Combinatorial link Floer homology and transverse knots

Dylan Thurston

Joint with/work of Sucharit Sarkar
Ciprian Manolescu
Peter Ozsváth
Zoltán Szabó
Lenhard Ng
math.GT/\{0607691, 0610559, 0611841, 0703446\}
http://www.math. columbia.edu/~dpt/speaking

June 10, 2007, Princeton, NJ

Combinatorial link Floer homology and transverse knots

Dylan Thurston

Joint with/work of Sucharit Sarkar
Ciprian Manolescu
Peter Ozsváth
Zoltán Szabó
Lenhard Ng
The invariant called knot Heegaard-Floer
Determines the genus-and more.
To distinguish transverse knots
(and it turns out there are lots!)
HFK opens up a new door.
June 10, 2007, Princeton, NJ

Outline

- Introduction

Computing HFK

Variants

Grid moves

Transverse knots

What is Heegaard-Floer homology?

$\operatorname{dim}\left(\widehat{H F K}_{i}(K ; s)\right):$5
Alexander

Characteristics of $\widehat{H F K}$:

- Bigraded;

What is Heegaard-Floer homology?

$\operatorname{dim}\left(\widehat{H F K}_{i}(K ; s)\right):$

$1-11-11$

Characteristics of $\widehat{H F K}$:

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial; (Ozsváth-Szabó 2001)
- Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic

We will give a simple algorithm for
computing HFK.
and so the world's simplest algorithm

What is Heegaard-Floer homology?

$\operatorname{dim}\left(\widehat{H F K}_{i}(K ; s)\right):$

Characteristics of $\widehat{H F K}$:

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus; (Ozsváth-Szabó 2001)
- Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic

What is Heegaard-Floer homology?

$\operatorname{dim}\left(\widehat{H F K}_{i}(K ; s)\right):$

Characteristics of $\widehat{H F K}$:

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus; (Ozsváth-Szabó 2001)
- Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.

What is Heegaard-Floer homology?

$\operatorname{dim}\left(\widehat{H F K}_{i}(K ; s)\right):$

Characteristics of $\widehat{H F K}$:

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus; (Ozsváth-Szabó 2001)
- Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.

What is Heegaard-Floer homology?

$\operatorname{dim}\left(\widehat{H F K}_{i}(K ; s)\right):$

Characteristics of $\widehat{H F K}$:

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus; (Ozsváth-Szabó 2001)
- Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.
We will give a simple algorithm for computing HFK...

What is Heegaard-Floer homology?

$\operatorname{dim}\left(\widehat{H F K}_{i}(K ; s)\right):$

Characteristics of $\widehat{H F K}$:

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus; (Ozsváth-Szabó 2001)
- Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.
We will give a simple algorithm for computing HFK...
.... and so the world's simplest algorithm for knot genus!

Setting: Grid diagrams

Grid diagram: square diagram with one X and one O per row and column.

Turn it into a knot: connect
X to O in each column; O to X in each row.
Cross vertical strands over horizontal
Grid diagrams exist: take any diagram, rotate crossings so vertical crosses over horizontal.

The knot is unchanged under
cyclic rotations:
Move top segment to bottom.

Setting: Grid diagrams

Grid diagram: square diagram with one X and one O per row and column.

Turn it into a knot: connect
X to O in each column;
O to X in each row.
Cross vertical strands over horizontal.
Grid diagrams exist: take any diagram, rotate crossings so vertical crosses over horizontal.

The knot is unchanged under cyclic rotations:
Move top segment to bottom.

Setting: Grid diagrams

Grid diagram: square diagram with one X and one O per row and column.

Turn it into a knot: connect
X to O in each column;
O to X in each row.
Cross vertical strands over horizontal.
Grid diagrams exist: take any diagram, rotate crossings so vertical crosses over horizontal.

The knot is unchanged under cyclic rotations:
Move top segment to bottom.

Computing the Alexander polynomial

We categorify the following formula:

- Make matrix of $t^{\text {-winding } \#}$ (with extra row/column of 1's);
- det determines the Conway-Alexander polynomial \triangle ($n=$ size of diagram; here 6)

Computing the Alexander polynomial

We categorify the following formula:

$$
\left|\begin{array}{ccccccc}
1 & 1 & 1 & t & t & t \\
1 & 1 & t^{-1} & 1 & t & t \\
1 & 1 & t & t \\
1 & t & 1 & 1 & t & t \\
1 & t & t & t & t^{2} & t \\
1 & t & t & t & t & 1 \\
1 & t & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right|= \pm t^{*}(1-t)^{n-1} \Delta(K ; t)
$$

- Make matrix of $t^{\text {-winding } \#}$ (with extra row/column of 1's);
- det determines the Conway-Alexander polynomial Δ ($n=$ size of diagram; here 6)

Outline

Introduction

- Computing HFK

Variants

Grid moves

Transverse knots

Computing HFK: Chain complex $\widetilde{C K}$

Define a chain complex $\widetilde{C K}$ over $\mathbb{Z} / 2$.

- Generated by matchings between horizontal and vertical gridcircles (as counted in det for Alexander).

Sum over all ways to switch SW-NE corners of an empty rectangle to NW-SE corners. (Empty means: no X^{\prime} s, O 's, or other points in generator.)

Computing HFK: Chain complex $\widetilde{C K}$

Define a chain complex $\widetilde{C K}$ over $\mathbb{Z} / 2$.

- Generated by matchings between horizontal and vertical gridcircles (as counted in det for Alexander).

Sum over all ways to switch SW-NE corners of an empty rectangle to NW-SE corners. (Empty means: no X^{\prime} s, O^{\prime} s, or other points in generator.)

Computing HFK: Chain complex $\widetilde{C K}$

Define a chain complex $\widetilde{C K}$ over $\mathbb{Z} / 2$.

- Generated by matchings between horizontal and vertical gridcircles (as counted in det for Alexander).

Sum over all ways to switch SW-NE corners of an empty rectangle to NW-SE corners. (Empty means: no X's, O's, or other points in generator.)

Computing HFK: Chain complex $\widetilde{C K}$

Define a chain complex $\widetilde{C K}$ over $\mathbb{Z} / 2$.

- Generated by matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- Boundary ∂ switches corners on empty rectangles:

Sum over all ways to switch SW-NE corners of an empty rectangle to NW-SE corners. (Empty means: no X's, O's, or other points in generator.)

Computing HFK: Chain complex $\widetilde{C K}$

Define a chain complex $\widetilde{C K}$ over $\mathbb{Z} / 2$.

- Generated by matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- Boundary ∂ switches corners on empty rectangles:

Sum over all ways to switch SW-NE corners of an empty rectangle to NW-SE corners. (Empty means: no X's, O's, or other points in generator.)

Computing HFK: Chain complex $\widetilde{C K}$

Define a chain complex $\widetilde{C K}$ over $\mathbb{Z} / 2$.

- Generated by matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- Boundary ∂ switches corners on empty rectangles:

Sum over all ways to switch SW-NE corners of an empty rectangle to NW-SE corners. (Empty means: no X's, O's, or other points in generator.)

Computing HFK: Chain complex $\widetilde{C K}$

Define a chain complex $\widetilde{C K}$ over $\mathbb{Z} / 2$.

- Generated by matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- Boundary ∂ switches corners on empty rectangles:

Sum over all ways to switch SW-NE corners of an empty rectangle to NW-SE corners. (Empty means: no X's, O's, or other points in generator.)

Computing HFK: $\partial^{2}=0$

Each term in ∂^{2} must have a mate:

- If rectangles are disjoint, take rectangles in either order.
- If rectangles share a corner, decompose the union in another way.

Computing HFK: $\partial^{2}=0$

Each term in ∂^{2} must have a mate:

- If rectangles are disjoint, take rectangles in either order.
- If rectangles share a corner, decompose the union in another way.

Computing HFK: $\partial^{2}=0$

Each term in ∂^{2} must have a mate:

- If rectangles are disjoint, take rectangles in either order.
- If rectangles share a corner, decompose the union in another way.

Computing HFK: $\partial^{2}=0$

Each term in ∂^{2} must have a mate:

- If rectangles are disjoint, take rectangles in either order.
- If rectangles share a corner, decompose the union in another way.

Computing HFK: Gradings on $\widetilde{C K}$

In the plane,

removes one inversion.
For $A, B, C \subset \mathbb{R}^{2}$,

$$
\begin{aligned}
\mathcal{I}(A, B) & :=\#\left\{a \square^{b} \mid a \in A, b \in B\right\} \\
\mathcal{I}(A-B, C) & :=\mathcal{I}(A, C)-\mathcal{I}(B, C)
\end{aligned}
$$

For \mathbf{x} a generator, \mathbb{X} the set of X 's, \mathbb{O} the set of of $O^{\prime} \mathrm{s}$, the gradings are:

- Maslov: $M(\mathbf{x}):=\mathcal{I}(\mathbf{x}-\mathbb{O}, \mathbf{x}-\mathbb{O})+1$.
- Alexander:

$$
A(\mathbf{x}):=\frac{1}{2}(\mathcal{I}(\mathbf{x}-\mathbb{O}, \mathbf{x}-\mathbb{O})-\mathcal{I}(\mathbf{x}-\mathbb{X}, \mathbf{x}-\mathbb{X})-(n-1))
$$

Computing HFK: The answer

Theorem (Manolescu-Ozsváth-Sarkar)

For G a grid diagram for K,

$$
H_{*}(\widetilde{C K}(G)) \simeq \widehat{H F K}(K) \otimes V^{\otimes n-1}
$$

where $V:=(\mathbb{Z} / 2)_{0,0} \otimes(\mathbb{Z} / 2)_{-1,-1}$.
Gillam and Baldwin used this to compute $\widehat{H F K}$ for all knots with ≤ 11 crossings, including new values of knot genus.

Outline

Introduction

Computing HFK

- Variants

Grid moves

Transverse knots

Improving the answer

$\operatorname{dim} \widehat{H F K}_{i}(K ; s):$

To remove factors of $V^{\otimes n-1}$:
$H F K^{-}$: variant of $\widehat{H F K}$
Module over $\mathbb{Z} / 2[U]$
U has degree $(-1,-2)$
Related to HFK by Univ. Coeff. Thm.
To compute: Add one U_{i} for each O
s
Complex $\mathrm{CK}^{-}(G)$ over $\mathbb{Z} / 2\left[U_{1}, \ldots, U_{n}\right]$
∂ counts rects. that contain only O 's, weighted by corresponding U_{i}.
Theorem
(Manolescu-Ozsváth-Sarkar)

$$
H_{*}\left(C K^{-}(G)\right) \simeq H F K^{-}(K)
$$

Each U_{i} acts by U on the homology.

Improving the answer

To remove factors of $V^{\otimes n-1}$:
$\operatorname{dim} H F K_{i}^{-}(K ; s):$

$H F K^{-}$: variant of $\widehat{H F K}$
Module over $\mathbb{Z} / 2[U]$
U has degree $(-1,-2)$
Related to $\widehat{H F K}$ by Univ. Coeff. Thm.
To compute: Add one U_{i} for each O
Complex $\mathrm{CK}^{-}(G)$ over $\mathbb{Z} / 2\left[U_{1}, \ldots, U_{n}\right]$
∂ counts rects. that contain only O 's, weighted by corresponding U_{i}.
Theorem
(Manolescu-Ozsváth-Sarkar)

$$
H_{*}\left(C K^{-}(G)\right) \simeq H F K^{-}(K)
$$

Each U_{i} acts by U on the homology.

Further variants

Can also:

- Allow rectangles to cross X 's to get a filtered complex, and
- Add signs (in essentially unique way) to work over $\mathbb{Z}[U]$.

Outline

Introduction

Computing HFK

Variants

- Grid moves

Transverse knots

Combinatorial invariance

Theorem (Manolescu-Ozsváth-Szábo-T.)

For any sequence of elementary grid moves, there is an explicit chain map exhibiting invariance of HFK^{-}.

Conjecture (Naturality or Functoriality)

The chain map depends only on isotopy class of sequence of elementary grid moves. That is, oriented mapping class group of K acts on $\mathrm{HFK}^{-}(K)$.

Elementary grid moves

- Cycle: Move left column to right, or top row to bottom.
- Commute: Switch two non-interfering columns or rows.
- Stabilize: Introduce a notch at a corner

Elementary grid moves

- Cycle: Move left column to right, or top row to bottom.
- Commute: Switch two non-interfering columns or rows.
- Stabilize: Introduce a notch at a corner

Elementary grid moves

- Cycle: Move left column to right, or top row to bottom.
- Commute: Switch two non-interfering columns or rows.
- Stabilize: Introduce a notch at a corner.

Elementary grid moves

- Cycle: Move left column to right, or top row to bottom.
- Commute: Switch two non-interfering columns or rows.
- Stabilize: Introduce a notch at a corner.

Elementary grid moves

- Cycle: Move left column to right, or top row to bottom.
- Commute: Switch two non-interfering columns or rows.
- Stabilize: Introduce a notch at a corner.

Where's Reidemeister III?

Chain map for commutation counts pentagons

To construct a chain map for commutation, draw two versions of the middle gridcircle on a single diagram.

The chain map counts empty pentagons going between the two gridcircles.

Chain map for commutation counts pentagons

To construct a chain map for commutation, draw two versions of the middle gridcircle on a single diagram.

The chain map counts empty pentagons going between the two gridcircles.

Chain map for commutation counts pentagons

To construct a chain map for commutation, draw two versions of the middle gridcircle on a single diagram.

The chain map counts empty pentagons going between the two gridcircles.

Outline

Introduction

Computing HFK

Variants

Grid moves

- Transverse knots

Contact structures and knots

A contact structure is a twisted 2-plane field:
if α is a 1 -form defining the plane field, $\alpha \wedge d \alpha$ is positive. (Warning: above contact structure is reversed.)

A Legendrian knot is a knot that is tangent to the plane field. A transverse knot is a knot that is transverse to the plane field.

Transverse knots have one easy invariant, the self-linking number.
Question. Can we find transverse knots with the same classical knot type and self-linking number?

Ways to stabilize

Four ways to stabilize: Where to leave the empty square?

- Two diagonal opposite ways preserve Legendrian knot
\square
- Three ways preserve transverse knot.

Ways to stabilize

Four ways to stabilize: Where to leave the empty square?

- wo diagonal opposite ways preserve Legendrian knot.
- Two adjacent ways preserve closed braid.
- Thren ways presorve transverse lenot.

Warning: The Legendrian/transverse knots are mirrored.

Ways to stabilize

\longrightarrow

Four ways to stabilize: Where to leave the empty square?

- Two diagonal opposite ways preserve Legendrian knot.
- Two adjacent ways preserve closed braid
- Three ways preserve transverse knot.

Warning: The Legendrian/transverse knots are mirrored.

Ways to stabilize

Four ways to stabilize: Where to leave the empty square?

- Two diagonal opposite ways preserve Legendrian knot.
- Two adjacent ways preserve closed braid.
- Three ways preserve transverse knot.

Ways to stabilize

Four ways to stabilize: Where to leave the empty square?

- Two diagonal opposite ways preserve Legendrian knot.
- Two adjacent ways preserve closed braid.
- Three ways preserve transverse knot.

Ways to stabilize

Four ways to stabilize: Where to leave the empty square?

- Two diagonal opposite ways preserve Legendrian knot.
- Two adjacent ways preserve closed braid.
- Three ways preserve transverse knot.

Warning: The Legendrian/transverse knots are mirrored.

Ways to stabilize

Four ways to stabilize: Where to leave the empty square?

- Two diagonal opposite ways preserve Legendrian knot.
- Two adjacent ways preserve closed braid.
- Three ways preserve transverse knot.

Warning: The Legendrian/transverse knots are mirrored.

Transverse invariant: Definition

Definition

The canonical generator $\mathbf{x}^{+}(G)$ is given by the upper-right corner of each X.
Facts:

- $\partial \mathbf{x}^{+}=0$. (The X 's block any rectangles.)
- $\left[\mathbf{x}^{+}(G)\right]$ maps to $\left[\mathbf{x}^{+}\left(G^{\prime}\right)\right]$ under commutation and 3 out of 4 stabilizations.

Theorem (Ozsváth-Szabó-T.)

[$\left.\mathbf{x}^{+}(G)\right]$ in $\operatorname{HFK}^{-}(m(K))$ is an invariant of the transverse knot represented by G, up to quasi-isomorphism of filtered complexes.

Transverse invariant: Properties

Let G be a grid diagram representing the transverse knot \mathcal{T}.

- $\mathbf{x}^{+}(G)$ lives in bigrading $(s, 2 s)$, where $s=\frac{s(\mathcal{T})+1}{2}$.
- If \mathcal{T}^{\prime} differs from \mathcal{T} by a positive stabilization, then

$$
\left[\mathbf{x}^{+}\left(\mathcal{T}^{\prime}\right)\right]=U\left[\mathbf{x}^{+}(\mathcal{T})\right]
$$

- $\left[\mathrm{x}^{+}(\mathcal{T})\right] \neq 0$ in HFK^{-}.

Corollary

For any transverse knot \mathcal{T} of topological type K,

$$
\frac{s /(\mathcal{T})+1}{2} \leq \tau(K) \leq g_{4}(K)
$$

where $\tau(K)$ is the largest Alexander grading which has an element which is not U torsion.

Transverse invariant: Examples

Let $\theta(\mathcal{T})$ (resp. $\widehat{\theta}(\mathcal{T}))$ be the transverse invariant in $\operatorname{HFK}^{-}(m(K))$ (resp. $\widehat{\operatorname{HFK}}(m(K)))$.
$\hat{\theta}(\mathcal{T})=0$ iff $\theta(\mathcal{T})$ is divisible by U.

Theorem (Ng-Ozsváth-T.)

The knots $m\left(10_{132}\right)$ and $m\left(12 n_{200}\right)$ have two trans. reps. with same sl, one with $\widehat{\theta}=0$ and one with $\widehat{\theta} \neq 0$.

This technique also works for the $(2,3)$ cable of the $(2,3)$ torus knot, originally found by Etnyre-Honda and Menasco-Matsuda.
Let δ_{1} be the next differential in the spectral sequence on $\widehat{H F K}$.
Theorem (Ng-Ozsváth-T.)
The pretzel knots $P(-4,-3,3)$ and $P(-6,-3,3)$ have two trans. reps. with same sl, one with $\delta_{1} \circ \widehat{\theta}=0$ and one with $\delta_{1} \circ \widehat{\theta} \neq 0$.

Transverse invariant: Going further

Theorem (Ng-Ozsváth-T.)

If the Naturality Conjecture is true, then the twist knot 7_{2} has two trans. reps. with the same sl, with $\widehat{\theta}$ in different orbits of the mapping class group.

But θ is not a complete invariant: Birman and Menasco have classified closed 3 -braids up to transverse isotopy.
In their small examples of distinct transverse knots, θ lives in a 1-dimensional space, so cannot distinguish them.

