
COMMENTARY ON FOLIATIONS*

Quoting Thurston’s definition of foliation [F11]. “Given a large supply of some sort of
fabric, what kinds of manifolds can be made from it, in a way that the patterns match up
along the seams? This is a very general question, which has been studied by diverse means
in differential topology and differential geometry. ... A foliation is a manifold made out of
striped fabric - with infintely thin stripes, having no space between them. The complete
stripes, or leaves, of the foliation are submanifolds; if the leaves have codimension k, the
foliation is called a codimension k foliation. In order that a manifold admit a codimension-
k foliation, it must have a plane field of dimension (n − k).” Such a foliation is called an
(n− k)-dimensional foliation.

The first definitive result in the subject, the so called Frobenius integrability theorem [Fr],
concerns a necessary and sufficient condition for a plane field to be the tangent field of a
foliation. See [Spi] Chapter 6 for a modern treatment. As Frobenius himself notes [Sa], a
first proof was given by Deahna [De]. While this work was published in 1840, it took another
hundred years before a geometric/topological theory of foliations was introduced. This was
pioneered by Ehresmann and Reeb in a series of Comptes Rendus papers starting with [ER]
that was quickly followed by Reeb’s foundational 1948 thesis [Re1]. See Haefliger [Ha4] for
a detailed account of developments in this period.

Reeb [Re1] himself notes that the 1-dimensional theory had already undergone considerable
development through the work of Poincare [P], Bendixson [Be], Kaplan [Ka] and others. In
addition there was the well known extension to the Poincare - Hopf index theorem: a closed
manifold has Euler characteristic 0 if and only if it has a nowhere vanishing smooth vector
field if and only if it has a 1-dimensional foliation. Another impetus was Hopf’s question as
to whether or not the 3-sphere has a codimension-1 foliation [Re2].

The foliation exhibited in Reeb’s thesis, now known as the Reeb foliation gave a positive
answer to Hopf’s question. At the outset Reeb asks the following fundamental and far-
reaching generalization to Hopf’s question [Re1]: Si la variete Vn admet un champ Eq de
classe C1 admet-t-elle aussi un champ Eq de classe C1 completement integrale? which
experts soon after expressed as follows: Is every q-plane field homotopic to the tangent
plane field of a foliation?

In a series of three papers [F7], [F10], [F12] Thurston obtained the following results.

Theorem 0.1. [F12] [F10] Let M be a smooth manifold without boundary. Every codimension-
1 plane field on M is homotopic to the tangent plane field of a C∞ codimension-1 foliation.

Corollary 0.2. [F12] Every closed, connected. smooth manifold with Euler characteristic 0
has a C∞ codimension-1 foliation.

Theorem 0.3. [F7] Every smooth k-plane field on a closed n-manifold is homotopic to the
tangent plane field of a Lipschitz foliation, with C∞-leaves.
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The Lipschitz condition was improved to C1 by Tsuboi [Ts1]. Thurston uses the Bott
vanishing theorem [Bo] in [F5] to show that there cannot be a C2-version of this theorem
and further that the dimension obstruction given by Bott is sharp. See [Mo] for an explicit
example. For 2-plane fields we have the following result.

Theorem 0.4. [F7] Every C∞ 2-plane field on a manifold is homotopic to a completely
integrable C∞ plane field.

Remark 0.5. In [F12], after mentioning various results of Lickorish, Novikov-Zieschang,
Wood, Lawson, Durfee, A’Campo and Tamura, Thurston states, “My method, on the other
hand, is local in nature: one cannot see the whole manifold. A disadvantage is that it is
hard to picture the foliations so constructed. For this reason, I think that further work on
the geometric methods of constructing foliations is called for.”

The proofs of these results required generalizations of deep results of Mather [Ma3], [Ma1]
on the group of compactly supported diffeormorphisms of R with the discrete topology and
relations with Haefliger’s classifying spaces. In particular Thurston proved the following.

Theorem 0.6. [F5] If M is a closed manifold, then Diff∞0 (M) is a simple group.

Theorem 0.7. [F5] For all r ≥ 1 and p ≥ 1, r, p ∈ N, there is a map

B̄Diffr
c(Rp)→ Ωp(BΓ̄r

p)

that induces an isomorphism on integer homology.

Here Diff∞0 denotes the connected component of the identity of the group of C∞ diffeo-
morphisms, Diffr

c denotes compacted supported Cr diffeomorphisms and BΓ̄r
p is defined in

Remark 0.13. Note that B̄Diffr
c(Rp) is also a homotopy fiber. Theorem 0.7 is due to John

Mather for p = 1. The paper [F5] is a research announcement with few hints of proofs.
Thurston lectured on this at Harvard in 1974 and Mather wrote a proof of the above theo-
rem in [Ma2]. See also [Sar], [McD], [La], and [Ts2]. One of Thurston’s proofs introduced
the far reaching technique now known as fragmentation, see [Na].

Forty years later Gael Meigniez [Me] proved Theorem 0.1 for n ≥ 4 without using the
Mather - Thurston theory. In addition his foliations are minimal, i.e. every leaf is dense.
This includes simply-connected manifolds and connect sums, in contrast to Novikov’s closed
leaf theorem [No], which disallows minimal foliations in such 3-manifolds.

There are also relative versions of Thurston’s theorems, e.g. given a manifold M with
boundary, then under suitable circumstances a plane field defined on M that is tangent to a
foliation near ∂M , is homotopic rel a neighborhood of ∂M to a completely integral plane field.
Reeb’s stability theorem precludes this holding in complete generality, for if ∂M is simply
connected, then any foliation on M with ∂M a leaf would be foliated by leaves covered by
∂M . However, if each component N of ∂M satisfies H1(N,R) 6= 0, then extension theorems
hold. Consult [F7], [F12] for exact statements. Thurston proved the following generalization
of the Reeb stability theorem.

Theorem 0.8. [F6] (a) Let F be a codimension-1 C1 transversely oriented foliation on a
compact manifold M whose (possibly empty) boundary is a union of leaves. Suppose Ln−1

is a compact leaf of F such that H1(L,R) = 0. Then every leaf of F is diffeomorphic with
Ln−1 and M fibers over S1 or [0, 1] with fiber Ln−1.
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(b) Let F be a C1 codimension-k foliation. If L is a compact leaf of F with trivial lin-
ear holonomy and H1(L,R) = 0, then L has trivial holonomy and hence L has a tubular
neighborhood which fibers over Dk with leaves as fibers.

Remark 0.9. Using hyperbolic geometry Thurston demonstrated a C0 counterexample to
(a), nevertheless he states, “It would be interesting to have a characterization of compact
leaves L for which Reeb’s [stability] conclusion holds in the C0 case.”

Remark 0.10. Haefliger [Ha1] showed that the 3-sphere does not support an analytic
codimension-1 foliation, thus Theorems 0.1, 0.2, and 0.4 are not applicable to analytic foli-
ations. Thurston notes [F12] that “His [Haefliger’s] class of counterexamples was somewhat
enlarged by Novikov [No] and Thurston [F1], but the theory of analytic foliations still has
many unanswered questions.”

We now present background to Thurston’s work on Haefliger structures and homotoping
smooth plane fields to smooth foliations. Let M by an n-dimensional manifold and F a Cr

codimension-q foliation. Let ν denote the normal bundle to F , an Rq-bundle over M . The
exponential map gives a submersion from a neighborhood of the 0-section in ν to M . Pulling
back F gives a codimension-q foliation G of ν transverse to the fibers. As the zero section
s : M → ν is transverse to G we can recover F as the intersection of s(M) with G.

A Haefliger structure [Ha2], [Ha3], [Ha4] is a Rq-bundle E over M together with a section
s : M → E and a germ near s(M) of a Cr codimension-q foliation G of E transverse to the
fibers of E. Two Haefliger structures are concordant if they cobound a Haefliger structure
on M × [0, 1]. Unlike foliations, Haefliger structures pull back under continuous maps and
may be studied with the tools of algebraic topology. Indeed, Haefliger showed that Cr

codimension-q Haefliger structures on M , up to concordance, correspond bijectively with
homotopy classes of maps from M to the classifying space BΓr

q, where Γr
q is the groupoid

of germs of Cr diffeomorphisms of Rq with a certain topology. This work was motivated
by Bott’s vanishing theorem and work of [Ph1], [Ph2], that grew out of the Smale - Hirsch
immersion theory. Using the work of Gromov [Gr] and Phillips [Ph3], Haefliger further
showed [Ha3] that if M is open, then every Haefliger structure is concordant to one arising
from a foliation. One of Thurston’s major accomplishments was to prove similar results for
closed manifolds and certain relative cases. Recall that codimension-k foliations F0 and F1

are concordant if there exists a codimension-k foliation on M × I which restricts to F0, F1

respectively on M × 0 and M × 1.

Theorem 0.11. [F7], [F12] Concordance classes of foliations on the closed manifold M
correspond 1-1 with homotopy classes of Haefliger structures H together with concordance
classes of bundle monomorphisms i : vH → T (M).

Theorem 0.12. [F7], [F12] (see also P. 347 [Ha5]) If K is a smooth p-plane field of
codimension-q ≥ 1 on the closed manifold M , then K is homotopic to a smooth completely
integrable p-plane field if and only if the map of M into BGlq classifying the normal bundle
to K can be lifted to a map into BΓr

q, where D : BΓr
q → BGlq is induced by the differential.

See [F7] and [F12] for more results in this direction and other interesting applications.
These last two theorems were subsequently proved for codimension-q ≥ 2 using wrinkled
mappings by Eliashberg and Mishachev with extensions to families of foliations [EM1], [EM2].
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Remark 0.13. Haefliger remarks, P.348 [Ha5], that despite the spectacular and profound
results of the 70’s, much remains to be understood about the homotopy type of the spaces
BΓ̄r

q, the homotopy fibers of D.

Question 0.14. (Haefliger [Ha5])
a) Is BΓ̄r

q connected for q > 1?

b) What is the first p for which πp(BΓ̄r
q) 6= 1?

Conjecture 0.15. (Thurston [F5]) The smallest k for which
Hk+p(BΓ̄∞p ;Z) 6= 0 is p+ 1.

Remark 0.16. [F5] When p = 1, then k > 1 by Mather [Ma3] and k ≤ p + 1 using a
generalized Godbillon - Vey invariant.

A central question is to understand how to distinguish different classes of foliations on a
given manifold M . The Godbillon - Vey invariant [GV] provides an invariant for smooth
foliations on 3-manifolds, defined as follows. If T (F) denotes the tangent plane field of F ,
then it is the kernal of a 1-form α. The Frobenius theorem implies that α ∧ dα = 0 so
that dα = α ∧ θ for some θ. The Godbillion - Vey form is the closed 3-form θ ∧ dθ. It is a
concordance invariant of foliations, indeed of Haefliger structures.

In [F3] Thurston cryptically states “The form θ ∧ dθ [the Godbillon - Vey class] may be
interpreted as a measure of the helical wobble of the leaves of F ...” . An interpretation,
attributed to him is as follows. The form θ can be viewed as the logarithmic derivative of
the rate at which leaves spread apart under the holonomy; it is dual to a vector field to
F in the direction of maximal contraction. As one moves transverse to the foliation the
Godbillion - Vey form measures infinitesimally the algebraic area of the swept by the vectors
under this motion. See [Pi] for more details. Thurston proves the following result using the
geodesic flow on the unit tangent bundle of hyperbolic 2-space.

Theorem 0.17. [F3] There are uncountably many noncobordant codimension-1 C∞-foliations
of S3. The Godbillon-Vey invariant induces a surjective homomorphism of π3(BΓr

1) onto R
for 2 ≤ r ≤ ∞.

In contrast to Theorem 0.4 there is Thurston’s unpublished 1971 Ph. D. thesis [F1].

Theorem 0.18. [F1] Let M3 be a circle bundle over a closed surface. Any C2-foliation of
M either has a compact leaf or can be isotoped to be transverse to the fibers.

As a corollary, using the Milnor - Wood inequality, it follows that if M is a circle bundle
over a surface S and the Euler class of the bundle is > |χ(S)|, then any C2-foliation of M
has a compact leaf, thereby giving the first closed aspherical 3-manifolds with that property.
Thurston shows that both the theorem and corollary are false for C0-foliations. Here is how
he constructs a foliation without compact leaves on any circle bundle M over a surface S of
genus ≥ 2. Start with a transversely orientable geodesic lamination λ ⊂ S without compact
leaves and only 4-prong disc complementary regions. Extend to a foliation of M by first
suspending λ in the S1 direction and then filling in the complementary regions with bundles
of saddles. Note that geodesic laminations play a central role in his future work on homeo-
morphisms of surfaces as well as geometrization. The thesis also gives a counterexample to
an assertion of Novikov that a certain partial order within Novikov components of a foliation
takes on a minimum.
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An important technical result in [F1], proved independently by Roussarie [Ro], is that an
embedded incompressible surface in a C2-taut foliation can be isotoped so that each compo-
nent is either a leaf or transverse to the foliation except for finitely many saddle tangencies.
By taut we mean a transversely orientable foliation such that every leaf intersects a closed
transversal. Roussarie and Thurston proved a version for manifolds with boundary and Rous-
sarie a version for transversely orientable foliations without generalized Reeb components.
Implicit in [Ro] and stated in [F14] is the generalization to Reebless foliations, i.e. foliations
having no Reeb components. Here, the isotoped surface may also have finitely many circle
tangencies. Using [Ca2], this technical result and its proof extend to C0-foliations. It also
holds for immersed π1-injective surfaces [Ga2].

More distinctions between C0 and C2 foliations are given in the paper [F4] with H. Rosen-
berg. Here is one.

Theorem 0.19. [F4] There exist smooth foliations F0,F2 on a closed 3-manifold such that
F0, F2 are C0-concordant but not C2-cobordant.

Thurston’s two papers with Plante are about foliations and growth rates of groups. The
paper [F2] shows that the fundamental group of a compact Riemannian manifold with a
codimension-1 Anosov flow has exponential growth. Paper [F13] shows that if the holonomy
of a leaf of a codimension-1 foliation has polynomial growth, then it is virtually nilpotent.
While the main result is true for all groups by the celebrated result of Gromov [Gr2], the
paper is full of interesting observations. For example,

Theorem 0.20. [F13] If G is a group of C2-diffeomorphisms of [0,∞) of polynomial growth,
then G is free abelian.

Thurston’s (unique) paper with his thesis advisor Morris Hirsch [F8] was motivated by a
paper by Plante [Pl] that in turn was a generalization of the Poincare - Bendixson theorem.
As an application of their main result they prove:

Theorem 0.21. [F8] If M is a compact flat manifold whose fundamental group is obtained
by taking free products and finite extensions of solvable groups, then χ(M) = 0.

This implies a special case of the so called Chern conjecture which asserts that χ(M) = 0
for all closed affine manifolds.

The unpublished 1997 ArXiv preprint, Three-manifolds, Foliations and Circles, I [F15]
introduced the notion of a manifold slithering over another and in particular that of a 3-
manifold M slithering over the circle. In that case the universal cover M̃ of M fibers over
S1 so that the deck transformations are bundle automorphisms and the fibers are unions
of leaves of F̃ , where F is a taut foliation of M . Thurston shows that F̃ has space of
leaves R, i.e. F is R-covered, and any two leaves of F̃ are at bounded Hausdorff distance,
i.e. F̃ is uniform. Furthermore he shows that if F̃ has this property then M slithers over
S1. He conjectured that R-covered foliations are uniform, but a counterexample was found
in Calegari [Ca1]. Thurston states that non Haken 3-manifolds that have such slitherings,
arising from Fenley’s R-covered Anosov foliations [Fe]. He shows that a slithered foliation
F possesses much structure analogous to that of a fibration. For example, M supports a
genuine lamination transverse to F and the ends of the leaves of F̃ organize to a single circle
on which π1(M) acts.
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The abstract of [F15] and the unfinished paper [F16] assert that the first property and an
analogue of the second holds for any taut foliation F on any closed atoroidal 3-manifold M .
In particular, Thurston proves the following.

Theorem 0.22. (Thurston) [CD] Let F be a taut foliation of an orientable 3-manifold M
with hyperbolic leaves with F̃ denoting its preimage in M̃ . Then there exists a universal
circle S1

univ for F . I.e. there exists an action of π1(M) on S1
univ with the property that for

each leaf L of F̃ , there exists a quotient map pL : S1
univ → S1

∞(L) natural with respect to the
action of π1(M) on S1

univ. (See 6.1 [CD] for the precise definition of S1
univ.)

Theorem 0.23. (Calegari - Dunfield [CD]) If M is atoroidal, then the action of π1(M) on
S1
univ is faithful.

In Spring 1997, Thurston gave several three-hour lectures on the construction of the uni-
versal circle at the Very Informal Foliations Seminar at the MSRI and most of [F16] is con-
cerned with a construction on S1

univ. Based on these lectures, Danny Calegari and Nathan
Dunfield wrote a careful account of Theorem 0.22, see §5 - §6 of [CD]. The key technical
lemma, Thurston’s leaf pocket theorem proven in §5 roughly asserts that for any leaf L of F ,
the holonomy is defined along most rays in L. (By Candel [Can], there exists a Riemannian
metric on M for which each leaf has constant negative curvature, hence ∂L̃ is naturally iden-
tified with a circle.) The proof of the leaf pocket theorem in [CD] is topological as opposed
to Thurston’s original proposed proof using various properties of Lucy Garnett’s harmonic
measures [Gar] and is extended to essential laminations. It is used to show that the funda-
mental group of many manifolds including the Weeks manifold do not act faithfully on the
circle, hence do not support a taut foliation. Earlier, Roberts, Shareshian and Stein [RSS]
found examples of closed hyperbolic 3-manifolds that do not support taut foliations.

Inspired by [F15], D. Calegari proved the following.

Theorem 0.24. (Calegari [Ca3]) A taut foliation of a closed, orientable,algebraically atoroidal
3-manifold is either the weak-stable foliation of an Anosov flow, or else there are a pair of
very full genuine laminations transverse to the foliation.

Thurston’s A norm for the homology of 3-manifolds was a 1976 preprint published 10 years
later. For a 3-manifold M with (possibly empty) boundary, this seminal paper introduced a
norm on H2(M,∂M ;R) that generalizes the notion of genus of a knot. It is non-degenerate
if M is atoroidal. The unit ball is a finite sided polyhedron and the set of homology classes
realized by fibers of a fibration over S1 correspond to a finite (possibly empty) set of open
top dimensional faces in that all the lattice points lying in rays through these faces are
representable by fibers and conversely. Thurston further proves that leaves of taut (and
more generally Reebless) foliations are homologically norm minimizing. In contrast, about
a year later Sullivan [Su] proved that leaves of a C2 taut foliation F are homologically area
minimizing. In fact F can be calibrated [HL]. Homologically area minimizing means that if
L is a leaf of F and R ⊂ L is a smooth compact subsurface, then area(R) ≤ area(S) for all
compact surfaces S with ∂S = ∂R and [S] = [R] rel ∂R. While stated for compact leaves,
the analogous subsurface property also holds for homological tautness.

Theorem 0.25. [F14] Let M be a compact orientable 3-manifold with a transversely ori-
entable Reebless foliation F transverse to ∂M . If L is a compact leaf of F , then L is norm
minimizing in its homology class as an element of H2(M,∂M).



COMMENTARY ON FOLIATIONS* 7

Theorem 0.26. (Sullivan) [Su] If F is a C2-taut foliation of the 3-manifold M, then there
exists a Riemannian metric such that every leaf is homologically area minimizing.

Thurston proved Theorem 0.25 by observing that the Euler class χ(F) of a foliation F
evaluated on a compact leaf L gives up to sign |χ(L)|. On the other hand, if F is taut and T
is an incompressible surface, then using Rousserie - Thurston general position [Ro], [F1], T
can be isotoped to be transverse to F except at saddle tangencies. Thus if T is homologous
to L, evaluating the Euler class on T via obstruction theory shows that |χ(L)| ≤ |χ(T )|.
Thurston conjectured a similar Euler class type inequality for contact structures (compare
Theorem 3.8 [ET1]) that was proved by Bennequin [Ben].

If k is a knot in R3 transverse to the contact structure τ and F is a Seifert surface for k,
then τ |F is trivial. Pushing k off itself using a non vanishing section of that bundle gives a
knot k′. Define the self-linking number sl(k) to be the linking number of k′ with k.

Theorem 0.27. (Bennequin) Let τ denote the standard contact structure on R3 and k a
knot transverse to τ . If F is an oriented Seifert surface for k, then sl(k) ≤ −χ(S).

Bennequin used this result to show that there exist non-standard contact structures on R3,
giving the first example of what are now called overtwisted contact structures. Eliashberg in-
troduced the dichotomy of tight and overtwisted contact structures [El] and proved Theorem
0.27 for null homologous knots transverse to tight contact structures in general 3-manifolds
as well as a version for null homologous Legendrian knots in tight contact structures.

To bridge the theory of foliations with contact structures in oriented 3-manifolds, Thurston
and Eliashberg [ET2] introduced the theory of positive (resp. negative) confoliations, i.e.
those having plane fields annihilated by 1-forms α, such that α∧ dα ≥ 0 (resp. α∧ dα ≤ 0).
They proved the following foundational result.

Theorem 0.28. Any C2-confoliation ψ on an oriented 3-manifold 6= S2 × S1 can be C0-
approximated by contact structures. If ψ is a foliation, then it can be approximated by both
positive and negative contact structures. Contact structures C0-close to C2-taut foliations
are symplectically fillable and hence tight.

This theorem for C0 taut foliations was independently proved by Bowden [Bo] and Kazez-
Roberts [KR].

The following converse to Theorem 0.25 was proven by Gabai.

Theorem 0.29. [Ga2] If M is a closed, orientable, irreducible, atoroidal 3-manifold and S
is a Thurston norm minimizing surface, then there exists a C∞ taut foliation on M having
S as a leaf.

See [Ga2], [Ga3] for finite depth versions as well as ones for manifolds with boundary.
Thurston’s conjecture [F14] that the norm based on embedded surfaces is equal to the norm
based on singular (i.e. mapped) surfaces was proven in [Ga1]. This led to a proof that the
Gromov norm on H2(M,∂M,R) is equal to twice the Thurston norm as well as a gener-
alization of the loop and sphere theorems to higher genus surfaces. Efforts to prove these
theorems led to Gabai’s theory of sutured manifold hierarchies [Ga2], [Ga1] and a proof
of a strong form of the Property R conjecture, that for a knot in the 3-sphere a minimal
genus surface extends to a Thurston norm minimizing surface under 0-frame surgery. A
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counterexample to Conjecture 3 of [F14] is given in [Ya] and [GY], though it follows from
[Ga2] that there is a positive solution for vertices of the unit ball of the dual Thurston norm.
See Theorem 1.4 [GY].

The Thurston norm and its relation to fibrations and more generally taut foliations has
become fundamental to knot theory, low dimensional topology, theory of contact structures,
foliation and lamination theory, geometric group theory, symplectic topology, dynamical
systems, as well as gauge theory and Heegaard Floer homology and their variants.
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We thank an anonymous reader for his/her ideas on introducing Haefliger structures, in-
sights into Thurston’s cryptic interpretation of the Godbillon - Vey invariant as well as
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