Complete affine 3-manifolds and hyperbolic surfaces

Dedicated to Bill Thurston on his 60th birthday

William M. Goldman

Department of Mathematics University of Maryland
Geometry and the Imagination, June 11, 2007

Three-dimensional affine space forms

- When can a group G act on Euclidean space with quotient a manifold?
- When G acts by isometries, it is a finite extension of a free abelian group, and the various actions are easily classified.
- However when the action of G is only assumed to be affine the classification is still open.
- The most interesting cases were discovered by Margulis in the early 1980's and occur when the quotient M is noncompact and G is a nonabelian free group. G acts by Lorentz isometries of \mathbb{E}^{2+1} and the clasification closely relates to hyperbolic structures on noncompact surfaces.

Three-dimensional affine space forms

- When can a group G act on Euclidean space with quotient a manifold?
- When G acts by isometries, it is a finite extension of a free abelian group, and the various actions are easily classified.
- However when the action of G is only assumed to be affine, the classification is still open.
- The most interesting cases were discovered by Margulis in the early 1980's and occur when the quotient M is noncompact and G is a nonabelian free group. G acts by Lorentz isometries of \mathbb{E}^{2+1} and the clasification closely relates to hyperbolic structures on noncompact surfaces.

Three-dimensional affine space forms

- When can a group G act on Euclidean space with quotient a manifold?
- When G acts by isometries, it is a finite extension of a free abelian group, and the various actions are easily classified.
- However when the action of G is only assumed to be affine, the classification is still open
- The most interesting cases were discovered by Margulis in the early 1980's and occur when the quotient M is noncompact and G is a nonabelian free group. G acts by Lorentz isometries of \mathbb{E}^{2+1} and the clasification closely relates to hyperbolic structures on noncompact surfaces.

Three-dimensional affine space forms

- When can a group G act on Euclidean space with quotient a manifold?
- When G acts by isometries, it is a finite extension of a free abelian group, and the various actions are easily classified.
- However when the action of G is only assumed to be affine, the classification is still open.
- The most interesting cases were discovered by Margulis in the early 1980's and occur when the quotient M is noncompact and G is a nonabelian free group. G acts by Lorentz isometries of \mathbb{E}^{2+1} and the clasification closely relates to hyperbolic structures on noncompact surfaces.

Three-dimensional affine space forms

- When can a group G act on Euclidean space with quotient a manifold?
- When G acts by isometries, it is a finite extension of a free abelian group, and the various actions are easily classified.
- However when the action of G is only assumed to be affine, the classification is still open.
- The most interesting cases were discovered by Margulis in the early 1980's and occur when the quotient M is noncompact and G is a nonabelian free group. G acts by Lorentz isometries of \mathbb{E}^{2+1} and the clasification closely relates to hyperbolic structures on noncompact surfaces.

Three-dimensional affine space forms

- When can a group G act on Euclidean space with quotient a manifold?
- When G acts by isometries, it is a finite extension of a free abelian group, and the various actions are easily classified.
- However when the action of G is only assumed to be affine, the classification is still open.
- The most interesting cases were discovered by Margulis in the early 1980's and occur when the quotient M is noncompact and G is a nonabelian free group. G acts by Lorentz isometries of \mathbb{E}^{2+1} and the clasification closely relates to hyperbolic structures on noncompact surfaces.

Milnor's Question (1977)

"On fundamental groups of complete affinely flat manifolds" (Adv. Math. 25, 178-187.)
Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^{n} ?

If not, a complete affine 3-manifold is an iterated fibration where the fibers are either cells or circles. In particular every compact 3-manifold quotient \mathbb{R}^{3} / Γ, where $\Gamma \subset A f f\left(\mathbb{R}^{3}\right)$ is finitely covered by a torus bundle over S^{1}, that is, a geometric 3-manifold of type Euc, Nil or Sol.

Milnor's Question (1977)

"On fundamental groups of complete affinely flat manifolds" (Adv. Math. 25, 178-187.)
Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^{n} ?

If not, a complete affine 3-manifold is an iterated fibration where the fibers are either cells or circles. In particular every compact 3-manifold quotient \mathbb{R}^{3} / Γ, where $\Gamma \subset \operatorname{Aff}\left(\mathbb{R}^{3}\right)$ is finitely covered by a torus bundle over S^{1}, that is, a geometric 3 -manifold of type Euc, Nil or Sol.

Evidence?

Milnor offers the following results as possible "evidence" for a negative answer to this question.

\Rightarrow A connected Lie group admits a proper affine action \Longleftrightarrow it is amenable (compact-by-solvable).
 - Every virtually nolvcyclic group admits a proper affine action.

Evidence?

Milnor offers the following results as possible "evidence" for a negative answer to this question.

- A connected Lie group admits a proper affine action \Longleftrightarrow it is amenable (compact-by-solvable).
- Every virtually polycyclic group admits a proper affine action.

Evidence?

Milnor offers the following results as possible "evidence" for a negative answer to this question.

- A connected Lie group admits a proper affine action \Longleftrightarrow it is amenable (compact-by-solvable).
- Every virtually polycyclic group admits a proper affine action.

Idea for a counterexample

```
- Clearly a geometric problem, since free groups act properly by
isometries on H}\mp@subsup{H}{}{3}\mathrm{ (Schottky 1907), and hence by
diffeomorphisms on }\mp@subsup{\mathbb{E}}{}{3
- - but these actions are not affine.
- Milnor suggests:
    > "Start with a free discrete subgroup of O (2,1) and add
        translation components to obtain a group of affine
        transformations which acts freely. However it seems difficult
        to decide whether the resulting group action is properly
        discontinuous."
```


Idea for a counterexample

- Clearly a geometric problem, since free groups act properly by isometries on H^{3} (Schottky 1907), and hence by diffeomorphisms on \mathbb{E}^{3}
- - but these actions are not affine.
- Milnor suggests:
"Start with a free discrete subgroup of $O(2,1)$ and add translation components to obtain a group of affine transformations which acts freely. to decide whether the resulting group action is properly discontinuous.

Idea for a counterexample

- Clearly a geometric problem, since free groups act properly by isometries on H^{3} (Schottky 1907), and hence by diffeomorphisms on \mathbb{E}^{3}
- - but these actions are not affine.
- Milnor suggests:
- "Start with a free discrete subgroup of $\mathrm{O}(2,1)$ and add translation components to obtain a group of affine transformations which acts freely. to decide whether the resulting group action is properly discontinuous."

Idea for a counterexample

- Clearly a geometric problem, since free groups act properly by isometries on H^{3} (Schottky 1907), and hence by diffeomorphisms on \mathbb{E}^{3}
- - but these actions are not affine.
- Milnor suggests:
- "Start with a free discrete subgroup of $\mathrm{O}(2,1)$ and add translation components to obtain a group of affine transformations which acts freely. to decide whether the resulting group action is properly discontinuous."

Idea for a counterexample

- Clearly a geometric problem, since free groups act properly by isometries on H^{3} (Schottky 1907), and hence by diffeomorphisms on \mathbb{E}^{3}
- — but these actions are not affine.
- Milnor suggests:
- "Start with a free discrete subgroup of $\mathrm{O}(2,1)$ and add translation components to obtain a group of affine transformations which acts freely. to decide whether the resulting group action is properly discontinuous."

Idea for a counterexample

- Clearly a geometric problem, since free groups act properly by isometries on H^{3} (Schottky 1907), and hence by diffeomorphisms on \mathbb{E}^{3}
- — but these actions are not affine.
- Milnor suggests:
- "Start with a free discrete subgroup of $\mathrm{O}(2,1)$ and add translation components to obtain a group of affine transformations which acts freely.
discontinuous."

Idea for a counterexample

- Clearly a geometric problem, since free groups act properly by isometries on H^{3} (Schottky 1907), and hence by diffeomorphisms on \mathbb{E}^{3}
- — but these actions are not affine.
- Milnor suggests:
- "Start with a free discrete subgroup of $\mathrm{O}(2,1)$ and add translation components to obtain a group of affine transformations which acts freely. However it seems difficult to decide whether the resulting group action is properly discontinuous."

A Schottky group

- Generators g_{1}, g_{2} pair half-spaces $A_{i}^{-} \longrightarrow \mathrm{H}^{2} \backslash A_{i}^{+}$
$\rightarrow g_{1}, g_{2}$ freely generate discrete group.
\rightarrow Action proper with fundamental domain $H^{2} \backslash \bigcup_{-} A_{j}^{ \pm}$

A Schottky group

- Generators g_{1}, g_{2} pair half-spaces $A_{i}^{-} \longrightarrow \mathrm{H}^{2} \backslash A_{i}^{+}$.
- g_{1}, g_{2} freely generate discrete group.
- Action proper with fundamental domain H^{2}

A Schottky group

- Generators g_{1}, g_{2} pair half-spaces $A_{i}^{-} \longrightarrow \mathrm{H}^{2} \backslash A_{i}^{+}$.
- g_{1}, g_{2} freely generate discrete group.
- Action proper with fundamental domain H^{2}

[^0]
A Schottky group

- Generators g_{1}, g_{2} pair half-spaces $A_{i}^{-} \longrightarrow \mathrm{H}^{2} \backslash A_{i}^{+}$.
- g_{1}, g_{2} freely generate discrete group.
- Action proper with fundamental domain $\mathrm{H}^{2} \backslash \bigcup A_{i}^{ \pm}$.

Margulis's examples

In the early 1980's, in trying to answer Milnor's question negatively, Margulis proved that nonabelian free groups do admit proper affine actions on \mathbb{R}^{3}.

Margulis's examples

In the early 1980's, in trying to answer Milnor's question negatively, Margulis proved that nonabelian free groups do admit proper affine actions on \mathbb{R}^{3}.

Margulis's examples

In the early 1980's, in trying to answer Milnor's question negatively, Margulis proved that nonabelian free groups do admit proper affine actions on \mathbb{R}^{3}.

Flat Lorentz manifolds

Suppose that $\Gamma \subset \operatorname{Aff}\left(\mathbb{R}^{3}\right)$ acts properly and is not polycyclic.

- Let $\Gamma \xrightarrow{\mathbb{L}} \mathrm{GL}(3, \mathbb{R})$ be the linear holonomy homomorphism. Then:
- $\mathbb{L}(\Gamma)$ is (conjugate to) a discrete subgroup of $O(2,1)$; - \mathbb{L} is injective. (Fried-Goldman 1983).
- Thus the associated complete hyperbolic surface.

is homotopy-equivalent to $M=\mathbb{E}^{2,1} / \Gamma$. - Σ is not compact (Mess 1990).
- Thus 「 must be a free group and Milnor's construction is the only way to construct examples.

[^1]
Flat Lorentz manifolds

Suppose that $\Gamma \subset \operatorname{Aff}\left(\mathbb{R}^{3}\right)$ acts properly and is not polycyclic.

- Let $\Gamma \xrightarrow{\mathbb{L}} \mathrm{GL}(3, \mathbb{R})$ be the linear holonomy homomorphism.
- $\mathbb{L}(\Gamma)$ is (conjugate to) a discrete subgroup of $O(2,1)$; - \mathbb{L} is injective. (Fried-Goldman 1983)
- Thus the associated complete hyperbolic surface.

is homotopy-equivalent to $M=\mathbb{E}^{2,1} / \Gamma$ - Σ is not compact (Mess 1990)
\Rightarrow Thus 「 must be a free group and Milnor's construction is the only way to construct examples.

[^2]
Flat Lorentz manifolds

Suppose that $\Gamma \subset \operatorname{Aff}\left(\mathbb{R}^{3}\right)$ acts properly and is not polycyclic.

- Let $\Gamma \xrightarrow{\mathbb{L}} \mathrm{GL}(3, \mathbb{R})$ be the linear holonomy homomorphism. Then:
- $\mathbb{L}(\Gamma)$ is (conjugate to) a discrete subgroup of $\mathrm{O}(2,1)$;
- Thus the associated complete hyperbolic surface.

is homotopy-equivalent to $M=\mathbb{E}^{2,1} / \Gamma$. - Σ is not compact (Mess 1990)
- Thus 「 must be a free group and Milnor's construction is the only way to construct examples.

[^3]
Flat Lorentz manifolds

Suppose that $\Gamma \subset \operatorname{Aff}\left(\mathbb{R}^{3}\right)$ acts properly and is not polycyclic.

- Let $\Gamma \xrightarrow{\mathbb{L}} \mathrm{GL}(3, \mathbb{R})$ be the linear holonomy homomorphism. Then:
- $\mathbb{L}(\Gamma)$ is (conjugate to) a discrete subgroup of $\mathrm{O}(2,1)$;
- \mathbb{L} is injective. (Fried-Goldman 1983).
- Thus the associated complete hyperbolic surface.

is homotopy-equivalent to $M=\mathbb{E}^{2,1} / \Gamma$. - Σ is not compact (Mess 1990)
- Thus 「 must be a free group and Milnor's construction is the only way to construct examples.

Flat Lorentz manifolds

Suppose that $\Gamma \subset \operatorname{Aff}\left(\mathbb{R}^{3}\right)$ acts properly and is not polycyclic.

- Let $\Gamma \xrightarrow{\mathbb{L}} \mathrm{GL}(3, \mathbb{R})$ be the linear holonomy homomorphism. Then:
- $\mathbb{L}(\Gamma)$ is (conjugate to) a discrete subgroup of $\mathrm{O}(2,1)$;
- \mathbb{L} is injective. (Fried-Goldman 1983).
- Thus the associated complete hyperbolic surface.

$$
\Sigma:=\mathrm{H}^{2} / \mathbb{L}(\Gamma)
$$

is homotopy-equivalent to $M=\mathbb{E}^{2,1} / \Gamma$.

- Thus 「 must be a free group and Milnor's construction is the only way to construct examples.

Flat Lorentz manifolds

Suppose that $\Gamma \subset \operatorname{Aff}\left(\mathbb{R}^{3}\right)$ acts properly and is not polycyclic.

- Let $\Gamma \xrightarrow{\mathbb{L}} \mathrm{GL}(3, \mathbb{R})$ be the linear holonomy homomorphism. Then:
- $\mathbb{L}(\Gamma)$ is (conjugate to) a discrete subgroup of $\mathrm{O}(2,1)$;
- \mathbb{L} is injective. (Fried-Goldman 1983).
- Thus the associated complete hyperbolic surface.

$$
\Sigma:=\mathrm{H}^{2} / \mathbb{L}(\Gamma)
$$

is homotopy-equivalent to $M=\mathbb{E}^{2,1} / \Gamma$.

- Σ is not compact (Mess 1990).
- Thus 「 must be a free group and Milnor's construction is the only way to construct examples.

Flat Lorentz manifolds

Suppose that $\Gamma \subset \operatorname{Aff}\left(\mathbb{R}^{3}\right)$ acts properly and is not polycyclic.

- Let $\Gamma \xrightarrow{\mathbb{L}} \mathrm{GL}(3, \mathbb{R})$ be the linear holonomy homomorphism. Then:
- $\mathbb{L}(\Gamma)$ is (conjugate to) a discrete subgroup of $\mathrm{O}(2,1)$;
- \mathbb{L} is injective. (Fried-Goldman 1983).
- Thus the associated complete hyperbolic surface.

$$
\Sigma:=\mathrm{H}^{2} / \mathbb{L}(\Gamma)
$$

is homotopy-equivalent to $M=\mathbb{E}^{2,1} / \Gamma$.

- Σ is not compact (Mess 1990).
- Thus 「 must be a free group and Milnor's construction is the only way to construct examples.

Cyclic groups

－Most elements $\gamma \in \Gamma$ are boosts，affine deformations of hyperbolic elements of $O(2,1)$ ．A fundamental domain is the slab bounded by two parallel planes．
－Each such element leaves invariant a unique（spacelike）line， whose image in $\mathbb{E}^{2,1} / \Gamma$ is a closed geodesic．Just as for hyperbolic surfaces，most loops are freely homotopic to closed geodesics．

$$
4 \square
$$

Cyclic groups

- Most elements $\gamma \in \Gamma$ are boosts, affine deformations of hyperbolic elements of $\mathrm{O}(2,1)$. A fundamental domain is the slab bounded by two parallel planes.

- Each such element leaves invariant a unique (spacelike) line, whose image in $\mathbb{E}^{2,1} / \Gamma$ is a closed geodesic. Just as for hyperbolic surfaces, most loops are freely homotopic to closed geodesics.

Cyclic groups

- Most elements $\gamma \in \Gamma$ are boosts, affine deformations of hyperbolic elements of $\mathrm{O}(2,1)$. A fundamental domain is the slab bounded by two parallel planes.

- Each such element leaves invariant a unique (spacelike) line, whose image in $\mathbb{E}^{2,1} / \Gamma$ is a closed geodesic. Just as for hyperbolic surfaces, most loops are freely homotopic to closed geodesics.

Cyclic groups

- Most elements $\gamma \in \Gamma$ are boosts, affine deformations of hyperbolic elements of $\mathrm{O}(2,1)$. A fundamental domain is the slab bounded by two parallel planes.
- Each such element leaves invariant a unique (spacelike) line, whose image in $\mathbb{E}^{2,1} / \Gamma$ is a closed geodesic. Just as for hyperbolic surfaces, most loops are freely homotopic to closed geodesics.

Slabs don't work!

- In H^{2}, the half-spaces $A_{i}^{ \pm}$are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint \Rightarrow parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

Slabs don't work!

- $\ln \mathrm{H}^{2}$, the half-spaces $A_{i}^{ \pm}$are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint \Rightarrow parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

Slabs don't work!

- In H^{2}, the half-spaces $A_{i}^{ \pm}$are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint \Rightarrow parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

Slabs don't work!

- In H^{2}, the half-spaces $A_{i}^{ \pm}$are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint \Rightarrow parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

Slabs don't work!

- In H^{2}, the half-spaces $A_{i}^{ \pm}$are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint \Rightarrow parallel!
- Complements of slabs always intersect,

Slabs don't work!

- In H^{2}, the half-spaces $A_{i}^{ \pm}$are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint \Rightarrow paralle!!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

Crooked Planes (Drumm 1990)

- Crooked Planes: Flexible polyhedral surfaces bound fundamental polyhedra for free affine groups.

- Two null half-planes connected by lines inside light-cone.

Crooked Planes (Drumm 1990)

- Crooked Planes: Flexible polyhedral surfaces bound fundamental polyhedra for free affine groups.

- Two null half-planes connected by lines inside light-cone.

[^4]
Crooked Planes (Drumm 1990)

- Crooked Planes: Flexible polyhedral surfaces bound fundamental polyhedra for free affine groups.

- Two null half-planes connected by lines inside light-cone.

[^5]
Crooked Planes (Drumm 1990)

- Crooked Planes: Flexible polyhedral surfaces bound fundamental polyhedra for free affine groups.

- Two null half-planes connected by lines inside light-cone.

[^6]
Crooked polyhedron for a boost

- Start with a hyperbolic slab in H^{2}.
- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes.

Crooked polyhedron for a boost

- Start with a hyperbolic slab in H^{2}.
- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes.

[^7]
Crooked polyhedron for a boost

- Start with a hyperbolic slab in H^{2}.
- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes.

[^8]
Crooked polyhedron for a boost

- Start with a hyperbolic slab in H^{2}.
- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes.

[^9]
Crooked polyhedron for a boost

- Start with a hyperbolic slab in H^{2}.
- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes.

Images of crooked planes under a linear cyclic group

The resulting tesselation for a linear boost.

[^10]
Images of crooked planes under a linear cyclic group

The resulting tesselation for a linear boost.

Images of crooked planes under an affine deformation

- Adding translations frees up the action
- - which is now proper on all of $\mathbb{E}^{2,1}$

Images of crooked planes under an affine deformation

- Adding translations frees up the action

Images of crooked planes under an affine deformation

- Adding translations frees up the action
- — which is now proper on all of $\mathbb{E}^{2,1}$.

Linear action of Schottky group

Crooked polyhedra tile H^{2} for subgroup of $\mathrm{O}(2,1)$.

[^11]
Linear action of Schottky group

Crooked polyhedra tile H^{2} for subgroup of $\mathrm{O}(2,1)$.

Affine action of Schottky group

Carefully chosen affine deformation acts properly on $\mathbb{E}^{2,1}$.

[^12]
Affine action of Schottky group

Carefully chosen affine deformation acts properly on $\mathbb{E}^{2,1}$.

The linear part

> - Mess's theorem is the only obstruction for the existence of a proper affine deformation:
> - (Drumm) Let Σ be a noncompact complete hyperbolic surface. Then its holonomy group admits a proper affine deformation and M^{3} is a solid handlebody.
> - Proof: Extend Schottky fundamental domains for Σ to crooked fundamental domains on $\mathbb{E}^{2,1}$
> - Characterize all proper affine deformations of a non-cocompact Fuchsian group

The linear part

- Mess's theorem is the only obstruction for the existence of a proper affine deformation:
- (Drumm) Let Σ be a noncompact complete hyperbolic surface. Then its holonomy group admits a proper affine deformation and M^{3} is a solid handlebody.
- Proof: Extend Schottky fundamental domains for Σ to crooked fundamental domains on $\mathbb{E}^{2,1}$
- Characterize all proner affine deformations of a non-cocompact Fuchsian group

[^13]
The linear part

- Mess's theorem is the only obstruction for the existence of a proper affine deformation:
- (Drumm) Let Σ be a noncompact complete hyperbolic surface. Then its holonomy group admits a proper affine deformation and M^{3} is a solid handlebody.
- Proof: Extend Schottky fundamental domains for Σ to crooked fundamental domains on $\mathbb{E}^{2,1}$
- Characterize all proper affine deformations of a non-cocompact Fuchsian group

The linear part

- Mess's theorem is the only obstruction for the existence of a proper affine deformation:
- (Drumm) Let Σ be a noncompact complete hyperbolic surface. Then its holonomy group admits a proper affine deformation and M^{3} is a solid handlebody.
- Proof: Extend Schottky fundamental domains for Σ to crooked fundamental domains on $\mathbb{E}^{2,1}$.
- Characterize all proper affine de

The linear part

- Mess's theorem is the only obstruction for the existence of a proper affine deformation:
- (Drumm) Let Σ be a noncompact complete hyperbolic surface. Then its holonomy group admits a proper affine deformation and M^{3} is a solid handlebody.
- Proof: Extend Schottky fundamental domains for Σ to crooked fundamental domains on $\mathbb{E}^{2,1}$.

The linear part

- Mess's theorem is the only obstruction for the existence of a proper affine deformation:
- (Drumm) Let Σ be a noncompact complete hyperbolic surface. Then its holonomy group admits a proper affine deformation and M^{3} is a solid handlebody.
- Proof: Extend Schottky fundamental domains for Σ to crooked fundamental domains on $\mathbb{E}^{2,1}$.
- Characterize all proper affine deformations of a non-cocompact Fuchsian group

Affine action of modular group

Proper affine deformations exist even for lattices in $\mathrm{O}(2,1)$
(Drumm).

Complete affine 3-manifolds and hyperbolic surfaces

Affine action of modular group

Proper affine deformations exist even for lattices in $\mathrm{O}(2,1)$
(Drumm).

Margulis's invariant

\forall affine deformation $\Gamma \xrightarrow{\rho} \operatorname{Isom}\left(\mathbb{E}^{2,1}\right)^{0}, \exists$ fixed eigenvector x_{γ}^{0} for $\mathbb{L}(\gamma)$ such that

$$
\begin{aligned}
& \Gamma \xrightarrow{\alpha_{u}} \mathbb{R} \\
& \gamma \longmapsto\left\langle u(\gamma), x_{\gamma}^{0}\right\rangle
\end{aligned}
$$

satisfies:

${ }^{\nu} \alpha_{u}$ is a class function on Γ;

- $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$;
- When ρ acts properly, $\left|\alpha_{u}(\gamma)\right|$ is the Lorentzian length of the closed geodesic in M^{3} corresponding to γ;
- If ρ acts properly, either $\alpha_{u}(\gamma)>0 \forall \gamma \neq 1$ or $\alpha_{u}(\gamma)<0$ $\forall \gamma \neq 1$.

Margulis's invariant

\forall affine deformation $\Gamma \xrightarrow{\rho} \operatorname{Isom}\left(\mathbb{E}^{2,1}\right)^{0}, \exists$ fixed eigenvector x_{γ}^{0} for $\mathbb{L}(\gamma)$ such that

$$
\begin{aligned}
& \Gamma \xrightarrow{\alpha_{u}} \mathbb{R} \\
& \gamma \longmapsto\left\langle u(\gamma), x_{\gamma}^{0}\right\rangle
\end{aligned}
$$

satisfies:
$\Rightarrow \alpha_{u}$ is a class function on Γ;

- $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$;
- When ρ acts properly, $\left|\alpha_{u}(\gamma)\right|$ is the Lorentzian length of the closed geodesic in M^{3} corresponding to γ;
- If ρ acts properly, either $\alpha_{u}(\gamma)>0 \forall \gamma \neq 1$ or $\alpha_{u}(\gamma)<0$ $\forall \gamma \neq 1$.

Margulis's invariant

\forall affine deformation $\Gamma \xrightarrow{\rho} \operatorname{Isom}\left(\mathbb{E}^{2,1}\right)^{0}, \exists$ fixed eigenvector x_{γ}^{0} for $\mathbb{L}(\gamma)$ such that

$$
\begin{aligned}
& \Gamma \xrightarrow{\alpha_{u}} \mathbb{R} \\
& \gamma \longmapsto\left\langle u(\gamma), x_{\gamma}^{0}\right\rangle
\end{aligned}
$$

satisfies:

- α_{u} is a class function on Γ;
- $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$;
- When ρ acts properly, $\left|\alpha_{u}(\gamma)\right|$ is the Lorentzian length of the closed geodesic in M^{3} corresponding to γ;
- If ρ acts properly, either $\alpha_{u}(\gamma)>0 \forall \gamma \neq 1$ or $\alpha_{u}(\gamma)<0$ $\forall \gamma \neq 1$.

[^14]
Margulis's invariant

\forall affine deformation $\Gamma \xrightarrow{\rho} \operatorname{Isom}\left(\mathbb{E}^{2,1}\right)^{0}, \exists$ fixed eigenvector x_{γ}^{0} for $\mathbb{L}(\gamma)$ such that

$$
\begin{aligned}
& \Gamma \xrightarrow{\alpha_{u}} \mathbb{R} \\
& \gamma \longmapsto\left\langle u(\gamma), x_{\gamma}^{0}\right\rangle
\end{aligned}
$$

satisfies:

- α_{u} is a class function on Γ;
- $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$;
- When ρ acts properly, $\left|\alpha_{u}(\gamma)\right|$ is the Lorentzian length of the closed geodesic in M^{3} corresponding to γ;
- If ρ acts properly, either $\alpha_{u}(\gamma)>0 \forall \gamma \neq 1$ or $\alpha_{u}(\gamma)<0$ $\forall \gamma \neq 1$.

[^15]
Margulis's invariant

\forall affine deformation $\Gamma \xrightarrow{\rho} \operatorname{Isom}\left(\mathbb{E}^{2,1}\right)^{0}, \exists$ fixed eigenvector x_{γ}^{0} for
$\mathbb{L}(\gamma)$ such that

$$
\begin{aligned}
& \Gamma \xrightarrow{\alpha_{u}} \mathbb{R} \\
& \gamma \longmapsto\left\langle u(\gamma), x_{\gamma}^{0}\right\rangle
\end{aligned}
$$

satisfies:

- α_{u} is a class function on Γ;
- $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$;
- When ρ acts properly, $\left|\alpha_{u}(\gamma)\right|$ is the Lorentzian length of the closed geodesic in M^{3} corresponding to γ;
- If ρ acts properly, either $\alpha_{u}(\gamma)>0 \forall \gamma \neq 1$ or $\alpha_{u}(\gamma)<0$

Margulis's invariant

\forall affine deformation $\Gamma \xrightarrow{\rho} \operatorname{Isom}\left(\mathbb{E}^{2,1}\right)^{0}, \exists$ fixed eigenvector x_{γ}^{0} for $\mathbb{L}(\gamma)$ such that

$$
\begin{aligned}
\Gamma \xrightarrow{\alpha_{u}} \mathbb{R} \\
\gamma \longmapsto\left\langle u(\gamma), x_{\gamma}^{0}\right\rangle
\end{aligned}
$$

satisfies:

- α_{u} is a class function on Γ;
- $\alpha_{u}\left(\gamma^{n}\right)=|n| \alpha_{u}(\gamma)$;
- When ρ acts properly, $\left|\alpha_{u}(\gamma)\right|$ is the Lorentzian length of the closed geodesic in M^{3} corresponding to γ;
- If ρ acts properly, either $\alpha_{u}(\gamma)>0 \forall \gamma \neq 1$ or $\alpha_{u}(\gamma)<0$ $\forall \gamma \neq 1$.

Affine deformations

\Rightarrow Start with a Fuchsian group $\Gamma_{0} \subset \bigcirc(2,1)$. An affine deformation is a representation $\rho=\rho_{u}$ with image $\Gamma=\Gamma_{u}$

determined by its translational part

$$
u \in z^{1}\left(\Gamma_{0}, \mathbb{R}^{2.1}\right)
$$

- Conjugating ρ by a translation \Longleftrightarrow adding a coboundary to u.
- Translational conjugacy classes of affine deformations of Γ_{0} form the vector space $H\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$.

Affine deformations

- Start with a Fuchsian group $\Gamma_{0} \subset \mathrm{O}(2,1)$. An affine deformation is a representation $\rho=\rho_{u}$ with image $\Gamma=\Gamma_{u}$

determined by its translational part

$$
u \in Z^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)
$$

- Conjugating ρ by a translation \Longleftrightarrow adding a coboundary to u.
- Translational conjugacy classes of affine deformations of Γ_{0} form the vector space $H\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$.

Affine deformations

- Start with a Fuchsian group $\Gamma_{0} \subset \mathrm{O}(2,1)$. An affine deformation is a representation $\rho=\rho_{u}$ with image $\Gamma=\Gamma_{u}$

determined by its translational part

$$
u \in Z^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)
$$

- Conjugating ρ by a translation \Longleftrightarrow adding a coboundary to u.
- Translational conjugacy classes of affine deformations of 「0 form the vector space $H\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$

Affine deformations

- Start with a Fuchsian group $\Gamma_{0} \subset \mathrm{O}(2,1)$. An affine deformation is a representation $\rho=\rho_{u}$ with image $\Gamma=\Gamma_{u}$

determined by its translational part

$$
u \in Z^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)
$$

- Conjugating ρ by a translation \Longleftrightarrow adding a coboundary to u.
- Translational conjugacy classes of affine deformations of Γ_{0} form the vector space $\left.H^{(} \Gamma_{0}, \mathbb{R}^{2,1}\right)$.

Deformations of hyperbolic structures

$\Rightarrow[u]$ corresponds to an infinitesimal deformation Σ_{t} of the hyperbolic structure on Σ.

- Margulis's invariant $\alpha_{u}(\gamma)$ represents the derivative

$$
\left.\frac{d}{d t}\right|_{t=0} \ell_{\Sigma_{t}}(\gamma)
$$

where $\ell_{\Sigma_{t}}(\gamma)$ is the length of the closed geodesic on Σ_{t} corresponding to γ.
Γ_{u} is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_{t}.
$\boldsymbol{\text { The converse is true } \Longleftrightarrow \Sigma \text { is homeomorphic to a three-holed }}$ sphere, one-holed Klein bottle or two-holed projective plane. (Charette-Drumm-Goldman-Jones)

Deformations of hyperbolic structures

- $[u]$ corresponds to an infinitesimal deformation Σ_{t} of the hyperbolic structure on Σ.
- Margulis's invariant $\alpha_{u}(\gamma)$ represents the derivative

where $\ell_{\Sigma_{t}}(\gamma)$ is the length of the closed geodesic on Σ_{t} corresponding to
$>\Gamma_{u}$ is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_{t}
- The converse is true $\Longleftrightarrow \Sigma$ is homeomorphic to a three-holed sphere, one-holed Klein bottle or two-holed projective plane. (Charette-Drumm-Goldman-Jones)

Deformations of hyperbolic structures

- $[u]$ corresponds to an infinitesimal deformation Σ_{t} of the hyperbolic structure on Σ.
- Margulis's invariant $\alpha_{u}(\gamma)$ represents the derivative

$$
\left.\frac{d}{d t}\right|_{t=0} \ell_{\Sigma_{t}}(\gamma)
$$

where $\ell_{\Sigma_{t}}(\gamma)$ is the length of the closed geodesic on Σ_{t} corresponding to γ.
Γ_{u} is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_{t}

- The converse is true $\Longleftrightarrow \Sigma$ is homeomorphic to a three-holed sphere, one-holed Klein bottle or two-holed projective plane. (Charette-Drumm-Goldman-Jones)

Deformations of hyperbolic structures

- $[u]$ corresponds to an infinitesimal deformation Σ_{t} of the hyperbolic structure on Σ.
- Margulis's invariant $\alpha_{u}(\gamma)$ represents the derivative

$$
\left.\frac{d}{d t}\right|_{t=0} \ell_{\Sigma_{t}}(\gamma)
$$

where $\ell_{\Sigma_{t}}(\gamma)$ is the length of the closed geodesic on Σ_{t} corresponding to γ.
Γ_{u} is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_{t}.
\rightarrow The converse is true $\Longleftrightarrow \Sigma$ is homeomorphic to a three-holed sphere, one-holed Klein bottle or two-holed projective plane. (Charette-Drumm-Goldman-Jones)

Deformations of hyperbolic structures

- $[u]$ corresponds to an infinitesimal deformation Σ_{t} of the hyperbolic structure on Σ.
- Margulis's invariant $\alpha_{u}(\gamma)$ represents the derivative

$$
\left.\frac{d}{d t}\right|_{t=0} \ell_{\Sigma_{t}}(\gamma)
$$

where $\ell_{\Sigma_{t}}(\gamma)$ is the length of the closed geodesic on Σ_{t} corresponding to γ.
Γ_{u} is proper \Longrightarrow all closed geodesics lengthen (or shorten) under the deformation Σ_{t}.

- The converse is true $\Longleftrightarrow \Sigma$ is homeomorphic to a three-holed sphere, one-holed Klein bottle or two-holed projective plane. (Charette-Drumm-Goldman-Jones)

Σ is a three-holed sphere

\Rightarrow For each $\gamma \in \Gamma_{0}$, the functional

$$
\begin{aligned}
H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right) & \stackrel{\alpha^{\gamma}}{\longrightarrow} \mathbb{R} \\
{[u] } & \longmapsto \alpha_{u}(\gamma)
\end{aligned}
$$

detects the rate of lengthening of γ under the deformation corresponding to $[u]$.
\Rightarrow If $\alpha^{\gamma}(u)>0 \forall \gamma \subset \partial \Sigma$, then a crooked fundamental domain exists and Γ_{u} is proper.

- M^{3} is a solid handlebody of genus two.
\Rightarrow If each component of $\partial \Sigma$ lengthens, then every curve lengthens.

Σ is a three-holed sphere

- For each $\gamma \in \Gamma_{0}$, the functional

$$
\begin{aligned}
H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right) & \xrightarrow{\alpha^{\gamma}} \mathbb{R} \\
{[u] } & \longmapsto \alpha_{u}(\gamma)
\end{aligned}
$$

detects the rate of lengthening of γ under the deformation corresponding to $[u]$.

- If $\alpha^{\gamma}(u)>0 \forall \gamma \subset \partial \Sigma$, then a crooked fundamental domain
exists and Γ_{u} is proper.
- M^{3} is a solid handlebody of genus two.
- If each component of $\partial \Sigma$ lengthens, then every curve lengthens.

[^16]
Σ is a three-holed sphere

- For each $\gamma \in \Gamma_{0}$, the functional

$$
\begin{aligned}
H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right) & \xrightarrow{\alpha^{\gamma}} \mathbb{R} \\
{[u] } & \longmapsto \alpha_{u}(\gamma)
\end{aligned}
$$

detects the rate of lengthening of γ under the deformation corresponding to $[u]$.

- If $\alpha^{\gamma}(u)>0 \forall \gamma \subset \partial \Sigma$, then a crooked fundamental domain exists and Γ_{u} is proper.
- M^{3} is a solid handlebody of genus two.
- If each component of $\partial \Sigma$ lengthens, then every curve lengthens.

Σ is a three-holed sphere

- For each $\gamma \in \Gamma_{0}$, the functional

$$
\begin{aligned}
H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right) & \xrightarrow{\alpha^{\gamma}} \mathbb{R} \\
{[u] } & \longmapsto \alpha_{u}(\gamma)
\end{aligned}
$$

detects the rate of lengthening of γ under the deformation corresponding to $[u]$.

- If $\alpha^{\gamma}(u)>0 \forall \gamma \subset \partial \Sigma$, then a crooked fundamental domain exists and Γ_{u} is proper.
- M^{3} is a solid handlebody of genus two.
- If each component of $\partial \Sigma$ lengthens, then every curve lengthens.

Σ is a three-holed sphere

- For each $\gamma \in \Gamma_{0}$, the functional

$$
\begin{aligned}
H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right) & \xrightarrow{\alpha^{\gamma}} \mathbb{R} \\
{[u] } & \longmapsto \alpha_{u}(\gamma)
\end{aligned}
$$

detects the rate of lengthening of γ under the deformation corresponding to $[u]$.

- If $\alpha^{\gamma}(u)>0 \forall \gamma \subset \partial \Sigma$, then a crooked fundamental domain exists and Γ_{u} is proper.
- M^{3} is a solid handlebody of genus two.
- If each component of $\partial \Sigma$ lengthens, then every curve lengthens.

Lines defined by the linear functionals α^{γ}

The triangle is bounded by the lines corresponding to $\gamma \subset \partial \Sigma$.
Its interior parametrizes proper affine deformations.

Lines defined by the linear functionals α^{γ}

The triangle is bounded by the lines corresponding to $\gamma \subset \partial \Sigma$. Its interior parametrizes proper affine deformations.

Extension of Margulis's invariant to geodesic currents and measured laminations

$\Rightarrow \alpha_{u}$ extends from a class function on Γ_{0} to a function defined on the convex set $\mathcal{C}(\Sigma)$ of geodesic currents on Σ :

- (Goldman-Labourie-Margulis) \exists continuous biaffine map

$$
\mathcal{C}(\Sigma) \times H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right) \xrightarrow{\Psi} \mathbb{R}
$$

- If $\gamma \in \Gamma_{0}$, and μ is the corresponding geodesic current, then

$$
\psi(\mu,[u])=\frac{\alpha_{[u]}(\gamma)}{l_{\Sigma}(\gamma)}
$$

where $\ell_{\Sigma}(\gamma)$ is the length of the closed geodesic on Σ corresponding to γ.
$>\Gamma_{[u]}$ acts properly on $\mathbb{E}^{2,1} \longleftrightarrow \psi(\mu,[u]) \neq 0$ for all $\mu \in C(\Sigma)$.

[^17]Extension of Margulis's invariant to geodesic currents and measured laminations

- α_{u} extends from a class function on Γ_{0} to a function defined on the convex set $\mathcal{C}(\Sigma)$ of geodesic currents on Σ :
- (Goldman-Labourie-Margulis) \exists continuous biaffine map

$$
\mathcal{C}(\Sigma) \times H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right) \xrightarrow{\Psi} \mathbb{R}
$$

- If $\gamma \in \Gamma_{0}$, and μ is the corresponding geodesic current, then

where $\ell_{\Sigma}(\gamma)$ is the length of the closed geodesic on Σ
corresponding to
$\Gamma_{[u]}$ acts properly on $\mathbb{E}^{2,1} \longleftrightarrow \psi(\mu,[u]) \neq 0$ for all $\mu \in C(\Sigma)$.

[^18]
Extension of Margulis's invariant to geodesic currents and

 measured laminations- α_{u} extends from a class function on Γ_{0} to a function defined on the convex set $\mathcal{C}(\Sigma)$ of geodesic currents on Σ :
- (Goldman-Labourie-Margulis) \exists continuous biaffine map

$$
\mathcal{C}(\Sigma) \times H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right) \xrightarrow{\Psi} \mathbb{R}
$$

- If $\gamma \in \Gamma_{0}$, and μ is the corresponding geodesic current, then

$$
\Psi(\mu,[u])=\frac{\alpha_{[u]}(\gamma)}{\ell_{\Sigma}(\gamma)}
$$

where $\ell_{\Sigma}(\gamma)$ is the length of the closed geodesic on Σ corresponding to γ.

Extension of Margulis's invariant to geodesic currents and

 measured laminations- α_{u} extends from a class function on Γ_{0} to a function defined on the convex set $\mathcal{C}(\Sigma)$ of geodesic currents on Σ :
- (Goldman-Labourie-Margulis) \exists continuous biaffine map

$$
\mathcal{C}(\Sigma) \times H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right) \xrightarrow{\Psi} \mathbb{R}
$$

- If $\gamma \in \Gamma_{0}$, and μ is the corresponding geodesic current, then

$$
\Psi(\mu,[u])=\frac{\alpha_{[u]}(\gamma)}{\ell_{\Sigma}(\gamma)}
$$

where $\ell_{\Sigma}(\gamma)$ is the length of the closed geodesic on Σ corresponding to γ.

- $\Gamma_{[u]}$ acts properly on $\mathbb{E}^{2,1} \Longleftrightarrow \Psi(\mu,[u]) \neq 0$ for all $\mu \in \mathcal{C}(\Sigma)$.

The Deformation Space

- The set of proper affine deformations of Γ_{0} is the open convex cone in $H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$ defined by the functionals

$$
[u] \stackrel{\alpha^{\mu}}{\longmapsto} \Psi(\mu,[u])
$$

for $\mu \in \mathcal{C}(\Sigma)$.

- Sufficient to test measured geodesic laminations μ. (Thurston "Minimal stretch maps...")
- Proper affine deformations correspond to infinitesimal deformations of Σ which lengthen all measured geodesic laminations.

The Deformation Space

- The set of proper affine deformations of Γ_{0} is the open convex cone in $H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$ defined by the functionals

$$
[u] \stackrel{\alpha^{\mu}}{\longmapsto} \Psi(\mu,[u])
$$

for $\mu \in \mathcal{C}(\Sigma)$.

- Sufficient to test measured geodesic laminations μ. (Thurston "Minimal stretch maps...")
- Proper affine deformations correspond to infinitesimal deformations of Σ which lengthen all measured geodesic laminations.

The Deformation Space

- The set of proper affine deformations of Γ_{0} is the open convex cone in $H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$ defined by the functionals

$$
[u] \stackrel{\alpha^{\mu}}{\longmapsto} \Psi(\mu,[u])
$$

for $\mu \in \mathcal{C}(\Sigma)$.

- Sufficient to test measured geodesic laminations μ. (Thurston "Minimal stretch maps...")
- Proper affine deformations correspond to infinitesimal deformations of Σ which lengthen all measured geodesic laminations.

The Deformation Space

- The set of proper affine deformations of Γ_{0} is the open convex cone in $H^{1}\left(\Gamma_{0}, \mathbb{R}^{2,1}\right)$ defined by the functionals

$$
[u] \stackrel{\alpha^{\mu}}{\longmapsto} \Psi(\mu,[u])
$$

for $\mu \in \mathcal{C}(\Sigma)$.

- Sufficient to test measured geodesic laminations μ. (Thurston "Minimal stretch maps...")
- Proper affine deformations correspond to infinitesimal deformations of Σ which lengthen all measured geodesic laminations.

Linear functionals α^{γ} when Σ is a one-holed torus

The properness region is bounded by infinitely many intervals, each
corresponding to a simple nonseparating loop on Σ. Boundary
points lie on intervals or are points of strict convexity (irrational
laminations) (Goldman-Margulis-Minsky)

Linear functionals α^{γ} when Σ is a one-holed torus

The properness region is bounded by infinitely many intervals, each corresponding to a simple nonseparating loop on Σ. Boundary points lie on intervals or are points of strict convexity (irrational laminations) (Goldman-Margulis-Minsky).

[^0]: Complete affine 3-manifolds and hyperbolic surfaces

[^1]: Complete affine 3-manifolds and hyperbolic surfaces

[^2]: Complete affine 3-manifolds and hyperbolic surfaces

[^3]: Complete affine 3-manifolds and hyperbolic surfaces

[^4]: Complete affine 3-manifolds and hyperbolic surfaces

[^5]: Complete affine 3-manifolds and hyperbolic surfaces

[^6]: Complete affine 3-manifolds and hyperbolic surfaces

[^7]: Complete affine 3-manifolds and hyperbolic surfaces

[^8]: Complete affine 3-manifolds and hyperbolic surfaces

[^9]: Complete affine 3-manifolds and hyperbolic surfaces

[^10]: Complete affine 3-manifolds and hyperbolic surfaces

[^11]: Complete affine 3-manifolds and hyperbolic surfaces

[^12]: Complete affine 3-manifolds and hyperbolic surfaces

[^13]: Complete affine 3-manifolds and hyperbolic surfaces

[^14]: Complete affine 3-manifolds and hyperbolic surfaces

[^15]: Complete affine 3-manifolds and hyperbolic surfaces

[^16]: Complete affine 3-manifolds and hyperbolic surfaces

[^17]: Complete affine 3-manifolds and hyperbolic surfaces

[^18]: Complete affine 3-manifolds and hyperbolic surfaces

