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Abstract
In this note, we answer a combinatorial question that is inspired by cusp geometry

of hyperbolic 3-manifolds. A table-top necklace is a collection of sequentially

tangent beads (i.e. spheres) with disjoint interiors lying on a flat table (i.e. a plane)

such that each bead is of diameter at most one and is tangent to the table. We

analyze the possible configurations of a necklace with at most 8 beads linking

around two other spheres whose diameter is exactly 1. We show that all the beads

are forced to have diameter one, the two linked spheres are tangent, and that each

bead must be tangent to at least one of the two linked spheres. In fact, there is a

1-parameter family of distinct configurations.

Keywords Packing � Spheres � Horoball � Hyperbolic

Mathematics Subject Classification 52C17 � 57K32

1 Introduction

Start with a disc D of radius r in the Euclidean plane. What is the maximal number

of discs of radius r with disjoint interiors that each kiss D? We say two discs kiss if
they intersect on their boundaries but not in their interiors. The answer is 6, as can

be seen by noting that the visual angle (as measured from the center of D) of a
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kissing disc is 60�. Further, all such configurations are the same up to rotation about

D, and the centers of the 6 discs are the vertices of a regular hexagon.

This leads to the classical kissing problem: what is the maximal number of equal

radius spheres that simultaneously kiss a base sphere of the same radius? This

question was the subject of a correspondence between Isaac Newton and James

Gregory in the 17th century. Newton thought the answer was 12 but Gregory

wondered whether 13 might work. Newton was correct, with the first correct proof

given by Schütte and van der Waerden in 1953 [8]. One could also ask about how

many essentially distinct 12-kissings there are. It turns out that there are infinitely

many that are fundamentally different and then one could ask for a description of

this parameter space. Similarly, this question is of interest in higher dimensions.

Good references for this material are the classic text ‘‘Sphere Packings, Lattices and

Groups’’ by Conway and Sloane (Chapter 2) [1] and the semi-expository paper ‘‘The

Twelve Spheres Problem’’ by Kusner, Kusner, Lagarias, and Shlosman [4].

In the course of our work on low-volume hyperbolic 3-manifolds [3], we faced a

different generalization of the kissing problem. Here, we came upon a cycle (or

necklace) of kissing spheres (or beads) of diameter at most one lying on a flat table.

Many questions about the topology of such necklaces are studied by Maehara in [5].

Related results can also be found in the work of Maehara and Oshiro in [6] and

Ramı́rez Alfonsı́n and Rasskin in [7]. Such results have interesting applications, for

example in [3], the authors make use of existence and configurations of short

necklaces to prove strong theorems about exceptional Dehn fillings and volumes of

hyperbolic 3-manifolds. Here, we focus on a special linking necklace configuration

that answers a kissing problem for such table-top beads, also known as horoballs in

hyperbolic geometry.

Suppose a necklace of � 8 such beads winds around beads C1 and C2, also on the

table, with disjoint interiors and of height (i.e. diameter) exactly one. As a

consequence of the Two-Eyes Lemma (see below), we are able to prove that C1 and

C2 must kiss, that each bead must kiss C1 or C2, and that each necklace bead must

be of height one. An example of this is obtained by taking a hexagonal packing of

height-one spheres, labeling two abutters as C1 and C2, and then observing the cycle

of 8 spheres encircling them. In fact, there is a 1-parameter family of essentially

different solutions that is gotten by sliding one sphere along C1 (or C2) and then all

other sphere positions are forced. Further, these are the only possible solutions. See

Figs. 1 and 2. We note that when all the beads are assumed to be of height one, our

result reduces to a planar problem that is quite easy to address. Additionally, in the

context of encircling just one bead, the answer is well-known and arises uniquely

from the hexagonal packing.

We are naturally led to the following question, which we simply pose, but do not

address. Given two abutting spheres of radius r in R3, what is the kissing number for

these two spheres? That is, what is the maximal number of (non-overlapping) radius

r spheres that each kiss either of the two abutting spheres?
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2 Set-Up and Statement of Main Proposition

Let H3 ¼ fðx; y; zÞ 2 R3 : z[ 0g denote the upper half-space of R3. Throughout

this note, a bead will be a ball in H3 tangent to the boundary plane z ¼ 0 and of

diameter at most 1. We call a bead full-sized if it has diameter exactly 1. We will

often refer to the diameter as height. Let p : H3 ! R2 be the orthogonal projection

onto the plane z ¼ 0. The center of a bead B will be the Euclidean center of the disk

pðBÞ in the plane.

Definition 1 A k-necklace g ¼ N1 [ � � � [ Nk is a cyclicly ordered set of k beads

with disjoint interiors such that one is tangent to the next. In what follows indices

for a k-necklace are always modulo k. The number k is called the necklace or bead
number of g.

Sequentially connecting the centers of beads in a necklace g by straight line

segments gives a piecewise linear loop Lg in the plane. Given a full-sized bead C,

we say that a necklace g winds around, encircles, or links with C if the winding

number of Lg around the center of C is nonzero. The main result of this note

answers a question about how necklaces can link with two beads at the same time.

See Fig. 3.

Fig. 1 Hexagonal configuration

Fig. 2 Non-hexagonal
configuration
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Proposition 1 If C1 and C2 are full-sized beads with disjoint interiors then the
minimum bead number of a necklace g with less-than-or-equal-to full-sized beads
encircling both C1 and C2 is 8. If the bead number is 8, then all beads in g must be
full-sized. Further, all 8-necklaces arise by taking N1 tangent to C1 or C2 and then
placing the remaining beads cyclically, making sure that each Ni abuts C1 and/or
C2. See Figs. 1 and 2.

3 Motivation

One motivation from this question arises from the geometry of orientable, non-

compact, finite-volume hyperbolic 3-manifolds, see [9] for a reference. Such

manifolds include large families of knot and link complements on S3. Geomet-

rically, these manifolds arise as quotients of hyperbolic 3-space H3 by a lattice C in

PSL ð2;CÞ ffi Isom þðH3Þ acting by isometries. Here, our upper-half space H3 is

equipped with the hyperbolic metric. The ends of these manifolds always have a

neighborhood homeomorphic to T2 � ð0; 1Þ and are called cusps. Every cusp

contains an embedded neighborhood whose lift in the universal cover H3 is a

collections of disjoint beads tangent to the boundary of H3, called horoballs. If one
takes a maximally embedded neighborhood, these beads become tangent and form

necklaces. Arrangements and linking of such necklaces play a key role in

understanding low-complexity hyperbolic 3-manifolds. For example, in [3] the

authors are able to show that 7-necklaces that arise in this way are never knotted and

never link each other, allowing them to classify large families of hyperbolic 3-

manifolds. For 8-necklaces, it is unclear if linking can happen in this context. A

subtle point is that only tangencies in a fixed C-orbit are considered valid when

looking at such necklaces. Experimentally, linking of one bead in this setting

requires a 9-necklace, while linking two beads can be realized by 12-necklaces, see

Fig. 4. In this note, we classify, without restricting to the context of hyperbolic 3-

manifolds, all configuration of 8-necklaces linking two beads.

4 The Two-Eyes Lemma

Since we will be working with beads lying on a table, we will need the following

useful observation that is easy to derive with basic Euclidean geometry:

Fig. 3 A side-view sketch of a
bead necklace
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Lemma 1 Let B1;B2 be two beads with disjoint interiors, centers b1; b2 and of

heights h1; h2. Then jb1 � b2j2 � h1h2 with equality if and only if B1 and B2 are
tangent.

A direct corollary is a statement about visual angles.

Corollary 1 (Visual Angle) Let C be a full-sized bead and let B be a bead tangent to
C, then the visual angle of pðBÞ from center(C) is � p=3 with equality if and only if
B is full-sized.

We now turn to the Two-Eyes Lemma, which is depicted in Figs. 5, 6, 7 and 8.

Lemma 2 (Two-Eyes Lemma) Let C1 and C2 be full-sized beads with disjoint
interiors. Let B1 and B2 be tangent beads with heights h1 � 1 and h2 � 1,

respectively, with interiors disjoint from C1 [ C2. Let L be the line through
centerðC1Þ and centerðC2Þ and let v1 and v2 be lines orthogonal to L passing

Fig. 4 A (red) 12-necklace
linking two beads in the top-
view of the cusp neighborhood

of the 842-link compliment in S3.

Image made using SnapPy [2]

B1
B2

C1

C2

β
α

P2P1

L

V

v1 v2

Fig. 5 aþ b�p=3
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B1 B2

C1 C2

L

v1 v2Fig. 6 a ¼ p=3; b ¼ 0

B2B1

C1 C2

L

v1 v2Fig. 7 a ¼ 0;b ¼ p=3

B2B1

C1 C2

L

v1 v2

Fig. 8 0\a;b\p=3; aþ b ¼ p=3
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through centerðC1Þ and centerðC2Þ, respectively. Let V1 and V2 be the planes in H3

with boundaries containing v1 and v2 and let V be the closure of the region bounded

by V1 [ V2 inH
3. Suppose that for each i;Bi \ Vi 6¼ ;. Let Pi denote the line tangent

to pðBiÞ through centerðCiÞ such that pðB1 [ B2Þ lies to one side. Finally let a (resp.
b) be the acute angle between Pi and vi. Then,

1. aþ b� p=3
2. If aþ b ¼ p=3, then

(a) C1 is tangent to C2

(b) B1 and B2 are full-sized

(c) for i ¼ 1; 2 we have that Bi is tangent to Ci and the line J through center

ðB1Þ and center ðB2Þ is parallel to L.

Proof To start with, we can assume that L is parallel to the x-axis. The proof

involves a series of steps whereby the positions of B1;B2;C1;C2 are repeatedly

improved. The reader should note that any improvement strictly increases aþ b. In
the end aþ b ¼ p=3 and the various beads satisfy the equality conclusions. We

repeatedly use the fact that an operation that moves center (B2) infinitesimally closer

to P2 is b increasing with the analogous fact holding for a.
Let

b ¼jcenterðB1Þ � centerðB2Þj;
c ¼jcenterðC1Þ � centerðC2Þj; and

dij ¼jcenterðBiÞ � centerðCjÞj for i; j 2 f1; 2g:

We can assume that centerðC1Þ ¼ ð0; 0Þ; centerðC2Þ ¼ ðc; 0Þ; centerðB1Þ ¼ ðx1; y1Þ
and centerðB2Þ ¼ ðx2; y2Þ. Note that c� 1, �h1=2� x1 � h1=2 and

�h2=2� x2 � c� h2=2. By Lemma 1, we also have that b ¼
ffiffiffiffiffiffiffiffiffi

h1h2
p

and dij �
ffiffiffiffi

hi
p

,

with equality if and only if Bi is tangent to Cj.

Step 1. At the cost of possibly increasing aþ b we can assume that either B1 is

tangent to C1 or B2 is tangent to C2.

Proof If both B1 \ C1 ¼ ; and B2 \ C2 ¼ ;, then we can translate B1 [ B2 in the

ð0;�1Þ direction until a first tangency occurs. Note that both a and b increase. If

B1 \ C2 6¼ ; but B1 \ C1 ¼ ;, then we can obtain a contradiction as follows: we

have ðx1 � cÞ2 þ y21 ¼ d212 ¼ h1 and x21 þ y21 ¼ d211 [ h1. However, since x1 � h1=2,
we obtain 1� c\h1 � 1, a contradiction. A similar fact holds for B2, thus the

tangency is of the type claimed. h

Step 2. At the cost of possibly increasing aþ b we can additionally assume that

either C1 \ C2 6¼ ; or each of B1 and B2 are respectively tangent to C1 and C2.
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Proof It suffices to consider the case where B1 is tangent to C1. If C2 is disjoint

from B2, then translate C2 in the ð�1; 0Þ direction until a first tangency occurs. Note

that b increases. If C2 becomes tangent to B1 first, then by the computation in Step

1, c ¼ 1 and C2 is also tangent to C1. Lastly, we observe that B2 \ V2 6¼ ; remains

true as we translate by computation: if �h2=2� x2 � c� h2=2 fails as we decrease

c, we have that x2 [ cþ h2=2. But x2 � x1 þ b ¼ x1þ
ffiffiffiffiffiffiffiffiffi

h1h2
p

� h1=2þ ðh1 þ h2Þ=2,
so we obtain 1� c\h1 � 1, a contradiction. h

Step 3. At the cost of possibly increasing aþ b we can further assume that for

each i;Bi \ Ci 6¼ ;.

Proof It suffices to consider the case that B1 \ C1 6¼ ; and B2 \ C2 ¼ ;. Let J
denote the ray from center ðB1Þ through center ðB2Þ. First assume that J \ P2 6¼ ;.
For each t� 0 we translate B2 away from B1 by moving its center Euclidean

distance t along J away from center ðB2Þ to obtain B0
2ðtÞ. We then expand B0

2ðtÞ
keeping its center fixed until it first hits B1 to obtain B2ðtÞ. Let B2(new) be the first

B2ðtÞ that is either full-sized or satisfies B2ðtÞ \ C2 6¼ ;. Note that if B2 (new) 6¼ B2,

then b increases. We now abuse notation by denoting B2 (new) by B2. Thus, if

B2 \ C2 ¼ ;, then B2 is full-sized and by Step 2, C1 \ C2 6¼ ;.
If J \ P2 ¼ ;, then apply a clockwise rotation about the line between center(B1)

and 1 until either B2 \ C2 6¼ ; or J \ P2 6¼ ;. This operation is strictly b
increasing. If now J \ P2 6¼ ;, then argue as in the first paragraph to conclude that

either Step 3 holds or B2 is full sized and C1 \ C2 6¼ ;.
We have now reduced to the case that B2 is full-sized, C1 \ C2 6¼ ; and

B2 \ C2 ¼ ;. Observe that y2 � y1. This is immediate if B1 is full-sized. In general,

center ðB1Þ lies on the line perpendicular to the midpoint of the segment between

center ðC1Þ and center ðB2Þ since B1 is tangent to the full-sized beads C1 and B2.

Since x1 � 1=2� x2, the maximal y1 is obtained when B1 is full-sized and hence

y2 � y1. Since P2 has non-negative slope, a clockwise rotation about c both

transforms B2 to a bead tangent to C2 and increases b. h

We can now conclude the proof of the Two-Eyes Lemma. This argument is a

simplified version suggested by the referee in place of one using hyperbolic

geometry.

Step 4. Either aþ b\p=3 or aþ b ¼ p=3 and the quadrilateral with corners

b1; b2; c1, and c2 must be a rhombus (Fig. 9).

Proof Following Fig. 10, since B1;B2 are tangent, at most full-sized, and tangent to

C1;C2, respectively, by Step 3, we have the following inequalities on the lengths of

the edges:

jb1b2j � jb1c1j; jb1b2j � jb2c2j and jb1c1j � jc1c2j; jb2c2j � jc1c2j:

With the angles at the vertices wbi
and wci

, the inequalities above tell us that

cc1 � cb2 and cc2 � cb1 . Additionally, since jb1b2j � jc1c2j, it follows that

cc1 þ cc2 � p. Now, since the angle between Pi and the ray cibi is at most p=6 by the

visual angle restriction on beads, we see that aþ b� p=3. Equality would force

cb1 ¼ cc2 and cb2 ¼ cc1 , meaning that our quadrilateral is a rhombus. In particular,
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all the edges are of equal length. Since jc1c2j � 1 and jb1b2j � 1, it follows that all

edges have length 1 and all beads are full size. h

This completes the proof of the Two-Eyes Lemma. h

5 Proof of Proposition 1

The proof of the main proposition is now just a counting argument.

Proof of Proposition 1 As in the proof of the Two-Eyes Lemma, consider the planes

V1; and V2. Since the necklace g winds around C1 and C2, it follows that V1 and V2

each intersect at least two beads of g. For i ¼ 1; 2, let BU
i ;B

L
i be these beads

intersecting Vi with centers in the upper and lower half-planes, respectively. These

b1
b2

c1 c2

P1 P2

γb1 γb2

γc1 γc2

Fig. 9 Quadrilateral in the proof
of Lemma 2

α

α′

β

β′

φ1
φ2

δ1

δ2

BU
1 BU

2

BL
1 BL

2

Fig. 10 Arrangement of 8 beads and visual angles. V is the region between the dotted planes
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four beads are distinct. Further, we can assume that BU
2 ;B

L
2 have the largest x-

coordinates and BU
1 ;B

L
1 are the smallest x-coordinates amongst all choices in g

satisfying the non-empty intersection conditions. Since all beads are at most full-

sized, visual angle around centerðCiÞ tells us that, away from the critical case where

both BU
i and BL

i are tangent to Vi, we need at least two more beads to connect BL
1 to

BU
1 and at least two more to connect BU

2 to BL
2 in the clockwise direction along g.

Away from this critical case, the necklace must have at least 8 beads.

Assume we are in the critical case where BU
i and BL

i are tangent to Vi for some i.
Without loss of generality, we can take i ¼ 1. By the minimality of the x-
coordinates and the fact that necklace beads are sequently tangent, we can assume

that BU
1 and BL

1 lie entirely to the left of V1, aside from the points of tangency. The

region V, between V1 and V2, will then contain at least two more beads, but these

cannot be BU
2 ;B

L
2 by the maximality of the x-coordinate and because all the beads

are at most full-sized. Therefore, we need at least 1 bead to join BL
1 to BU

1 , 2 more

beads in V, and at least 1 more bead to join BU
2 to BL

2, giving us a total of 8.

We turn to the case where g has exactly 8 beads. It remains to show that all are

full sized and the configuration is obtained by sliding the hexagonal example. For

this, we will use the Two-Eyes Lemma and visual angle arguments. Assume that in

each of the pairs fBU
1 ;B

U
2 g and fBL

2 ;B
L
1g at least one of the beads is not tangent to

the associated Vi. In this setting, our counting argument in the first paragraph gives

that the beads BU
1 and BU

2 are tangent. Similarly for BL
1 and B

L
2. Let a; b be the angles

from the Two-Eyes Lemma applied to the pair fBU
1 ;B

U
2 g and a0; b0 be the angles for

the pair fBL
2 ;B

L
1g. It follows that aþ b� p=3 and a0 þ b0 � p=3. For each i, we have

exactly two beads in g connecting BL
i to B

U
i with centers in the complement of V. Let

di;ui be the visual angles from centerðCiÞ of these beads. Then, cutting out V, we
have that the sum of the angles satisfies

2p�ðbþ aÞ þ d1 þ u1 þ ðb0 þ a0Þ þ d2 þ u2 �
p
3
þ p

3
þ p

3
þ p

3
þ p

3
þ p

3
¼ 2p:

See Fig. 10. Note that this figure is slightly simplified in that a pair of tangents to a

bead shadow can overlap with neighboring pairs. It follows that di ¼ ui ¼ p=3 and

aþ b ¼ a0 þ b0 ¼ p=3. Thus, all beads in g are full-sized and tangent to C1 or C2.

Hence, all the beads in g are tangent to Ci are part of a hexagonal packing around Ci.

This allows us to compute a ¼ p� d1 � u1 � b0 ¼ p=3� b0 and, similarly,

b ¼ p=3� a0. Since aþ b ¼ p=3 and a0 þ b0 ¼ p=3, we obtain a one-parameter

family of beads parametrized by, say, a. h

Without loss of generality, the remaining case is where BU
1 is tangent to V1 and

BU
2 is tangent to V2 (with the x coordinate max/min condition above). There is then

at least one bead from BU
1 to BU

2 in the clockwise direction along g. Let D1;1;D1;2 be

the next two beads in the counter-clockwise direction from BU
1 and D2;1;D2;2 the

next two beads in the clockwise direction from BU
2 along g. If the visual angle of at

least one of Di;j from centerðCiÞ is \p=3, then Di;2 6¼ BL
i . Counting the beads tells

123

   29 Page 10 of 11 Graphs and Combinatorics           (2022) 38:29 



us that at least one of BL
i has to be tangent to Vi. In fact, both must. Indeed, if BL

2 is

tangent to V2 then it cannot be tangent to BL
1 and one more bead is required in the

clockwise direction. Similarly, if BL
1 is tangent to V1. Thus, Di;2 ¼ BL

i for i ¼ 1; 2
and Di;j have visual angle p=3, which means they are full-sized and tangent to Ci.

The beads that connect BU
1 to BU

2 and BU
2 to BU

1 in the clockwise direction must also

be full-sized and tangent to both C1 and C2 to bridge the ‘‘width’’ of V. Thus, we are
in the configuration above where a ¼ p=3.

Acknowledgements The first author was partially supported by National Science Foundation Grants
DMS-1006553, DMS-1607374, and DMS-2003892. The second author was partially supported by
National Science Foundation Grant DMS-1308642. The third author was partially supported as a
Princeton VSRC with DMS-1006553. We thank the referee for a careful reading and suggested
improvements, especially for the simplification of the argument in Step 4 of Lemma 2, which originally
relied on arguments from hyperbolic geometry.

Funding The first author was partially supported by National Science Foundation Grants DMS-1006553,
DMS-1607374, and DMS-2003892. The second author was partially supported by National Science
Foundation Grant DMS-1308642. The third author was partially supported as a Princeton VSRC with
DMS-1006553.

Availability of Data and Material Note relevant.

Code Availability Note relevant.

Declarations

Conflict of interest None.

References

1. Conway, J., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer Science and Business

Media (1999)

2. Culler, M., Dunfield, N.M., Goerner, M., Weeks, J.R.: SnapPy, a computer program for studying the

geometry and topology of 3-manifolds. Available at http://snappy.computop.org (2021)

3. Gabai, D., Haraway, R., Meyerhoff, R., Thurston, N., Yarmola, A.: Hyperbolic 3-manifolds of low

cusp volume (2021). arXiv:2109.14570

4. Kusner, R., Kusner, W., Lagarias, J.C., Shlosman, S.: Configuration Spaces of Equal Spheres Touching

a Given Sphere: The Twelve Spheres Problem, p. 53. arXiv.org (2016)

5. Maehara, H.: On configurations of solid balls in 3-space: chromatic numbers and knotted cycles.

Graph. Comb. 23(1), 307–320 (2007). https://doi.org/10.1007/s00373-007-0702-7

6. Maehara, H., Oshiro, A.: On knotted necklaces of pearls. Eur. J. Comb. 20(5), 411–420 (1999). https://
doi.org/10.1006/eujc.1998.0279

7. Ramı́rez Alfonsı́n, J.L., Rasskin, I.: Ball packings for links. Eur. J. Comb. 96, 103351 (2021). https://

doi.org/10.1016/j.ejc.2021.103351
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