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Groups as geometric objects

Let G a group with a finite generating set S ⊂ G . Assume that S
is symmetric:

S−1 = S .

The word norm of an element g ∈ G is

‖g‖ = min{ k | g = σ1 . . . σk , σi ∈ S} .

The word metric on G is the distance function

d(g1, g2) = ‖g−1
2 g1‖ .

The associated Cayley graph Γ is the graph with vertex set G ,
where two vertices g1, g2 ∈ G are adjacent if and only if g1 = g2s
for some s ∈ S .



Examples

• G = Zn, S = {±e1, . . . ,±en}.

• G = F2, the free nonabelian group on two generators,
S = {a±1, b±1}, where {a, b} ⊂ F2 is a free basis.

Lemma. If S ′ is another finite generating set, with associated
word metric ‖ · ‖S ′ , then there is a constant C such that

1

C
‖g‖S ≤ ‖g‖S ′ ≤ C ‖g‖S ,

for all g ∈ G .



Growth functions

The growth function
N : Z+ → R

of a group G is given by

N(r) = |{g ∈ G | d(g , e) ≤ r}| = |B(e, r)|.

For G = Zn, N(r) ∼ rn.

For G = F2, N(r) ∼ 3r .

The growth function depends on the generating set, but its
asymptotic behavior does not.



Suppose N : Z+ → R and N ′ : Z+ → R are functions.

We say that N � N ′ if there are constants A,B,C ∈ Z such that
for all r ∈ Z+,

N(r) ≤ C N ′(Ar + B) .

We say that N is asymptotically equivalent to N ′ if N � N ′ and
N � N ′. This defines an equivalence relation � on such functions.

Suppose N � N ′. Then:

• If N is bounded by above (or below) by a polynomial function of
degree d , then so is N ′.

• If N has exponential growth, then so does N ′.



Properties of growth functions
(Milnor, Svarc)

• If NS and NS ′ are two growth functions for a group G , then

NS � NS ′ .

• If G contains a subgroup isomorphic to H, or there is a surjective
homomorphism G → H, then

NH � NG .

• If G contains a finite index subgroup isomorphic to H, then

NH � NG .



• Suppose G is the fundamental group of a closed Riemannian
manifold M, and X is the universal cover of M. Then the growth
function of G is asymptotically equivalent to the function

V : R+ → R

defined by
V (r) := |B(p, r)|,

where B(p, r) is the r -ball in X .

• If M is a complete Riemannian n-manifold of nonnegative Ricci
curvature, then every finitely generated subgroup G ⊂ π1(M) of
satisfies

NG � rn .



Theorem. (Wolf) Finitely generated nilpotent groups have
polynomial growth.

Recall that for a group G , the descending central series

G = G0 ⊃ G1 ⊃ . . .

is defined inductively by Gk := [G ,Gk−1]. The derived series is
defined similarly, but with Gk := [Gk−1,Gk−1].

A group is nilpotent (respectively solvable) if its descending central
series (respectively derived series) terminates with the trivial group.



Theorem. (Gromov) Any group of polynomial growth contains a
finite index nilpotent subgroup.

Definition. A group G has weakly polynomial growth if

lim inf
r→∞

N(r)

rd
<∞

for some d ∈ R.

Theorem. (Wilkie-Van Den Dries) Any group of weakly
polynomial growth contains a finite index nilpotent subgroup.



Some applications of Gromov’s theorem

• (Wolf, Bass-Guivarch, Pansu) If a group G has weakly
polynomial growth, then the ratio

N(r)

rd

has a nonzero limit for some d ∈ Z+.

• If M is a complete Riemannian manifold with nonnegative Ricci
curvature, then any finitely generated subgroup of π1(M) contains
a finite index nilpotent subgroup.



• (Gromov, Hirsch, Shub, Franks, Epstein) If f : M → M is an
expanding map, then M has a finite cover M̂ → M where M̂ is a
nilmanifold.

• (Varopoulos) Random walks on G are recurrent if and only if G
contains a finite index sugroup isomorphic to Zk for k ∈ {0, 1, 2}.



• (Mess, Gabai, Casson-Jungreis) The Seifert fibered space
conjecture for 3-manifolds.

• (Gersten, Bass, Dunwoody) Classification of groups
quasi-isometric to Zn, or to nilpotent groups.

• (Papasoglu) Quasi-isometry invariance of JSJ splittings for
finitely presented groups.



The proof of Gromov’s theorem

Gromov’s proof uses the following earlier work:

Theorem. (Tits) Any finitely generated linear group either
contains a nonabelian free subgroup, or is virtually solvable.

Theorem. (Wolf, Milnor) A finitely generated solvable group has
polynomial growth if it is virtually nilpotent, and exponential
growth otherwise.

Corollary. The theorem holds for linear groups and solvable
groups.



The main work in Gromov’s argument goes into proving the
following:

Theorem. (Infinite Representation)
If G is an infinite group of weakly polynomial growth, then G has a
finite dimensional linear representation

f : G → GL(n,R)

with infinite image.

Assuming the above theorem, the sketch goes as follows.

If G has weakly polynomial growth, define the degree of G to be
the minimal d ∈ Z+ such that

lim inf
r→∞

N(r)

rd
<∞.



The theorem holds trivially for groups of degree 0, since they are
finite. Pick k ∈ N, and assume inductively that the theorem holds
for groups of degree < k.

Suppose G has degree k , and that

f : G → GL(n,R)

is a homomorphism with infinite image H.

By theorems of Tits, Wolf, and Milnor, H has a finite index
nilpotent subroup. This implies that after passing to a finite index
subgroup, there will be a surjective homomorphism

α : G → Z.



One then shows that the kernel K of α is finitely generated and
has degree < k; therefore it is virtually nilpotent by the induction
hypothesis.

Let K ′ be a finite index nilpotent subgroup of K which is normal in
G , and let L ⊂ G be a copy of Z which maps isomorphically under
α onto Z.

Then K ′L is a finite index solvable subgroup of G . Invoking
Wolf/Milnor again, one concludes that G has a finite index
nilpotent subgroup.



Gromov’s construction of an infinite representation

Let G be an infinite group of polynomial growth equipped with a
word metric d .

Gromov showed that for certain sequences {λk} ⊂ (0,∞) with
λk → 0, the sequence of metric spaces

{ (G , λk d) }

Gromov-Hausdorff converges to a metric space X , which is

• Geodesic.

• Proper (i.e. closed balls are compact).

• Finite dimensional.

Example.

{ (Zn,
1

k
d) } −→ (Rn, `1) as k −→∞.



The transitive action of G on itself by left translation converges to
a transitive isometric action on the limit space X .

The isometry group Isom(X ) equipped with the compact open
topology is a locally compact topological group, by the
Arzela-Ascoli theorem and the fact that X is proper.

From work of Montgomery-Zippin and Yamabe, it follows that
Isom(X ) is a Lie group with finitely many connected components.

Finally, by a clever scaling argument, Gromov shows that either

a) A finite index subgroup of G is abelian, or

b) A finite index subgroup of G has a homomorphism to Isom(X )
with infinite image.



The new proof

The proof begins with the same reduction: it suffices to show that
an infinite group of polynomial growth has a finite dimensional
linear representation with infinite image.

The argument for this is based on harmonic maps, and avoids
Gromov-Hausdorff limits, as well as the theory of locally compact
groups.



Harmonic functions on graphs

Let Γ be a locally finite graph, metrized so that each edge has
length 1.

Definition. If u : Γ→ R is a piecewise smooth function and
Γ′ ⊂ Γ is a finite subgraph, the energy of u on Γ′ is

EΓ′(u) :=

∫
Γ′
|Du|2 ds.

The function u is harmonic if it minimizes energy on compact
subsets, i.e. if v : Γ→ R is any function which agrees with u
outside some finite subgraph Γ′ ⊂ Γ, then

EΓ′(v) ≥ EΓ′(u).



Lemma. A function u : Γ→ R is harmonic if and only if

• The restriction of u to each edge of Γ has constant derivative.

and

• For every vertex v ∈ Γ, the average of u over the vertices
adjacent to v is u(v).

Remarks. One may also interpret everything discretely, working
instead on the vertex set V ⊂ Γ.

Similar definitions apply to maps u : Γ→ H, where H is a Hilbert
space. Moreover, a map into Hilbert space is harmonic if and only
if the composition

Γ
f−→ H φ−→ R

is harmonic for every φ ∈ H∗.



Outline of the proof of the infinite representation theorem

Let G be an infinite group of weakly polynomial growth with
S ⊂ G as before, and let Γ be the Cayley graph of (G ,S).

Step 1. There exists a fixed point free isometric action G y H on
a Hilbert space, and a nonconstant G -equivariant harmonic map
f : Γ→ H .

Step 2. The map f takes values in a finite dimensional subspace
of H.

Step 3. The group G has a finite dimensional representation with
infinite image.



Step 1

Since G does not have exponential growth, it follows that there is
a sequence of radii {rk} such that

|S(e, rk)|
|B(e, rk)|

−→ 0 .

Define uk : G → R by

uk :=
χB(e,rk )

|B(e, rk)|
1
2

.

The sequence {uk} ⊂ `2(G ) is a sequence of unit vectors which are
almost fixed by the left regular representation of G , in the sense
that

max
s∈S
‖s · uk − uk‖`2 −→ 0 .



Let (G , S) be a group with a symmetric finite generating set.

If G y X is an action on a metric space X , the energy function
E : X → R is defined by

E (x) :=
∑
s∈S

d2(sx , x) .

Theorem. (Mok, Korevaar-Schoen)
Let (G , S) be as above. Then one of the following holds.

A. There is a constant D ∈ (0,∞) such that if G y H is any
isometric action of G on a Hilbert space, and x ∈ H, then there is
a fixed point of G in the ball

B(x ,D
√

E (x)) .

B. There is an isometric action G y H which has no fixed points,
and a G -equivariant harmonic map

f : Γ→ H .



Now suppose G is an infinite group with weakly polynomial
growth, and let {uk} ⊂ G be the sequence defined above. Then

E (uk)→ 0 .

On the other hand, G is infinite, so the only fixed point in `2(G ) is
0.

This means that alternative A in Mok/Korevaar-Schoen fails, and
therefore alternative B must hold.

Remark. Alternative A in Mok/Korevaar-Schoen is equivalent to
having Property (T).

Remark. More generally, if G does not have Property (T), then
there is a fixed point free isometric action G y H and a
G -equivariant harmonic map f : Γ→ H.



Sketch of the proof of Mok/Korevaar-Schoen.

Lemma. Suppose G y H is an isometric action of G on a Hilbert
space. Pick x ∈ H, and let

f : Γ −→ H

be the G -equivariant map such that

f (g) = gx for all g ∈ G ⊂ Γ,

and f is has constant derivative on each edge of Γ. Then G is
harmonic if and only if x is the minimum of the energy function
E : H → R.

Therefore, it suffices to show that if condition A fails, there is an
isometric action G y H on some Hilbert space, such that the
energy function attains a nonzero minimum.

This follows from a rescaling argument.



Let G be a group of weakly polynomial growth, and G y H,
f : Γ→ H be as above.

We now concentrate on Step 2, that f takes values in a finite
dimensional subspace of H.

Lemma. The harmonic map f is Lipschitz.

Theorem. (Colding-Minicozzi) Pick δ ∈ R. The space of harmonic
functions on Γ with polynomial growth at most δ is finite
dimensional.

sup
x∈G

|u(x)|
(1 + d(x , e))δ

< ∞ .



Corollary. The map f takes values in a finite dimensional subspace
of H.

Proof. Define
Φ : H∗ → Lip(Γ)

by
Φ(α) = α ◦ f .

The range is finite dimensional, so the kernel K ⊂ H∗ has finite
codimension in H∗.

The image of f lies in the finite dimensional space

K⊥ ⊂ H.



The proof of the finite dimension theorem given by
Colding-Minicozzi relies on Gromov’s polynomial growth theorem
in an essential way.

We give a new proof of Colding-Minicozzi finite dimensionality
which is independent of Gromov’s theorem.



Colding-Minicozzi

The finite dimension theorem holds for polynomial growth
harmonic functions on a graph Γ (or Riemannian manifold)
satisfying two conditions:

• Γ is doubling, i.e. every ball can be covered by a controlled
number of balls of half the radius.

• Γ satisfies a uniform scale-invariant Poincare inequality:∫
B(R)

|u − uR |2 ≤ C R2

∫
B(CR)

|∇u|2,

where uR denotes the average of u over B(R).

The proof that these conditions hold for groups of polynomial
growth depends on Gromov’s theorem.



The new proof of the finite dimension theorem

The first ingredient is a new Poincare inequality:

Theorem. Suppose (G , S) is an arbitrary group with symmetric
finite generating set S , and let Γ be the associated Cayley graph.
Then ∫

B(R)
|u − uR |2

≤ 8 |S |2 R2 |B(2R)|
|B(R)|

∫
B(3R)

|∇u|2,

where R ∈ Z+, B(R) and B(CR) denote concentric balls of radius
R and CR centered at a group element g ∈ Γ, and u is a piecewise
smooth function on B(CR).



Pick d ∈ R, and use e ∈ Γ as the basepoint for balls.

Let V be a finite dimensional vector space of harmonic functions
on Γ with polynomial growth at most d .

For each R ∈ Z+, let QR be the quadratic form on V given by

QR(u, u) :=

∫
B(R)

u2,

where B(R) = B(e,R).



Sketch of the rest of the proof.

One selects a scale R such that the ratios

det QLR

det QR
and

|B(LR)|
|B(R)|

are controlled, for a suitable L ∈ [1,∞).

This scale selection argument is a hybrid of arguments in Gromov
and Colding-Minicozzi. The idea is that polynomial growth implies
doubling behavior at many scales.

The key point is that one has the doubling condition at this scale,
and the Poincare inequality has controlled constant at this scale
(because of the doubling condition).

Now one can use the strategy of Colding-Minicozzi to bound the
dimension of V.



The main estimate

We find a pair of radii R1 < R2, a cover

B = {Bj}j∈J

of B(R2) by balls of radius R1, and a subspace W ⊂ V of
dimension at least 1

2 dimV, such that:

• The cardinality of B is controlled.

• The ratio |B(2R1)|
|B(R1)| is controlled.

• Q16R2(w ,w) ≤ C QR2(w ,w) for all w ∈ W.

Applying the Poincare inequality, one concludes that the map
W → RJ

w 7→

{∫
Bj

w

}
j∈J

is injective, and this implies that dimW ≤ |J|.


