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» Early ideas of Maslov and Egorov
» Theory of Hormander and Duistermaat-Hormander for real phases

» Complex phases of Melin-Sjostrand

Folland-Stein’s fundamental solution for 8
Greiner-Stein’s LP estimates for the & Neumann problem
Rothschild-Stein’s fundamental solution for Zszl Xj2 + iXo

vV VvYyy

Fefferman’s expansion for the Bergman kernel, subsequently simplified by
Kerzman-Stein, and refined by Boutet de Monvel-Sjostrand.



The model case is the Siegel upper half-space U = {(z,zp11 € C™; Imz,11 > |2[%},
which can be identified with H, X Ry via (z, zp+1) <> (¢, p), ¢ = (2,t), t = Rezpy1,
p=1Imz, 1 — |z|?. Here H, is the Heisenberg group

Hp={C" x R;(z,t) - (Z/,t') = (z+ 2/, t + t' + 2Im zZ')}.

The 8-Neumann problem is the following boundary value problem

Ou=f on H, xRy, (8,+id)u=0 when p=0.
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> K(¢,p) is a mixture of elliptic and parabolic homogeneities
> K€ C®(U\D0), but K has hidden singularities along t = p = 0.



A distribution of hypersurfaces

> Qo ={(z,0);z€ C} C H,n
> Q. =¢-Q



A distribution of hypersurfaces

> QQZ{(Z,O);ZEC}CHn
> QCZC'QO

Propagation of hidden singularities along €2

e = [ [T{[ Koz = w0+ WTef 1) don (1) | s

where ¢ = (z,t), n = (w, s), and K¢ ,(w, p) is a Calderén-Zygmund kernel on Q¢,
with norm O((s® + p2)™1), Tsv is a translation of v by s.

Singular Radon transforms

RUQ = [ K(Gmv(ndon, ()

Q2



> QQZ{(Z,O);ZEC}CHn
> Q<:§~QO

D)= [ [ { /Q< Keun(z = w, p+ p) Tef (1, 1) do, (Ti)}dsdu,

where ¢ = (z,t), n = (w, s), and K¢ ,(w, p) is a Calderén-Zygmund kernel on Q,
with norm O((s® + p2)™1), Tsv is a translation of v by s.

R(C) = /Q K(¢,)v(n)doa, ()
q

» Group Fourier transform proof by Geller-Stein
» Analogue of the Hilbert transforms along curves introduced by
Nagel-Riviere-Wainger

> WF(R) = N*(C) U A: works of Guillemin, and especially Greenleaf-Uhlmann on
Gelfand's problem, namely to identify family of curves that suffice to invert the
X-ray transform along curves.

» Most general version of LP boundedness by Christ-Nagel-Stein-Wainger



Generalized Radon transforms

Let X, Y be smooth manifolds, and C C X x Y a smooth submanifold. Then a Dirac
measure d¢(x, y) supported on C defines a generalized Radon transform,

Rf(x) = /C dc(x,y)f(y)

with G = {y € Y;(x,y) € C}.
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Generalized Radon transforms

Let X, Y be smooth manifolds, and C C X X Y a smooth submanifold. Then a Dirac
measure d¢(x, y) supported on C defines a generalized Radon transform,

RF(x) = . Sc(x,y)f(y)

with G, = {y € Y;(x,y) € C}.

> If C ={pi1(x,y) =+ = @u(x,y) = 0} locally, then
delx,y) = [ & Zha et v, 6)d,

so R is a Fourier integral operator with Lagrangian
A= N*(C) C T*(X) x T*(Y).

> General theory of Hérmander: if A is a local graph over T*(X) (equivalently,
over T*(Y)), then R is smoothing of order (n — ¢)/2 = dim C,/2.

» The local graph condition can be written down explicitly as, V0 € R¢\ 0,

0 dypj
det g ) 0.
( dx ik d)%y an:1 Omem(x,y) 7

> In general, R is smoothing of order %(dim Cc — dim Ker dmx ), with wx the
projection mx : T*(X x Y) — T*(X).



Consider the case X = Y = R", and C is the translate to x of a submanifold V
passing through the origin. Then the order of smoothing of R is the rate of decay of
the Fourier transform of the Dirac measure on V,

18v(€) < Cle=°
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» When V is a hypersurface, the graph condition holds when the Gaussian
curvature of V is not 0. The Radon transform R is then smoothing of order
6=(n—-1)/2.

> When V is a curve, the graph condition cannot hold if dim X > 3. Hérmander's
theorem shows only that R is smoothing of order § = 0.

» When V is a curve with torsion, the van der Corput lemma shows that R is
smoothing of order § = 1/n.



Consider the case X = Y = R", and C is the translate to x of a submanifold V
passing through the origin. Then the order of smoothing of R is the rate of decay of
the Fourier transform of the Dirac measure on V,

18v(€) < Cle=°

» When V is a hypersurface, the graph condition holds when the Gaussian
curvature of V is not 0. The Radon transform R is then smoothing of order
6=(n—-1)/2.

> When V is a curve, the graph condition cannot hold if dim X > 3. Hérmander's
theorem shows only that R is smoothing of order § = 0.

» When V is a curve with torsion, the van der Corput lemma shows that R is
smoothing of order § = 1/n.

» Higher codimension lead to higher order degeneracies, which are beyond the
scope of the standard method of stationary phase, and the corresponding
conditions on second order derivatives.
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» When are §,, and C, semicontinuous (“stable”) as w varies ?



Let RY 5 t — x(t) € R" be a local parametrization of V. Then
Sv(€) = /e"Efﬂ éjxj(t)x(t)dt

Setting £ = Aw, A\ = |¢], w € S,

Bu(e) = / 0wy (t)at,

where &, (t) = Zle w;jx;j(t), we can formulate the following

> Given ®(t), what is the decay rate C,|\| =% of the above oscillatory integral
with phase &, (t) ?

» When are §,, and C, semicontinuous (“stable”) as w varies ?

» Given n =dim X, d = dim V, what are the best possible orders §(n, d) of
smoothing ? (e.g., (n,n—1) = (n—1)/2, §(n,1) =1/n)

» What are the geometric conditions on V which guarantee this best possible
order of smoothing ?



Intuitively, smoothing should require the map V X --- X V — x; +--- 4+ xy € R" to be
locally surjective for N large enough. This implies that no direction ¢ € R" is
orthogonal to V at N points. This suggests a measure u of (higher-order) curvature
of V is the maximum number of points admitting a given direction among its normals.
Set then, for f € C¥, and a an isolated critical point of f,

w = dim A(a)/Z[o1f,- -+, O4f]

with A(a) the space of germs of analytic functions at a, and Z[o1f,- - , 04f] the
ideal generated by the partial derivatives of f at a. We say that V has non-vanishing
p-curvature if Yw € R\ 0, the phase ®,,(t) has multiplicity at most p at any critical
point. (Note that © = 1 for a hypersurface and p = n for a curve correspond
respectively to non-vanishing Gaussian curvature and non-vanishing torsion).
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1/n for curves with torsion.

» For general d, p provides a non-linear interpolation between these extreme cases.
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of V is the maximum number of points admitting a given direction among its normals.
Set then, for f € C¥, and a an isolated critical point of f,

w = dim A(a)/Z[o1f,- -+, O4f]
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respectively to non-vanishing Gaussian curvature and non-vanishing torsion).

» A naive conjecture for the optimal order of smoothing for Radon transforms
defined by d-dimensional submanifolds with non-vanishing curvature is

(0.1)

» This reduces to (n — 1)/2 for hypersurfaces with non-vanishing curvature, and
1/n for curves with torsion.

» For general d, p provides a non-linear interpolation between these extreme cases.

» The case d = 2 can be proved (P.-Stein, with a loss of € derivatives, € arbitrarily
small), using results of Varchenko, Karpushkin, and Kushnirenko.
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The van der Corput lemma
Let ®(t) be a smooth real-valued function on [a, b]. If [®()(t)| > 1 then
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if k> 2, or k =1 and ®’(t) is monotone. Here Cy is a constant depending only on k.
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if k> 2, or k =1 and ®’(t) is monotone. Here Cy is a constant depending only on k.

> Let ®(t) be a real-valued function on RY with 0 as a critical point. The Newton
diagram of ® is the convex hull of the upper quadrants in RY with vertices at
those k = (ki,--- , kg) with the monomial tX appearing in the Taylor expansion
of ®. The Newton distance « is defined by the condition that (a1, --- ,a™1)
be the intersection of the line k; = --- = kg with a face of the Newton diagram.

» For each face v of the Newton diagram, let P, be the polynomial in the Taylor
expansion of ® with monomials in the face . Assume dP~ # 0 in R\ 0. Then

‘/e;m(t)x(t)dt‘ < CIA"*(log |A])”.
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Let ®(t) be a smooth real-valued function on [a, b]. If [®()(t)| > 1 then
b . .
| / e**dt| < G |\ 7%
a

if k> 2, or k =1 and ®’(t) is monotone. Here Cy is a constant depending only on k.

> Let ®(t) be a real-valued function on RY with 0 as a critical point. The Newton
diagram of ® is the convex hull of the upper quadrants in RY with vertices at
those k = (ki,--- , kg) with the monomial tX appearing in the Taylor expansion
of ®. The Newton distance « is defined by the condition that (a1, --- ,a™1)
be the intersection of the line k; = --- = kg with a face of the Newton diagram.

» For each face v of the Newton diagram, let P, be the polynomial in the Taylor
expansion of ® with monomials in the face . Assume dP~ # 0 in R\ 0. Then

‘/e;m(t)x(t)dt‘ < CIA"*(log |A])”.

Let ® be a C“ function with f|t|<r |®(t)| =% < oo for some § > 0, d = 2. Then there
exists 0 < s < r and € > 0 so that for all C¥ W with [|® —W||cos<, cec2) <€

/ W% < oo
[t|<s
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coordinate dependent. The equality
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can only hold generically. It is very useful to have criteria for when it holds.
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» In dimension d = 2, roots rj(x) of polynomials ®(x,y) are given by Puiseux
series. Define the “clustering =" to be the number of elements in the largest
cluster of roots, where a cluster of roots is an equivalence class of roots, with
rj ~ ry if |r; — rg| - |rj| =1 — 0. The criterion for adapted coordinate systems is
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and such coordinate systems always exist (P.-Stein-Sturm; also simpler and
self-contained proof of the stability theorem of Karpushkin).
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The decay rate § is reparametrization invariant, while the Newton distance « is
coordinate dependent. The equality

0=«

can only hold generically. It is very useful to have criteria for when it holds.
In dimension d = 2, roots rj(x) of polynomials ®(x, y) are given by Puiseux
series. Define the “clustering =" to be the number of elements in the largest
cluster of roots, where a cluster of roots is an equivalence class of roots, with
rj ~ ry if |r; — rg| - |rj| =1 — 0. The criterion for adapted coordinate systems is

Egofl

and such coordinate systems always exist (P.-Stein-Sturm; also simpler and
self-contained proof of the stability theorem of Karpushkin).

Extensions to C°° phases and other constructions have been given by
Greenblatt, lkromov-Miiller, Ikromov-Kempe-Miiller, and others.

In general dimension d, for a given non-constant C“ function ®, there exists a
finite collection C of coordinate transformations, so that if a(F) denotes the
Newton distance in the coordinate system F € F, we have

o= il’lff:ec a(F)

The construction of the class C is actually algorithmic.

Criteria for whether a specific coordinate system in C is adapted can be
formulated in terms of projections onto diagrams in 2 variables, and using the
2-dimensional criteria formulated above.



Estimates for Sublevel Sets

It is not difficult to see that the decay rate of oscillatory integrals with phase ® is
essentially the same as the growth rate of the volume of its level sets

I{t € B;|®(t)] < M} < CM°

Stable estimates for oscillatory integrals correspond to volume estimates with bounds
C uniform in ®. In fact, certain even stronger bounds are known, which depend only
on lower bounds for certain derivatives of ®.
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Estimates for Sublevel Sets

It is not difficult to see that the decay rate of oscillatory integrals with phase ¢ is
essentially the same as the growth rate of the volume of its level sets

I{t € B;|®(t)] < M} < CM°

Stable estimates for oscillatory integrals correspond to volume estimates with bounds
C uniform in ®. In fact, certain even stronger bounds are known, which depend only
on lower bounds for certain derivatives of ®.

For any multi-index k, there exists 6 > 0 and C, depending only on k and d, so that
the above estimate holds, for any function ¢ satisfying the lower bound

|ok®| >1 on B.

For any given set B, ... BK) e N9 \ 0, define the multilinear operator

Wi(f, - fa) = filxa) - falxg) da - - dxg

/\aﬁm¢\>1, 1<j<K
Assume that @ is a polynomial of degree m. Then there exists a constant C
depending only 8, ...  g(K) ¢ N9 \ 0, so that

d
1 1
< et d—2 - -
Wl < M3 og? 2+ ) Tl e,
i=

where « is the Newton distance for the diagram with vertices at BU), 1 <j<K.



» Define inductively the classes L£*'P of operators by
£1:0,-,0) consists of the identity;
L"P consists of operators of the form

By LL® - By Lo
Lo = det : : :
B, L1 - By Lnd

Here L, € LrPPP, k =K1+ -+ Kn, p=p1+---+pp+(1,---,1,0,---,0),
the 1 occurring at ip.

> If ® € C¥(B), and for any closed set D C B, there exists a constant C so that

_a I S
{t € D; |®(t)| < M}| < € MTPTI=4 (inf e p| L) TPTH—=

For Pfaffian functions ®, C depends only on d, L, and the Pfaffian type of ®.

» The proof makes use of works of Khovanskii and Gabrielov.
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» Lagrangians with two-sided Whitney folds: smoothing with loss of % derivatives
(Melrose-Taylor)

» Lagrangians with one-sided Whitney fold: smoothing with loss of % derivatives
(Greenleaf-Uhlmann)

» Lagrangians with two-sided cusps: loss of % (Comech-Cuccagna,
Greenleaf-Seeger)

» Radon transforms and finite-type conditions in the plane: Seeger
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» (P.-Stein) Let ®(x, y) be a real-analytic phase function in 2 dimensions. Then
the oscillatory integral operator T, defined by

T (x) :/em’(x’y)x(x,y)f(y)dy
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for x € C§°(R?) with sufficiently small support near 0, is bounded on L?(R)
with norm
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where ¢ is the reduced Newton distance of ® at 0
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» Lagrangians with two-sided Whitney folds: smoothing with loss of é derivatives
(Melrose-Taylor)

» Lagrangians with one-sided Whitney fold: smoothing with loss of % derivatives
(Greenleaf-Uhlmann)

» Lagrangians with two-sided cusps: loss of % (Comech-Cuccagna,
Greenleaf-Seeger)

> Radon transforms and finite-type conditions in the plane: Seeger

» (P.-Stein) Let ®(x, y) be a real-analytic phase function in 2 dimensions. Then
the oscillatory integral operator T, defined by

Tf(x) :/em’(x’y)x(x,y)f(y)dy
R
for x € C§°(R?) with sufficiently small support near 0, is bounded on L?(R)
with norm
1Tl < €A%

where ¢ is the reduced Newton distance of ® at 0

» Extensions to C°° phases were obtained by Rychkov, Greenblatt. A simpler
proof for polynomial phases was given later by P.-Stein-Sturm, using sublevel set
multilinear functionals, and the Hardy-Littlewood maximal function.



» (P.-Stein) Let ®(x,y) and x(x, y) be as previously. Then the damped oscillatory
integral operator

i 1
DFG) = [ el ) Exe ) ()
is bounded on L?(R) with norm

ID|| < C|A~2

» Earlier works on damped operators are in Sogge-Stein, Cowling-Disney-Mauceri
-Miiller, and P.-Stein, where they are used for the study of LP — L9 smoothing.
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integral operator

i 1
DFG) = [ el ) Exe ) ()
is bounded on L?(R) with norm

ID|| < C|A~2

» Earlier works on damped operators are in Sogge-Stein, Cowling-Disney-Mauceri
-Miiller, and P.-Stein, where they are used for the study of LP — L9 smoothing.

(P.-Stein) Let E be the following operator, where [ is a small interval around 0,
Ef) = [ I0(x.y)l " Fly)dy
Then E is a bounded operator on L?(R) for
1
< =6
1 5 0

where &) is the Newton distance for ® at 0. It is still bounded on L?(R) when
m= %60, except possibly when the main face reduces to a single vertex, or is parallel
to one of the axes, or to the line p+ g = 0.
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The sets {|® | ~ 2=k} are usually very complicated geometrically, and the
partition x(x, y) necessarily complicated also. It is essential that the oscillatory
estimate be uniform in x. and this requires very precise versions of the
oscillatory integral estimates.
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The sets {|® | ~ 2=k} are usually very complicated geometrically, and the
partition x(x, y) necessarily complicated also. It is essential that the oscillatory
estimate be uniform in x. and this requires very precise versions of the
oscillatory integral estimates.

Curved Box Lemma: Let a curved box B be a set of the form

B={(x,y)io(x) <y < ¢(x) +0, a<x< b}

for some monotone function ¢(x). Assume that the cut-off function satisfies
[0 x(x,¥)] < 67", and that ® is a polynomial satisfying pu < |®}) | < Au on
B. Then the corresponding operator T satisfies

"
xy

_1
[T < C(An)2
with C depending only on A and the degree of ®(x,y).
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The sets {|® | ~ 2=k} are usually very complicated geometrically, and the
partition x(x, y) necessarily complicated also. It is essential that the oscillatory
estimate be uniform in x. and this requires very precise versions of the
oscillatory integral estimates.

Curved Box Lemma: Let a curved box B be a set of the form

B={(x,y)io(x) <y < ¢(x) +0, a<x< b}

for some monotone function ¢(x). Assume that the cut-off function satisfies
[0 x(x,¥)] < 67", and that ® is a polynomial satisfying pu < |®}) | < Au on
B. Then the corresponding operator T satisfies

"
xy

_1
[Tl < C(An)~2

with C depending only on A and the degree of ®(x,y).
Curved Trapezoid Lemma: requires Hardy-Littlewood maximal function
(P.-Stein-Sturm)



Further Developments

LP boundedness of maximal Radon transforms for smooth hypersurfaces in R3,
p > h(S), where h(S) is the supremum over Newton distances. Applications to
conjectures of Stein, losevich-Sawyer, and to restriction theorems.



Further Developments

LP boundedness of maximal Radon transforms for smooth hypersurfaces in R3,
p > h(S), where h(S) is the supremum over Newton distances. Applications to
conjectures of Stein, losevich-Sawyer, and to restriction theorems.

> Tang's result: Let ®(x,z) = ZJ'":_II Pj(x)z™~/ be a homogeneous polynomial of
degree m in R2 x R. Assume that the first and the last non-vanishing

polynomials P; . and P;, . are non-degenerate (dP(x) # 0 for x # 0), and that
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polynomials P; . and P;, . are non-degenerate (dP(x) # 0 for x # 0), and that

Jmin < %2 < jmax. Then for m > 4,
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> Greenleaf-Pramanik-Tang's result: Let ®(x,z) be a homogeneous polynomial of
degree m in R™ x R"Y. Assume that S"/(x, z) has at least one non-zero entry
at every point of R™ ™" \ 0. Then

nx+n

ITI < CIN== 2" if m> nx +ny,

and || T|| < CIA|=Y/2log || if m = nx + ny, and || T|| < C|A|~1/2 if
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LP boundedness of maximal Radon transforms for smooth hypersurfaces in R3,
p > h(S), where h(S) is the supremum over Newton distances. Applications to
conjectures of Stein, losevich-Sawyer, and to restriction theorems.

> Tang's result: Let ®(x,z) = ZJ'":_II Pj(x)z™~/ be a homogeneous polynomial of
degree m in R2 x R. Assume that the first and the last non-vanishing
polynomials P; . and P;, . are non-degenerate (dP(x) # 0 for x # 0), and that

Jmin < %2 < jmax. Then for m > 4,

ITI < A~ 2.

> Greenleaf-Pramanik-Tang's result: Let ®(x,z) be a homogeneous polynomial of
degree m in R™ x R"Y. Assume that S"/(x, z) has at least one non-zero entry
at every point of R™ ™" \ 0. Then

nx+n

ITI < CIN== 2" if m> nx +ny,

and || T|| < CIA|=Y/2log || if m = nx + ny, and || T|| < C|A|~1/2 if
2<m< nx+ny.

» Cubic phases: Greenleaf-Pramanik-Tang (nx = ny = 2); also Gressman.
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» The one-dimensional model: let ®(x) be a monic polynomial of degree N in R,
and let r; € C, 1 < j < N be its roots. Then there exists constant Cy,
depending only on N, so that

M 1
H{x € R;|®(x)| < M}| < Cy maxlgjgNminsgj(i IS]
[Tkgs Irc = rjl
where S ranges over all subsets of {1,2,---, N} which contain j, and |S]|

denotes the number of elements in S.



Jugendtraum

» Problem: formulate uniform estimates with interplay between the decay rate
and the configuration of critical points.

» The one-dimensional model: let ®(x) be a monic polynomial of degree N in R,
and let r; € C, 1 < j < N be its roots. Then there exists constant Cy,
depending only on N, so that

M 1
H{x € R;|®(x)| < M}| < Cy maxlgjglvminsgj(i IS]
[Tkgs Irc = rjl
where S ranges over all subsets of {1,2,---, N} which contain j, and |S]|

denotes the number of elements in S.

» Can this lead to a geometry on the space of phase functions, which can help
identify compact sets within the subspace of phase functions with s specific
volume growth rate ?



