Combinatorial link Floer homology and transverse knots

Dylan Thurston

Joint with/work of Sucharit Sarkar Ciprian Manolescu Peter Ozsváth Zoltán Szabó Lenhard Ng

math.GT/{0607691,0610559,0611841,0703446} http://www.math.columbia.edu/~dpt/speaking

June 10, 2007, Princeton, NJ

Combinatorial link Floer homology and transverse knots

Dylan Thurston

Joint with/work of Sucharit Sarkar Ciprian Manolescu Peter Ozsváth Zoltán Szabó Lenhard Ng

The invariant called knot Heegaard-Floer
Determines the genus—and more.

To distinguish transverse knots
(and it turns out there are lots!)

HFK opens up a new door.

June 10, 2007, Princeton, NJ

Outline

▶ Introduction

Computing HFK

Variants

Grid moves

Transverse knots

Characteristics of \widehat{HFK} :

- ▶ Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus; (Ozsváth-Szabó 2001)
- Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.

We will give a simple algorithm for computing *HFK*...

Characteristics of HFK:

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus;
- Determines knot fibration:
- ▶ Defined via pseudo-holomorphic

Characteristics of \widehat{HFK} :

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus; (Ozsváth-Szabó 2001)
- ► Determines knot fibration; (Ghiggini, Ni 2006)
- ▶ Defined via pseudo-holomorphic curves.

We will give a simple algorithm for computing *HFK*...

Characteristics of \widehat{HFK} :

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus; (Ozsváth-Szabó 2001)
- ► Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.

We will give a simple algorithm for computing *HFK*...

Characteristics of \widehat{HFK} :

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus; (Ozsváth-Szabó 2001)
- Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.

We will give a simple algorithm for computing *HFK*...

Characteristics of \widehat{HFK} :

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus; (Ozsváth-Szabó 2001)
- Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.

We will give a simple algorithm for computing *HFK*...

Characteristics of \widehat{HFK} :

- Bigraded;
- Euler characteristic is Conway-Alexander polynomial;
- Max grading is knot genus; (Ozsváth-Szabó 2001)
- Determines knot fibration; (Ghiggini, Ni 2006)
- Defined via pseudo-holomorphic curves.

We will give a simple algorithm for computing *HFK*...

Setting: Grid diagrams

Grid diagram: square diagram with one X and one O per row and column.

Turn it into a knot: connect X to O in each column; O to X in each row.

Cross vertical strands over horizontal.

Grid diagrams exist: take any diagram, rotate crossings so vertical crosses over horizontal.

The knot is unchanged under cyclic rotations:

Move top segment to bottom.

Setting: Grid diagrams

Grid diagram: square diagram with one X and one O per row and column.

Turn it into a knot: connect

X to O in each column;
O to X in each row.

Cross vertical strands over horizontal.

Grid diagrams exist: take any diagram, rotate crossings so vertical crosses over horizontal.

The knot is unchanged under *cyclic rotations*:

Move top segment to bottom.

Setting: Grid diagrams

Grid diagram: square diagram with one X and one O per row and column.

Turn it into a knot: connect

X to O in each column;

O to X in each row.

Cross vertical strands over horizontal.

Grid diagrams exist: take any diagram, rotate crossings so vertical crosses over horizontal.

The knot is unchanged under *cyclic rotations*:

Move top segment to bottom.

Computing the Alexander polynomial

We categorify the following formula:

- Make matrix of t^{-winding #} (with extra row/column of 1's);
- det determines the Conway-Alexander polynomial Δ (n = size of diagram; here 6)

Computing the Alexander polynomial

We categorify the following formula:

- Make matrix of t^{−winding #} (with extra row/column of 1's);
- ▶ det determines the Conway-Alexander polynomial ∆ (n = size of diagram; here 6)

Outline

Introduction

▶ Computing HFK

Variants

Grid moves

Transverse knots

Define a chain complex \widetilde{CK} over $\mathbb{Z}/2$.

- Generated by matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- ▶ Boundary ∂ switches corners on *empty rectangles*:

Define a chain complex \widetilde{CK} over $\mathbb{Z}/2$.

- Generated by matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- ▶ Boundary ∂ switches corners on *empty rectangles*:

Define a chain complex \widetilde{CK} over $\mathbb{Z}/2$.

- Generated by matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- ▶ Boundary ∂ switches corners on *empty rectangles*:

Define a chain complex \widetilde{CK} over $\mathbb{Z}/2$.

- Generated by matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- ▶ Boundary ∂ switches corners on *empty rectangles*:

Define a chain complex \widetilde{CK} over $\mathbb{Z}/2$.

- Generated by matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- ▶ Boundary ∂ switches corners on *empty rectangles*:

Define a chain complex \widetilde{CK} over $\mathbb{Z}/2$.

- Generated by matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- ▶ Boundary ∂ switches corners on *empty rectangles*:

Define a chain complex \widetilde{CK} over $\mathbb{Z}/2$.

- Generated by matchings between horizontal and vertical gridcircles (as counted in det for Alexander).
- ▶ Boundary ∂ switches corners on *empty rectangles*:

- If rectangles are disjoint, take rectangles in either order.
- If rectangles share a corner, decompose the union in another way.

- If rectangles are disjoint, take rectangles in either order.
- If rectangles share a corner, decompose the union in another way.

- If rectangles are disjoint, take rectangles in either order.
- If rectangles share a corner, decompose the union in another way.

- If rectangles are disjoint, take rectangles in either order.
- If rectangles share a corner, decompose the union in another way.

Computing HFK: Gradings on \widetilde{CK}

In the plane,

removes one inversion.

For $A, B, C \subset \mathbb{R}^2$.

$$\mathcal{I}(A,B) := \#\{ a \square^b \mid a \in A, b \in B \}$$
$$\mathcal{I}(A-B,C) := \mathcal{I}(A,C) - \mathcal{I}(B,C)$$

For **x** a generator, \mathbb{X} the set of X's, \mathbb{O} the set of O's, the gradings are:

- ▶ Maslov: $M(\mathbf{x}) := \mathcal{I}(\mathbf{x} \mathbb{O}, \mathbf{x} \mathbb{O}) + 1$.
- ► Alexander: $A(\mathbf{x}) := \frac{1}{2} (\mathcal{I}(\mathbf{x} \mathbb{O}, \mathbf{x} \mathbb{O}) \mathcal{I}(\mathbf{x} \mathbb{X}, \mathbf{x} \mathbb{X}) (n-1)).$

Computing *HFK*: The answer

Theorem (Manolescu-Ozsváth-Sarkar)

For G a grid diagram for K,

$$H_*(\widetilde{\mathit{CK}}(G)) \simeq \widehat{\mathit{HFK}}(K) \otimes V^{\otimes n-1}$$

where $V := (\mathbb{Z}/2)_{0,0} \otimes (\mathbb{Z}/2)_{-1,-1}$.

Gillam and Baldwin used this to compute $\widehat{\mathit{HFK}}$ for all knots with ≤ 11 crossings, including new values of knot genus.

Outline

Introduction

Computing HFK

▶ Variants

Grid moves

Transverse knots

Improving the answer

To remove factors of $V^{\otimes n-1}$:

 HFK^- : variant of \widehat{HFK} Module over $\mathbb{Z}/2[U]$ U has degree (-1,-2)Related to \widehat{HFK} by Univ. Coeff. Thm.

To compute: Add one U_i for each O

Complex $CK^-(G)$ over $\mathbb{Z}/2[U_1, \ldots, U_n]$ ∂ counts rects. that contain only O's, weighted by corresponding U_i .

Theorem (Manolescu-Ozsváth-Sarkar)

$$H_*(CK^-(G)) \simeq HFK^-(K),$$

Each U_i acts by U on the homology.

Improving the answer

To remove factors of $V^{\otimes n-1}$:

 HFK^- : variant of \widehat{HFK} Module over $\mathbb{Z}/2[U]$ U has degree (-1,-2)Related to \widehat{HFK} by Univ. Coeff. Thm.

To compute: Add one U_i for each O

Complex $CK^-(G)$ over $\mathbb{Z}/2[U_1,\ldots,U_n]$ ∂ counts rects. that contain only O's, weighted by corresponding U_i .

Theorem (Manolescu-Ozsváth-Sarkar)

$$H_*(CK^-(G)) \simeq HFK^-(K),$$

Each U_i acts by U on the homology.

Further variants

Can also:

- ▶ Allow rectangles to cross X's to get a filtered complex, and
- ▶ Add signs (in essentially unique way) to work over $\mathbb{Z}[U]$.

Outline

Introduction

Computing HFK

Variants

▶ Grid moves

Transverse knots

Combinatorial invariance

Theorem (Manolescu-Ozsváth-Szábo-T.)

For any sequence of elementary grid moves, there is an explicit chain map exhibiting invariance of HFK^- .

Conjecture (Naturality or Functoriality)

The chain map depends only on isotopy class of sequence of elementary grid moves. That is, oriented mapping class group of K acts on $HFK^-(K)$.

Elementary grid moves

- ► Cycle: Move left column to right, or top row to bottom.
- ► **Commute:** Switch two non-interfering columns or rows.
- Stabilize: Introduce a notch at a corner

- **Cycle:** Move left column to right, or top row to bottom.
- ► **Commute:** Switch two non-interfering columns or rows.
- Stabilize: Introduce a notch at a corner

- **Cycle:** Move left column to right, or top row to bottom.
- ▶ **Commute:** Switch two non-interfering columns or rows.
- ► Stabilize: Introduce a notch at a corner.

- **Cycle:** Move left column to right, or top row to bottom.
- **Commute:** Switch two non-interfering columns or rows.
- ► Stabilize: Introduce a notch at a corner.

(Cromwell '95, Dynnikov '06)

- ▶ Cycle: Move left column to right, or top row to bottom.
- ► **Commute:** Switch two non-interfering columns or rows.
- ▶ Stabilize: Introduce a notch at a corner.

Where's Reidemeister III?

(Cromwell '95, Dynnikov '06)

Chain map for commutation counts pentagons

To construct a chain map for commutation, draw two versions of the middle gridcircle on a single diagram.

The chain map counts empty pentagons going between the two gridcircles.

Chain map for commutation counts pentagons

To construct a chain map for commutation, draw two versions of the middle gridcircle on a single diagram.

The chain map counts empty pentagons going between the two gridcircles.

Chain map for commutation counts pentagons

To construct a chain map for commutation, draw two versions of the middle gridcircle on a single diagram.

The chain map counts empty pentagons going between the two gridcircles.

Outline

Introduction

Computing HFK

Variants

Grid moves

► Transverse knots

Contact structures and knots

A contact structure is a twisted 2-plane field: if α is a 1-form defining the plane field, $\alpha \wedge d\alpha$ is positive. (Warning: above contact structure is reversed.)

A *Legendrian knot* is a knot that is tangent to the plane field. A *transverse knot* is a knot that is transverse to the plane field.

Transverse knots have one easy invariant, the self-linking number.

Question. Can we find transverse knots with the same classical knot type and self-linking number?

Four ways to stabilize: Where to leave the empty square?

- ► Two diagonal opposite ways preserve Legendrian knot.
- ► Two adjacent ways preserve closed braid.
- ► Three ways preserve transverse knot.

Four ways to stabilize: Where to leave the empty square?

- Two diagonal opposite ways preserve Legendrian knot.
- Two adjacent ways preserve closed braid.
- ► Three ways preserve transverse knot.

Four ways to stabilize: Where to leave the empty square?

- ► Two diagonal opposite ways preserve Legendrian knot.
- Two adjacent ways preserve closed braid.
- ► Three ways preserve transverse knot.

Four ways to stabilize: Where to leave the empty square?

- ► Two diagonal opposite ways preserve Legendrian knot.
- Two adjacent ways preserve closed braid.
- ► Three ways preserve transverse knot.

Four ways to stabilize: Where to leave the empty square?

- ► Two diagonal opposite ways preserve Legendrian knot.
- ► Two adjacent ways preserve closed braid.
- ► Three ways preserve transverse knot.

Four ways to stabilize: Where to leave the empty square?

- ► Two diagonal opposite ways preserve Legendrian knot.
- Two adjacent ways preserve closed braid.
- ► Three ways preserve transverse knot.

Four ways to stabilize: Where to leave the empty square?

- ► Two diagonal opposite ways preserve Legendrian knot.
- Two adjacent ways preserve closed braid.
- ► Three ways preserve transverse knot.

Transverse invariant: Definition

Definition

The canonical generator $\mathbf{x}^+(G)$ is given by the upper-right corner of each X.

Facts:

- ▶ $\partial \mathbf{x}^+ = 0$. (The X's block any rectangles.)
- ▶ [x⁺(G)] maps to [x⁺(G')] under commutation and 3 out of 4 stabilizations.

Theorem (Ozsváth-Szabó-T.)

 $[\mathbf{x}^+(G)]$ in HFK $^-(m(K))$ is an invariant of the transverse knot represented by G, up to quasi-isomorphism of filtered complexes.

Transverse invariant: Properties

Let G be a grid diagram representing the transverse knot T.

- ▶ $\mathbf{x}^+(G)$ lives in bigrading (s, 2s), where $s = \frac{sl(T)+1}{2}$.
- ▶ If T' differs from T by a positive stabilization, then $[\mathbf{x}^+(T')] = U[\mathbf{x}^+(T)].$
- \triangleright [$\mathbf{x}^+(\mathcal{T})$] \neq 0 in HFK^- .

Corollary

For any transverse knot T of topological type K,

$$\frac{sl(T)+1}{2}\leq \tau(K)\leq g_4(K)$$

where $\tau(K)$ is the largest Alexander grading which has an element which is not U torsion.

Transverse invariant: Examples

Let $\theta(\mathcal{T})$ (resp. $\widehat{\theta}(\mathcal{T})$) be the transverse invariant in $HFK^-(m(K))$ (resp. $\widehat{HFK}(m(K))$). $\widehat{\theta}(\mathcal{T}) = 0$ iff $\theta(\mathcal{T})$ is divisible by U.

Theorem (Ng-Ozsváth-T.)

The knots $m(10_{132})$ and $m(12n_{200})$ have two trans. reps. with same sl, one with $\widehat{\theta}=0$ and one with $\widehat{\theta}\neq 0$.

This technique also works for the (2,3) cable of the (2,3) torus knot, originally found by Etnyre-Honda and Menasco-Matsuda.

Let δ_1 be the next differential in the spectral sequence on \widehat{HFK} .

Theorem (Ng-Ozsváth-T.)

The pretzel knots P(-4, -3, 3) and P(-6, -3, 3) have two trans. reps. with same sl, one with $\delta_1 \circ \widehat{\theta} = 0$ and one with $\delta_1 \circ \widehat{\theta} \neq 0$.

Transverse invariant: Going further

Theorem (Ng-Ozsváth-T.)

If the Naturality Conjecture is true, then the twist knot 7_2 has two trans. reps. with the same sl, with $\widehat{\theta}$ in different orbits of the mapping class group.

But θ is not a complete invariant: Birman and Menasco have classified closed 3-braids up to transverse isotopy. In their small examples of distinct transverse knots, θ lives in a 1-dimensional space, so cannot distinguish them.