Combinatorial link Floer homology
and transverse knots

Dylan Thurston

Joint with/work of Sucharit Sarkar
Ciprian Manolescu
Peter Ozsváth
Zoltán Szabó
Lenhard Ng

math.GT/{0607691,0610559,0611841,0703446}
http://www.math.columbia.edu/~dpt/speaking

June 10, 2007, Princeton, NJ
Combinatorial link Floer homology
and transverse knots

Dylan Thurston

Joint with/work of Sucharit Sarkar
Ciprian Manolescu
Peter Ozsváth
Zoltán Szabó
Lenhard Ng

The invariant called knot Heegaard-Floer
Determines the genus—and more.
To distinguish transverse knots
(and it turns out there are lots!)
HFK opens up a new door.

June 10, 2007, Princeton, NJ
Outline

▶ Introduction

Computing HFK

Variants

Grid moves

Transverse knots
What is Heegaard-Floer homology?

\[\dim(\hat{HFK}_i(K; s)) : \]

\[\begin{array}{ccc}
& 1 & 1 \\
1 & & \\
1 & 2 & \\
1 & 2 & \\
& \text{Maslov} & 1 \\
& 1 & 2 & \text{Alexander} \\
& 1 & & \\
\end{array} \]

Characteristics of \(\hat{HFK} \):

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus; (Ozsváth-Szabó 2001)
- Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.

We will give a simple algorithm for computing \(HFK \)...

... and so the world’s simplest algorithm for knot genus!
What is Heegaard-Floer homology?

\[\dim(\hat{HFK}_i(K; s)) : \]

Maslov
\[\begin{array}{cc}
1 & 1 \\
1 & 2 \\
1 & 2 \\
1 & \\
\end{array} \]

Alexander

\[\begin{array}{c}
1 \\
1 -1 \\
1 -1 \\
1 \\
\end{array} \]

Characteristics of \(\hat{HFK} \):

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus; (Ozsváth-Szabó 2001)
- Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.

We will give a simple algorithm for computing \(HFK \)...

... and so the world’s simplest algorithm for knot genus!
What is Heegaard-Floer homology?

\[\dim(\hat{HFK}_i(K; s)) : \]

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus; (Ozsváth-Szabó 2001)
- Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.

We will give a simple algorithm for computing \(\hat{HFK} \)…

…and so the world’s simplest algorithm for knot genus!
What is Heegaard-Floer homology?

\[\dim(\widehat{HFK}_i(K; s)) : \]

Characteristics of \(\widehat{HFK} \):
- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus;
 (Ozsváth-Szabó 2001)
- Determines knot fibration;
 (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.

We will give a simple algorithm for computing \(HFK \)...

... and so the world’s simplest algorithm for knot genus!
What is Heegaard-Floer homology?

\[\dim(\hat{HFK}_i(K; s)) : \]

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus;
- Determines knot fibration;
- Defined via pseudo-holomorphic curves.

We will give a simple algorithm for computing \(\hat{HFK} \)...

...and so the world’s simplest algorithm for knot genus!
What is Heegaard-Floer homology?

\[\text{dim}(\hat{HFK}_i(K; s)) : \]

<table>
<thead>
<tr>
<th>Maslov</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of \(\hat{HFK} \):
- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus; (Ozsváth-Szabó 2001)
- Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.

We will give a simple algorithm for computing \(\hat{HFK} \)...

... and so the world’s simplest algorithm for knot genus!
What is Heegaard-Floer homology?

\[\dim(\hat{HFK}_i(K; s)) : \]

<table>
<thead>
<tr>
<th>(i)</th>
<th>(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>(s)</td>
</tr>
<tr>
<td>1 2</td>
<td>(\text{Maslov})</td>
</tr>
<tr>
<td>1 2</td>
<td>(\text{Alexander})</td>
</tr>
<tr>
<td>1 1</td>
<td>(\text{genus})</td>
</tr>
</tbody>
</table>

Characteristics of \(\hat{HFK} \):
- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus; (Ozsváth-Szabó 2001)
- Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.

We will give a simple algorithm for computing \(HFK \)...

... and so the world’s simplest algorithm for knot genus!
Setting: Grid diagrams

Grid diagram: square diagram with one X and one O per row and column.

Turn it into a knot: connect X to O in each column; O to X in each row. Cross vertical strands over horizontal.

Grid diagrams exist: take any diagram, rotate crossings so vertical crosses over horizontal.

The knot is unchanged under cyclic rotations:
Move top segment to bottom.
Setting: Grid diagrams

Grid diagram: square diagram with one X and one O per row and column.

Turn it into a knot: connect
 X to O in each column;
 O to X in each row.
Cross vertical strands over horizontal.

Grid diagrams exist: take any diagram, rotate crossings so vertical crosses over horizontal.

The knot is unchanged under cyclic rotations:
Move top segment to bottom.
Setting: Grid diagrams

Grid diagram: square diagram with one X and one O per row and column.

Turn it into a knot: connect
X to O in each column;
O to X in each row.
Cross vertical strands over horizontal.

Grid diagrams exist: take any diagram, rotate crossings so vertical crosses over horizontal.

The knot is unchanged under cyclic rotations:
Move top segment to bottom.
Computing the Alexander polynomial

We categorify the following formula:

\[\pm t^*(1 - t)^{n-1}\Delta(K; t) \]

▶ Make matrix of \(t^{-\text{winding \#}} \)
(with extra row/column of 1’s);

▶ det determines the Conway-Alexander polynomial \(\Delta \)
\((n = \text{size of diagram}; \text{here } 6) \)
Computing the Alexander polynomial

We categorify the following formula:

\[
\begin{vmatrix}
1 & 1 & 1 & t & t & t \\
1 & 1 & t^{-1} & 1 & t & t \\
1 & t & 1 & 1 & t & t \\
1 & t & t & t & t^2 & t \\
1 & t & t & t & t & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{vmatrix}
= \pm t^*(1 - t)^{n-1} \Delta(K; t)
\]

- Make matrix of \(t^{-\text{winding \#}} \)
 (with extra row/column of 1’s);

- \(\det \) determines the Conway-Alexander polynomial \(\Delta \)
 \((n = \text{size of diagram}; \text{here 6})\)
Outline

Introduction

► Computing HFK

Variants

Grid moves

Transverse knots
Computing \(HFK \): Chain complex \(\tilde{CK} \)

Define a chain complex \(\tilde{CK} \) over \(\mathbb{Z}/2 \).

- Generated by matchings between horizontal and vertical grid circles (as counted in \(\det \) for Alexander).
- Boundary \(\partial \) switches corners on empty rectangles:

Sum over all ways to switch SW-NE corners of an empty rectangle to NW-SE corners. (Empty means: no X’s, O’s, or other points in generator.)
Computing HFK: Chain complex \widetilde{CK}

Define a chain complex \widetilde{CK} over $\mathbb{Z}/2$.

- Generated by matchings between horizontal and vertical gridcircles (as counted in det for Alexander).

- Boundary ∂ switches corners on empty rectangles:

Sum over all ways to switch SW-NE corners of an empty rectangle to NW-SE corners. ($Empty$ means: no X’s, O’s, or other points in generator.)
Computing HFK: Chain complex \widetilde{CK}

Define a chain complex \widetilde{CK} over $\mathbb{Z}/2$.

- Generated by matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- Boundary ∂ switches corners on empty rectangles:

Sum over all ways to switch SW-NE corners of an empty rectangle to NW-SE corners. ($Empty$ means: no X’s, O’s, or other points in generator.)
Computing HFK: Chain complex \tilde{CK}

Define a chain complex \tilde{CK} over $\mathbb{Z}/2$.

- Generated by matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- Boundary ∂ switches corners on empty rectangles:

Sum over all ways to switch SW-NE corners of an empty rectangle to NW-SE corners. ($Empty$ means: no X's, O's, or other points in generator.)
Computing HFK: Chain complex \tilde{CK}

Define a chain complex \tilde{CK} over $\mathbb{Z}/2$.

- Generated by matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- Boundary ∂ switches corners on empty rectangles:

Sum over all ways to switch SW-NE corners of an empty rectangle to NW-SE corners. ($Empty$ means: no X's, O's, or other points in generator.)
Computing \textit{HFK}: Chain complex $\tilde{C}K$

Define a chain complex $\tilde{C}K$ over $\mathbb{Z}/2$.

- Generated by matchings between horizontal and vertical grid circles (as counted in det for Alexander).
- Boundary ∂ switches corners on \textit{empty rectangles}:

Sum over all ways to switch SW-NE corners of an empty rectangle to NW-SE corners.

(\textit{Empty} means: no X's, O's, or other points in generator.)
Computing \(HFK \): Chain complex \(\tilde{C}K \)

Define a chain complex \(\tilde{C}K \) over \(\mathbb{Z}/2 \).
- Generated by matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- Boundary \(\partial \) switches corners on empty rectangles:

\[
\begin{array}{c}
\text{\(\partial \) switches corners on empty rectangles:} \\
\hline
\end{array}
\]

Sum over all ways to switch SW-NE corners of an empty rectangle to NW-SE corners. (Empty means: no \(X \)'s, \(O \)'s, or other points in generator.)
Computing HFK: $\partial^2 = 0$

Each term in ∂^2 must have a mate:

- If rectangles are disjoint, take rectangles in either order.
- If rectangles share a corner, decompose the union in another way.
Computing \(HFK: \ \partial^2 = 0 \)

Each term in \(\partial^2 \) must have a mate:

- If rectangles are disjoint, take rectangles in either order.
- If rectangles share a corner, decompose the union in another way.
Computing HFK: $\partial^2 = 0$

Each term in ∂^2 must have a mate:

- If rectangles are disjoint, take rectangles in either order.
- If rectangles share a corner, decompose the union in another way.
Computing \(\text{HFK: } \partial^2 = 0 \)

Each term in \(\partial^2 \) must have a mate:

- If rectangles are disjoint, take rectangles in either order.
- If rectangles share a corner, decompose the union in another way.
Computing *HFK*: Gradings on \tilde{CK}

In the plane, $\mapsto\rightarrow$ removes one inversion.

For $A, B, C \subset \mathbb{R}^2$,

$$I(A, B) := \#\{a \square b \mid a \in A, b \in B\}$$

$$I(A - B, C) := I(A, C) - I(B, C)$$

For x a generator, \mathbb{X} the set of X’s, \mathcal{O} the set of O’s, the gradings are:

- **Maslov:** $M(x) := I(x - \mathcal{O}, x - \mathcal{O}) + 1$.

- **Alexander:**
 $$A(x) := \frac{1}{2}(I(x - \mathcal{O}, x - \mathcal{O}) - I(x - \mathbb{X}, x - \mathbb{X}) - (n - 1)).$$
Computing HFK: The answer

Theorem (Manolescu-Ozsváth-Sarkar)

For G a grid diagram for K,

$$H_*(\tilde{CK}(G)) \cong \widehat{HFK}(K) \otimes V \otimes^{n-1}$$

where $V := (\mathbb{Z}/2)_{0,0} \otimes (\mathbb{Z}/2)_{-1,-1}$.

Gillam and Baldwin used this to compute \widehat{HFK} for all knots with ≤ 11 crossings, including new values of knot genus.
Outline

Introduction

Computing \(\text{HFK} \)

▶ Variants

Grid moves

Transverse knots
Improving the answer

To remove factors of $V^\otimes n^{-1}$:

HFK^-: variant of \widehat{HFK}

Module over $\mathbb{Z}/2[U]$

U has degree $(-1, -2)$

Related to \widehat{HFK} by Univ. Coeff. Thm.

To compute: Add one U_i for each O

Complex $CK^-(G)$ over $\mathbb{Z}/2[U_1, \ldots, U_n]$

∂ counts rect. that contain only O's, weighted by corresponding U_i.

Theorem
(Manolescu-Ozsváth-Sarkar)

$$H_*(CK^-(G)) \simeq HFK^-(K),$$

Each U_i acts by U on the homology.
Improving the answer

To remove factors of $V \otimes^{n-1}$:

HFK^-: variant of \widehat{HFK}
Module over $\mathbb{Z}/2[U]
U$ has degree $(-1,-2)$
Related to \widehat{HFK} by Univ. Coeff. Thm.
To compute: Add one U_i for each O
Complex $CK^-(G)$ over $\mathbb{Z}/2[U_1, \ldots, U_n]$
∂ counts rects. that contain only O's, weighted by corresponding U_i.

Theorem
(Manolescu-Ozsváth-Sarkar)

$$H_*(CK^-(G)) \simeq HFK^-(K),$$

Each U_i acts by U on the homology.
Further variants

Can also:

- Allow rectangles to cross X’s to get a filtered complex, and
- Add signs (in essentially unique way) to work over $\mathbb{Z}[U]$.
Outline

Introduction

Computing HFK

Variants

- Grid moves

Transverse knots
Combinatorial invariance

Theorem (Manolescu-Ozsváth-Szábo-T.)

For any sequence of elementary grid moves, there is an explicit chain map exhibiting invariance of HFK^-.

Conjecture (Naturality or Functoriality)

The chain map depends only on isotopy class of sequence of elementary grid moves. That is, oriented mapping class group of K acts on $HFK^-(K)$.
Elementary grid moves

- **Cycle:** Move left column to right, or top row to bottom.
- **Commute:** Switch two non-interfering columns or rows.
- **Stabilize:** Introduce a notch at a corner.

(Cromwell ’95, Dynnikov ’06)
Elementary grid moves

- **Cycle**: Move left column to right, or top row to bottom.
- **Commute**: Switch two non-interfering columns or rows.
- **Stabilize**: Introduce a notch at a corner.

(Cromwell '95, Dynnikov '06)
Elementary grid moves

- **Cycle:** Move left column to right, or top row to bottom.
- **Commute:** Switch two non-interfering columns or rows.
- **Stabilize:** Introduce a notch at a corner.

(Cromwell ’95, Dynnikov ’06)
Elementary grid moves

- **Cycle**: Move left column to right, or top row to bottom.
- **Commute**: Switch two non-interfering columns or rows.
- **Stabilize**: Introduce a notch at a corner.

(Cromwell ’95, Dynnikov ’06)
Elementary grid moves

- **Cycle**: Move left column to right, or top row to bottom.
- **Commute**: Switch two non-interfering columns or rows.
- **Stabilize**: Introduce a notch at a corner.

Where’s Reidemeister III?

(Cromwell ’95, Dynnikov ’06)
Chain map for commutation counts pentagons

To construct a chain map for commutation, draw two versions of the middle gridcircle on a single diagram.

The chain map counts empty pentagons going between the two gridcircles.
Chain map for commutation counts pentagons

To construct a chain map for commutation, draw two versions of the middle gridcircle on a single diagram.

The chain map counts empty pentagons going between the two gridcircles.
To construct a chain map for commutation, draw two versions of the middle gridcircle on a single diagram.

The chain map counts empty pentagons going between the two gridcircles.
Outline

Introduction

Computing HFK

Variants

Grid moves

• Transverse knots
Contact structures and knots

A contact structure is a twisted 2-plane field:
if α is a 1-form defining the plane field, $\alpha \wedge d\alpha$ is positive.
(Warning: above contact structure is reversed.)

A Legendrian knot is a knot that is tangent to the plane field.
A transverse knot is a knot that is transverse to the plane field.

Transverse knots have one easy invariant, the self-linking number.

Question. Can we find transverse knots with the same classical knot type and self-linking number?
Ways to stabilize

Four ways to stabilize: Where to leave the empty square?

- Two diagonal opposite ways preserve Legendrian knot.
- Two adjacent ways preserve closed braid.
- Three ways preserve transverse knot.

Warning: The Legendrian/transverse knots are mirrored.
Ways to stabilize

Four ways to stabilize: Where to leave the empty square?

- Two diagonal opposite ways preserve Legendrian knot.
- Two adjacent ways preserve closed braid.
- Three ways preserve transverse knot.

Warning: The Legendrian/transverse knots are mirrored.
Ways to stabilize

Four ways to stabilize: Where to leave the empty square?

- Two diagonal opposite ways preserve Legendrian knot.
- Two adjacent ways preserve closed braid.
- Three ways preserve transverse knot.

Warning: The Legendrian/transverse knots are mirrored.
Ways to stabilize

Four ways to stabilize: Where to leave the empty square?

- Two diagonal opposite ways preserve Legendrian knot.
- Two adjacent ways preserve closed braid.
- Three ways preserve transverse knot.

Warning: The Legendrian/transverse knots are mirrored.
Ways to stabilize

Four ways to stabilize: Where to leave the empty square?

- Two diagonal opposite ways preserve Legendrian knot.
- Two adjacent ways preserve closed braid.
- Three ways preserve transverse knot.

Warning: The Legendrian/transverse knots are mirrored.
Ways to stabilize

Four ways to stabilize: Where to leave the empty square?

- Two diagonal opposite ways preserve Legendrian knot.
- Two adjacent ways preserve closed braid.
- Three ways preserve transverse knot.

Warning: The Legendrian/transverse knots are mirrored.
Ways to stabilize

Four ways to stabilize: Where to leave the empty square?

- Two diagonal opposite ways preserve Legendrian knot.
- Two adjacent ways preserve closed braid.
- Three ways preserve transverse knot.

Warning: The Legendrian/transverse knots are mirrored.
Transverse invariant: Definition

Definition
The canonical generator \(x^+(G) \) is given by the upper-right corner of each \(X \).

Facts:
- \(\partial x^+ = 0 \). (The \(X \)'s block any rectangles.)
- \([x^+(G)]\) maps to \([x^+(G')]\) under commutation and 3 out of 4 stabilizations.

Theorem (Ozsváth-Szabó-T.)
\([x^+(G)]\) in \(\text{HFK}^- (m(K)) \) is an invariant of the transverse knot represented by \(G \), up to quasi-isomorphism of filtered complexes.
Transverse invariant: Properties

Let G be a grid diagram representing the transverse knot T.

- $x^+(G)$ lives in bigrading $(s, 2s)$, where $s = \frac{sl(T)+1}{2}$.

- If T' differs from T by a positive stabilization, then $[x^+(T')] = U[x^+(T)]$.

- $[x^+(T)] \neq 0$ in HFK^-.

Corollary

For any transverse knot T of topological type K,

$$\frac{sl(T) + 1}{2} \leq \tau(K) \leq g_4(K)$$

where $\tau(K)$ is the largest Alexander grading which has an element which is not U torsion.
Transverse invariant: Examples

Let $\theta(T)$ (resp. $\hat{\theta}(T)$) be the transverse invariant in $HFK^-(m(K))$ (resp. $HFK(m(K))$).

$\hat{\theta}(T) = 0$ iff $\theta(T)$ is divisible by U.

Theorem (Ng-Ozsváth-T.)

The knots $m(10_{132})$ and $m(12n_{200})$ have two trans. reps. with same sl, one with $\hat{\theta} = 0$ and one with $\hat{\theta} \neq 0$.

This technique also works for the $(2,3)$ cable of the $(2,3)$ torus knot, originally found by Etnyre-Honda and Menasco-Matsuda.

Let δ_1 be the next differential in the spectral sequence on \hat{HFK}.

Theorem (Ng-Ozsváth-T.)

The pretzel knots $P(-4, -3, 3)$ and $P(-6, -3, 3)$ have two trans. reps. with same sl, one with $\delta_1 \circ \hat{\theta} = 0$ and one with $\delta_1 \circ \hat{\theta} \neq 0$.
Transverse invariant: Going further

Theorem (Ng-Ozsváth-T.)

If the Naturality Conjecture is true, then the twist knot 7_2 has two trans. reps. with the same sl, with $\hat{\theta}$ in different orbits of the mapping class group.

But θ is not a complete invariant: Birman and Menasco have classified closed 3-braids up to transverse isotopy. In their small examples of distinct transverse knots, θ lives in a 1-dimensional space, so cannot distinguish them.