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Outer automorphisms of free groups

Free groups are the most simple, basic infinite groups. 

Their automorphism groups are surprisingly complicated and 

resistant to understanding.

Studied since early last century, e.g. by Nielsen, Whitehead, 

Magnus, Stallings.

Want to use geometric and topological methods to study Out(Fn). 

  -  I will supply descriptions (pictures) of spaces on which Out(Fn) 

acts.

  -  Will also mention some theorems about these spaces and 

consequences for Out(Fn).

  -  Then I will talk about spaces that can’t have interesting Out(Fn) 

actions, and some open questions



Outer automorphisms of free groups

Many of these spaces relate mapping class theory to the theory of 

Out(Fn).

Basic observation:  A homeomorphism of a punctured surface 

induces an automorphism of its fundamental group, giving a map

                       !0(Homeo+(Sg,s)) ! Out(Fn) 

This map is injective [Magus, Zieschang]; in fact

            MCG(Sg,s) = stab(periperal conjugacy classes)

There is a second important relationship 

Second observation: Abelianization Fn ! !n induces a map on 

(outer) automorphism groups

                                Out(Fn) ! GL(n, !)

This map is easily seen to be surjective.  Its kernel is quite 

mysterious.



I. Spaces with interesting Out(Fn) actions



Outer space



Outer space

Definition motivated by Thurston’s study of mapping classes of a 

surface via their action on Teichmüller space.

A point in Teichmüller space is a marked Riemann surface of area 

one. The action of the MCG changes the marking.

A point in Outer space is a marked metric graph, sum of edge-

lengths equal to one.  Out(Fn) changes the marking.



Outer space (n=2)





Outer space is a union of open simplices  
                              !(Γ,g)  

• Γ is a connected graph, with all 

vertices of valence at least 3.  

•The markings on the edges of G describe 

a homotopy equivalence  g : Γ ! Rn

• Rn = fixed rose with n petals

    Fn  is identified with  !1(Rn)

g

x y

• The dimension of !(Γ,g) is the number 

of edges of Γ minus 1.  

x y



Out(Fn) acts by changing the marking:

   "(x) = xy2

   "(y) = y-1

Then "!(Γ,g) = (Γ, "g)

x yxy2 y-1

g

x y



x

y

x

y

x

y

y

x



Outer space

Teichmüller space is homeomorphic to Euclidean space. The MCG 

acts properly discontinuously. 

Outer space is not a manifold.  But:

Theorem [Culler-V 86] Outer space is contractible. Out(Fn) acts 

properly discontinuously.

The MCG is the full group of isometries of Teichmüller space 

[Royden]

Outer space decomposes as a union of ideal simplices, Giving 

each simplex an equilateral Euclidean metric we obtain. 

Theorem [Bridson-V 01] Out(Fn) is the full group of isometries of 

Outer space.



Outer space and mapping class groups

Outer space is the union of pieces which are invariant under 

MCG(Sg,s):

Choose an identification !1(Sg,s) ≅ Fn

Given any graph " ⊂ Sg,s , " ≃ Sg,s, this gives a marking on ".

The set of such marked graphs, with all possible metrics, is a 

subspace of Outer space, called a ribbon graph subspace O(Sg,s).  

These are easily seen to be manifolds, and contractions of Outer 

space restrict to prove these are contractible.

Penner, Harer gave coordinates for O(Sg,s), identifying it 

equivariantly with T(Sg,s) " #s-1.



Outer space and mapping class groups

These ribbon graph subspaces cover Outer space:

e.g. n=2:



Compactifications 

Thurston compactified Teichmüller space by embedding it into a 

(finite-dimensional) space of projective length functions and taking 

the closure.

The closure is a ball.  The sphere at infinity is the space of 

projective measured laminations.  The action of a mapping class 

extends to the closure, so has (at least one) fixed point. Analysis of 

the fixed points classifies the mapping class. 

Outer space also embeds into a space of projective length 

functions, but not into any finite-dimensional subspace [Smillie-V].  

Outer space is not homeomorphic to "N...it’s not even a manifold.  

Its boundary is not a sphere...it doesn’t even behave like a 

boundary.



Compactifications 

n=2 pictures:



Virtual cohomological dimension

Thurston program had to wait for Bestvina-Feighn-Handel to 

introduce new ideas, including a substitute for the space of 

projective measured laminations. 

What we can do is compute the virtual cohomological dimension of 

Out(Fn) by considering the combinatorial structure of Outer space.



The spine of outer space



The spine of outer space

The set of open simplices #(G,g) is partially ordered by the face 

relation. 

Any partially ordered set gives rise to a simplicial complex.  The k-

simplices are totally ordered chains of length k+1.

x y

x y



n=2

(reduced)

The spine of outer space



Theorem:  The spine is an equivariant deformation retract of Outer 

space, of dimension 2n-3, with compact quotient.

Algebraic fact:  There are free abelian subgroups of Out(Fn) of rank 

2n-3.

Corollary:  The virtual cohomological dimension of Out(Fn) is equal 

to 2n-3.

Culler, Khramtsov, Zimmerman:  Every finite subgroup of Out(Fn) 

stabilizes some vertex of the spine.

Corollary:  There are only finitely many conjugacy classes of finite 

subgroups of Out(Fn).

The spine of outer space



The spine of outer space and mapping class 

groups

The dimension of the spine gives an upper bound on the virtual 

cohomological dimension of mapping class groups of punctured 

surfaces.  This is exact if there is 1 puncture, off by (s-1) in general.  

To get the lower bound, Harer needed to prove MCG(Sg,s) is a 

virtual duality group. 

The restriction of the spine to O(Sg,s) is a partially ordered set of 

simplices which correspond to graphs in Sg,s.

Dual to these graphs are arcs.



Arc complexes



The spine restricted to O(Sg,s) can be re-interpreted as an arc 

complex (arcs which fill Sg,s):

Arc complexes

If you choose a boundary component, insist that all arcs begin

and end on that component, and allow annuli, you obtain a smaller 

(still contractible) arc complex, giving the exact VCD.



These arc complexes can in turn be interpreted as  

complexes of spheres

Arc complexes



Sphere complexes



 

Fatten and double an arc system 

Sphere complexes

Glue by the identity to obtain spheres in a connected sum of

S1 " S2’s



Sphere complexes

• Laudenbach:  M = #(S1" S2). There is a split short exact sequence

                 1 ! D ! !oDiff(M) ! Out(Fn) ! 1

where D is a 2-group generated by Dehn twists on embedded 2-

spheres in M.

• !oDiff(M) acts on spheres in M. Descends to an action of Out(Fn) 

on the sphere complex since D acts trivially on embedded 2-

spheres.

• The subcomplex of sphere systems with simply connected 

complementary pieces is identified with the spine of Outer space.



Sphere complexes

Other subcomplexes and variations of the sphere complex that 

have proved useful include:

  - The subcomplex of coconnected sphere systems with non-

simply-connected complement.

Any such sphere system gives a free factor of Fn. 



Free factor complexes

The resulting map was used to prove:

Theorem. [Hatcher-V 98] The geometric realization of the partially 

ordered set of free factors of Fn is homotopy equivalent to a 

wedge of spheres of dimension n-2.

This is analogous to the classical Solomon-Tits theorem about the 

geometric realization of the poset of subspaces of a vector space.



Free factor complexes

A closely related complex, of free factorizations of Fn is spherical 

and was used to prove homology stability for Aut(Fn): 

Theorem. [Hatcher-V 98] The natural inclusions Aut(Fn)! Aut(Fn+1) 

induce isomorphisms  Hi(Aut(Fn)) ≅ Hi(Aut(Fn+1) for n>>i.

Another closely related complex is the complex of partial bases of 

Fn, which is also spherical.



Tethered spheres

A simpler proof of homology stability can be given by considering a 

complex of tethered spheres [Hatcher-V, Hatcher-Wahl]:

Similarly, the proof of homology stability for mapping class groups 

can be considerably simplified by using complexes of tethered 

curves. 



Sphere complexes

Historical note: 2-spheres in #(S1" S2) were used by J.H.C. 

Whitehead in his work on automorphisms of free groups. 

 But he didn’t have Laudenbach’s theorem.





II. Spaces with no actions



Proper cocompact actions

This is what you look for first in geometric group theory.  (If G acts 

properly and cocompactly on a metric space X, then G is quasi-

isometric to X.)  

Out(Fn) acts properly and cocompactly on the spine of Outer 

space.  Can this be given a metric of non-positive curvature? 

Theorem [Bridson-V 95] Out(Fn) cannot act properly and 

cocompactly on any CAT(0) space.  

Proof: First show Out(F3) has an exponential Dehn function. This 

uses fact [ECHLPT(hurston)] that GL(3, !) has exponential Dehn 

function.  Then use centralizers and induction arguments to show 

that Out(Fn) is not bicombable. (Groups which act properly and 

cocompactly on CAT(0) spaces ARE bicombable.)



Actions on trees

Classical way to split a group into simpler pieces...find an action on 

a simplicial tree, then use Bass-Serre theory.  

Theorem [Culler-V 96]  For n>2, any action of Out(Fn) on an "-tree 

has a global fixed point (Out has property F").  

Proof is elementary, uses the existence of a well-behaved 

generating set. But also uses fact that the abelianization of Out(Fn) 

is finite.    

Proof applies also to mapping class groups of closed surfaces. 

Question: Do finite index subgroups of Out(Fn) have F"? 

Answer:  No for n=3, open for n > 3.  “No” answer implies Out(Fn) 

does not have Kazhdan’s Property (T)    



Actions on CAT(0) manifolds

The map Out(Fn) ! GL(n, !) provides actions of Out(Fn) on CAT(0) 

manifolds, like "n and the homogeneous space for GL(n,").

To make statements simpler, replace  Out(Fn) by SAut(Fn), the 

preimage in Aut(Fn) of SL(n, !).

Theorem A. [Bridson-V 07] For n>2, any action of SAut(Fn) by 

isometries on a CAT(0) manifold M of dimension < n is trivial.

The proof uses torsion in  SAut(Fn) in an essential way, and the 

question is still open for torsion-free subgroups of finite index.

The proof proceeds by considering metric spheres around a fixed 

point for an involution. A metric sphere in a CAT(0) manifold need 

not be a manifold - but it is at least a !/2-homology sphere. 



Actions on spheres

The proof proceeds by considering metric spheres around a fixed 

point for an involution.  A metric sphere in a CAT(0) manifold need 

not be a manifold - but it is at least a !/2-homology sphere, and we 

also prove. 

Theorem B. If n > 2, any action of SAut(Fn) by homeomorphisms on 

a !/2-homology sphere of dimension < n-1 is trivial.  

Here actions need not be discrete, semisimple,...

Immediate corollaries are Theorems A and B for any quotient of 

SAut(Fn), including S(Out(Fn)) and SL(n, !).

For SL(n, !) Theorem B was proved by [Zimmerman 07] completing 

a program of [Parwani 06]



Using the torsion in Aut(Fn)

The largest finite subgroup in Aut(Fn) is the signed symmetric 

group Wn = N " Sn.  Here N ≅ (!/2)n is generated by {ei} and W has 

center # = e1e2...en.  Set SWn = Wn ∩ SAut(Fn), SN = S ∩ SAut(Fn).

Proposition. Let G be any group and f: SAut(Fn) ! G a 

homomorphism.  Let f0 be the restriction of f to SWn Then either

         Ker(f0) = 1

         n is even, Ker(f0) = <#> ≅ !/2 and f factors through PSL(n, !)

         Ker(f0) = SN and Im(f) ≅ SL(n, !/2)

         Ker(f0) = SWn and Im(f) = {1}



Proof for smooth manifolds

Suppose M is complete, simply-connected and non-positively 

curved, and that SAut(Fn) acts on M, i.e. we have a homomorphism

                                 SAut(Fn) ! Isom(M).

If e1e2 is in the kernel of this homomorphism, then by the 

proposition the image is trivial or isomorphic to SL(n, !/2). 

We can rule the second possibility out using Smith theory and the 

fact that SL(n, !/2) is simple.

Therefore e1e2 acts by a nontrivial involution of M.  Since SAut(Fn) is 

perfect, it acts by orientation-preserving homeomorphisms, so the 

fixed point set F of e1e2 is a smooth manifold of codimension at 

least 2.

 

  



Proof for smooth manifolds

There is a natural SAut(Fn-2) in the centralizer of e1e2, which by 

induction acts trivially on F and on its normal bundle, and therefore 

on all of M. But the normal closure of this  SAut(Fn-2) is all of SAut

(Fn), so the whole group acts trivially on M.

 

  

Therefore e1e2 acts by a nontrivial involution of M.  Since SAut(Fn) 

is perfect, it acts by orientation-preserving homeomorphisms, so 

the fixed point set F of e1e2 is a smooth manifold of codimension 

at least 2.



Remarks about the CAT(0) situation

If M is not smooth, but only CAT(0), Fix(e1e2) may not be a manifold, 

and we don’t have a normal bundle.

This is why instead we consider actions on !/2 homology spheres; 

we also need some CAT(0) geometry.  

Theorem B is proved using the Proposition and more Smith theory. 



Questions

Questions raised by Cohen, Thurston, Calegari at 2007 Topology 

Festival: 

Can Out be realized as a group of homeomorphisms of a manifold 

with fundamental group Fn? Or diffeomorphisms?

Same question for mapping class group. [Morita 87] proved the 

map Diffeo(S) to MCG(S) does not have a section for genus > 5, by 

cohomology considerations.   [Markovic 07] proved that the map 

Homeo(S) to MCG(S) does not have a section for g > 5. 

Both proofs rely on the torsion in MCG.  What about torsion-free 

subgroups of finite index? Can you lift them?

More questions on torsion-free subgroups of finite index:  Can 

finite-index subgroups of Out act nontrivially on trees, n>3?

Can they act on spheres, CAT(0) manifolds,...



Happy birthday!




