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Three-dimensional affine space forms

I When can a group G act on Euclidean space with quotient a
manifold?

I When G acts by isometries, it is a finite extension of a free
abelian group, and the various actions are easily classified.

I However when the action of G is only assumed to be affine,
the classification is still open.

I The most interesting cases were discovered by Margulis in the
early 1980’s and occur when the quotient M is noncompact
and G is a nonabelian free group. G acts by Lorentz isometries
of E

2+1 and the clasification closely relates to hyperbolic
structures on noncompact surfaces.
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Milnor’s Question (1977)

“On fundamental groups of complete affinely flat manifolds” (Adv. Math. 25, 178–187.)

Can a nonabelian free group act properly, freely and discretely by
affine transformations on R

n?

If not, a complete affine 3-manifold is an iterated fibration where
the fibers are either cells or circles. In particular every compact
3-manifold quotient R

3/Γ, where Γ ⊂ Aff(R3) is finitely covered by
a torus bundle over S1, that is, a geometric 3-manifold of type
Euc, Nil or Sol.

William M. Goldman University of Maryland
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Evidence?

Milnor offers the following results as possible “evidence” for a
negative answer to this question.

I A connected Lie group admits a proper affine action ⇐⇒ it is
amenable (compact-by-solvable).

I Every virtually polycyclic group admits a proper affine action.
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Idea for a counterexample

I Clearly a geometric problem, since free groups act properly by
isometries on H3 (Schottky 1907), and hence by
diffeomorphisms on E

3

I — but these actions are not affine.

I Milnor suggests:
I “Start with a free discrete subgroup of O(2, 1) and add

translation components to obtain a group of affine
transformations which acts freely. However it seems difficult
to decide whether the resulting group action is properly
discontinuous.”
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A Schottky group
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I Generators g1, g2 pair half-spaces A−

i
−→ H2 \ A+
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.

I g1, g2 freely generate discrete group.
I Action proper with fundamental domain H2 \
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A±
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Margulis’s examples

In the early 1980’s, in trying to answer Milnor’s question
negatively, Margulis proved that nonabelian free groups do admit
proper affine actions on R

3.
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Flat Lorentz manifolds

Suppose that Γ ⊂ Aff(R3) acts properly and is not polycyclic.

I Let Γ
L
−→ GL(3, R) be the linear holonomy homomorphism.

Then:
I L(Γ) is (conjugate to) a discrete subgroup of O(2, 1);
I L is injective. (Fried-Goldman 1983).

I Thus the associated complete hyperbolic surface.

Σ := H2/L(Γ)

is homotopy-equivalent to M = E
2,1/Γ.

I Σ is not compact (Mess 1990).

I Thus Γ must be a free group and Milnor’s construction is the
only way to construct examples.

William M. Goldman University of Maryland
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Cyclic groups
I Most elements γ ∈ Γ are boosts, affine deformations of

hyperbolic elements of O(2, 1). A fundamental domain is the
slab bounded by two parallel planes.

I Each such element leaves invariant a unique (spacelike) line,
whose image in E

2,1/Γ is a closed geodesic. Just as for
hyperbolic surfaces, most loops are freely homotopic to closed
geodesics.

A boost identifying two parallel planes
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Slabs don’t work!

I In H2, the half-spaces A±

i
are disjoint;

I Their complement is a fundamental domain.

I In affine space, half-spaces disjoint ⇒ parallel!

I Complements of slabs always intersect,

I Unsuitable for building Schottky groups!
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Crooked Planes (Drumm 1990)

I Crooked Planes: Flexible polyhedral surfaces bound
fundamental polyhedra for free affine groups.

I Two null half-planes connected by lines inside light-cone.
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Crooked polyhedron for a boost

I Start with a hyperbolic slab in H2.
I Extend into light cone in E

2,1;
I Extend outside light cone in E

2,1;
I Action proper except at the origin and two null half-planes.
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Images of crooked planes under a linear cyclic group

The resulting tesselation for a linear boost.
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Images of crooked planes under an affine deformation

I Adding translations frees up the action
I — which is now proper on all of E

2,1.
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Linear action of Schottky group

Crooked polyhedra tile H2 for subgroup of O(2, 1).
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Affine action of Schottky group

Carefully chosen affine deformation acts properly on E
2,1.
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The linear part

I Mess’s theorem is the only obstruction for the existence of a
proper affine deformation:

I (Drumm) Let Σ be a noncompact complete hyperbolic
surface. Then its holonomy group admits a proper affine
deformation and M3 is a solid handlebody.

I Proof: Extend Schottky fundamental domains for Σ to
crooked fundamental domains on E

2,1.

I Characterize all proper affine deformations of a
non-cocompact Fuchsian group

William M. Goldman University of Maryland
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Affine action of modular group

Proper affine deformations exist even for lattices in O(2, 1)
(Drumm).
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Margulis’s invariant

∀ affine deformation Γ
ρ

−→ Isom(E2,1)0, ∃ fixed eigenvector x0
γ

for
L(γ) such that

Γ
αu−→ R

γ 7−→ 〈u(γ), x0
γ
〉

satisfies:

I αu is a class function on Γ;

I αu(γ
n) = |n|αu(γ);

I When ρ acts properly, |αu(γ)| is the Lorentzian length of the
closed geodesic in M3 corresponding to γ;

I If ρ acts properly, either αu(γ) > 0 ∀γ 6= 1 or αu(γ) < 0
∀γ 6= 1.

William M. Goldman University of Maryland

Complete affine 3-manifolds and hyperbolic surfaces



university-logo

Margulis’s invariant

∀ affine deformation Γ
ρ

−→ Isom(E2,1)0, ∃ fixed eigenvector x0
γ

for
L(γ) such that

Γ
αu−→ R

γ 7−→ 〈u(γ), x0
γ
〉

satisfies:

I αu is a class function on Γ;

I αu(γ
n) = |n|αu(γ);

I When ρ acts properly, |αu(γ)| is the Lorentzian length of the
closed geodesic in M3 corresponding to γ;

I If ρ acts properly, either αu(γ) > 0 ∀γ 6= 1 or αu(γ) < 0
∀γ 6= 1.

William M. Goldman University of Maryland

Complete affine 3-manifolds and hyperbolic surfaces



university-logo

Margulis’s invariant

∀ affine deformation Γ
ρ

−→ Isom(E2,1)0, ∃ fixed eigenvector x0
γ

for
L(γ) such that

Γ
αu−→ R

γ 7−→ 〈u(γ), x0
γ
〉

satisfies:

I αu is a class function on Γ;

I αu(γ
n) = |n|αu(γ);

I When ρ acts properly, |αu(γ)| is the Lorentzian length of the
closed geodesic in M3 corresponding to γ;

I If ρ acts properly, either αu(γ) > 0 ∀γ 6= 1 or αu(γ) < 0
∀γ 6= 1.

William M. Goldman University of Maryland

Complete affine 3-manifolds and hyperbolic surfaces



university-logo

Margulis’s invariant

∀ affine deformation Γ
ρ

−→ Isom(E2,1)0, ∃ fixed eigenvector x0
γ

for
L(γ) such that

Γ
αu−→ R

γ 7−→ 〈u(γ), x0
γ
〉

satisfies:

I αu is a class function on Γ;

I αu(γ
n) = |n|αu(γ);

I When ρ acts properly, |αu(γ)| is the Lorentzian length of the
closed geodesic in M3 corresponding to γ;

I If ρ acts properly, either αu(γ) > 0 ∀γ 6= 1 or αu(γ) < 0
∀γ 6= 1.

William M. Goldman University of Maryland

Complete affine 3-manifolds and hyperbolic surfaces



university-logo

Margulis’s invariant

∀ affine deformation Γ
ρ

−→ Isom(E2,1)0, ∃ fixed eigenvector x0
γ

for
L(γ) such that

Γ
αu−→ R

γ 7−→ 〈u(γ), x0
γ
〉

satisfies:

I αu is a class function on Γ;

I αu(γ
n) = |n|αu(γ);

I When ρ acts properly, |αu(γ)| is the Lorentzian length of the
closed geodesic in M3 corresponding to γ;

I If ρ acts properly, either αu(γ) > 0 ∀γ 6= 1 or αu(γ) < 0
∀γ 6= 1.

William M. Goldman University of Maryland

Complete affine 3-manifolds and hyperbolic surfaces



university-logo

Margulis’s invariant

∀ affine deformation Γ
ρ

−→ Isom(E2,1)0, ∃ fixed eigenvector x0
γ

for
L(γ) such that

Γ
αu−→ R

γ 7−→ 〈u(γ), x0
γ
〉

satisfies:

I αu is a class function on Γ;

I αu(γ
n) = |n|αu(γ);

I When ρ acts properly, |αu(γ)| is the Lorentzian length of the
closed geodesic in M3 corresponding to γ;

I If ρ acts properly, either αu(γ) > 0 ∀γ 6= 1 or αu(γ) < 0
∀γ 6= 1.

William M. Goldman University of Maryland

Complete affine 3-manifolds and hyperbolic surfaces



university-logo

Affine deformations
I Start with a Fuchsian group Γ0 ⊂ O(2, 1). An affine

deformation is a representation ρ = ρu with image Γ = Γu

Isom(R2,1)

L

��
Γ0

ρ

::
u

u

u

u

u
�

�

// O(2, 1)

determined by its translational part

u ∈ Z 1(Γ0, R
2,1).

I Conjugating ρ by a translation ⇐⇒ adding a coboundary to u.
I Translational conjugacy classes of affine deformations of Γ0

form the vector space H (Γ0, R
2,1).

William M. Goldman University of Maryland

Complete affine 3-manifolds and hyperbolic surfaces



university-logo

Affine deformations
I Start with a Fuchsian group Γ0 ⊂ O(2, 1). An affine

deformation is a representation ρ = ρu with image Γ = Γu

Isom(R2,1)

L

��
Γ0

ρ

::
u

u

u

u

u
�

�

// O(2, 1)

determined by its translational part

u ∈ Z 1(Γ0, R
2,1).

I Conjugating ρ by a translation ⇐⇒ adding a coboundary to u.
I Translational conjugacy classes of affine deformations of Γ0

form the vector space H (Γ0, R
2,1).

William M. Goldman University of Maryland

Complete affine 3-manifolds and hyperbolic surfaces



university-logo

Affine deformations
I Start with a Fuchsian group Γ0 ⊂ O(2, 1). An affine

deformation is a representation ρ = ρu with image Γ = Γu

Isom(R2,1)

L

��
Γ0

ρ

::
u

u

u

u

u
�

�

// O(2, 1)

determined by its translational part

u ∈ Z 1(Γ0, R
2,1).

I Conjugating ρ by a translation ⇐⇒ adding a coboundary to u.
I Translational conjugacy classes of affine deformations of Γ0

form the vector space H (Γ0, R
2,1).

William M. Goldman University of Maryland

Complete affine 3-manifolds and hyperbolic surfaces



university-logo

Affine deformations
I Start with a Fuchsian group Γ0 ⊂ O(2, 1). An affine

deformation is a representation ρ = ρu with image Γ = Γu

Isom(R2,1)

L

��
Γ0

ρ

::
u

u

u

u

u
�

�

// O(2, 1)

determined by its translational part

u ∈ Z 1(Γ0, R
2,1).

I Conjugating ρ by a translation ⇐⇒ adding a coboundary to u.
I Translational conjugacy classes of affine deformations of Γ0

form the vector space H (Γ0, R
2,1).

William M. Goldman University of Maryland

Complete affine 3-manifolds and hyperbolic surfaces



university-logo

Deformations of hyperbolic structures

I [u] corresponds to an infinitesimal deformation Σt of the
hyperbolic structure on Σ.

I Margulis’s invariant αu(γ) represents the derivative

d

dt

∣

∣

∣

∣

t=0

`Σt
(γ)

where `Σt
(γ) is the length of the closed geodesic on Σt

corresponding to γ.

I Γu is proper =⇒ all closed geodesics lengthen (or shorten)
under the deformation Σt .

I The converse is true ⇐⇒ Σ is homeomorphic to a three-holed
sphere, one-holed Klein bottle or two-holed projective plane.
(Charette-Drumm-Goldman-Jones)
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Σ is a three-holed sphere

I For each γ ∈ Γ0, the functional

H1(Γ0, R
2,1)

α
γ

−→ R

[u] 7−→ αu(γ)

detects the rate of lengthening of γ under the deformation
corresponding to [u].

I If αγ(u) > 0 ∀γ ⊂ ∂Σ, then a crooked fundamental domain
exists and Γu is proper.

I M3 is a solid handlebody of genus two.

I If each component of ∂Σ lengthens, then every curve
lengthens.

William M. Goldman University of Maryland

Complete affine 3-manifolds and hyperbolic surfaces
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Lines defined by the linear functionals α
γ

The triangle is bounded by the lines corresponding to γ ⊂ ∂Σ.
Its interior parametrizes proper affine deformations.
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Extension of Margulis’s invariant to geodesic currents and
measured laminations

I αu extends from a class function on Γ0 to a function defined
on the convex set C(Σ) of geodesic currents on Σ:

I (Goldman-Labourie-Margulis) ∃ continuous biaffine map

C(Σ) × H1(Γ0, R
2,1)

Ψ
−→ R.

I If γ ∈ Γ0, and µ is the corresponding geodesic current, then

Ψ(µ, [u]) =
α[u](γ)

`Σ(γ)

where `Σ(γ) is the length of the closed geodesic on Σ
corresponding to γ.

I Γ[u] acts properly on E
2,1 ⇐⇒ Ψ(µ, [u]) 6= 0 for all µ ∈ C(Σ).

William M. Goldman University of Maryland
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The Deformation Space

I The set of proper affine deformations of Γ0 is the open convex
cone in H1(Γ0, R

2,1) defined by the functionals

[u]
α

µ

7−→ Ψ(µ, [u])

for µ ∈ C(Σ).

I Sufficient to test measured geodesic laminations µ. (Thurston
“Minimal stretch maps...”)

I Proper affine deformations correspond to infinitesimal
deformations of Σ which lengthen all measured geodesic
laminations.

William M. Goldman University of Maryland
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Linear functionals α
γ when Σ is a one-holed torus

The properness region is bounded by infinitely many intervals, each
corresponding to a simple nonseparating loop on Σ. Boundary
points lie on intervals or are points of strict convexity (irrational
laminations) (Goldman-Margulis-Minsky).
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