
that −ε3 is an outward normal to B and an orienting vector for α.5 is −ε2. Therefore,
Q = ∂B is oriented by (ε2, ε4) and if the spinning is L/H, then the motion vector for α1/2
is ε4 when the tangent vector to α1/2 is −ε2. It follows that the lasso disc has intersection
+1 with τ. The H/L case follows similarly. �

Lemma 4.4. The spinnings of Figure 15 a) - d) and e) - f) are homotopic in Ω Emb(I, M; I0).
Furthermore, the homotopy from a) to b) is supported in the union of a small 4-ball that contains
the bands and the 3-balls spanning the spinning spheres Q and Q′. The homotopies from b) to d)
are supported in a small neighborhood of the union of the bands and the sphere Q. The homotopy
from e) to f) is supported in a neighborhood of the arc. Note that going from e) to f) the p changes
sign, the arc changes orientation and the +/- changes to -/+.
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±
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Figure 15.

Proof. The assertions regarding a) to b) are immediate. To go from b) to c) first choose
coordinates so that a neighborhood of the top of the band as well as the lasso are con-
tained in the x − y plane and near the top of the band, the core of the band lies in the
y-axis. Next rotate Q to take the lasso to its reflection in the y-axis. This is achieved by
a rotation of the x− t plane. Finally, a rotation in the z− t plane isotopes the band back
into D2 × I × 0. Using a different rotation we could have obtained the opposite cross-
ing. Apply this homotopy twice to go from c) to d). Using Lemma 4.3 the assertions
regarding e) and f) follows from that of a) and b). �

Remark 4.5. This lemma implies that the core of a band determines the isotopy class
of the band up to possibly adding a half twist. Thus the isotopy class of the band is
determined by the core arc and the orientation on the lasso disc.

Lemma 4.6. Let λ1, λ2 be parallel oriented embedded arcs from I0 to I0 whose positive endpoints
intersect in a subarc τ as in Figure 16 a). Let σ1 (resp. σ2) denote the spinning corresponding to
λ1 (resp. λ2) with that of σ2 being oppositely signed. Then, the loop αt in Emb(I, S1 × B3; I0)
which is the simultaneous spinning of σ1 and σ2 is homotopically trivial via a homotopy whose
support lies in a small neighborhood of a parallelizing band between λ1 and λ2 \ N(τ).

More generally, let α be the two spinnings as in Figure 16 b). Here the spinnings are expressed
in band/lasso notation. Except for neighborhoods of the base arcs, where they differ by a half twist,
the bands β1 and β2 are parallel, connecting to parallel lassos and parallel lasso spheres Q1 and
Q2. Then, α is homotopic to 1I0 via a homotopy supported in the union of a 4-ball U about the
non parallel parts of the bands as in Figure 16 c) and a small neighborhood of the parallelism
between the spheres and the bands. �

Definition 4.7. The pair of spinnings defining α above is called a parallel cancel pair.
Here β1 and β2 are carried by a branched band surface. The arcs in β1 and β2 where the
bands diverge are called the branch loci. A homotopy as in Lemma 4.6 is called the undo
homotopy.
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Figure 16.

Definition 4.8. Let γt be a λ-spinning about the 2-sphere Q. Suppose that Q = ∂B, B
a 3-ball and E ⊂ B a properly embedded 2-disc with ∂E transverse to γt, t ∈ [.25, .75]
as in Definition 4.1. Let Q1, Q2 be the result of compressing Q along E. Then γ is
homotopic to a concatenation γ1 ∗ γ2 of two spinnings along nearby λ’s, where γi spins
about Qi, i = 1, 2. The operation of replacing γ by γ1 ∗ γ2 is called splitting. The reverse
operation is called zipping. See Figures 16d) and e).

Remarks 4.9. i) The support of the homotopy from γ to γ1 ∗ γ2 can be taken to be a small
neighborhood of λ ∪Q ∪ E.

ii) Suppose that γ is presented by the band β and lasso κ. Suppose that Q, D, B denote
the lasso sphere, disc and 3-ball. Let β1 and β2 be obtained from β by removing a small
neighborhood of its core and let κ1 and κ2 be the components of ∂D1 and ∂D2, where D1
and D2 are obtained from D by removing a small neighborhood of a properly embedded
arc e ⊂ D which intersects β at its core. Then σ(β1, κ1) ∗ σ(β2, κ2) is a splitting of σ(β, κ)
and we call (β1, κ1), (β2, κ2) a splitting of (β, κ). They are spinnings about Q1 and Q2, the
components of ∂(B \ int(N(E)), where E ⊂ B is a properly embedded 2-disc such that
E∩D = e. Here we require that the spinning across Q1 and Q2 be L/H (resp. H/L) if the
spinning across Q is L/H (resp. H/L). Note that σ is homotopic to σ(β1, κ1) ∗ σ(β2, κ2)
by a homotopy supported in a small neighborhood of β ∪Q ∪ E.

iii) As an application, suppose that τ0, τ1, · · · , τn are the local edges of a 1-complex
K ⊂ M emanating from the vertex v. If σ0 is a λ-spinning about a subarc of τ0 close to
v, then σ0 splits to a concatenation σ1 ∗ · · · ∗ σn via a homotopy supported away from K.
Figure 17 a) and b) demonstrates the argument for n = 2.

Definition 4.10. An abstract chord diagram C in the manifold M consists of
a) an oriented properly embedded arc I0
b) finitely many pairwise disjoint ordered pairs of distinct points p(C) in I0, (x1, y1), · · · ,

(xn, yn) with p(C) linearly ordered by the orientation on I0
c) For each 1 ≤ i ≤ n, gi ∈ π1(M; I0)
d) For each 1 ≤ i ≤ n, ηi ∈ ±1.

Remarks 4.11. 1) An abstract chord diagram C in a 4-manifold gives rise to an α(C) ∈
Ω Emb(I, M; I0), well defined up to homotopy, which is a concatenation of spinnings,
by choosing pairwise disjoint embedded paths λi from xi to yi representing gi. Call
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Figure 17.

such paths chords. An abstract chord diagram together with chords is called a realization
and sometimes just called a chord diagram. Since spinnings commute as elements of
π1 Emb(I, M; I0), this element is unaffected by modifying the relative location of the
pairs of points (xi, yi), however most of the abstract chord diagrams of interest in this
paper represent the trivial element, up to homotopy and we are not free to move these
points in general. We will be considering the following types of modifications.

Definition 4.12. We have the following operations on abstract chord diagrams.
i) (reversal) (xi, yi, gi,±) is replaced by (yi, xi, g−1

i ,∓)
ii) (exchange) If ai, bj ∈ p(C) are adjacent in the linear ordering where ai ∈ {xi, yi} and

bj ∈ {xj, yj}, i 6= j, then replace ai ∈ {xi, yi} by bj and bj ∈ {xj, yj} by ai.
iii) (sliding) As input, yi ∈ p(C) is adjacent to an xj ∈ p(C) with i 6= j. As output the

chord (xi, yi, gi,±) is replaced by three chords (xi, y′i, gi,±), (xr, yr, gi ∗ gj, σr), (xs, ys, gi ∗
gj, σs). Here y′i is moved to the other side of xj, Also xr, xs, xi are order adjacent as are
ys, yj, yr. Sign Rule: σr = ± if (resp. σs = ±) the interval between yi and yr (resp. yi and
ys) contains none or both of xj, yj, otherwise and σr (resp. σs) = ∓. See Figure 18.

iv) (isotopy) Points are moved isotopically in I0 without any collisions.

gi    gj*

I0

-

gi

+

a)
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xj
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xrI0
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+
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xj

yi

yj

xs xi ys yr
'

-

gi    gj*

Sliding

gj gj

Figure 18.

Remark 4.13. Let τj denote a chord from xj to yj. A sliding is the result of splitting the
(xi, yi, gi,±) spinning near xj, then isotoping the resulting lasso that links τj along τj and
finally do a second splitting near yj. Note that the support of this isotopy is disjoint from
τj.
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Definition 4.14. We say the abstract chord diagrams C on I0 and C′ on I1 are combinato-
rially equivalent if their data agrees up to reversals and isotopy.

Lemma 4.15. If the abstract chord diagrams C and C′ defined on I0 are combinatorially equiva-
lent, then αC is homotopic to αC′ . �

Lemma 4.16. (Change of Basepoint) Let I0 and I1 be path homotopic embedded arcs in the 4-
manifold M. An abstract chord diagram C0 on I0 induces a combinatorially equivalent chord
diagram C1 on I1. If αj := αCj ∈ Ω Emb(I, M, Ij), j = 0, 1 then α1 = γ ∗ α0 ∗ γ−1 is well
defined up to homotopy and in particular is independent of the path isotopy γ from I0 to I1.

Proof. Since I0 and I1 are path homotopic, there is a canonical isomorphism between
π1(M, I0) to π1(M, I1) and hence C0 induces a chord diagram C1 on I1 well defined up
to combinatorial equivalence and hence α1 is well defined up to homotopy. Alternatively,
we can assume that I0 and I1 agree in a small neighborhood U of their initial point and
p(I0) ⊂ U. It follows that the homotopy class of α1 is independent of the conjugating
γ. �

4.2. Factorization. In this subsection we introduce techniques for constructing and work-
ing with 2-parameter families of embeddings. We will define the bracket of two null
homotopic loops in Emb(I, M; J0) whose domain and range supports are disjoint and
will show that such brackets are well defined in π2 Emb(I, M; J0), anticommute and are
bilinear. Our fundamental example is the G(p, q) family in Emb(I, S1 × B3; I0) depicted
in Figure 19 a) which is the bracket of the 1-parameter families Bp and Rq defined by the
blue and red cords. The p or q means that the indicated cord goes p or q times about the
S1.

Definition 4.17. Let M be an oriented 4-manifold and 1J0 : [0, 1] → M a proper em-
bedding with image J0. Let α : [0, 1] → M be an embedding. We define the do-
main support of α := Dsupp(α) = cl{s ∈ I|α(s) 6= 1J0(s)} and the range support of α
:= Rsupp(α) = cl{α(I) \ J0}. If f : X → Emb(I, M; J0), then define the domain sup-
port of f := Dsupp( f ) = cl(∪x∈XDsupp( fx)) and the range support of f := Rsupp( f ) =
cl(∪x∈XRsupp( fx)). Define the parameter support of f to be cl{x ∈ X| fx 6= 1J0}.

Figure 19.
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Example 4.18. The domain support of Bp (resp. Rq) are four small intervals that contain
the endpoints of the blue (resp. red) cords while the range support of Bp (resp. Rq)
is contained in a small neighborhood of the blue (resp. red) cords. Note that both Bp
and Rq are null homotopic and have disjoint domain and range supports. (B, R) is an
example of a separable pair which we now define.

Definition 4.19. Let B, R ∈ Ω Emb(I, M; J0), the based loop space. We say that the
ordered pair (B, R) is separable if

i) B and R have disjoint domain supports
ii) B and R have disjoint range supports
iii) B and R are null homotopic

Definition 4.20. If FB, FR : X → Emb(I, M; J0) are such that for all x ∈ X, FB
x , FR

x have
both disjoint domain and range supports, then define F = FB ◦ FR : X → Emb(I, M; J0)
by Fx(s) = FB

x (s) (resp. FR
x (s)) if s ∈ Dsupp(FB

x ) (resp. Dsupp(FR
x )) and Fx(s) = 1J0(s) if

s /∈ Dsupp(FB
x ) ∪Dsupp(FR

x )). F is called the adjunction of FB and FR.

Definition 4.21. Let (B, R) be a separable pair with parameter supports within [3/8, 5/8].
Define the bracket of (B, R) to be F ∈ ΩΩ Emb(I, M; J0), the adjunction of the elements
FB, FR ∈ ΩΩ Emb(I, M; J0) defined as follows.

i) For u ∈ [.25, .75], FB
t,u(s) = Bt+u−.5(s) when s ∈ Dsupp(B) and 1J0(s) otherwise.

FR
t,u(s) = Rt+.5−u(s) when s ∈ Dsupp(R) and 1J0(s) otherwise.
ii) For u ∈ [0, 1/4], FB

u ∈ Ω Emb(I, M; J0), is a null homotopy of FB
.25 such that FB

t,u = 1J0

if (t, u) /∈ [1/8, 3/8] × [1/8, 1/4]. FR
u , is a null homotopy of FR

.25 such that FR
t,u = 1J0 if

(t, u) /∈ [5/8, 7/8]× [1/8, 1/4].
iii) for u ∈ [3/4, 1], FB

t,u = FB
t−.5,1−u when (t, u) ∈ [5/8, 7/8]× [3/4, 7/8] and 1J0 other-

wise. FR
t,u = FR

t+.5,1−u when (t, u) ∈ [1/8, 3/8]× [3/4, 7/8] and 1J0 otherwise.
We let [F] denote the class in π2(Emb(I, M; J0)) represented by F. The homotopies

FB
u , FR

u , u ∈ [1/8, 1/4] and u ∈ [3/4, 7/8] are called end homotopies. B and R are called
the midlevel loops of the adjunction F.

Example 4.22. The blue (resp. red) region of Figure 19 c) contains the parameter sup-
port of the 2-parameter family FBp (resp. FRq) arising from Bp (resp. Rq). The ar-
rows are meant to suggest that as we horizontally traverse the blue or red region, for
u ∈ [1/4, 3/4], we see a conjugate of B or R.

Remark 4.23. If the range supports of B and R are disjoint, then F is homotopically
trivial.

Lemma 4.24. (Independence of End Homotopies) If F, G ∈ ΩΩ Emb(I, M; I0) are separable
such that Fu = Gu for all u ∈ [1/4, 3/4], then [F] = [G] ∈ π2(Emb(I, M; I0)).

Proof. It suffices to consider the case that FR = GR. The map F, schematically shown
in Figure 19, is homotopic to the one in Figure 20 a), which is homotopic to the one in
Figure 20 b), which is homotopic to the map G. �

Proposition 4.25. The class [F] ∈ π2 Emb(I, M; I0) is determined by (B, R).
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Figure 20.

Proof. Let F and G have the common (B, R). Since the domain and range supports of
B and R are disjoint, we can independently reparametrize FB and FR so that Fu and Gu
coincide for u ∈ [1/4+ ε, 3/4− ε]. The Independence lemma implies that they represent
the same element of π2(Emb(I, M; I0)). �

Definition 4.26. We denote by [(B, R)] the class in π2(Emb(I, M; I0)) induced from
(B, R). We say that the elements B, R ∈ Ω(Emb(I, M; I0)) are separable if their do-
main and range supports, as in Definition 4.17 are disjoint. We call (B, R) a separable
pair. We say that (B0, R0) and (B1, R1) are separably homotopic if there exist homotopies
Bs, Rss ∈ [0, 1], such that for each s, Bs and Rs are separable.

Lemma 4.27. If B0 and R0 are homotopically trivial and (B0, R0) and(B1, R1) are separably
homotopic, then [(B0, R0)] = [B1, R1]. �

Proposition 4.28. (bilinearity) If (B, R) is a separable pair, separably homotopic to (B1 ∗ B2 ∗
· · · ∗ Bm, R1 ∗ · · · ∗Rn) where each Bi and Rj is homotopically trivial and ∗ denotes concatenation,
then [B, R] = ∑i,j[(Bi, Rj)].

Proof. It suffices to consider the case that n= 2 and m = 1. The result will then follow
from induction. First notice that the support of a concatenation is the union of the
supports of the terms so that each of (B, R1) and (B, R2) is a separable pair. By the
independence of end homotopies we can assume that the end homotopy for R is a
concatenation of those of R1 and R2. Since R is a concatenation, we can assume that the
usual support of R1 ⊂ [0, .4] ⊂ [0, 1], while support R2 ⊂ [.6, 1] ⊂ [0, 1]. Thus we can
assume that (B, R) appears as in Figure 21 a) and we can split B into two copies of itself
as in Figure 66 b) and so [(B, R)] = [(B, R1)] + [(B, R2)]. �

Lemma 4.29. We have the following equalities in π2 Emb(I, M; I0) where B̄ denotes the reversal
of B.

[(B, R)] = [(R, B̄)] = [(R̄, B)] = −[(R, B)] = [(B̄, R̄)]

Proof. Start with (B, R) as in Figure 22 a) and then rotate clockwise to obtain Figure
22 b) which represents the same element of π2 Emb(I, M; I0). Finally, homotopically
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Figure 21.

reparametrize the rotated FB and FR to obtain Figure 22 c) which depicts (R, B̄). Since
B and R have disjoint supports in both domain and range, this reparameterization can
be done independently on FB and FR subject to the condition that during the homotopy
all points that are both blue and red lay in the original u ∈ [1/4, 3/4] region. For this
reason the arrows can be made horizontal in only one direction. This argument applied
to a counterclockwise rotation shows that [(B, R)] = [R̄, B]. Next note that the standard
homotopy from 1I0 to R ∗ R̄ is through loops that have domain and range supports
disjoint from that of B and hence 0 = [(1I0 , B)] = [(R ∗ R̄, B)] = [(R, B)] + [(R̄, B)] thereby
establishing the third inequality. The final equality follows from the earlier ones. �

Figure 22.

Example 4.30. If B, R ∈ Ω Emb(I, M; I0) are defined by abstract chord diagrams CB, CR
such that p(CB) ∩ p(CR) = ∅, then (B, R) is separable. That is because the domain
support of B is contained in p(CB) and the range support is contained in a small neigh-
borhood of the chords and we can assume that the chords of CB and CR are disjoint.
Our fundamental example is the separable pair denoted G(p, q) defined by the chord
diagram shown in Figure 19 a), where CB (resp. CR) is defined by the blue (resp. red)
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chords. It’s class in π2 Emb(I, M; I0) is called the (p, q)-primitive class. A second basic
example is the separable pair denoted G∗(p, q) shown in Figure 19 b) and called the
symmetric G(p, q).

Definition 4.31. We say that the abstract chord diagrams C1 and C2 are disjoint if p(C1)∩
p(C2) = ∅. The sum of disjoint chord diagrams is the union of the data of the diagrams.

Lemma 4.32. Let Bi and Ri be represented by pairwise disjoint abstract chord diagrams CBi and
CRi for i = 0, 1.

i) (reversal) If CB1 is obtained from CB0 by a reversal, then (B0, R0) is separably homotopic to
(B1, R0). If B0 and R0 are homotopically trivial, then [(B0, R0)] = [(B1, R0)].

ii) (exchange) If CB1 is obtained from CB0 by an exchange along an interval whose interior is
disjoint from p(CR), and both B0, R0 are homotopically trivial, then [(B0, R0)] = [(B1, R0)].

iii) (sliding) If CB1 (resp. CR1) is obtained from CB0 (resp. CR0) by sliding a chord over either
a blue or red chord, then [(B1, R0)] = [(B0, R0)] (resp. [(B0, R1)] = [(B0, R0)].

iv) (addition/cancellation) If CB1 , CB0 , CR0 are disjoint chord diagrams with CB2 the sum of
CB1 and CB0 and [(B1, R0)] = 0, then [(B2, R0)] = [(B0, R0)]. The similar statement holds with
R and B switched.

v) (isotopy) If CBt (resp. CRt) is an isotopy of CB0 to CB1 (resp. CR0 to CR1) and for every t,
p(CBt) ∩ p(CRt) = ∅, then [(B1, R1)] = [(B0, R0)].

Proof. i) and v) are immediate. iv) follows from Proposition 4.28. Being the composite of
an isotopy and two splittings, it follows from Remark 4.9 that the support of a sliding is
disjoint from the chord being slid over. Therefore the homotopy from (B0, R0) to (B1, R0)
is separable. This proves iii). To prove ii) consider the representative Figure 23 a) which
shows a chord diagram with the exchange interval indicated. The chord diagram of
Figure 23 b) has the same CR, but the blue chord diagram C is given by a parallel pair of
oppositely signed arcs representing the same group element. Furthermore, the intervals
between their initial points and between their final points contains no points of p(CR).
Apply the undo homotopy, Lemma 4.6 to αC to reduce C to the trivial diagram. Since
the domain and range support of this undo homotopy is disjoint from that of αCR , it
follows that [(αC, αCR)] = 0. Using bilinearity we obtain Figure 23 c). We again use the
undo homotopy to cancel a pair of parallel oppositely signed blue chords to obtain the
diagram of Figure 23 d) which has a pair of chord diagrams isotopic to the exchanged
pair. �

Remark 4.33. A special case of iv) is when CB0 contains a pair of parallel oppositely
signed chords with the same group elements, p(CR0) is disjoint from the parallelism
between their endpoints and CB1 is the chord diagram with the parallel pair deleted, in
which case [(B0, R0)] = [(B1, R0)].

Definition 4.34. Let CB and CR be disjoint chord diagrams on I0. We say that (CB, CR) is
combinatorially equivalent to (C′B, C′R) if one can be transformed to the other through dis-
joint chord diagrams that change by reversals, isotopies and allowable exchange moves.

We have the following analogues of Lemmas 4.15, 4.16 which, in combination with
Lemma 4.16 have similar proofs.
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Figure 23.

Lemma 4.35. If (CB, CR) and (C′B, C′R) are combinatorially equivalent, then [(CB, CR)] =
[(C′B, C′R)] ∈ π2(Emb(I, M; I0)). �

Lemma 4.36. (Change of Basepoint) Let I0 and I1 be path homotopic embedded arcs in the
4-manifold M. A pair of disjoint chord diagrams (C0

B, C0
R) on I0 induces a pair (C1

B, C1
R) on

I1 unique up to combinatorial equivalence. Furthermore, [(C1
B, C1

R)] ∈ π2 Emb(I, M; I0) is
obtained from [(C0

B, C0
R)] ∈ π2 Emb(I, M; I1) by a change of basepoint isomorphism which is

independent of the path isotopy from I0 to I1. �

Lemma 4.37. [G∗(p, q)] = −[G(p, p− q)].

Proof. The argument is given in Figure 24. Figure 24 a) shows G∗(p, q). One of the red
chords is reversed to obtain Figure 24 b). That chord is slid over the adjacent blue chord
to obtain Figure 24 c). A red chord is then reversed and the resulting pair of oppositely
signed red chords with group element p are cancelled using the undo homotopy. �

4.3. Fundamental Classes. We have already introduced the primitive family G(p, q).
We now introduce the elementary classes E(p, q) and double classes D(p, q) and compute
[E(p, q)] in terms of [G(p, q)]’s and [D(p, q)] in terms of [E(p, q)]’s.

Definition 4.38. Define the standard elementary family E(p, q)by the band/lasso diagram
as in Figure 25. In words E(p, q) = (B, R) where B (resp. R) is defined by the band βb
(resp. βr) and lasso κb (resp. κr), where the base of βb appears on I0 before the base of βr.
Also κb (resp. κr) links the core of βr (resp. κb) very close to its base and both spinnings
are positive. When the top of the core of βb (resp. βr) is pushed slightly to lie on I0, then
the core represents p (resp. q) ∈ π1(S1 × B3; I0).

More generally, an E(p, q) family is one of the form (B, R) where each of B and R are
represented by a single band and lasso where the lasso of one links the core of the other
very close to its base.

Remarks 4.39. i) Up to the ordering of their bases on I0, twisting of the bands and
L/H, H/L designation an E(p, q) family is isotopic to the standard E(p, q) for appro-
priate p and q, hence up to sign and permutation of p and q such a family represents
[E(p, q)].
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L/H L/H

E(p,q)

p

I0

Figure 25.

ii) Recall that the sign of a spinning is determined by a rotation about an oriented
sphere, which links an oriented arc τ. Here, the oriented arcs are the oriented cores of
the bands βb and βr.

iii) To over emphasize, the order of the base of the bands on I0 and the homotopy
classes of their cores determine p and q. Given such bands, the sign of [E(p, q)] is
determined by the color of the first band, and the signs of the spinnings. The sign
of a given spinning is determined by the L/H, H/L data and the <band core, lasso>
algebraic intersection number from Lemma 4.3. Thus the sign is given by the parity of
the five possible differences from the standard model. In the standard model, shown
in Figure 25, we have L/H with +1 intersection number in both cases. That figure also
shows the oriented cores of the bands as well as the orientations of the bands and the
lasso discs.

Lemma 4.40. [E(p, q)] = −[G(−q, p)] + [G(p,−q)] = −[G∗(−q, p)] + [G∗(p,−q)].
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Proof. We first isotope E(p, q) as in Figure 26 a), then homotope it to a chord diagram
as in Figure 26 b), where we use Lemma 4.3 to determine the signs of the chords. Use
Lemma 4.32 i) to reverse the red chords and then 4.32 iii) to isotope the chords to obtain
Figure 26 c). Figure 26 d) is the result of applying two exchanges, Lemma 4.32 ii).
A representative of [G(−q, p)] is shown in Figure 26 e). Note that it differs from the
standard G(−q, p) by a color change and replacing R by R̄, i.e. two sign changes at the
π2 level. We use bilinearity to add 26 d) and e) and then use the undo homotopy Lemma
4.6 to cancel a pair of parallel red chords to obtain 26 f). Adding Figure 26 g) which is
a [−G(p,−q)] and then doing an undo homotopy to the red chords we obtain Figure
26 h) which is homotopically trivial, since another undo homotopy eliminates the blue
chords. It follows that [E(p, q)] + [G(−q, p)]− [G(p,−q)] = 0.

The proof that the left hand side equals the right hand side follows similarly. Here
we add a −[G∗(p,−q)] as shown in Figure 26 i) to Figure 26 d) which gives Figure 26 j).
Adding to that a [G∗(−q, p)] as shown in Figure 26 k) gives a chord diagram representing
the trivial element. It follows that [E(p, q)] = −[G∗(−q, p)] + [G∗(p,−q)]. �

-q

p

Figure 26.

Corollary 4.41. i) [E(p, q)] = 0 if q = −p
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ii) [E(p, q)] = −[E(−q,−p)]
iii) (Hexagon Relation) [G(p, q)] + [G(p, p− q)] = [G(q, p)] + [G(q, q− p)].

Proof. The first two conclusions are immediate. The third follows from the second equal-
ity of Lemma 4.40, Lemma 4.37 and a change of variables. �

The next result follows from iii) and Proposition 3.4. See also Remark 3.5.

Theorem 4.42. The induced map W3 : G → W is an isomorphism, where G is the subgroup
of π2 Emb(I, S1 × B3; I0) generated by the G(p, q)’s and W is the quotient group defined in
Proposition 3.4. �

Definition 4.43. Define the standard double family D(p, q) in band/lasso notation as in
Figure 27. In words, it is of the form (B, R) where B consists of the band βb and lasso κr.
R consists of a parallel cancel pair defined by the bands βr, β′r and lassos κr, κ′r. Base(βr),
base(βb), base(β′r) appear in order along I0. κr, κ′r link band(βb) just above its base and
κb links band(βr), band(β′r) at the branch loci. When the top of the bands are pushed to
lie on I0 then βb represents p and both βr, β′r represent q. Also, the spinning of σ(βb, κb)
about the oriented cores of βr, β′r is positive. The spinning of σ(βr, κr) (resp. σ(β′r, κ′r)
about the oriented core of βb is positive (resp. negative).

More generally, we call a family (B, R) a D(p, q) family if up to isotopy it is represented
by bands and lassos as a standard D(p, q) family, up to switching the roles of B and
R, L/HH/L designations and twisting of the bands.

L/H L/H

D(p,q)

p

I0

Figure 27.

Remarks 4.44. i) Up to sign and permutation of p and q a D(p, q) family represents the
class [D(p, q)].

ii) The order of the base of the bands and the homotopy classes of their cores determine
p and q. Given such bands, the sign of [D(p, q)] is determined by the color of the first
band on I0, and the signs of the spinnings. Here, we need not consider the spinning from
β′r, κ′rsince it is always opposite that of βr, κr. If we use L/H, H/L data and intersection
numbers to determine the spinnings, then as before the final sign is given by the parity
of the five possible differences from the standard model.
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Lemma 4.45. [D(p, q)] = −[E(q, p)]− [E(p, q)].

Proof. First note that D(p, q) is a separable family. By construction R is a concatenation of
σ(βr, κr) and σ(β′r, κ′r) and each is homotopically trivial. Applying bilinearity to Figure 27
we obtain (B1, R1) and (B2, R2) of Figures 28 a), b). (B1, R1) is homotopic to the standard
E(q, p) after a blue/red switch, thus [(B1, R1)] = −[E(q, p)]. Similarly, the family in
Figure 28 b) gives −E(p, q). Here there is a single sign change from the standard E(p, q)
arising from < band(βb), κ′r >= −1. �

L/H L/H L/H L/H

p

I0

p

I0

(B1,R1) (B2,R2)

Figure 28.

Corollary 4.46. [D(p, q)] = −[G(q,−p)] + [G(−q, p)]− [G(p,−q)] + [G(−p, q)].

Corollary 4.47. i) [D(p,−p)] = 0
ii) [D(p, q)] = [D(q, p)]
iii) [D(−p,−q)] = −[D(p, q)]

5. Barbell Diffeomorphisms

Bar
First Cuff Second Cuff

P1
P2

Thick Bar

Thick Cuff

E1 E2

Δ 0

cocore disc

midball

cocore disc

α1 α2

Canonical Involution

τ

(a) (b)

Figure 29. (a) A Barbell. (b) The t = 0, y = 0 slice of the model thickened barbell.

In §2 we defined the families {αk} and {θk} each of which generated π1 Emb(S1, S1 ×
S3; S1

0), where S1
0 is the standard vertical S1 ⊂ S3. In §3 we noted that isotopy exten-

sion applied to an αk, k ≥ 1 or θk, k ≥ 2 gives rise to an element of Diff(S1 × B3 fix ∂)
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which is conjecturally isotopically nontrivial. In this section we explicitly identify these
diffeomorphisms, the foundational observation being that each is supported in a single
S2×D2\S2×D2 ⊂ S1× B3. We call such a space a thickened barbellNB, the barbell B itself,
a spine, being the disjoint union of two oriented 2-spheres together with an oriented arc
that joins them. See Figure 29(a). We will see that π0

(
Diff(NB fix ∂)/ Diff(B4 fix ∂)

)
= Z

and is generated by the barbell map. The barbell map is the result of applying isotopy
extension to a loop of a pair of properly embedded arcs in B4, where a subarc of the first
arc is standardly spun around the second and then restricting to the closed complement
of these arcs.

By embedding the barbell in another space M and pushing forward the barbell map we
obtain elements of Diff(M fix ∂M) an operation we call barbell implantation. Implantations
yielding elements of Diff(S1 × B3 fix ∂) induced from the θk’s and αk’s will be described.
Other implantations that we will prove to be isotopically nontrivial in both Diff(S1 ×
B3 fix ∂) and Diff0(S1 × S3) modulo Diff(B4 fix ∂) will be given in the next section. For
M = S4 we offer explicit candidates including the ones arising from the θk’s via filling
S1 × B3 with an S2 × D2. We will show how to construct the image of {x0} × B3 ⊂
S1× B3 and {x0}× S3 ⊂ S1× S3 under implantation, thereby exhibiting possibly knotted
nonseparating 3-balls (resp. 3-spheres) in S1 × B3 (resp. in S1 × S3), inducing knotted
3-balls in S4. Some of these will be shown to be non trivial in later sections. For S4 we
will show that some barbell maps are order at most 2. Finally, we note that barbell maps
extend and generalize the graph surgery diffeomorphisms of Watanabe [Wa1].

We start by defining the model barbell and its thickening in R4, along the way estab-
lishing conventions and identifying various subspaces.

Definition 5.1. The model barbell B is the union two 2-spheres in R3 of radius 1
4 re-

spectively centered (1, 0, 0) and (2, 0, 0) together with the arc [1.25, 1.75] ⊂ R × {0}2

called the bar that points from the first sphere P1 to the second called P2. These spheres
are called the cuffs with P1 (resp. P2) being the first (resp. second) cuff. Construct the
underlying space of a model thickened barbell ⊂ R4 by first taking an ε-neighborhood
N3

ε (B) ⊂ R3 and then taking the product with [−ε, ε]. Here ε > 0 and is small. The
space N(Pi) := N3

ε (Pi)× [−ε, ε] is called a thick cuff and the closed complement of the
thick cuffs is called the thick bar. The properly embedded 2-disc E1 ⊂ NB normal to
P1 and centered at (1, 0, 1

4 , 0) is called the cocore disc to P1. E2 centered at (2, 0, 1
4 , 0) is

defined and named analogously. Let τ denote the canonical involution of NB induced
from the involution on R4 corresponding to rotating the x, y plane by π at the point
(1.5, 0, 0, 0) and fixing the z, t coordinates. Define ∆0 ⊂ NB to be the properly embed-
ded transverse 3-ball to the dual arc at (1.5, 0, 0, 0) and call it the midball. See Figure
29(b). Let αi = (i, 0, 0, t), t ∈ [−ε, ε], i = 1, 2. Let Bi = B3 × [−ε, ε] where B3 is the closed
complementary 3-ball region of N3

ε (Pi). View αi as the cocore of the 3-handle Bi.
We giveNB the orientation induced from R4. We orient P1 so that at (1, 0, 1

4 , 0), (ε2,−ε1)

is a positive basis and orient E1 so that at (1, 0, 1
4 , 0), (ε3, ε4) is a positive basis. Here

(ε1, ε2, ε3, ε4) is the standard positive basis for R4. Note that 〈P1, E1〉 = 1. Use τ to push
forward the orientations on P1, E1 to ones on P2, E2. Use ε1 to positively orient the bar
and (ε2, ε3, ε4) to orient ∆0.
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A barbell in a 4-manifold is a subspace diffeomorphic to the model barbell with ori-
ented cuffs and bar such that the cuffs have trivial normal bundles. A thick barbell in a
4-manifold is an embedded S2 × D2\S2 × D2 together with a barbell spine.

The following is standard.

Lemma 5.2. • H2(NB) ' Z2 with generators [P1], [P2].
• H2(NB, ∂NB) ' Z2 with generators [E1], [E2].
• H2(NB, ∂E1 ∪ ∂E2) ' Z4 with generators [P1], [E1], [P2], [E2]. �

Construction 5.3. We now define the barbell map β : NB → NB. Let W = NB ∪ B1 ∪ B2
and hence NB is the closed complement of N(α1) ∪ N(α2) ⊂ W where N(αi) = Bi. A
loop λs in Emb(N(α1), W) based at N(α1) that is fixed near (∂α1) × B3 and avoids B2
induces a diffeomorphism of NB fix ∂NB by isotopy extension whose proper isotopy
class depends only on the based homotopy class of that loop. To define the path λ we
construct two discs F0, F1, where F1 is a parallel copy of E1 having been pushed off in the
ε1 direction and F0 is a disc that coincides with F1 near its boundary and defined below.
λs is a loop that first sweeps across F0 and then sweeps back using F1. In what follows
for X ⊂ B, let Xt0 denote X ∩ {t = t0}.

E1 E2

α1 α2

0

0 0

0

Figure 30. A slice of the barbell map.

We describe F0 as follows. It will intersect each NBt in an arc F0t whose ends coincide
with that of F1t . Here F00 lies in the y = 0 plane and is shown in Figure 30 a). As t
increases (resp. decreases) F0t slips to the y > 0-side (resp. y < 0-side) of ∂B2t . For t
close to ±ε, F0t coincides with F1t .

The images of β(E1)0, β(E2)0 are shown in Figure 30 b). As t increases β(E1)t (resp.
β(E2)t) slips to the y > 0-side (resp. y < 0-side) of ∂B2t (resp. ∂B1t). Note that β(Ei)
coincides with Ei near its boundary.
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Remarks 5.4. i) An orientation preserving diffeomorphism of NB supported in the thick
bar that is a full right hand twist of the x, z-plane as one traverses the bar does not change
the isotopy class of the barbell map, since it fixes F0 ∪ F1 setwise, hence does not change
the based isotopy class of the loop λs.

ii) The barbell map is the result of applying isotopy extension to a positive λ-spinning
of α1 about α2 where λ is a straight arc from α1 to α2 and each αi is oriented by ε4. It
follows from Lemma 4.4 that the barbell map is also the result of a negative spinning of
α2 about α1.

Lemma 5.5. In H2(NB, ∂(E1 ∪ E2)),
i) β∗[E1] = [E1] + [P2]
ii) β∗[E2] = [E2]− [P1] �

The next result follows by construction.

Theorem 5.6. τ ◦ β ◦ τ is isotopic to β−1.

Theorem 5.7. π0 Diff(NB fix ∂)/π0 Diff(B4 fix ∂) ' Z and is generated by the barbell map.

Proof. Let ψ ∈ Diff(NB fix ∂). Since ψ fixes ∂NB pointwise it is orientation preserving.
Its effect on H2(NB, ∂(E1 ∪ E2)) is as follows.

a) ψ∗([Pi]) = [Pi], i = 1, 2
b) ψ∗([E1]) = [E1] + n[P2]
c) ψ∗([E2]) = [E2]− n[P1] for some n ∈ Z.
Since ψ fixes ∂NB a) follows. Apriori, ψ∗([E1]) = n1[E1] + n2[P1] + n3[E2] + n4[P2].

Since ψ fixes ∂NB, n1 = 1 and n3 = 0. Now double NB to obtain S2 × S2]S2 × S2 and
extend ψ to ψ̂ so that ψ̂ is the identity outside ofNB. In the double P1 becomes a S2×{∗}
and the doubled E1 becomes the 2-sphere Ê1 = {∗} × S2, both in the first S2 × S2 factor.
Since Ê1 has trivial normal bundle as does P1 and P2 it follows that n2 = 0. In a similar
manner ψ∗([E2]) = [E2] + m[P1]. Therefore if n4 = n, then 0 = 〈E1, E2〉 = 〈ψ(E1), ψ(E2)〉
and hence m = −n.

Therefore, f := β−n ◦ ψ acts trivially on H2(NB, ∂(E1 ∪ E2)) and hence for i =
1, 2, f (Ei) is homotopic to Ei rel ∂Ei. After an application of Theorem 0.6 i) [Ga2] f can
be isotoped so that f |(E1 ∪ ∂NB) = id and then by Theorem 10.4 [Ga1], f can be further
isotoped so that f |(E1 ∪ E2 ∪ ∂NB) = id and hence f = id modulo Diff(B4 fix ∂). �

Definition 5.8. Let M be a properly embedded 3-manifold in the 4-manifold V. We say
that Y is obtained from M by embedded surgery if there is a sequence M = M0, M1, M2, · · · ,
Mn = Y such that Mi is obtained from the regular neighborhood N(Mi−1) by first attach-
ing a single 4-dimensional handle embedded in V and then restricting to some relative
boundary components.

Construction 5.9. We construct β(∆0) := ∆1 by embedded surgery. To start with, ∆0 is
isotopic to the 3-ball ∆b obtained from ∆0 by two embedded 2-handle surgeries where
the second 2-handle attachment is given by the cocore of the first as in Figure 31 a).
More precisely, the first 0-framed 4-dimensional 2-handle σ is attached to link B2 and
intersect E2 in a cocore C. Further if ∆a is the result of this embedded surgery, then
λs ∩ ∆a = ∅ all s, where λs is as in Construction 5.3. The second 2-handle τ is a normal
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neighborhood of C and hence ∆b is disjoint from E2. Since β(E2) is obtained by removing
a small subdisc C′ ⊂ C ⊂ E2 and replacing it by a disc C′′, it follows that β(∆b) := ∆c is
obtained by removing a solid torus, the unit normal bundle of C′, and reimbedding it as
the unit normal bundle of C′′. Finally, ∆1 is obtained by isotoping the attaching zone of
β(τ) to lie in ∆0. At the 3-dimensional level ∆1 is obtained from ∆0 by 0-surgery along a
Hopf link.

E1

Figure 31. Construction of ∆1 as seen from the t = 0, y = 0 slice.

Remark 5.10. Note that if ∆1, · · · , ∆n are n parallel copies of ∆0 with ∆1 closest to B2, then
β(∪∆i) are n parallel copies of β(∆1). The corresponding 2-handles β(σ1), β(σ2), · · · , β(σn)
(resp. β(τn), β(τn−1), · · · , β(τ1)) nest, one inside the previous.

Definition 5.11. Let N be a 4-manifold and B0 a smoothly embedded barbel with framed
cuffs. Let N(B0) be an ε-regular neighborhood. There is an orientation preserving
diffeomorphism f : N(B0) → NB that restricts to one from B0 to the model barbell B,
which essentially preserves normal fibers of the thickenings. Pulling back the barbell
map induces a map β f : N → N, well defined up to isotopy. The operation that starts
with a framed cuffed barbell B0 ⊂ N and produces β f ∈ Diff(N) up to isotopy, is called
implantation. Here β f can be viewed as an element of Diff(N) or Diff(N fix ∂).

Remarks 5.12. If N is oriented we can assume that the framing of the cuffs together with
the orientation of the cuffs agrees with the orientation of N. Different framings of the
bar will give rise to maps f and g that differ by a twist as in Remarks 5.4 i). That remark
also shows that β f is isotopic to βg. Thus when N is oriented the isotopy class of β f
depends only on the embedding of the barbell and the framing of the cuffs. When the
framing is implicit, then β f depends only on the embedding.

By chasing orientations we obtain:

Lemma 5.13. If B is a barbell in N, then reversing the orientation of N without changing the
orientations on the barbell changes the implantion to its inverse.
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We now give a bundle theoretic interpretation of the barbell map. Consider the fiber
bundle Diff(Dn fix ∂)→ Emb(t2Bn, Bn) from the group of diffeomorphisms of Bn to the
space of embeddings of two copies of Bn into itself. To define this bundle, we fix two
disjoint n-discs embedded in the interior of a fixed Bn. The bundle comes from restricting
a diffeomorphism to the sub-discs. Not only it is a fiber-bundle, but it is null-homotopic,
Proposition 5.3 [Bu2]. Thus there is an injection πk Emb(t2Bn, Bn)→ πk−1 Diff(Bn fix t2
Bn), moreover the co-kernel of this injection is isomorphic to πk−1 Diff(Bn fix ∂).

Emb(t2Bn, Bn) has the homotopy-type of Sn−1 × SO2
n. Thus we have

πn−1 Emb(t2Bn, Bn) ' Z⊕
⊕

2
πn−1SOn.

The Z factor corresponding to πn−1Sn−1 is what generates the barbell diffeomorphism.
We have a short-exact sequence

0→ πk−1Sn−1 ⊕
⊕

2
πk−1SOn → πk−2 Diff(Bn fix t2 Bn)→ πk−2 Diff(Bn fix ∂)→ 0

We consider Sn−1 × B2\Sn−1 × B2 to be (Sn−1 × I\Sn−1 × I) × I, i.e. as a trivial I-
bundle over Sn−1 × I\Sn−1 × I. Then as a bundle over I, denote the group of fiber-
preserving diffeomorphisms of Sn−1 × B2\Sn−1 × B2 that are the identity on the bound-
ary by DiffI(Sn−1 × B2\Sn−1 × B2). These diffeomorphisms are sometimes also called
horizontal diffeomorphisms. By design, this group is the loop-space on Diff(Bn fix t2 Bn),
thus we have shown there is a short exact sequence

Proposition 5.14.

0→ πk−1Sn−1⊕
⊕

2
πk−1SOn → πk−3 DiffI(Sn−1× B2\Sn−1× B2 fix ∂)→ πk−2 Diff(Bn fix ∂)→ 0

valid for all n ≥ 3 and all k ≥ 3.

The barbell diffeomorphism (family) being the image of the πn−1Sn−1 generator in
πn−3 DiffI(Sn−1 × B2\Sn−1 × B2 fix ∂), when k = n.

We now consider S4 implantation where the cuffs P1, P2 of B are fixed unknotted and
unlinked oriented 2-spheres that are permuted under an elliptic involution τ of S4. We
assume that P1 ∪ P2 ⊂ B, a fixed oriented 3-ball, thereby determining the framings of
P1 ∪ P2 as in the model barbell. The bar is then determined up to isotopy by its relative
homotopy class and hence by a word w(x, y) in the rank-2 free group, the fundamental
group of S4 \ (P1 ∪ P2). See Figure 32. With generators as in the figure we will assume
that w is reduced and if w 6= 1, then the first (resp. last) letter of w is y±1 (resp. x±1).
For example, if x was the first letter, then it can be removed by rotating N(P1) fixing P1
pointwise. We denote such a barbell by Bw. It is well defined up to isotopy fixing P1 ∪ P2
pointwise. We denote by βw the corresponding diffeomorphism of S4 which is also well
defined up to isotopy.

Definition 5.15. We say that w is inverse-xy-palendromic if w is obtained by first taking its
inverse and then everywhere switching x and y.

Example 5.16. (yx−1)n is inverse-xy-palendromic.
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P1
P2

τ

x
y

Figure 32. Generators for the fundamental group of a barbell complement
in S4

Proposition 5.17. If w is inverse-xy-palendromic, then β2
w is isotopic to id.

Proof. Since w is inverse-xy-palendromic, τ(βw) is setwise isotopic to βw via an isotopy
that is supported in the bar. The time one map of the isotopy, g : τ(Bw) → Bw, is
orientation preserving on the cuffs and reversing on the bar. It follows from Theorem
5.6 that βw is isotopic β−1

w . �

Conjecture 5.18. π0 Diff0(S4) 6= 1. In particular, βyx and βyx−1 are not isotopic to id. See
Figure 33.

P1
P2

Figure 33. Is this a non trivial element of π0 Diff0(S4)?

Questions 5.19. i) What are the relations in the subgroup of π0 Diff0(S4) generated by the βw’s?
ii) We can also consider implantations in S4 arising from knotted or linked cuffs. When do

these implantations give isotopically trivial diffeomorphisms? What if any are relations amongst
these implantations?

Definition 5.20. Let B be a barbell in M. Define a(P1), the associated sphere to P1, be the
sphere obtained by orientation preserving tubing P1 along the bar to a parallel copy of
P2.

Remark 5.21. Let α be an arc in a normal disc of P2 from a(P1) to P2. Then N(a(P1) ∪
α ∪ P2) is a barbell whose thickening is isotopic to N(B). The next result shows that if
w 6= 1, Bw has thickening with a knotted barbell spine.

Proposition 5.22. Let Bw be a barbell in S4. Then
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i) a(P1) is knotted if and only if w 6= 1 and hence if w 6= 1, then Bw is not isotopic to B1.
ii) If w 6= 1, then Bw’s thickening has no barbell spine isotopic to B1.

Proof. i) If w = 1, then a(P1) is obviously unknotted. In general a(P1) is a ribbon 2-knot K
whose fundamental group is 〈x, y|xwyw−1〉. Since we can assume that w is a nontrivial
reduced word that does not start (resp. end) with a x±1 nor end with a y±1 it follows
that the relator is non trivial and hence the group is non cyclic.

ii) Every non separating embedded 2-sphere in ∂NB1 is isotopically trivial. �

We now consider S1 × X implantations where X = S3 or B3.

Construction 5.23. Let B0 ⊂ S1 × X, X ∈ {B3, S3} a barbell with β0 the implanted map.
If ∆0 := x0 × X is disjoint from the cuffs and transverse to the bar, then ∆1 := β0(∆0)
is constructed as follows. Let h : (N(B0),B0) → (NB,B) an orientation preserving
diffeomorphism, where NB is the thickened model barbell. We can assume that f (∆0 ∩
N(B0)) is m ≥ 0 parallel 3-balls normal to the model bar. Construction 5.9 shows how
to construct the image of these balls under the barbell map. Now pull back by h.

Remark 5.24. ∆1 is obtained by embedded surgery to ∆0 where the attaching zone of the
2-handles is the split union of m Hopf links. At the 3-dimensional level, ∆1 is obtained
by 0-surgery to the components of this link, thus its topology is unchanged.

Construction 5.25. (Barbells from Spinning) Let J be an embedded oriented S1 in the
oriented 4-manifold M. Construction 5.3 and Remark 5.4 show that the diffeomorphism
of M induced by applying isotopy extension to a λ-spinning of a subarc J1 of J about
another subarc J2 is the barbell map corresponding to a barbell B ⊂ M with P1 linking
J1, P2 linking J2 and the bar given by λ. Applying this to θk and αi, denoted in §2 as
θ1,k and α1,i, we obtain the barbells shown in Figure 34. To see this for θ3, first consider
Figure 34 c) which shows the basic construction and then send f to “infinity". We now
view these barbells as subsets of S1 × B3 and denote them by B(θk) and B(αi). Let
βθk , βαk ∈ Diff0(S1 × B3 fix ∂) denote the corresponding implantations.

Since S4 is obtained by gluing an S2 × D2 to S1 × B3 elements of Diff(S1 × B3 fix ∂)
extend to elements of Diff0(S4). For example, viewing B(θ3) in S4 we obtain the barbell
BS4(θ3) shown in Figure 34 d). Since this barbell is inverse-xy-palendromic its implanta-
tion is order at most 2.

Remark 5.26. Watanabe constructs [Wa1] various B4-bundles over n-spheres to show,
among other things, that π1 Diff(B4 fix ∂) is non trivial. Specializing his construction
to n = 1 and considering a bundle’s gluing map, give possible nontrivial elements of
Diff(B4 fix ∂). He notes that this construction applied to a 4-manifold M might yield
nontrivial elements of π0 Diff(M fix ∂). Here we observe that these diffeomorphisms are
compositions of barbell maps. We very briefly outline this in the simplest case when
M = S4.

Watanabe starts with an embedding α of a two vertex arrow graph into S4 and then
constructs the corresponding Y-link in S4, see [Wa1] §4. We abuse notation by letting
α denote this embedding when extended to a regular neighborhood. The Y-link has
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Figure 34. (a) The barbell B(θk) induced from θk
(b) The barbell B(αi) induced from αi
(c) The initial barbell induced from θ3
(d) B(θ3) viewed as a subset of S4

two components, one Type 1 and one Type 2. Call their respective regular neighbor-
hoods V1 and V2. Watanabe’s diffeomorphism of S4, which we denote by φα, arises
from parametrized Borromean surgery of Type 1 on α(V1) and Type 2 on α(V2). Roughly,
V1 = B4 \ int(N(D1)∪N(D2)∪N(D3)) where D1 and D2 are 2-discs and D3 a 1-disc, the
union standardly embedded. V2 = B4 \ int(N(E1)∪ N(E2)∪ N(E3)) where E1 is a 2-disc
and E2, E3 are 1-discs and the union is standardly embedded, thus V2 = S2×D2\S2×D2

plus a 1-handle. Being a Y-link, the 1-handle of α(V2) passes parallel to α(D3) through
α(V1). Type 1 surgery effectively replaces D3 by D′3 where D1 ∪ D2 ∪ D′3 is the 4-
dimensional Borromean rings viewed as a three component tangle in the B4 defining
V1. Thus, Type 1 surgery reimbeds the 1-handle of α(V2), hence reimbeds α(V2) ⊂ S4.
Let α′ : V2 → S4 be this new embedding. Type 2 surgery on V2 induces ψ ∈ Diff(V2 fix ∂)
by an arc pushing diffeomorphism and φα is obtained by pushing forward ψ by α′. The
track of this arc pushing is more or less a disc E′2 where E1 ∪ E′2 ∪ E3 is the 4-dimensional
Borromean rings. Our assertion follows from the fact that ψ is the composition of two
barbell maps. To see this expressed from our point of view, consider V2 as T × [−1, 1]
where T is a D2 × S1 with two open 3-balls B1 and B2 removed. Here, we have two
properly embedded discs F0 ⊂ V2 and F1 ⊂ V2 that coincide near their boundaries and
ψ is obtained by first pushing in along F0 and then out along F1. The F1 is a σ× [−1, 1],
where σ ⊂ T is a properly embedded arc and F0 intersects each T × t in an arc F0t . F00
and σ× {0} are shown in Figure 35. F00 consists of two subarcs τ0, τ′0 that go around the
the second 3-ball B2 × {0}. As t increases (resp. decreases) τt slips over (resp. under)
B2 × {t} and τ′t slips under (resp. over) B2 × {t}, both returning to coincide with a seg-
ment in σ × {t}. This can be done so that for all t, int(τt) ∩ int(τ′t ) = ∅ and hence F0
is embedded. With this description it is evident that ψ and hence φα, is isotopic to the
composition of two barbell maps.
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Figure 35. t = 0 slice of Watanabe’s Type 2 Borromean surgery.

6. 1- and 2-parameter families arising from implantations

In the last section we introduced the barbell map β : S2×D2\S2×D2 → S2×D2\S2×
D2 and constructed ∆1 = β(∆0) where ∆0 is the standard separating 3-ball. In this
section we slice ∆0 into 1- and 2-parameter families of discs and arcs. We will show how
under barbell implantation into a 4-manifold M, where the bar is transverse to a 3-ball,
these families produced loops and spheres in Emb(D2, M) and Emb(I, M) respectively.

Recall that NB = V× [−1, 1] where V = D2 \ int(B1 ∪ B2) where B1 and B2 are 3-balls.
By scaling [−1, 1] to [0, 1], we henceforth identify NB with V × [0, 1]. Let D ⊂ V denote
the separating 2-disc such that ∆0 = D × [0, 1]. Recall that β(V × u) = V × u for all
u ∈ [0, 1] it follows that ∆1 = ∪u∈[0,1]β(D × u). The next result follows by slicing the
construction of ∆1.

Proposition 6.1. {β(D× u)}u∈[0,1] is isotopic to the family {Du} obtained as follows.
i) For u ∈ [0, .125], Du = D× u. See Figure 36 a).
ii) For u ∈ [.125, .25] squeeze D.125 to create a neck as in Figure 36 b).
iii) For u ∈ [.25, .50] isotope the neck halfway around B1, going from the y > 0 side to the

y < 0 side. See Figure 36 c).
iv) For u ∈ [.50, .75] isotope the neck back to its original position shown in Figure 36 b),

continuing from the y > 0 side to the y < 0 side.
v) For u ∈ [.75, 1] reverse the isotopy from [0, .25]. �

Remark 6.2. {β(D × u)}u∈[0,1] is similarly isotopic to the family {Eu} where we first
create a neck connecting discs that surround B1 instead of B2. For that isotopy the neck
swings around B2 going from the y < 0 side to the y > 0 side. The neck of E.50 is
essentially seen in Figure 30 b) where the red arc is replaced by a cylinder. Notice that
replacing the blue arc by a cylinder essentially gives the neck of D.50.

We now describe another isotopic family {Hu} that is neither B1 nor B2 centric. For
that isotopy it is convenient to change the base disc D to the disc H ⊂ V shown in Figure
37 a), via an isotopy φD,H(t) of V supported in a neighborhood of D.

First consider the disc H.50 shown in Figure 37 c). This disc is obtained by removing
four open discs from H0, shown in Figure 37 a) and replacing them with two blue discs
that surround B2 and two red ones that surround B1. The red (resp. blue) discs emanate
from the first two sheets of the folded H0 that are closest to B1 (resp. B2). To go from
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Δ1 as a 1-parameter family of discs

Figure 36.

Figure 37 c) to Figure 37 b)(resp. d)) isotope the blue necks down (resp. up) and the red
necks up (resp. down). The region between the blue discs of H.25 is a product which
can be boundary compressed using a fold of H0. A similar statement holds regarding
the red discs, where the boundary compression starts at the other fold. These boundary
compressions are done simultaneously and are supported away from the arc J0. The
result of these boundary compression is shown in Figure 37 e).

Proposition 6.3. Under the change of basepoint map φD,H(1), the 1-parameter family Du is
isotopic to the following 1-parameter family Hu.

i) For u ∈ [0, .125], Hu = H0.
ii) For u ∈ [.125, .25], H.125 is isotoped to the surface H.25 shown in Figure 37 b) via the

intermediary surface H.18 shown in Figure 37 e). This isotopy fixes J0 pointwise. The isotopy for
u ∈ [.125, .18] is supported near H0. For u ∈ [.18, .25] the isotopy restricted to the disc below
(resp. above) J0 is supported in the union of a regular neighborhood of H0 and the right (resp.
left) hand side of H0.

iii) For u ∈ [.25, .75] the blue necks are isotoped up and the red necks down to obtain Figure
37 d) with the intermediary H.50 shown in Figure 37 c).

iv) For u ∈ [.75, 1], the isotopy is analogous to the reverse of the H0 to H.25 isotopy. Two
boundary compressions supported away from J0 produce H.82 which is the mirror in the [0, 1]
coordinate of H.18.

Proof. A direct calculation gives an isotopy between {φD,H(1)(Du)}, which by abuse of
notation we call {Du} and Hu that preserves each V × u slice. Alternatively, let e1, e2 be
properly embedded arcs in V such that for i = 1, 2, ei ∩ Bi 6= ∅ and ei ∩ (H0 ∪ D0) = ∅.
The loops in Emb(N(e1) ∪ N(e2), V) induced from Du and Hu by isotopy extension are
homotopic. It follows that {Du} and {Hu} differ by an element of π1 Emb(D2, B3 fix ∂B3),
but that group is trivial by Cerf [Ce2] and Hatcher [Ha1]. �
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Figure 37.

Since V = D2 × [0, 1] \ int(B1 ∪ B2), the [0, 1] factor induces a [0, 1]-fibering on each
H × u and hence expresses ∆0 as a 2-parameter family of intervals. Pushing forward to
Hu expresses ∆1 as a 2-parameter family γt,u. Because β(V × u) = V × u for all u, it
follows that we can assume that γt,u is supported in V × .50.

The family γt,u ∈ ΩΩ([0, 1], V × I; J0) is a bracket as in Definition 4.21. To see this
define HB

u as the 1-parameter family which only involves the blue discs, so HB
.50 is H0 with

two blue discs attached and the passage from HB
.25 to HB

.18 only involves the boundary
compression of the blue discs, etc. In an analogous manner we define HR

u . The associated
2-parameter families γB

t,u, γR
t,u satisfy the conditions of Definition 4.21. The midlevel loops

B, R ∈ Ω Emb(I, S1 × B3; I0) are defined in band lasso notation as in Figure 38 a). For B
(resp. R) only the blue (red) band and lasso are used. We call γt,u the barbell family and
all its defining information its data. We have the following result.

Proposition 6.4. The barbell family γt,u is supported in V× .50 and is homotopic to the separable
family (B, R) of Figure 38 a) described in band lasso notation. The notation zL/zH means that
the spinnings go about the spheres first by going down in the z direction and then up. The support
of γB

t,u (resp. γR
t,u) in the parameter space is the blue (resp. red) region shown in Figure 38 b) �

Remark 6.5. Note that the end homotopy is homotopic to the undo homotopy.

We now describe how barbell implantation induces an [αt,u] ∈ π2 Emb(I, S1 × B3; I0).
View S1 × B3 as D2 × S1 × [−1, 1] with D2 viewed as [0, 1]× I. Fixing x0 ∈ S1 and I0 =
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Figure 38.

([0, 1]× .50)× x0× 0, then U := D2× x0× [−1, 1] corresponds to the trivial 2-paraxmeter
family by translating within U each [0, 1]× s× x0 × w to I0. If ψ ∈ Diff(S1 × B3 fix ∂),
then ψ induces a 2-parameter family αψ ∈ ΩΩ Emb(I, S1× B3; I0) by naturally translating
each ψ([0, 1] × s × x0 × w) so that its end points coincide with that of I0. Isotopic ψ’s
give rise to homotopic αψ’s.

Construction 6.6. Let f : NB → S1 × B3 be an embedding of the barbell neighborhood
such that the bar is transverse to U and the cuffs are disjoint from U. We can assume
that f−1(U) = ∆1

0 ∪ · · · ∪ ∆n
0 , parallel copies of the midball and the [0, 1]-fibering of

U pulls back to the standard [0, 1]-fibering of each ∆i
0. Further, each f (∆i) is of the

form Di × x0 × [−.5, .5] where Di is a subdisc of D2 and that the projections of Di to
the I factor are pairwise disjoint. It follows that αβ f is represented by the sum of n 2-
parameter families αi

β f
, where β f ∈ Diff0(S1 × B3 fix ∂) is the implantation of f . Finally,

to construct αi
β f

push forward the data of the barbell family.

Definition 6.7. For k ≥ 2 define the 2-parameter families θ̂1
k , · · · , θ̂k−1

k analogously to the
family θ̂L

k shown in Figure 39 b) where k = 5 and L = 3. Here the red bands go around
the S1 just under L times while the blue bands go around the S1 just under k− L times.
Here the color coding and support in the parameter space are as for the γt,u family.
Define θ̂k = ∑k−1

L=1 θ̂L
k . θ̂k is called the symmetric θk.

Lemma 6.8. [αβθk
] = ±[θ̂k] ∈ π2 Emb(I, S1 × B3; I0).

Proof. αβθk
is obtained by applying Construction 6.6 to the barbell B(θk). Each αL appears

qualitatively as θ̂L
k up to twisting of the bands near the lasso and whether the individual

spinnings are L/H or H/L with differences uniform in L. Since any such difference
changes the sign of the class in π2 by Lemmas 4.4 and 4.29 the result follows. �

Definition 6.9. Let f : B → M be an embedding of the barbell such that the cuffs bound
disjoint 3-balls V1 and V2 and the bar is transverse to V1 ∪ V2. A reembedding of the
bar supported within a small neighborhood N(V1 ∪ V2) of V1 ∪ V2 to obtain f1 is called
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Figure 39.

a twisting of f . Here the components of the bar that intersect both N(V1 ∪ V2) and the
cuffs remain unchanged. β f1 is called a twisting of the implantation β f .

Remark 6.10. Up to isotopy, a twisting corresponds to replacing arcs σi that locally link
a cuff once to ones that link ni ∈ Z times.

Definition 6.11. (Twisting the θ̂k implantation) Ordering the points through the cuffs v
and w as in Figure 40 a) we construct the v(m1, · · · , mk−1), w(n1, · · · , nk−1) implantation.
This means that, the i’th (resp. j’th) arc through the P (resp. Q) cuff now locally links it
mi (resp. nj) times. For example see Figure 40 b). The α̂k−1 implantation is the θ̂k implanta-
tion twisted by v(0, · · · , 0, 1), w(1, 1, · · · , 1). Define δk the θk(0, 0, · · · , 0, 1)(0, 0, · · · , 0, 1, 0)
implantation. See Figure 40 c) for δ5.

B3

S1

1 2 k-1

a)

k-1 2 1

B3

S1

b)

v

w

Twisting the �k implantation, with k=5

(Read L to R for v)

(Read R to L for w)

w(1, -1, 2, -2)

v(0, 0, 0, 1)

c)

δ5

Figure 40.
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Construction 6.12. Figure 41 shows how to modify a 2-parameter family according to
twisting an implantation. Note that modifying a band by a 2π-twist does not change the
homotopy class of the 2-parameter family. Therefore, what matters is how many times
the modified band goes through the cuff rather than how exactly it is reembedded.

+ 2 twisitng

+1 tw
ist

ing 0 tw
isting

-1 twisting

Twisting a 2-parameter family

Figure 41.

Remark 6.13. In the next section we shall see that θ̂k gives rise to a (k − 1) × (k − 1)
matrix Fk with values in π2 Emb(I, S1 × B3; I0) such that the sum of the entries equals
[θ̂k] ∈ π2 Emb(I, S1 × B3; I0). Further, at the π2 level, a v(m1, · · · , mk−1), w(n1, · · · , nk−1)
twisting has the effect of multiplying the i’th row of Fk by mi and the j’th column by nj.

7. Factoring the symmetric θk

In this section we investigate the 2-parameter family θ̂k : I2 → Emb(I, S1 × B3, I0)
called the symmetric θk defined in Definition 6.7. We will show θ̂L

k factors into (k − 1)2

2-parameter families, giving rise to a (k − 1) × (k − 1) matrix FL
k (p, q) with values in

π2 Emb(I, S1 × B3; I0) equal to those represented by the (p, q)’th family. Summing over
L we obtain Fk which will be shown to be skew symmetric. It will follow that [θ̂k] = 0 ∈
π2 Emb(I, S1 × B3; I0) and hence W3(ker(Diff0(S1 × B3 fix f )→ Diff0(S1 × S3))) = 0.

As stated in previous sections we view S1× B3 as (D2× S1)× [−1, 1] with the product
orientation and I0 denotes a fixed geodesic arc through the origin of D2 × x0 × 0.

Definition 7.1. Fix k ≥ 2. For 1 ≤ L ≤ k − 1 we define properly embedded arcs JL
k ⊂

D2× S1× 0 path homotopic to I0 whose ends also coincide with those of I0. We first do a
small initial isotopy of I0 to obtain the arc J0

0 of Figure 42 b). To obtain JL
k ⊂ D2× S1× 0,

send the two local top strands just under k− L times positively around the S1 and send
the two local bottom strands just under L times negatively around the S1 to obtain an
embedded arc, as exemplified by J3

5 or J2
5 shown in Figure 42 c), d). The 20 strands at the

bottom of those figures go around the S1 to attach to the strands at the top.
For 1 ≤ L ≤ k − 1 homotope each θ̂L

k to one based at JL
k by shrinking the bands

without modifying the lassos. For example, when k = 5 and L = 3, starting with the
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family shown in Figure 39 b) we obtain the one shown in Figure 43. Denote this 2-
parameter as the separable pair (BL

k , RL
k ), where BL

k (resp. RL
k ) is defined by the blue

(resp. red) bands and lassos.

D2   x0   0× ×
I0

J0
0

J3
5

a) b)

c)

J2
5

d)

Figure 42.

κb
L

βr
L

βr
L'

κr
L'

not shown

κb
L'

not shown

βb
L

βb
L'

a1

a2

Figure 43.

Remarks 7.2. i) By Lemma 4.36, since JL
k is path isotopic to I0 and as we shall see (BL

k , RL
k )

can be represented by an abstract chord diagram, it gives a well-defined element of
π2 Emb(I, S1 × B3, I0), and so [θ̂k] = ∑k−1

L=1[(BL
k , RL

k )].
ii) Fix k ≥ 2. To minimize notation we suppress most of our k-subscripts and abuse

notation by introducing others.
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Introduction to the rest of the chapter We will express BL (resp. RL) as a concatenation
BL

1 , · · · , BL
k−1 (resp. RL

1 , · · · , RL
k−1) and then use bilinearity to produce the (k − 1)2 2-

parameter families representing the classes FL(p, q), 1 ≤ p, q ≤ k − 1, and so [θ̂L
k ] =

∑ FL(p, q). The terms FL(p, q) define a (k − 1) × (k − 1) matrix. Summing over L we
obtain the (k− 1)× (k− 1) matrix Fk whose sum equals [θ̂k]. We shall see that FL(p, q) =
−Fk−L(q, p) and hence Fk is skew-symmetric.

Definition 7.3. By the red coloring (resp. blue coloring of JL we mean a red (resp. blue)
half disc Dr (resp. Db) in D2 × S1 × 0 such that ∂Dr consists of an arc in JL and a
complementary arc as in Figure 44 a) and similarly for Db. These discs should be viewed
as long and thin. With notation as in those figures, these discs color the arc [a1, a3] ⊂ JL

red and the arc [a2, a4] ⊂ JL blue as in Figure 44 c). We call the bottom (resp. top) of Dr to
be that part of the half disc near a1 (resp. a2). Similarly the bottom of Db is near a2 and
the top of Db is near a3.

Dr Db

The Red and Blue Colorings

a0 a1 a2 a3 a4 a5

a0

a1

a2

a3

a4

a5

a4

a5

a2

a0

a1
a3

a) b)

c)

Figure 44.

Remark 7.4. These colorings are very helpful for keeping track of both location and
orientation. Here is a first application.

Lemma 7.5. BL, RL ∈ Ω Emb(I, S1 × B3, JL) are homotopically trivial.

Proof. While we already know this result it is useful to see it from the coloring point
of view. We prove this for RL with the BL argument being similar. Following the red
coloring, slide the base of the red bands until they reach Dr’s top. From there it is
apparent that these bands form a parallel cancel pair. See Figure 45. By Lemma 4.6 the
support of the undo homotopy is within the union of a neighborhood of the bases and
a neighborhood of the parallelism between the bands and the parallelism between the
lasso spheres, thus there is no problem with the band linking the lassos. �
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Figure 45.

Convention 7.6. We let βL
b , βL′

b , κL
b , κL′

b denote the band and lassos defining BL, where
base(βL

b ) appears before base(βL′
b along JL. βL

r , βL′
r , κL

r , κL′
r are defined analogously. The

red coloring and blue colorings allow us to readily deduce which base comes first and
to keep track of how a given one is oriented. This in turn enables us to orient the red
and blue bands near their bases and then orient their lasso discs as indicated in Figure
43. By Remark 4.5 it suffices to draw only the core of the band provided we also know
the orientation of the lasso disc. In what follows usually only the core of the band will
be shown in the figures.

Lemma 7.7. BL (resp. RL) is homotopic to the concatenation of the loops BL
1 , · · · , BL

k−1 (resp.
RL1 , · · · , RL

k−1) represented in band lasso form in Figure 46. Each of these loops is homotopically
trivial.

L/H

L/H

L/H

L/H

-

-

-

-

L/H

L/H

L/H

L/H

-

-

-

1 2 L k-1

1k-Lk-2k-1

-

R1
L

R2
L

RL
L

Rk-1
L

Bk-1
L

Bk-2
L

Bk-L
L

B1
L

Figure 46.

Proof. The principle is that if a lasso encircles two arcs τ1, τ2, then the corresponding
spinning about the union can be homotoped into a concatenation of spinnings of the
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same type (e.g. L/H or positive) about τ1 and τ2. The proof that the BL
i ’s and RL

j ’s are
homotopically trivial loops follows as the proof of Lemma 7.5. �

Notation 7.8. BL
i (resp. RL

j ) denotes loop represented by the pair of blue (resp. red)
bands and lassos corresponding to linking about the i’th (resp. j’th) local pair of four
strands, counted from the right (resp. left).

Remarks 7.9. i) This notation is chosen, since up to signs/orientations there is a sym-
metry ψ which takes JL

k to Jk−L
k such that the bands and lassos defining BL

i are taken to
those defining Rk−L

i . This will induce the skew symmetry mentioned above.

Lemma 7.10. [θL
k ] = ∑1≤i,j≤k−1[(BL

i , RL
j )].

Proof. The homotopy from (BL, RL) to (BL
1 ∗ · · · ∗ BL

k−1, RL
1 ∗ · · · ∗ RL

k−1) is separable, thus
the result follows from bilinearity. �

Definition 7.11. Define FL(p, q) = [(BL
p , RL

q )].

Proposition 7.12. If p ≥ k− L and q ≥ L, then FL(p, q) = D(p,−q)

Proof. To minimize notation we suppress the L superscripts. Figure 47 shows a represen-
tative case. Observe that Bp is the concatenation of B0

p and B1
p where B0

p (resp. B1
p) is given

by a band lasso pair we call (β0
b, κ0

b) (resp. (β1
b, κ1

b)) where base(β0
b) precedes base(β1

b) on
J and that (Bp, Rp) is separably homotopic to (B0

p ∗ B1
p, Rq). The hypotheses on p and q

are the conditions such that both the blue and red lassos can slide off of J following four
of its local strands, so in particular each of B0

p and B1
p is homotopically trivial. Thus, by

bilinearity [(Bp, Rq)] = [(B0
p, Rq)] + [(B1

p, Rq)]. Since the support of the undo homotopy
of Rq is disjoint from both β1

p and its lasso sphere it follows that [(B1
p, Rq)] = 0 and hence

F(p, q) = [(B0
p, Rq)].

L/H

-

L/H -

1 2 L k-1

1k-Lk-2k-1

Figure 47.



KNOTTED 3-BALLS IN S4 71

To compute F(p, q) slide the red bands so that their bases are near the top of the red
coloring Dr and the red lasso discs link β0

b near its base. See Figure 48 a). Next, isotope
β0

b and κ0
b so that κ0

b links the cores of the red bands at their branch loci. This is done in
two steps. First, use the 4-strand isotopy to isotope κ0

b off of J and link the red bands.
Then, isotope κ0

b to link the bands at their branch loci. Figure 48 b) shows κ0
b midway

through the second step.

a) b)

L/H -
L/H

-

L/H

-

L/H

-

Figure 48.

We have therefore obtained a ±D(m, n) as in Definition 4.43. Since the red bases have
been moved k times around the S1 and its lasso k − q times around the S1, following
the convention of Definition 4.43, n = (k− q)− k = −q. The blue lasso moves −(k− p)
times around S1 to slide off of J and then moves k times around S1 to link the red bands
at their branch loci. Therefore, m = −(k− p) + k = p.

We now compute the sign. Following Remarks 4.44 the sign is determined the parity
of how many of the following things deviate from the standard D(m, n).

i) It is of standard (B, R) type
ii) The blue spinning is L/H
iii) The red spinning is L/H
iv) <red band core, blue lasso disc>= −1
v) <blue band core, red lasso disc>= −1

Since there are two changes the sign is +1. �

Proposition 7.13. If q < L and p ≥ k − L or q ≥ L and p < k − L, then FL(p, q) =
FL,s(p, q) + FL,r(p, q) where

FL,s(p, q) =

D(p,−q) if q < L and p + q ≥ k
D(p,−q)− D(p + q,−q) if q < L and p + q < k
D(−q, p) if p < k− L and p + q ≥ k
D(−q, p)− D(−p− q, p) if p < k− L and p + q < k.

FL,r(p, q) =

−D(p− q, q) if q < L and p + q ≥ k



72 RYAN BUDNEY DAVID GABAI

−D(p− q, q) + D(p, q) if q < L and p + q < k
−D(p− q,−p) if p < k− L and p + q ≥ k
−D(p− q,−p) + D(−q,−p) if p < k− L and p + q < k.

Proof. To minimize notation we delete the L superscript.

Case 1: q < L

Idea of Proof: As before we reduce to Bp being defined by a single band and lasso. Under
the hypothesis only the blue lasso can slide off of J by following four strands. To address
this, we homotope Rq into a concatenation of Rs

q and Rr
q each of whose lassos slides off

J by following the red coloring. We define Fs(p, q) = [(Bp, Rs
q)] and Fr(p, q) = [(Bp, Rr

q)].
Each of these has two subcases; p+ q ≥ k and p+ q < k. In the first case the blue and red
lassos can slide off of J without crashing into each other. In the second case we factor Bp

into B0
p and B1

p each of which can now slide off of J without crashing into the red bands
and lassos. An argument similar to that of the previous proposition shows that each of
Fs(p, q), Fr(p, q) is one or two ±D(m, n)’s depending on whether subcase 1 or 2 applies.

a0 a1 a2 a3 a4 a5

a1

a2

a3

a4

a1

a2

a3

a4

L/H

L/H

a1

a2

a3

a4

a1

a2

a3

a4

L/H

L/H

a1

a2

a3

a4

a1

a2

a3

a4

L/H

L/H

H/L

a) b)

c)

Bp

Rq

Rq
r

Rq
s

Bp

-

-

Figure 49.

Proof of Case 1: Bp is represented by (βb, κb) and (β′b, κ′b) where the base of βb appears
before that of β′b on J. We abuse notation by calling Bp the loop represented by just
(betab, κb), since as in the proof of the previous proposition we can use this Bp to compute
F(p, q). Figure 49 a) shows a representative example of a (Bp, Rq) for Case 1. Now
homotope Rq into the concatenation of Rs

q and R̂r
q as in Figure 49 b) and use Lemma

4.4 to reverse the direction of the band and lassos representing R̂r
q to obtain Rr

q. See
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Figure 49 c) We use the superscript r (resp. s) to denote reversed (resp. standard). Several
loops in Figure 49, such as Rr

q, are represented by two bands and lassos whose bands
are branched. For such a pair, the orientation of the lasso disc shown in Figure 49 is for
the lasso whose base appears first on J. The homotopies of Rq to Rs

q ∗ R̂r
q and R̂r

q to Rr
q

are supported away from both the domain and range support of Bp, thus (Bp, Rq) (resp.
(Bp, R̂r

q)) is separably homotopic to (Bp, Rs
q ∗ Rr

q) (resp. (Bp, Rr
q)). Each of the loops Rs

q
and Rr

q are homotopically trivial for their lassos can be slid off J by following the red
coloring. Therefore,

F(p, q) = [(Bp, Rq)] = [(Bp, Rs
q ∗ R̂r

q)] = [(Bp, Rs
q)] + [(Bp, R̂r

q)] = [(Bp, Rs
q)] + [(Bp, Rr, q)].

Define Fs(p, q) = [(Bp, Rs
q)] and Fr(p, q) = [Bp, Rr

q)].

Computation of Fs(p, q) This is very similar to that of the previous proposition. If p + q ≥
k, then following the red coloring, slide the red lassos to link the core of the blue band
near its base and then slide the red bands so that their bases are at the top of the red
coloring. Next first slide the blue lasso off of J to link the red band cores and then isotope
the blue lasso to link the red band cores at their branch loci. The same calculation as in
Proposition 7.12 shows that Fs(p, q) = D(p,−q).

If p + q < k, then slide the blue lasso to just before it crashes into the red lassos and
bands. See Figure 50 a). Next homotope Bp into a concatenation of B0

p and B1
p as in

Figure 50 b). The separable homotopy and bilinearity arguments imply that [(Bp, Rs
q)] =

[(B0
p, Rs

q)] + [(B1
p, Rs

q)]. That [(B1
p, Rs

q)] = D(p,−q) follows as in the p + q ≥ k case. Now
[(B0

p, Rs
q)] is also a ±D(m, n) with the following changes in comparison with that of

[(B1
p, Rs

q)]. Here we have <red band core, blue lasso>= +1 vs the −1 before, while the
other four values determining the sign are the same as those for [(B1

p, Rs
q)]. Therefore,

we have a sign change. The previous argument also shows that n = −q. To compute
m, note that the lasso of B0

p is already linking the core of the red bands and a horizontal
isotopy moves it to their branch loci while the B1

p lasso had to travel an extra −q times
around the S1 to get to the same point. It follows that m = p + q and hence [(B0

p, Rs
q)] =

−D(p + q,−q) and so Fs(p, q) = D(p,−q)− D(p + q,−q). �

L/H

- L/H

L/H

-
L/H

L/H

Bp Bp

Bp

0

1
Rq
s

L/H
L/H

L/H

Bp Bp

Bp

0

1
Rq
s Rq

r
Rq
r

a) b) c) d)

+1

-1

- -
-

-

-

-

Figure 50.

Computation of Fr(p, q): If p + q ≥ k, then following the local four strands, isotope the
blue lasso off of J to link the bands of the red lassos and then further isotope the blue
lasso to link these bands at their branch loci. Next, follow the red coloring to isotope
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the red lassos off of J and link the blue band near its base. Finally, isotope the red
bands, so that their bases are near the top of the red coloring. This is done in two steps.
First isotope so that the bases contain the points a1, a3 and then follow the red coloring
from its bottom to near its top. Simultaneously isotope the linking blue lasso to follow
along. We now compute the values of this ±D(m, n). The blue lasso goes −(k− p) times
around the S1 to slide off of J and then, in the aggregate, k− q times about the S1 while
following the red bands. Therefore, m = p− q. The red lassos go k times around the S1

while in the aggregate the bases go k− q times about the S1 so that n = k− (k− q) = q.
We now compute the sign.

i) It is of standard (B, R) type
ii) The blue spinning is L/H
iii) The red spinning is H/L
iv) <red band core, blue lasso disc>= +1
v) <blue band core, red lasso disc>= +1

Since there is one sign change from the standard D(m, n) the sign is -. Therefore
Fr(p, q) = −D(p− q, q).

If p + q < k, then slide the blue lasso to just before it crashes into the red bands. See
Figure 50 c). Next homotope Bp into a concatenation of B0

p and B1
p as in Figure 50 d).

The separable homotopy and bilinearity arguments imply that [(Bp, Rr
q)] = [(B0

p, Rr
q)] +

[(B1
p, Rr

q)]. That [(B1
p, Rr

q)] = −D(p− q, q) follows as in the p + q ≥ k case.
Now [(B0

p, Rr
q)] is also a ±D(m, n). Here n = q as before. To compute m, note that the

lasso of B0
p is already linking the core of the red bands while the B1

p lasso had to travel
an extra −q times around the S1 to get to essentially the same point. It follows that
m = (p− q) + q = p. For the sign, note that there is a single change in comparison with
the five values computed for [(B1

p, Rr
q)]. Here <red band core, blue lasso disc>= −1.

It follows that the sign is positive. Therefore, [(B0
p, Rs

q)] = D(p, q) and hence Fr(p, q) =
−D(p− q, q) + D(p, q). �

Case 2: p < k− L

Proof of Case 2: Rq is represented by (βr, κr), (β′r, κ′r) where the base of βr appears first.
The argument of Case 1 shows that [(Bp, σ(βr, κr)] = 0 and so we again abuse notation
by letting Rq be represented by just (β′r, κ′r). Figure 51 a) shows a representative example
of a (Bp, Rq) for Case 2. Note the sign of the κ′r lasso disc. In this case Bp is homotopic
to a concatenation of Bs

p and B̂r
p as shown in Figure 51 b). We reverse the direction of

the band and lasso representing B̂r
p as in Figure 51 c) to obtain Br

p. As before we obtain
F(p, q) = [(Bs

p, Rq)] + [(Br
p, Rq)] and define Fs(p, q) = [(Bs

p, Rq)] and Fr(p, q) = [(Br
p, Rq)].

Computation of Fs(p, q): As in Case 1 this will be one or two ±D(m, n)’s depending
on whether or not p + q ≥ k. In both subcases the branched band will be blue, so
following Definition 4.43 m will be computed using the red band and n from the blue
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Figure 51.

bands. With that in mind the calculation follows the method of Case 1. When p + q ≥ k
we have m = −q and n = p. To compute the sign note that there are two cancelling
changes in comparison with Case 1. Here there is a red/blue switch and also <blue
band core, red lasso>= +1, in comparison with the earlier −1. Therefore the sign is +
and Fs(p, q) = D(−q, p).

When p + q < k, then slide the red lasso to just before it crashes into the blue lassos
and bands. See Figure 52 a). Next homotope Rq to a concatenation of R0

q and R1
q as

in Figure 52 b). Here [(Bs
p, Rq)] = [(Bs

p, R0
q)] + [(Bs

p, R1
q)]. That [(Bs

p, R1
q)] = D(−q, p)

follows as in the p+ q ≥ k case. Using that, the method of Case 1 shows that [(Bs
p, R0

q)] =

−D(−p− q, p). Therefore, Fs(p, q) = D(−q, p)− D(−p− q, p). �

Computation of Fr(p, q): Again there will be one or two±D(m, n)’s depending on whether
or not p + q ≥ k, the branched band will be blue and so m will be computed using the
red band and n from the blue bands. With that in mind the calculation follows the
method of Case 1. When p + q ≥ k we have m = p− q and n = −p. We now compute
the sign.

i) It is of (R, B) type
ii) The blue spinning is H/L
iii) The red spinning is L/H
iv) <red band core, blue lasso disc>= +1
v) <blue band core, red lasso disc>= −1

There are three changes so that the sign is - and hence Fr(p, q) = −D(p− q,−p).
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When p + q < k, then slide the red lasso to just before it crashes into the blue bands.
See Figure 52 c). Next homotope Rq to a concatenation of R0

q and R1
q as in Figure 52 d).

Again [(Br
p, Rq)] = [(Br

p, R0
q)] + [(Br

p, R1
q)]. That [(Br

p, R1
q)] = −D(p− q,−p) follows as in
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the p + q ≥ k case. Using that, the method of Case 1 shows that [(Br
p, R0

q)] = D(−q,−p).
Therefore, Fs(p, q) = −D(p− q,−p) + D(−q,−p). �

Proposition 7.14. For p < k− L and q < L, FL(p, q) = 0.
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Proof. Again we supress the L’s.

Step 1: F(p, q) is represented by the abstract chord diagram pairs of Figure 53 a), b), c)
and d).

Proof: A representative (Bp, Rq) is shown in Figure 54 a). Figure 54 b) shows details of
neighborhoods of the band bases and lasso discs. Each of the spinnings determined from
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the four bands and lassos is homotopic to a concatenation of four spinnings of arcs about
arcs, via a homotopy that is supported in a small neighborhood of the relevant band and
lasso ball. For example, (βr, κr) corresponds to spinning an arc near the point labeled 1
about arcs near the points 0,8,6 and 2. The labeling of the eleven points in the diagram is
induced by their ordering in J. See Figure 54 c). This data gives rise to the abstract chord
diagram of Figure 53 a), where the chords are oriented from the low label to the high
one. For each chord we need to compute group elements and signs. For example, βr, κr
gives rise to a λ spinning where λ is approximately a horizontal arc in S1× B3 from 1 to
0. If Drdenotes the oriented lasso disc bounded by κr, then near 0, < J, Dr >= +1, so by
Lemma 4.5 the oriented chord from 1 to 0 has positive sign. By Lemma 4.4 reversing the
direction changes the sign as indicated in Figure 53 a). To compute the group element
we concatenate λ with the arc [0, 1] ⊂ J to obtain an oriented closed loop representing
−q ∈ π1(S1× B3; J). Since we reversed the direction, the chord in Figure 53 a) is labeled
q. Note that the colorings inform us that the short arcs between 9,5,3 and 11 as well as
the one between 1 and 7 can be homotoped into J. It follows that all eight of the chords
between these points are labeled ±q.

Applying multiple applications of the Exchange Lemma 4.32 to the red chords gives
Figure 53 b). Two applications of the undo homotopy eliminates two pairs of parallel
oppositely signed red chords with the same group element, giving Figure 53 c). Simi-
larly, blue exchanges followed by two applications of the undo homotopy gives Figure
53 d). �

Step 2: F(p,q)=0

Proof: Using bilinearity, the class of Figure 53 a) factors into four classes represented
by the four chord diagrams H(±p,±q), where H(p, q) is the subdiagram consisting of
the chords labeled p and q. The other diagrams are defined similarly. Notice that any
diagram can be turned into another by an appropriate sign change of the group elements
and exchange moves. By bilinearity [H(p, q)] factors into four classes represented by the
chord diagrams Da, Db, Dc, Dd respectively shown in Figures 55 a), b), c), d). The chord
diagrams Da, Db, Dc are readily shown to respectively represent G(p + q, p),−G(q, p)
and G∗(p, q). The chord diagram De is obtained from Dd by a chord sliding move.
Applying bilinearity [De] factors into [D0

e ] + [D1
e ] where D0

e (resp. D1
e ) consists of the red

chords and the blue chords labeled p (resp. p + q). Now [D0
e ] = −E(p,−q) and [D1

e ] is
readily shown to be equal to G(p+ q, q). Therefore, [Dd] = [De] = G(p+ q, q)− E(p,−q)
and hence [H(p, q)]
= G(p + q, p)− G(q, p) + G∗(p, q) + G(p + q, q)− E(p,−q)
= G(p + q, p) + G(p + q, q)− G(q, p)− G(p, p− q) + G(q, p)− G(p, q)
= G(p, p + q) + G(p,−q)− G(p, p− q)− G(p, q).
Here the first equality followed from Lemmas 4.37 and 4.40 and the second from the

symmetry relation, Lemma 4.41 iii). It follows that [H(p, q)] + [H(p,−q)] = [H(−p, q)] +
[H(−p,−q)] = 0 and hence F(p, q) = 0. �

Definition 7.15. Define
I(p, q) = D(p,−q)
IIb(p, q) = D(−q, p)− D(p− q,−p)
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IIbe(p, q) = D(−q, p)− D(−p− q, p)− D(p− q,−p) + D(−q,−p)
IIr(p, q) = D(p,−q)− D(p− q, q)
IIre(p, q) = D(p,−q)− D(p + q,−q)− D(p− q, q) + D(p, q).

Here the b (resp. r, resp. e) denotes blue (resp. red, resp. extra).

Definition 7.16. Define Fk(p, q) = ∑k−1
L=1 FL

k (p, q). Define AL
k (resp. Ak) the (k− 1)× (k−

1) matrix with entries FL
k (p, q) (resp. Fk(p, q)).

Theorem 7.17. 1) If p + q < k, then

F(p, q) = pIIre(p, q) + qIIbe(p, q).

2) If p + q ≥ k, then

F(p, q) = (k− p− 1)IIb(p, q) + (k− q− 1)IIr(p, q) + (p + q + 1− k)I(p, q).
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Proof. 1) Fix p and q. Figure 56 a) shows the points 1, 2, · · · k− 1 ⊂ R with the red point,
denoting q, the q’th on the left and the blue point the p’th on the right. Since p + q < k,
the red point is strictly to the left. If L ≤ q (resp. p ≥ k− L), then Proposition 7.13 applies
for the case p < k− L, p + q < k (resp. q < L and p + q < k). When q < L < k− p, then
Proposition 7.14 applies. �

q p

k=10, q=3, p=4

IIre0

L:

k=10, q=6, p=7

IIr
(p,q)

L:

a)

b)

IIbe (p,q)

IIb
(p,q)

(p,q)

I(p,q)

Figure 56.

2) Figure 56 b) shows the p + q ≥ k case. Here the blue point either coincides with or
is to the left of the red one. If L < k− p (resp. L > q), then Proposition 7.13 applies for
the case p < k− L (resp. q < L) where p + q ≥ k. If k− p ≤ L ≤ q, then Proposition 7.12
applies. �

Corollary 7.18. Fk is skew symmetric and hence [θ̂k] = 0 ∈ π2 Emb(I, S1 × B3; I0).

Proof. Apply Corollary 4.47 to Theorem 7.17 to conclude that Fk(p, q) = −Fk(q, p). �

8. Twisting the symmetric θk

In Definition 6.11 and Construction 6.12 we defined how to twist an implantation
and construct its associated 2-parameter family. In particular, we defined the twisted
implantations θk(v, w) where v, w ∈ Zk−1 with the δk implantations as a special case. In
this section we first compute [θ̂k(v, w)] ∈ π2 Emb(I, S1 × B3; I0) and use that result to
show that for k ≥ 4 the 2-parameter families δ̂k have linearly independent W3 invariants,
thereby completing the proofs of Theorems 3.15 and 8.5.

Theorem 8.1. [θ̂k(v, w)] = ∑1≤p,q≤k−1 vpwqFk(p, q) ∈ π2 Emb(I, S1 × B3; I0), where v =

(v1, · · · , vk−1) and w = (w1, · · · , wk−1).

Proof. Construction 6.6 showed how to construct the 2-parameter family θ̂k correspond-
ing to the implantation θk as a sum of k− 1 families in band lasso form. Construction
6.12 shows how to modify these families according to the twisting data. In particular, the
modification corresponds to locally twisting the bands near where they pass through the
lasso discs. Now fix k ≥ 2. Recall that we shrunk the bands of these L families to obtain
families the families θ̂L = (BL, RL), L = 1, 2, · · · , k − 1 and then separably homotoped
BL (resp. RL) to a concatenation of BL

1 , · · · , BL
k−1. Since the homotopies to the concate-

nations were supported away from where the strands passed through the blue and red
lasso discs it follows that the effect of twisting is to modify the various BL

i , RL
j ’s as in
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Figure 57, where the case wj = −2 is shown. Note that the four parallel strands undergo
a 4π twist in Figure 57 d). We can assume that there is no twisting since these twists can
be transferred to the blue bands if j ≥ L and the red bands if j < L and twisting bands
by multiples of 2π does not change the homotopy class of the 2-parameter family. It
follows that the L’th family of θ̂(v, w) is homotopic to the family as described in Figure
58. The argument of Lemma 7.5 applies without change to these families and hence the
result follows by Proposition 4.28. �

- L/H
- L/H

-
L/H

L/H -

- L/H

-2

- L/H

+ L/H

+ L/H

a) b) c)

d) e)

Rj
L

wj = -2

Figure 57.

L/H
L/H

L/H

L/H

-
-

-

-

L/H

L/H
L/H

L/H

-

-

-

1 2 L k-1

1k-Lk-2k-1

-

R1
L

R2
L

RL
L

Rk-1
L

Bk-1
L

Bk-2
L

Bk-L
L

B1
L

w1

w2

wL

wk-1

v
vL

vk-2

vk 1

L/H

-

-

- L/H

+

+

wi=3 wi=0 wi=-2

L/H

L/H

L/H

a)

b) c) d)

Figure 58.

Applying to the case of v = (0, ..., 0, 1) and w = (0, 0, · · · , 0, 1, 0), i.e. zeros everywhere
except for the k− 1’th entry of v and k− 2’nd entry of w we obtain:

Corollary 8.2. [δ̂k]
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= (k− 1)(G(k− 2, k− 1)− G(k− 1, k− 2) + G(1− k, 2− k)− G(2− k, 1− k))
−(−G(k− 2,−1) + G(−(k− 2), 1)− G(1,−(k− 2)) + G(−1, k− 2))
∈ π2 Emb(I, S1 × B3; I0).

Proof. By Theorem 8.1, Theorem 7.17 and Definition 7.15, [δ̂k] = Fk(k− 1, k− 2)
= 0 + 1IIr(k− 1, k− 2) + (k− 2)I(k− 1, k− 2)
= D(k− 1,−(k− 2))− D(1, k− 2) + (k− 2)D(k− 1,−(k− 2))
= (k− 1)D(k− 1,−(k− 2))− D(1, k− 2)
= (k− 1)(G(k− 2, k− 1)− G(k− 1, k− 2) + G(1− k, 2− k)− G(2− k, 1− k))
−(−G(k− 2,−1) + G(−(k− 2), 1)− G(1,−(k− 2)) + G(−1, k− 2))
by Corollary 4.46. �

Theorem 8.3. W3(δ̂4), W3(δ̂5), · · · are linearly independent.

Proof. Fix n ≥ 4. By passing to the quotient of the target of W3 by declaring everything
of the form G(p, q) = 0 if p 6= n− 1, then we see that W3([δ̂n]) 6= 0, but in that quotient
[δ̂m] = 0 for m < n. This implies that if we have a finite linear combination of δ̂m’s with
n the largest m, then that sum equals zero implies that the coefficient of δ̂n = 0. �

Remark 8.4. [δ̂3] = 0 ∈ π2 Emb(I, S1 × B3; I0). This can be deduced from Corollary 8.2
and Corollary 4.41 iii).

Theorem 8.5. Both π0(Diff(S1× B3 fix ∂)/ Diff(B4 fix ∂)) and π0(Diff(S1×S3)/ Diff(B4 fix ∂))
are infinitely generated. In particular, the implantations βδ4 , βδ5 , · · · ⊂ Diff(S1 × B3 fix ∂) and
their extensions to Diff0(S1 × S3) represent linearly independent elements.

Proof. That these implantations represent linearly independent elements of π0(Diff(S1×
B3 fix ∂)) follows from Corollary 8.2. Since a diffeomorphism of S1 × B3 supported in a
B4 can be supported away of ∆0 it follows that these elements are linearly independent
in π0(Diff(S1 × B3 fix ∂)/ Diff(B4 fix ∂)). Let p and φ be as in Lemma 3.14. Since the
βθk ’s represent generators for the image of p and by Theorem 7.18, all the θ̂k’s are homo-
topically trivial, it follows that W3 ◦ p ≡ 0 and hence there is an induced homomophism
W3 : π0(Diff0(S1× S3))→ (π5(C3(S1× B3))/torsion)/R and under this homomorphism
the extensions βδ4 , βδ5 , · · · are linearly independent. A similar argument shows that these
elements are linearly independent in π0(Diff(S1 × S3)/ Diff(B4 fix ∂)). �

Corollary 8.6. There exist infinitely many distinct knotted non separating 3-spheres in S1× S3,
i.e. there exists infinitely many isotopy classes of 3-spheres that are homotopic to x0 × S3. �

Corollary 8.7. There exist infinitely many isotopically distinct fiberings of S1× S3 homotopic to
the standard fibering.

Applying Construction 5.9 we obtain the knotted 3-ball ∆δ4 by six embedded 0-framed
surgeries on ∆0, the standard 3-ball in S1 × B3. See Figure 59 b). That figure also shows
the conjecturally knotted 3-ball arising from B(α1).
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Figure 59. (a) Conjecturally knotted 3-ball arising from α1. (b) Knotted 3-ball arising from δ4

9. Knotted 3-Balls and the Schönflies Conjecture

In this section we detail the close connection between knotted 3-balls in S4, and knot-
ted 3-balls in S1 × B3 and the relation between the Schönflies conjecture and virtual
unknotting of 3-balls.

Definition 9.1. Let ∆0 be a 3-ball in S4. We say that the 3-ball ∆ is knotted relative to ∆0
if ∂∆ = ∂∆0 and ∆ is not isotopic rel ∂∆ to ∆0.

In what follows ∆0 will denote a standard or linear 3-ball as defined in the introduc-
tion. It is to be fixed once and for all. Its boundary, the 2-unknot, will be denoted by
U. Unless said otherwise, 3-balls in S4 will all have boundary equal to U and knot-
tedness is relative to ∆0. Relative knottedness is essential for by [Ce1] p. 231, [Pa] any
two smooth embedded 3-balls in the interior of a connected 4-manifold are smoothly
ambiently isotopic.

We abuse notation by letting ∆0 also denote {x0} × B3 ⊂ S1 × B3. Its use should be
clear from context.

Definition 9.2. The properly embedded non-separating 3-ball ∆ ⊂ S1× B3 is knotted if it
is not properly isotopic to ∆0.

Remark 9.3. Equivalently ∆ is knotted if it is properly homotopic to but not properly
isotopic to ∆0. Since any two non-separating 2-spheres in S1× S2 are isotopic [Gl], [Ha2],
we can assume that ∂∆ = ∂∆0. By uniqueness of regular neighborhoods we can further
assume that ∆ coincides with ∆0 near partial ∆ and since Diff0(S2), the diffeomorphisms
homotopic to id, is connected they have the same parametrization there. Finally, since
π1(Emb(S2, S1 × S2)) = 1 up to paths in SO(3) and translations in S1 × S2, [Ha2] it
follows that if ∆2 and ∆3 are isotopic and already coincide near ∂∆2, then there is an
isotopy fixing a neighborhood of the boundary pointwise. By [Ce2], since Diff(B3 fix ∂)
is connected, ∆0 has a unique parametrization up to isotopy.
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Since S1 × B3 is diffeomorphic to the closed complement of the unknot U in S4 it
follows that we can assume, up to isotopy fixing the boundary pointwise, that all 3-
balls ∆ with boundary ∆0 coincide with ∆0 near ∂∆0. Also, that there exists a uniform
neighborhood N(U) of U such that ∆ ∩ N(U) = ∆0.

Notation 9.4. Let N(U) be a fixed regular neighborhood of the unknot U in S4, with
∆0 isotoped to be properly embedded in S4 \ int(N(U)). Fix a diffeomorphism ψ :
S4 − int(N(U))→ S1 × B3 such that ψ(∆0) = ∆0.

The following is immediate.

Proposition 9.5. ψ induces a 1-1 correspondence between isotopy classes of knotted 3-balls in
S4 and knotted 3-balls in S1 × B3. �

Remark 9.6. It is important to remember that our correspondence is given by ψ, since
by Theorem 3.12 Diff(S1 × B3 fix ∂) acts transitively on properly embedded 3-balls of
S1 × B3.

Theorem 9.7. If ∆0 and ∆1 are properly embedded 3-balls in S4 \ int(N(U)) coinciding near
their boundaries, then there exists an orientation preserving diffeomorphism φ : (S4, ∆1) →
(S4, ∆0) fixing N(U) pointwise. Any 3-ball ∆1 with boundary U restricts to a fiber of a fibration
of S4 \ int(N(U)).

Proof. i) This is [Ce1], [Pa] applied to 3-balls in S4, together with uniqueness of regular
neighborhoods and the fact that Diff0(S2) is connected. �

Theorem 9.8. ψ induces isomorphisms between the following abelian groups.
i) Isotopy classes of 3-balls in S4 with boundary ∆0
ii) isotopy classes of 3-balls in S1 × B3 with boundary ∆0
iii) π0(Diff(S1 × B3 fix ∂)/ Diff(B4 fix ∂))

Proof. Recall that by π0(Diff(S1 × B3 fix ∂)/ Diff(B4 fix ∂)) we mean isotopy classes of
diffeomorphisms of S1 × B3 fixing a neighborhood of S1 × S2 pointwise modulo diffeo-
morphisms that are supported in a compact 4-ball.

To an element [φ] ∈ π0(Diff(S1 × B3 fix ∂)/ Diff(B4 fix ∂)) we associate the 3-ball ∆ =
φ(∆0). It’s isotopy class is well defined since Diff(B4 fix ∂)(∆0) = ∆0 up to isotopy. If
∆ ⊂ S1 × B3 is a 3-ball with boundary ∆0, then by Theorem 9.7 there exists a φ ∈
Diff(S1 × B3 fix ∂) with φ(∆0) = ∆. If φ′ is another such diffeormorphism and φ0 =
φ ◦ φ′−1, then φ0(∆0) = ∆0. By [Ce2] we can assume that after isotopy φ0(∆0) = φ0(∆0)
pointwise, and then also φ0(N(∆0)) = N(∆0) pointwise. Thus φ is equivalent to φ′

modulo Diff(B4 fix ∂). It follows that there is a 1-1 correspondence between ii) and iii).
Recall that the group structure on 3-balls in S1 × B3 to be the one induced from

π0(Diff(S1 × B3 fix ∂)/ Diff(B4 fix ∂)), so ∆0 is the id and multiplication is given by con-
catenation. Use ψ to induce the group structure on isotopy classes of 3-balls in S4 with
boundary ∆0 and hence the isomorphism between i) and ii).

Theorem 3.8 implies that these groups are abelian. �

Remark 9.9. Theorem 1.10 of [Ga1] proves the uniqueness of spanning 2-discs in S4, i.e.
two discs with the same boundary are isotopic rel boundary. The existence of knotted
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3-balls in S4, i.e. the non uniqueness of spanning 3-discs in S4, negatively answers
Question 10.13 of [Ga1] for k = 3. The second author also conjectured that knotted
3-balls exist [Ga3].

Corollary 9.10. There exist fiberings of the unknot U ⊂ S4 not isotopic to the linear fibering.
The set of isotopy classes of fiberings forms an infinitely generated abelian group. �

The four dimensional smooth Schönflies conjecture is that smooth 3-spheres in the
4-sphere are smoothly isotopically standard. In 1959 Mazur [Ma1] showed that such
spheres are topologically standard. More generally Brown [Br] and Morse [Mo] showed
that locally flat 3-spheres in S4 are topologically standard. The corresponding conjecture
is known to be true smoothly for all dimensions not equal to four.

The following is essentially stated in [Ga1] as Remark 10.14.

Theorem 9.11. The following are equivalent:
i) The Schönflies conjecture is true.
ii) For every 3-ball ∆ in S4 with ∂∆ = ∂∆0, there exists n ∈ N such that the lift of ∆ to the

n-fold cyclic branched cover of S4, branched over ∂∆ is isotopic to ∆0 rel ∂∆.
iii) For every non-separating properly embedded 3-ball ∆ in S1 × B3, there exists n ∈ N such

that the lift of ∆ to the n-fold cyclic cover of S1 × B3 is isotopically standard.

Proof. Let Σ0 ⊂ S4 be an unknotted 3-sphere. If Σ1 ⊂ S4 is an embedded 3-sphere that
coincides with Σ0 in a neighborhood of a 3-disc, then Σ1 is isotopic to Σ0 if and only if
there exists an isotopy that also fixes a neighborhood of the 3-disc pointwise.

We now show that i) implies ii). Let ∆′0 ⊂ S4 be the linear 3-ball such that ∆0 ∩ ∆′0 =
∂∆0 and Σ0 = ∆0 ∪∆′0 is a smooth 3-sphere. Let ∆ be a 3-ball in S4 that coincides with ∆0
near ∂∆0. By passing to a sufficiently high odd degree branched cover over ∂∆0 we can
assume that there are preimages ∆̃0, ∆̃, ∆̃′0 of ∆0, ∆, ∆′0 such that ∆̃0 coincides with ∆̃ near
∂∆̃0, int(∆̃) ∩ ∆̃′0 = ∅ and Σ̃0 = ∆̃′0 ∪ ∆̃0 is a smooth, necessarily unknotted, 3-sphere in
S4. Now Σ̃1 = ∆̃′0 ∪ ∆̃1 is another 3-sphere in S4. It follows from the previous paragraph
that Σ̃1 is isotopic rel ∆̃′0 to Σ̃0 and so ∆̃ is isotopic to ∆̃0 rel ∂∆̃0 and hence is unknotted.

Now we show that ii) implies i). Let Σ1 be a 3-sphere in S4. We can assume that it
coincides with the unknotted 3-sphere Σ0, constructed above, near the 3-disc ∆′0. Let ∆
be the closed 3-disc in Σ1 complementary to ∆′0. By hypothesis, ∆ becomes unknotted in
a n-fold branched cover of S4 branched over ∂∆0, given by p : S4 → S4. In this cover let
∆̃ be a preimage of ∆, ∆̃0 be the preimage of ∆0 that coincides with ∆̃ near their common
boundary, and E1, E2, · · · , En be the preimages of ∆′0 cyclically ordered about ∂∆0 with
∆̃0 ∪ ∆̃ lying in the region W bounded by En ∪ E1 that contains no other Ei’s. If ∆̃ is
isotopic to ∆̃0 via an isotopy supported in W, then by composing with p we obtain an
isotopy between ∆ and ∆0 supported away from ∆′0 and hence one between Σ1 and Σ0.
Since the isotopy from ∆̃ to ∆̃0 is supported away from ∂∆0 it follows that when lifted
to the infinite cyclic branched cover the support of the isotopy hits only finitely many
preimages of ∆̃′0. Thus the original n could have been chosen so that the support of the
isotopy is disjoint from some Ei, i 6= 1, n. Since the region between E1 and Ei (resp. Ei
and En) is a relative product, the isotopy can be modified to be supported in W.

The equivalence of ii) and iii) follows from Theorem 9.7. �



KNOTTED 3-BALLS IN S4 85

Remark 9.12. An unpublished consequence of [Ma2] due to Barry Mazur and rediscov-
ered in conversations between the second author and Toby Colding is the following.
If the Schönflies conjecture is false, then there exists an f ∈ Diff0(S1 × S3) such that
f (x0× S3) is isotopically non standard even after lifting to any finite sheeted covering of
S1 × S3.

Definition 9.13. We say that the 3-ball ∆ ⊂ S1 × B3 is virtually unknotted if it becomes
unknotted after lifting to some finite cover of S1 × B3.

Proposition 9.14. If f : S1 × B3 → S1 × B3 is the result of finitely many pairwise disjoint
barbell implantations each possibly raised to some power in Z, then for n ∈ N sufficiently large
the lift fn to the n-fold cyclic cover is isotopic to id modulo Diff(B4 fix ∂).

Proof. For n sufficiently large fn is homotopic to the composition of finitely many maps
each supported in a 4-ball. �

Corollary 9.15. Every knotted 3-ball ∆ arising from finitely many barbell implantations is vir-
tually unknotted. �

Proposition 9.16. For each k ∈ N there exist a barbell Bk ⊂ S1 × B3 whose preimage in the
k-fold cover is the disjoint union of k copies of B(δ4) and hence ∆Bk lifts to a knotted 3-ball in the
k-fold cover.

Proof. One readily constructs Bk. The implantation of the preimage is (βδ4)
k. Since

W3((βδ4)
k) = kW3(δ4) 6= 0 by Theorem 8.3, the result follows. �

10. More Applications

In the next proposition we list some consequences of Proposition 3.7 and Lemma 3.9.
We list the consequences in dimension four, although as we see in the proof, all these
statements have high-dimensional analogues.

Theorem 10.1. (1) π0 Emb(B2, S2 × B2) ' Z, and this is an isomorphism under the con-
catenation operation. The group π1 Emb(B2, S2 × B2) is free abelian group of rank two.
More generally,

πk Emb(B2, S2 × B2) ' πk+1 Emb(B1, B4)× πkΩ2S2.

(2) π0 Emb(B3, S1 × B3) is an abelian group with the concatenation operation. Moreover it
contains an infinitely generated free subgroup.

(3) Embu(B2, B4) is connected, with π1 Embu(B2, B4) containing an infinitely generated
free subgroup.

(4) Embu(S2, S4) is connected, with π1 Embu(S2, S4) containing an infinitely generated free
subgroup.

Proof. (1) As we have seen, when n ≥ 4,

Emb(B1, Bn)×ΩSn−2 ' B Emb(B2, Sn−2 × B2).

The first non-trivial homotopy group of Emb(B1, Bn) is known to be π2n−6 Emb(B1, Bn) '
Z, generated by the Haefliger trefoil [Bu2]. In [Bu2] the space Emb(B1, Bn) is denoted Kn,1.
The first non-trivial homotopy group of ΩSn−2 is πn−3ΩSn−2 ≡ πn−2Sn−2 ' Z.
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(2) Our technique for showing the (families) of diffeomorphisms of S1 × Bn are non-
trivial factors through the fibration Diff(S1 × Bn fix ∂)→ Emb(Bn, S1 × Bn).

(3) See Corollary 3.11, when n ≥ 4 we have Embu(Bn−2, Bn) ' B Emb(Bn−1, S1 ×
Bn−1).

(4) There is a homotopy-equivalence [Bu2]

Emb(Sj, Sn) ' SOn+1 ×SOn−j Emb(Bj, Bn).

The simplest way to think of this is to consider elements of Emb(Bj, Bn) as smooth
embeddings Rj → Rn that restricts to the standard inclusion x → (x, 0) outside of
the ball Bj. One can conjugate such embeddings via a stereographic projection map,
converting the embeddings Rj → Rn to embeddings Sj → Sn that are standard on a
hemisphere. One can then post-compose such an embedding with an isometry of Sn.
We are in the fortunate circumstance where the homotopy-fiber of the map SOn+1 ×
Emb(Bj, Bn) → Emb(Sj, Sn) can be identified, and it is the orbits of the SOn−j-action,
acting diagonally on the product.

Thus Embu(S2, S4) is a bundle over SO5/SO2 with fiber Embu(B2, B4). π2SO5/SO2 '
Z and this group maps isomorphically to the subgroup of index two in π1SO2, which
maps to zero in π1 Embu(B2, B4), so our map π1 Embu(B2, B4) → π1 Embu(S2, S4) is
injective. �

Remark 10.2. The first sentence of Conclusion (1) is Theorem 10.4 of [Ga1]. The proof
here is different, generalizable and arguably more direct.

Allen Hatcher’s proof of the Smale Conjecture [Ha1] together with his and Ivanov’s
work on spaces of incompressible surfaces [HI] has as the consequence that the compo-
nent of the unknot in the embedding space Emb(S1, S3) has the homotopy type of the
subspace of great circles, i.e. the unit tangent bundle UTS3 ' S3× S2. From the perspec-
tive of the homotopy-equivalence Emb(S1, S3) ' SO4×SO2 Emb(B1, B3) this is equivalent
to saying the unknot component of Emb(B1, B3) is contractible, Embu(B1, B3) ' {∗}.

In dimension four we do not know the full homotopy type of Diff(S4), although there
is the recent progress of Watanabe [Wa1] where he shows the rational homotopy groups
of Diff(S4) do not agree with those of O5. In this regard, this paper asserts the the
analogy to Hatcher and Ivanov’s spaces of incompressible surfaces results [HI] are also
false in dimension 4, in particular contrast with the theorem Emb(B2, S1 × B2) ' {∗}.

Hatcher and Wagoner [HW] (see Cor. 5.5) have computed the mapping class group of
S1 × Bn for a range of n. Specifically

π0 Diff(S1 × Bn fix ∂) ' Γn+1 ⊕ Γn+2 ⊕
(⊕

∞
Z2

)

provided n ≥ 6. The Hatcher-Wagoner diffeomorphisms survive the map π0 Diff(S1 ×
Bn fix ∂) → π0 Diff(S1 × Sn), as do the diffeomorphisms we prove are isotopically non-
trivial.
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11. Conjectures and Questions

Conjecture 11.1. The map p : π1 Emb(S1, S1×S3; S1
0)→ π0(Diff(S1× B3 fix ∂)/ Diff(B4 fix ∂))

induced by isotopy extension has kernal the subgroup with W2 = 0. In particular the implanta-
tions βθk , k ≥ 2 and βαk , k ≥ 1 are isotopically nontrivial.

We thank Maggie Miller for bringing to our attention the following question.

Question 11.2. If ∆1 is a knotted 3-ball in S4 and T0, T1 are respectively obtained from ∆0, ∆1
by attaching a small 3-dimensional 1-handle h, then is T1 knotted, i.e. is not isotopic rel ∂T1 to
T0? Does ∆1 become unknotted after finitely many such stabilizations?

Conjecture 11.3. For each g ≥ 0 there exists 3-dimensional genus-g handlebodies V0, V1 ⊂ S4

such that ∂V0 = ∂V1 and the set of V0-compressible simple closed curves in ∂V0 coincides with
that of V1, but V1 is not isotopic to V0 via an isotopy that fixes ∂V1.

Question 11.4. i) Determine π0
(
Diff(S1 × Bn fix ∂)/ Diff(Bn+1 fix ∂)

)
for n = 4, 5. ii) Do

all elements become trivial after lifting to the 2-fold cover of S1 × Bn.

Remark 11.5. As already noted Hatcher has determined such groups for n ≥ 6 and all
its elements become trivial passing to 2-fold covers. On the other hand by Proposition
9.16 some elements remain nontrivial when passing to such covers, when n = 3.

The following is a restatement of a special case of Lemma 3.9, where as explained
there, the isomorphism is given by slicing the embedding. Here notation is as in Theorem
10.1.

Theorem 11.6. π0 Emb(B3, S1 × B3) ' π1 Embu(B2, B4).

Problem 11.7. Use this to prove or disprove the Schönflies conjecture, e.g. to prove the
conjecture show that loops in Embu(B2, B4) are homotopically trivial where at discrete
times of the homotopy one can do geometric moves corresponding to passing to finite
sheeted coverings. Such a move might change the homotopy class and may arise from
certain reimbeddings of the loop.

Question 11.8. Does there exists a barbell B ⊂ S4 whose implantation represents a nontrivial
element of π0 Diff0(S4)?

12. Appendix: G(p,q) is a Whitehead product

The goal of this section is to prove the following result.

Theorem 12.1. Let I0 denote the standard oriented properly embedded arc in S1 × B3. Under
the homomorphism W3 : π2 Emb(I, S1 × B3; I0) → π5(C3(S1 × B3, I0))/R, then up to sign
independent of p and q, W3(G(p, q)) = tp

1 tq
2[w13, w23].

This section gives a detailed proof of the theorem. It should be noted that Kosanovic
has a general technique of this sort. Specifically, the Taylor tower Lk → Tk → Tk−1
associated to an embedding space has its associated homotopy long exact sequence,
which gives us short exact sequence for computing πiTk. This group is an extension of
a subgroup of πiTk−1 by a quotient group of πiLk. Kosanovic computed an explicit map
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from the quotient group of πiLk to the kernel of πi Emb(I, M)→ πiTk−1 for the smallest
i with πiLk non-trivial [Ko3] in the case of the embedding spaces of the form Emb(I, M).
In our case this map gives precisely the description of the closure as a linear combination
of Whitehead brackets.

Remark 12.2. While stated for S1 × B3 the analogous statement and proof holds for any
orientable 4-manifold M. In the general case J0 is an oriented properly embedded arc in
M with {a1, a2, a3} ⊂ J0, a1 < a2 < a3, the basepoint for C3(M). In the statement below
λ1, λ2 are paths from a1, a2 to a3 respectively and G(λ1, λ2) is defined exactly like G(p, q)
except that λ1, λ2 represent elements of π1(M; J0).

Theorem 12.3. Let J0 denote an oriented properly embedded arc in the oriented 4-manifold M.
Under the homomorphism W3 : π2 Emb(I, M; I0)→ π5(M, J0)/R, then up to sign independent
of λ1 and λ2, W3(G(λ1, λ2)) = tλ1

1 tλ2
2 [w13, w23].

Idea of Proof of Theorem 12.1: We are motivated by the mapping space model of Sinha [Si1]
that was derived from the work of Goodwillie, Klein and Weiss, e.g. see [GKW]. G(p, q)
induces a map C3〈I〉 × I2 → C3〈S1 × B3〉 which is a map of the 5-ball into C3〈S1 × B3〉.
By closing off the boundary facets we will essentially modify this map to an element
of π5(C3〈S1 × B3〉) which is rationally generated by Whitehead products and under
our map, up to sign, G(p, q) is taken to tp

1 tq
2[w13, w23]. We close off the boundary facets

essentially subject to the constraints of the mapping space model, thus our element of π5
is well defined up to other elements that might be obtained by closing off with the same
constraints. An element z of π5(C3(S1 × B3)) modulo those elements is by definition
W3(z).

Notation 12.4. Cn(M) denotes the configuration space of distinct ordered n-tuples of M
and Cn〈M〉 denotes the quotient of the Fulton - McPherson compactification as defined
in Definition 4.1 of [Si1], though there it is denoted by Cn〈[M]〉. In this section n = 3
and M is one of I or S1 × B3. For our purposes it suffices to consider the connected
component of C3〈I〉 which is the simplex {(x, y, z)|0 ≤ x ≤ y ≤ z ≤ 1}, so from now on
C3〈I〉 will denote that simplex.

Definition 12.5. We continue to view S1 × B3 as D2 × S1 × [−1, 1] with I0 a geodesic
arc through the origin of D2 × {x0} × {0}. We fix an identification of [0, 1] with I0 by
1I0 : I → I0 and will frequently implicitly identify one with the other. In particular, we
abuse notation by having (a1, a2, a3) = (1/4, 1/2, 3/4) ∈ I0 denote the basepoint for both
C3(I) and C3(S1 × B3). Let U1 = [j0, j1], U2 = [k0, k1], U3 = [g0, g1] be disjoint closed
intervals in (0, 1) containing a1, a2, a3 in their interiors. We color U1, U2 and U3 blue, red
and green respectively. See Figure 60 a).

We introduced G(p, q) in Figure 19 a) as the bracket (Bp, Rq). To minimize notation
we drop the subscripts. In the next definition we specify B, R and their end homotopies
more precisely and denote the resulting bracket by αt,u ∈ ΩΩ Emb(I, S1 × B3; I0).

Definition 12.6. We represent (B, R) by the chord diagram pair shown in Figure 60
b) and equivalently in band lasso notation in Figure 60 c). The positive chords (resp.
negative chords) spin around [g.12, g.20] ⊂ U3 (resp. [g.80, g.88] ⊂ U3); the corresponding
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Figure 60.

lasso discs intersect U3 at g.15 and g.18 (resp. g.82 and g.85). The blue (resp. red) chords are
called b1, b2 (resp. r1, r2) and the spinnings about these chords are respectively supported
in the domain in [j.6, j.8] and [j.2, j.4] (resp. [k.6, k.8] and [k.2, k.4]). The end homotopies
for B and R are the undo homotopies νb, νr of Definition 12.8. We represent the resulting
bracket (B, R) by αt,u ∈ ΩΩ Emb(I, S1 × B3; I0).

We define the left shifted (resp. right shifted) mappings BL, RL (resp. BR, RR) as in
Figure 61. Here the ends of b2 and r2 (resp. b1, r1) have been isotoped so that they spin
about U3 to the left (resp. right) of a3 close to the subinterval [g.12, g.38] (resp. [g.62, g.88])
around which b1, r1 (resp. b2, r2) already spin.

+

+

-

-

a)

U3

a3 Right ShiftLeft Shift
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-

b)

U3

a3

+

+

-

-

c)
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Figure 61.

Remark 12.7. The range support of a shift is contained in a small neighborhood of U3.

We now describe homotopies in Ω Maps(I, S1 × B3; I0) of B and R and their L and R
shifted versions to the constant map to 1I0 .

Definition 12.8. The back track homotopy is the homotopy in Ω Maps(I, M; I0) of a spin-
ning to 1I0 corresponding to withdrawing the band and lasso and the undo homotopy is
defined in Definition 4.7. We now elaborate on these and their variants in our current
context.

The blue back track homotopy is the homotopy βB of B to the constant 1I0 as shown
in Figure 62. Each element of the homotopy is a loop of immersed intervals that are
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embeddings when restricted to U1, though there may be intersections with U3. The first
part of the homotopy contracts the lasso 3-ball to the arc at the top of the band, so at
that moment βB

t is a loop that sends an arc to the top of the band and then withdraws
it. In a similar manner we define the red back track homotopy βR as well as the back track
homtopies for BL, BR etc.

I0I0I0 I0I0I0 I0I0I0
U1 U3

a2

L/H

a3
a)

U1 U3
a2

L/H

a3

U1 U3
a2

L/H

a3
b)

U1 U3
a2

L/H

a3
b)

U1 U3
a2

L/H

a3
b)

U1 U3
a2

L/H

a3
c)

U1

U2

U3
a2U1

U2

U3
a2U1

U2

U3
a2 a3

Back track

Homotopy

Figure 62.

The blue undo homotopy νB, a homotopy in Ω Emb(I, S1× B3; I0), is defined in Figures
63 a) - g) via continuous transformations of bands, lassos and lasso discs. Figure 63 a)
shows νB

0 = B. To go from νB
0 to νB

.25 we zip up the bands to a single one from which
two lassos κ0, κ1 simultaneously emanate as in Figure 63 b). Figure 63 c) is a detail of 34
b). Note that the original lasso discs D0, D1 which are also the lasso discs for κ0 and κ1
each intersect U3 in one point. To go from νB

.25 to νB
.4 we zip up the lasso discs to obtain

a single lasso disc D and lasso κ. Here D contains D0 and D1 as subdiscs, the zipping
is disjoint from U3 and D intersects U3 in two points. See Figure 63 d). To obtain νB

.5
we properly isotope D to be disjoint from U3. See Figure 63 e). This isotopy induces an
isotopy of the lasso sphere. The key point is that the lasso spheres remain disjoint from
U3 throughout the isotopy, since at each moment the interior of one hemisphere is in the
future while the other is in the past. Finally, we withdraw the lasso and bands as in the
back track homotopy. In a similar manner we define the red undo homotopy as well as
the undo homotopies for BL, BR etc.

I0
U1 U3

a2

L/H

a3

p

U1

U2

U3
a1 a2

L/H

a3
U3

L/H L/H

a3

U3

L/H L/H

a3

Figure 63.

In a natural way define the transition homtopy T which is a homotopy between the back
track and undo homotopies. It’s support is in a small neighborhood of the supports
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of the undo and back track homotopies. We denote by TB (resp. TR) the transition
homotopy for B (resp. R).

Summary of Intersections: We now catalogue the intersections and self-intersections of
the immersions I → S1 × B3 that arise from evaluating at parameter points the homo-
topies βB, βR, νB, νB, TB, TR, as well as their L and R shifted versions.

1) In the domain B is supported in U1 as are all the homotopies of B. All homotopies
of B are homotopies of loops of embeddings when restricted to U1. R is supported in
U2 as are all the homotopies of R. All homotopies of R are homotopies of loops of
embeddings when restricted to U2.

Call a double point of a given map or between two maps of I → S1× B3 to be of Ui/Uj
type if it involves the image of a point of Ui intersecting the image of one from Uj.

2) Double points between νB(e, f ) and νR(e′, f ′) are only of type U1/U2, similarly for
their shifted versions. νB and νR and their shifted versions are homotopies of loops of
embeddings.

3) Double points of a βB(e, f ) are only of type U1/U3, similarly for its shifted versions.
There are no U1/U2 double points between a βb(e, f ) and a βR(e′, f ′). Double points of
a βR(e, f ) are only of type U2/U3, similarly for its shifted versions

4) Double points involving transitional homotopies or their shifted versions are only
of type U1/U2, U1/U3 or U2/U3.

5) Any U3 double point involving an L shifted map (resp. R shifted map) occurs in
[g.12, g.38] (resp. [g.62, g.88].

Definition 12.9. Define two open covers {UL, UR}, {Uβ, Uν} of ∂C3〈I〉 called the standard
decompositions as indicated in Figure 64 a).

UL := {(ω1, ω2, ω3) ∈ ∂C3〈I〉|ω3 > g−1}
UR := {(ω1, ω2, ω3) ∈ ∂C3〈I〉|ω3 < g0}
Uβ := {(ω1, ω2, ω3) ∈ ∂C3〈I〉|ω3 < k2} ∪ (j−1, j2)× (k−1, k2)× 1
Uν := {(ω1, ω2, ω3) ∈ ∂C3〈I〉|ω3 > k1} \ [j0, j1]× [k0, k1]× 1.
For (t, u) ∈ I2 we define two open covers of ∂C3〈I〉 × (t, u) called the L-R and β-ν

open covers. For the L-R cover, use the standard {UL, UR} cover, independent of (t, u).
Let ε > 0 be very small and P as in Figure 63 b). For t, u ∈ P \ Nε(∂P) use the standard
{Uβ, Uν} decomposition. For (t, u) ∈ Nε(∂P) define Uβ as above and Uν = ∂C3〈I〉. For
(t, u) /∈ P ∪ Nε(∂P), define Uν = ∂C3〈I〉 and Uβ = ∅.

Remark 12.10. P \ Nε(∂P) contains all the parameters that are both blue and red and
I × I \ P ∪ Nε(P) contains the parameters corresponding to the end homtopies.

Definition 12.11. Let E3 denote the 3-ball C3〈I〉 ∪ (∂C3〈I〉 × [0, 1]) and E5 := E3 × I2.
Here points are denoted (ω, v, t, u) where (t, u) ∈ I2, ω ∈ C3〈I〉 and v ∈ [0, 1]. Also,
v = 0 unless ω ∈ ∂C3〈I〉.

We define α : E5 → Maps(I, S1 × B3; I0). First, define α : C3〈I〉 × I2 → Maps(I, S1 ×
B3; I0) by αω

t,u = αt,u. Extend α to (∂C3〈I〉 × [0, 1]) × I2 as follows. For v ∈ [0, 1/4],
according to ω ∈ UL or UR, monotonically shift αt,u to the left or right. So, if say
ω ∈ UL \UR, then αω

.25,t,u is totally shifted to the left. For ω ∈ UL ∩UR it is somewhere
between the right and the left i.e. is partially shifted. Next, for v ∈ [1/4, 1] homotope
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Figure 64.

αω
.25,t,u to 1I0 according to whether it is in Uβ or Uν. I.e. if ω ∈ Uβ \Uν (resp. Uν \Uβ) the

back track (resp. undo) homotopy is used. In Uν ∩Uβ the transition homotopy is used.

Definition 12.12. For i = 1, 2 let pi : I → Ui denote the retraction which fixes Ui point-
wise and let p3 the retraction to a3. Letting p = (p1, p2, p3) we obtain p : C3〈I〉 → C3(I).
Let γ : I → S1 × B3 be a proper immersion supported in the domain on U1 ∪U2 such
that γ|U1 and γ|U2 are embeddings. Let 0 ≤ x0 ≤ y0 ≤ z0 ≤ 1 and (x1, y1, z1) :=
(p1(x0), p2(y0), a3). Let xs be the constant speed path in I from x0 to x1 with ys and zs
similarly defined. We say that (x0, y0, z0) is γ-ready if for all s > 0, γ(xs), γ(ys), γ(zs) are
pairwise disjoint.

Lemma 12.13. If γ is embedded, then any (x, y, z) ∈ C3〈I〉 is γ-ready. �

Notation 12.14. In what follows if a, b ∈ I, then [a, b] denotes the closed interval, possibly
a point, between a and b or b and a.

Proposition 12.15. If ω ∈ ∂C3〈I〉, then ω is αω
v,t,u ready for all v, t, u.

Proof. Case 1: (t, u) ∈ P \ int(Nε(∂P)).

Proof of Case 1: Let ω = (x0, y0, z0) and let α denote αω
v,t,u. If for some s > 0, α(xs) =

α(ys), then xs 6= ys since these are unit speed paths with x0 ≤ y0 and x1 < y1. Therefore,
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either xs ∈ U1 and ys ∈ U2 ∪U3 or xs ∈ U2 and ys ∈ U3. Similar statements hold for
xs, zs and ys, zs. Thus it suffices to show that there are no Ui/Uj intersections involving
two of xs, ys or zs.

We first show that there is no such Ui/Uj intersection involving a zs. Recall that
z1 = a3. If z0 ≥ a3, then no zs ∈ [z0, a3] is involved with a U1/U2 intersection. Since
ω ∈ UL \UR then zs cannot be involved with a Ui/U3 intersection. If z0 ∈ [k1, a3], then
again zs ∈ [z0, a3] cannot be involved with a U1/U2 intersection. If a3 ≥ z0 ≥ k2, then
ω ∈ Uν \Uβ, so zs ∈ [z0, a3] cannot be involved with a Ui/U3 intersection. If z0 ∈ [k1, k2],
then ω ∈ UR \UL so zs ∈ [z0, a3] cannot be involved with a Ui/U3 intersection. If z0 ≤ k1,
then ω ∈ Uβ \Uν so there are no U1/U2 intersections and since ω ∈ UR \UL, zs cannot
be involved with a Ui/U3 intersection.

It remains to show that there is no Ui/Uj intersection involving both a ys and an
xs. If y0 ≥ k1, then y1 = k1 and hence ys ∈ [y0, y1] is not involved with a U1/U2
intersection. If y0 ≥ k2, then ω ∈ Uν \Uβ so ys ∈ [y0, y1] is not involved with Ui/U3
intersections. If y0 ≤ k2, then so are x0, x1 and y1 and hence ([y0, y1] ∪ [x0, x1]) ∩U3 = ∅
so ys ∈ [y0, y1] cannot be involved with a Ui/U3 intersection. If y0 ∈ ([0, k0] ∪ [k1, k2]),
then [y0, y1]∩ int U2 = ∅, so ys ∈ [y0, y1] cannot be involved with a U1/U2 intersection. If
x0 /∈ int(U1), then neither is x1. Therefore if y0 ≤ k2 and x0 /∈ int(U1), then ys ∈ [y0, y1]
cannot be involved with a U1/U2 intersection. If y0 ∈ [k0, k1] and x0 ∈ [j0, j1], then
y0 = y1, x0 = x1. Being in ∂C3〈I〉 it follows that z0 = 1 and hence ω ∈ Uβ \Uµ which
implies that they cannot be involved in a U1/U2 intersection. �

Case 2: (t, u) /∈ P \ int(Nε(∂P)).

Proof of Case 2 Here α|Ui = id for i = 1 or 2. We will assume the case of i = 2, the other
case being similar. Hence it suffices to show that there are no U1/U3 intersections. Such
intersections are ruled out by the argument of Case 1. �

Definition 12.16. Define Fs : E5 → C3〈S1 × B3〉 by

Fs(ω, v, t, u) = αω
v,t,u((1− s)ω + s(p(ω))).

Definition 12.17. Define JU3 := U3× [−1, 0] ⊂ D2× S1× [−1, 1], the U3-cohorizontal space
and for s ∈ U3, Js := s× [−1, 0], the s-cohorizontal space. Let f1, f2, f3 be the coordinate
functions for F1 : E5 → C3(S1 × B3). Call a point of f−1

1 (Ja3) (resp. f−1
2 (Ja3)) a blue

cohorizontal (resp. red cohorizontal) point.

Definition 12.18. As in Definition 4.21, B, R ∈ Ω Emb(I, S1× B3; I0) give rise to FB, FR ∈
ΩΩ Emb(I, S1 × B3; I0). Let SB and SR denote the parameter supports for FB and FR,
which by convention lie in the blue and red regions of Figure 64 b). Let FB

u denote
FB|[0, 1]×u. By reparametrizing [0, 1]× [0, 1] we will assume that for each u, length(([0, 1]×
u) ∩ SB) < δ, where δ is very small and SB is contained in the δ neighborhood of the arc
from (1/8, 1/8) to (7/8, 7/8). Similar statements hold for FR, where the domain support
of FR is denoted SR and is contained in the δ neighborhood of the arc from (7/8, 1/8)
to (1/8, 7/8). Define the blue slab (resp. red slab) = ((x, y, z), v) ∈ E3 such that x ∈ U1
(resp. y ∈ U2). Define Pz0 = {(x, y, z, v) ∈ E3|z = z0}. Let πE denote the projection of E5

to E3, πt : E5 → E3 × I × I the projection to the first I factor, πv : E5 → E3 × I × I the
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projection to the second I factor and πv : (∂C3 × [0, 1])× I2 → [0, 1] the projection to the
[0, 1] factor. Define πpr to be the projection of D2 × S1 × [−1, 1]→ D2 × S1 × 0.

Proposition 12.19. Sb := f−1
1 (Ja3) (the blue sphere) and Sr := f−1

2 (Ja3) (the red sphere) are
disjoint 2-spheres whose union is the standard Hopf link in B5. If β is a path from ∂B5 to
Sb (resp. Sr), then f1(β) (resp. f2(β)) represents the class p ∈ π1(S1 × B3; I0) (resp. q ∈
π1(S1 × B3; I0)).

Remark 12.20. Note that Sb = F−1
1 (Ja3 × (S1 × B3) × (S1 × B3)) and Sr = F−1

1 ((S1 ×
B3)× Ja3 × (S1 × B3)).

Proof. Let Ku = Sb ∩ E3× [0, 1]× u and Lu = Sr ∩ E3× [0, 1]× u. The Proposition follows
from the following seven steps.

Step 1: If (ω, v, t, u) ∈ Sb ∪ Sr where ω = (x, y, z), then either v > 0 or u /∈ [1/4, 3/4].
Also either

i) v < 1/4, in which case αω
v,t,u is a partially shifted αω

t,u or
ii) z ∈ [g−1, g0], in which case αω

v,t,u is obtained from either a shifted or partially shifted
αω

t,u or its image under the undo homotopy.

Proof of Step 1: By construction, the lasso spheres of B and R and those of the undo
homotopy project under πpr to their lasso discs. The B and R lasso discs are disjoint
from a3 and their lasso discs and those of the undo homotopies are disjoint when fully
shifted left or right. It follows that if u ∈ [.25, .75], then (Sb ∪ Sr)∩C3〈I〉 × I2 = ∅. When
z /∈ [g−1, g0] a similar argument proves shows that v < 1/4. �

Step 2: We can assume the following.
i) Under the left shift the b2 (resp. r2) lasso disc intersects a3 when v = .1 (resp. v = .2)

and under the right shift the r1 (resp. b1) lasso disc intersects a3 when v = .1 (resp.
v = .2).

ii) Viewing B ∈ Ω Emb(I, S1 × B3; I0) as a map [0, 1]×U1 → S1 × B3, then the projec-
tion of B−1(U3) to U1 = {j.3, j.7}. Similarly the U2 projection of R−1(U3) equals {k.3, k.7}.

iii) Viewing νB as a map [0, 1] × [0, 1] ×U1 → S1 × B3 where νB
0 = B and νB

1 is the
constant map to idU1 , then the projection of νB−1

u (U3) to U1 consists of two, one or zero
points. Here νB

u denotes νB|u× [0, 1]×U1. In the former case the lower (resp. higher)
point in U1 is monotonically increasing (resp. decreasing) and equals j.5 when there is
exactly one point. An analogous statement holds for νR.

iv) The lasso discs of νB
u intersect U3 in two, one or zero points. When there are two

points the lower (resp. higher) point in U3 is monotonically increasing (resp. decreasing)
in u. An analogous statement holds for νR

u .
v) Near ∂E3 × I2, f1(x, y, z, v, t, u) = p1(x) and f2(x, y, z, v, t, u) = p2(y). �

Step 3: Ku ∩ Pz is independent of u ∈ [1/4, 3/4] and is ∅ when z < j.7, is one point when
z = j.7, is two points when z ∈ (j.7, 1) and an interval when z = 1. Furthermore,

i) If z = j.7, then Ku ∩ Pz = (j.7, j.7, j.7, .2)
ii) If z ∈ (j.7, g−1), then Ku ∩ Pz = (j.7, yz, z, .2), where yz = {j.7, z}
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iii) if z ∈ [g−1, g0], then Ku ∩ Pz = (jz, yz, z, vz), where jz ∈ [j.3, j.7] is non increasing
and yz = {jz, z}

iv) if z ∈ (g0, 1), then Ku ∩ Pz = (j.3, yz, z, .1), where yz = {j.3, z}
v) if z = 1, then Ku ∩ P1 = (j.3, y1, 1, .1), where y1 = [j.3, 1].
An analogous statement holds for Lu ∩ Pz. �

Step 4: f−1
1 (Ja3) ∩ f−1

2 (Ja3) = ∅.

Proof of Step 4: If u /∈ [1/4, 3/4] and t ∈ [0, 1], then αω
v,t,u = id when restricted to one of

U1 or U2 and hence Step 4 follows. Now suppose that u ∈ [1/4, 3/4]. If ω ∈ C3〈I〉, then
apply Step 1 to conclude (Ku ∪ Lu) ∩ (ω, 0, t, u) = ∅. If ω = (x0, y0, z0) ∈ ∂C3〈I〉, then
(ω, v, t, u) ∈ Ku (resp. Lu) implies x0 ∈ int(U1) (resp. y0 ∈ int(U2)). If z0 ≥ g0, then
ω ∈ UL \UR and hence by Step 2, Ku ⊂ π−1

v (.1) while Lu ⊂ π−1
v (.2). If z0 ≤ g−1, then

ω ∈ UR \UL and hence by Step 2, Ku ⊂ π−1
v (.2) while Lu ⊂ π−1

v (.1). If z0 ∈ [g−1, g0],
then either x0 = 0 or x0 = y0 or y0 = z0. In all three cases at least one of x0 ∩ int(U1) = ∅
or y0 ∩ int(U2) = ∅ holds and hence Ku ∩ Lu = ∅. �

Step 5: For u ∈ [1/4, 3/4], πE(Ku ∪ Lu) is independent of u and equal to a Hopf link.
Also πt(Ku) ⊂ Nδ(u) and πt(Lu) ⊂ Nδ(1− u).

Proof of Step 5: The invariance and the Hopf link property follow by Steps 2 and 3. Figure
65 b) shows πE(Ku ∪ Lu), a Hopf link within the blue and red slabs. If (ω, v, t, u) ∈ Sb,
then (t, u) ∈ SB and hence πt(ω, v, t, u) ∈ Nδ(u). If (ω, v, t, u) ∈ Sr, then (t, u) ∈ SR and
hence πt(ω, v, t, u) ∈ Nδ(1− u). �

z = g0

z = g-1

z = g0

z = g-1

Lu

Ku

Ku

Figure 65.

Step 6: The surface D1/4 := Sb ∩ E3 × ([0, 1] × [0, 1/4]) = is a disc that after proper
isotopy in E3 × ([1/8, 3/8] × [0, 1/4]) projects under πE to a spanning disc for K1/4.
Analogous statements hold for K3/4, L1/4 and L3/4.
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Proof of Step 6: This is a long but routine exercise along the lines of Step 3. Here one
computes the various intersections of D1/4 with each Pz ∩ I2 and shows that after a small
proper isotopy to eliminate arcs projecting to points, the πE projection of D1/4 to E3 is
embedded. �

Step 7: If β is a path from ∂B5 to Sb (resp. Sr), then f1(β) (resp. f2(β)) represents the
class p ∈ π1(S1 × B3) (resp. q ∈ π1(S1 × B3)).

Proof of Step 7: Step 4 follows from the definition of G(p, q). Here we view I0 ∪ Ja3 as the
basepoint. �

Proof of Theorem 12.1: We will show that there is a homotopy of F1 = ( f1, f2, f3) to F′1 =
( f ′1, f ′2, f3) supported away from Sb ∪ Sr such that throughout the homotopy f3 ≡ a3 and
each of the homotopies of f1 and f2 are supported away from Ja3 ⊂ S1× B3. Furthermore,
there exists disjoint regular neighborhoods N(Sb), N(Sr) such that f1 = p1 off of N(Sr)
and f2 = p2 off of N(Sb). Since each of Sb and Sr have trivial normal bundles and the
restriction of f ′1 and f ′2 to the B3 fibers of N(Sb) and N(Sr) project to degree ±1 maps to
∂N(a3), the homotopy can be chosen so that the restriction of f ′1 to a B3 fiber is a whisker
from a1 to ∂N(a3) that goes p times around the S1 followed by the standard quotient
map of the 3-ball to ∂N(a3). The analogous statement holds for f ′2 where the whisker
starts at a2 and goes q times about S1. It follows that we have, up to sign independent
of p and q, the Whitehead product tp

1 tq
2[w13, w23].

Figure 66.

The mapping f1|(blue slab)× (t, u), (t, u) ∈ [0, 1]× [1/4, 3/4] is schematically shown
in Figure 66 a). The closed subset corresponding to C3〈I〉 is the closed region interior to
the blue triangle. We denote that region by αB

t,u since in that region f1(x, y, z, 0, t, u) =

αB
t,u(x, y, z). Since f1|U1 = idU1 near the boundary of E3, that region is denoted by p1.

In the collar, αB
t,u|U1 is modified by the left, right, undo and backtrack homotopies as
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indicated in the diagram. A similar discussion holds for f2, though in that case the
diagram is of a square.

We next homotope f1 to f ′1 so that in the region [0, 1]× [3/8, 5/8], f ′1 is defined as in
Figure 66 b). Here we modify αB

t,u or its partially left or right shifted versions by the blue
back track homotopy. Note that the homotopy is done away from where a blue lasso disc
crosses a3 under left or right shifting and hence the homotopy is supported away from
Ja3 . In a similar manner we homotope f2 to f ′2. Since for any (t, u) the corresponding blue
bands and lasso discs are disjoint from the red ones, there is no nontrivial intersection
between the images of U1 and U2 under the homotopy. Note that the support of f ′1 is
now a regular neighborhood of Sb disjoint from a regular neighborhood of Sr which is
the support of f ′2. �
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