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Let K be a knot in S3.

Its crossing number c(K) is the minimal number of crossings in a
diagram for K.

If K1 and K2 are oriented knots, their connected sum K1!K2 is
defined by:

K1 K2 K  # K1 2



Old conjecture: c(K1!K2) = c(K1) + c(K2).

• c(K1!K2) ≤ c(K1) + c(K2) is trivial.

• True when K1 and K2 are alternating [Kauffman], [Murasugi],
[Thistlethwaite] - follows from the fact that a reduced alternating
diagram has minimal crossing number, which is proved using the
Jones polynomial.

• Very little is known in general.

Theorem: [L]

c(K1) + c(K2)
281

≤ c(K1!K2) ≤ c(K1) + c(K2).



Theorem: [L]

c(K1) + . . . + c(Kn)
281

≤ c(K1! . . . !Kn) ≤ c(K1) + . . . + c(Kn).

The advantage of this more general formulation is:

We may assume that each Ki is prime.

Write Ki = Ki,1! . . . !Ki,m(i).

Assuming the theorem for a sum of prime knots:

c(K1! . . . !Kn) ≥
∑n

i=1

∑m(i)
j=1 c(Ki,j)
281

≥
∑n

i=1 c(Ki)
281

.

We may also assume that each Ki is non-trivial.



Distant unions

The distant union K1 # . . . # Kn of knots K1, . . . ,Kn:

K1 K2

Lemma: c(K1 # . . . # Kn) = c(K1) + . . . + c(Kn).



Lemma: c(K1 # . . . # Kn) = c(K1) + . . . + c(Kn).

Proof:

(≤): Use minimal crossing number diagrams for K1, . . . ,Kn to
construct a diagram for K1 # . . . # Kn.

(≥): Let D be a minimal crossing number diagram of K1 # . . .#Kn.

Use this to construct a diagram Di of Ki by discarding the remaining
components. Then

c(K1 # . . . # Kn) = c(D)

≥ c(D1) + . . . + c(Dn)

≥ c(K1) + . . . + c(Kn).



Strategy for the main theorem

Let D be a minimal crossing number diagram of K1! . . . !Kn.

Use this to construct a diagram D′ for K1 # . . . # Kn such that
c(D′) ≤ 281 c(D). Then

c(K1) + . . . + c(Kn) = c(K1 # . . . # Kn)

≤ c(D′)

≤ 281 c(D)

= 281 c(K1! . . . !Kn).



Creating K1 # . . . # Kn from K1! . . . !Kn

Let K = K1! . . . !Kn.
Let X = exterior of K.
Let A1, . . . , An = the following annuli:

A1

1

An

nK  # ... # K



Creating K1 # . . . # Kn from K1! . . . !Kn

Let K = K1! . . . !Kn.
Let X = exterior of K.
Let A1, . . . , An = the following annuli:

A1 An

Remove the sub-arcs of K running from Ai to Ai+1 (mod n).



Creating K1 # . . . # Kn from K1! . . . !Kn

Let K = K1! . . . !Kn.
Let X = exterior of K.
Let A1, . . . , An = the following annuli:

n1

A1 An

Remove the sub-arcs of K running from Ai to Ai+1 (mod n).

Add an arc αi on Ai, running between the two boundary components.

(In fact, we do something a bit more complicated than this.)



Creating D′ from D

1

An

nK  # ... # K

D

D may be complicated.



Creating D′ from D
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1

An

nK  # ... # K

D may complicated.

Hence, the annuli A1 ∪ . . . ∪ An might be embedded in a ‘twisted
way’



Creating D′ from D

n1 2

A1 An

D may complicated.

Hence, the annuli A1 ∪ . . . ∪ An might be embedded in a ‘twisted
way’

So, when we add the arcs α1 ∪ . . . ∪ αn, we may introduce new
crossings.



We need to control the arcs α1 ∪ . . . ∪ αn.

So, we need to control how the annuli Ai are embedded in X (the
exterior of K).

For this, we use normal surface theory.

This requires a triangulation of X.

In fact, we’ll use a handle structure.



A handle structure on X from D

0-handle

1-handles

K K

Place four 0-handles near each crossing.



A handle structure from D

0-handle

1-handles

K K

Place four 0-handles near each crossing.

Add four 1-handles.



A handle structure from D

0-handle

1-handles

K K

Place four 0-handles near each crossing.

Add four 1-handles.

Near each edge of the diagram, add two 1-handles.



K K

Add a 2-handle at each crossing.



K K

Add a 2-handle in each region.



K K

Add 2-handles along each ‘over-arc’ and ‘under-arc’ of the diagram.

Finally, add 3-handles above and below the diagram.



The local picture near each 0-handle

We now have a handle structure on X, the exterior of K.

Let A = A1 ∪ . . . ∪ An.

We want to ambient isotope A into normal form ...



Normal surface theory

Because A is incompressible and ∂-incompressible, we may isotope
it into normal form.

ie. each component of intersection with the handles looks like:

0-handle 1-handle 2-handle

In addition, each component of intersection with the 0-handles
satisfies certain conditions.

−→ only finitely many normal ‘disc types’.



An example of a normal disc type:



Recall that we must add an embedded arc αi on each annulus Ai,
running between the two boundary components.

Any such arc will do.

We may arrange that

• α1 ∪ . . . ∪ αn misses the 2-handles

• respects the product structure on the 1-handles.

Pick αi so that it has minimal length (subject also to an extra
condition).

This implies that it intersects each normal disc in at most one arc.



The diagram D′

Inserting the arcs α = α1 ∪ . . . ∪ αn gives a diagram D′ for
K1 # . . . # Kn:

K K

closely follows
a subset of K

K-K crossing-K crossings

-  crossings= D'

Its crossings come in 3 types.



What we’re aiming for

Inserting the arcs α = α1 ∪ . . . ∪ αn gives a diagram D′ for
K1 # . . . # Kn:

K K

one of finitely
many tangles:

closely follows
a subset of K

bounded number
of parallel arcs

K-K crossing-K crossings

-  crossings

= D'



Proof of the main theorem

D′ has 3 types of crossings:

K − K crossings ≤ c(D)
α − K crossings ≤ 4c(D) × 6
α − α crossings ≤ 4c(D) × 64

TOTAL ≤ 281 c(D)



Wishful thinking: We’d be done if we could arrange that A

intersected each handle in one of finitely many possible
configurations.

But this probably isn’t possible.

However, there are only finitely many configurations of disc types.

Key Claim 1. α can be chosen to run over at most 2 normal discs
of each disc type in each handle.

This ⇒ α intersects each handle in one of finitely many possible
configurations, and we’re done.



Parallelity bundles

What if a handle contains more than one copy of a normal disc?
Then, any two such discs are normally parallel.

Between any two normally parallel adjacent discs, there is a copy of
D2 × I.

~=

D  x I2

These patch together to form an I-bundle embedded in the exterior
of A, called a ‘parallelity bundle’ B.



Some terminology

Cut X along the annuli A.

Throw away the component with a copy of A in its boundary.

Let M be the rest.

Then M = X1 # . . . # Xn, where each Xi is the exterior of Ki.

Let S be the copy of A in M .

M inherits a handle structure from the handle structure on X.

The space between two adjacent normal discs of A becomes a
‘parallelity handle’ of M .



Claim 2. We may pick α so that it misses the parallelity bundle B.

This ⇒ Claim 1, because if a normal disc of A has parallel copies on
both sides, it lies in a parallelity handle of M .

In fact, it is convenient to enlarge B to a larger I-bundle B′.

We’ll arrange for α to miss B′ and hence B.



A generalised parallelity bundle

is a 3-dimensional submanifold B′ of (M,S) such that

• B′ is an I-bundle over a compact surface F ;

• the ∂I-bundle is B′ ∩ S;

• B′ is a union of handles;

• any handle in B′ that intersects the I-bundle over ∂F is a parallelity
handle;

• cl(M − B′) inherits a handle structure.

The ∂I-bundle is the horizontal boundary of B′.
The I-bundle over ∂F is the vertical boundary.



Claim 3: Possibly after modifying its handle structure, (M,S)
contains a generalised parallelity bundle B′ such that:

• B′ contains every parallelity handle of M ;

• B′ is a collection of I-bundles over discs.

The horizontal boundary is a union of discs in the annuli A.

⇒ it cannot separate the two components of ∂Ai.

⇒ α can be chosen to miss B′

⇒ Claim 2.



How to prove Claim 3

Recall: B is the parallelity bundle.

Enlarge this to a maximal generalised parallelity bundle B′.

Claim 4: The ∂I-bundle of a maximal generalised parallelity bundle
is incompressible.

Main idea of proof:

If the ∂I-bundle were compressible, then we would (probably) get an
arrangement like:



componentcomponent of B

of B'

M

' possible other
with compressible

horizontal boundary

−→ Enlarge B′ over (disc)×I region.

Contradicts maximality of B′. Claim 4.

Because the horizontal boundary of B′ is an incompressible
subsurface of A, it is a union of discs and annuli parallel to core
curves.



How to deal with annular components of the ∂I-bundle

The corresponding component of B′ is an I-bundle over an annulus.

Its vertical boundary is two incompressible annuli in M .

Since each Ki is prime, these are boundary parallel in M .

component
of B'

remove

annulus x I boundary
of M

Keep applying this sort of modification to the handle structure −→
Claim 3. Main Theorem.



Satellite knots

satellite knot K companion knot L

Conjecture: c(K) ≥ c(L).

Theorem: [L] There is a universal computable constant N ≥ 1 with
following property. If K is a non-trivial satellite knot, with
companion knot L, then c(K) ≥ c(L)/N .


