Complete affine 3-manifolds and hyperbolic surfaces

Dedicated to Bill Thurston on his 60th birthday

William M. Goldman

Department of Mathematics University of Maryland

Geometry and the Imagination, June 11, 2007

William M. Goldman

University of Maryland

- When can a group G act on Euclidean space with quotient a manifold?
- ▶ When G acts by isometries, it is a finite extension of a free abelian group, and the various actions are easily classified.
- ► However when the action of G is only assumed to be affine, the classification is still open.
- ► The most interesting cases were discovered by Margulis in the early 1980's and occur when the quotient *M* is noncompact and G is a nonabelian free group. G acts by Lorentz isometries of ℝ²⁺¹ and the clasification closely relates to *hyperbolic structures* on noncompact surfaces.

- When can a group G act on Euclidean space with quotient a manifold?
- ▶ When G acts by isometries, it is a finite extension of a free abelian group, and the various actions are easily classified.
- ► However when the action of G is only assumed to be affine, the classification is still open.
- ► The most interesting cases were discovered by Margulis in the early 1980's and occur when the quotient *M* is noncompact and G is a nonabelian free group. G acts by Lorentz isometries of ℝ²⁺¹ and the clasification closely relates to *hyperbolic structures* on noncompact surfaces.

- When can a group G act on Euclidean space with quotient a manifold?
- When G acts by isometries, it is a finite extension of a free abelian group, and the various actions are easily classified.
- ► However when the action of G is only assumed to be affine, the classification is still open.
- ► The most interesting cases were discovered by Margulis in the early 1980's and occur when the quotient *M* is noncompact and G is a nonabelian free group. G acts by Lorentz isometries of ℝ²⁺¹ and the clasification closely relates to *hyperbolic structures* on noncompact surfaces.

- When can a group G act on Euclidean space with quotient a manifold?
- When G acts by isometries, it is a finite extension of a free abelian group, and the various actions are easily classified.
- ► However when the action of G is only assumed to be affine, the classification is still open.
- ► The most interesting cases were discovered by Margulis in the early 1980's and occur when the quotient *M* is noncompact and G is a nonabelian free group. G acts by Lorentz isometries of ℝ²⁺¹ and the clasification closely relates to *hyperbolic structures* on noncompact surfaces.

- When can a group G act on Euclidean space with quotient a manifold?
- When G acts by isometries, it is a finite extension of a free abelian group, and the various actions are easily classified.
- ► However when the action of G is only assumed to be affine, the classification is still open.
- ► The most interesting cases were discovered by Margulis in the early 1980's and occur when the quotient *M* is noncompact and G is a nonabelian free group. G acts by Lorentz isometries of ℝ²⁺¹ and the clasification closely relates to *hyperbolic structures* on noncompact surfaces.

- When can a group G act on Euclidean space with quotient a manifold?
- When G acts by isometries, it is a finite extension of a free abelian group, and the various actions are easily classified.
- ► However when the action of G is only assumed to be affine, the classification is still open.
- ► The most interesting cases were discovered by Margulis in the early 1980's and occur when the quotient *M* is noncompact and G is a nonabelian free group. G acts by Lorentz isometries of ℝ²⁺¹ and the clasification closely relates to *hyperbolic structures* on noncompact surfaces.

Milnor's Question (1977)

"On fundamental groups of complete affinely flat manifolds" (Adv. Math. 25, 178-187.)

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n ?

If not, a complete affine 3-manifold is an iterated fibration where the fibers are either cells or circles. In particular every compact 3-manifold quotient \mathbb{R}^3/Γ , where $\Gamma \subset \operatorname{Aff}(\mathbb{R}^3)$ is finitely covered by a torus bundle over S^1 , that is, a geometric 3-manifold of type **Euc**, **Nil** or **Sol**.

Milnor's Question (1977)

"On fundamental groups of complete affinely flat manifolds" (Adv. Math. 25, 178-187.)

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n ?

If not, a complete affine 3-manifold is an iterated fibration where the fibers are either cells or circles. In particular every compact 3-manifold quotient \mathbb{R}^3/Γ , where $\Gamma \subset \text{Aff}(\mathbb{R}^3)$ is finitely covered by a torus bundle over S^1 , that is, a geometric 3-manifold of type **Euc**, **Nil** or **Sol**.

Evidence?

Milnor offers the following results as possible "evidence" for a negative answer to this question.

- ► A connected Lie group admits a proper affine action ⇔ it is amenable (compact-by-solvable).
- Every virtually polycyclic group admits a proper affine action.

< A > < E

Evidence?

Milnor offers the following results as possible "evidence" for a negative answer to this question.

► A connected Lie group admits a proper affine action ⇔ it is amenable (compact-by-solvable).

• Every virtually polycyclic group admits a proper affine action.

A (1) > A (2) >

Evidence?

Milnor offers the following results as possible "evidence" for a negative answer to this question.

- Every virtually polycyclic group admits a proper affine action.

- ► Clearly a geometric problem, since free groups act properly by isometries on H³ (Schottky 1907), and hence by diffeomorphisms on E³
- but these actions are not affine.
- Milnor suggests:
 - "Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely. However it seems difficult to decide whether the resulting group action is properly discontinuous."

► Clearly a geometric problem, since free groups act properly by isometries on H³ (Schottky 1907), and hence by diffeomorphisms on E³

- but these actions are not affine.
- Milnor suggests:
 - "Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely. However it seems difficult to decide whether the resulting group action is properly discontinuous."

イロト イヨト イヨト イ

► Clearly a geometric problem, since free groups act properly by isometries on H³ (Schottky 1907), and hence by diffeomorphisms on E³

- but these actions are not affine.
- Milnor suggests:
 - "Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely. However it seems difficult to decide whether the resulting group action is properly discontinuous."

イロト イヨト イヨト イ

► Clearly a geometric problem, since free groups act properly by isometries on H³ (Schottky 1907), and hence by diffeomorphisms on E³

- but these actions are not affine.
- Milnor suggests:
 - "Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely. However it seems difficult to decide whether the resulting group action is properly discontinuous."

イロト イヨト イヨト イ

► Clearly a geometric problem, since free groups act properly by isometries on H³ (Schottky 1907), and hence by diffeomorphisms on E³

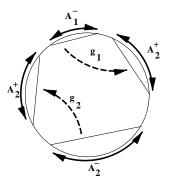
- but these actions are not affine.
- Milnor suggests:
 - "Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely. However it seems difficult to decide whether the resulting group action is properly discontinuous."

イロト イヨト イヨト イ

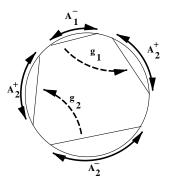
- ► Clearly a geometric problem, since free groups act properly by isometries on H³ (Schottky 1907), and hence by diffeomorphisms on E³
- but these actions are not affine.
- Milnor suggests:
 - "Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely. However it seems difficult to decide whether the resulting group action is properly discontinuous."

イロト イヨト イヨト イ

- ► Clearly a geometric problem, since free groups act properly by isometries on H³ (Schottky 1907), and hence by diffeomorphisms on E³
- but these actions are not affine.
- Milnor suggests:
 - "Start with a free discrete subgroup of O(2,1) and add translation components to obtain a group of affine transformations which acts freely. However it seems difficult to decide whether the resulting group action is properly discontinuous."



- Generators g_1, g_2 pair half-spaces $A_i^- \longrightarrow H^2 \setminus A_i^+$.
- ▶ g_1, g_2 freely generate discrete group.
- Action proper with fundamental domain $H^2 \setminus \bigcup A_i^{\pm}$.



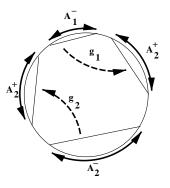
• Generators g_1, g_2 pair half-spaces $A_i^- \longrightarrow H^2 \setminus A_i^+$.

▶ g_1, g_2 freely generate discrete group.

• Action proper with fundamental domain $H^2 \setminus \bigcup A_i^{\pm}$

William M. Goldman

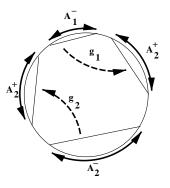
University of Maryland



- Generators g_1, g_2 pair half-spaces $A_i^- \longrightarrow H^2 \setminus A_i^+$.
- g_1, g_2 freely generate discrete group.

• Action proper with fundamental domain $H^2 \setminus \bigcup A$

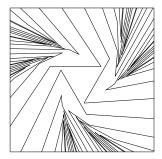
William M. Goldman Complete affine 3-manifolds and hyperbolic surfaces



- Generators g_1, g_2 pair half-spaces $A_i^- \longrightarrow H^2 \setminus A_i^+$.
- g_1, g_2 freely generate discrete group.
- Action proper with fundamental domain $H^2 \setminus \bigcup A_i^{\pm}$

Margulis's examples

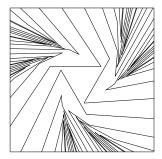
In the early 1980's, in trying to answer Milnor's question negatively, Margulis proved that nonabelian free groups do admit proper affine actions on \mathbb{R}^3 .



Complete affine 3-manifolds and hyperbolic surfaces

Margulis's examples

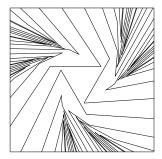
In the early 1980's, in trying to answer Milnor's question negatively, Margulis proved that nonabelian free groups do admit proper affine actions on \mathbb{R}^3 .



Complete affine 3-manifolds and hyperbolic surfaces

Margulis's examples

In the early 1980's, in trying to answer Milnor's question negatively, Margulis proved that nonabelian free groups do admit proper affine actions on \mathbb{R}^3 .



Complete affine 3-manifolds and hyperbolic surfaces

Suppose that $\Gamma \subset \text{Aff}(\mathbb{R}^3)$ acts properly and is not polycyclic.

- Let $\Gamma \xrightarrow{\mathbb{L}} GL(3, \mathbb{R})$ be the linear holonomy homomorphism. Then:
 - $\mathbb{L}(\Gamma)$ is (conjugate to) a *discrete* subgroup of O(2, 1);
 - ▶ L is injective. (Fried-Goldman 1983).
- Thus the associated complete hyperbolic surface.

$$\Sigma:=H^2/\mathbb{L}(\Gamma)$$

is homotopy-equivalent to $M = \mathbb{E}^{2,1}/\Gamma$.

Σ is not compact (Mess 1990).

 Thus Γ must be a free group and Milnor's construction is the only way to construct examples.

Suppose that $\Gamma \subset \text{Aff}(\mathbb{R}^3)$ acts properly and is not polycyclic.

- Let $\Gamma \xrightarrow{\mathbb{L}} GL(3, \mathbb{R})$ be the linear holonomy homomorphism. Then:
 - $L(\Gamma)$ is (conjugate to) a *discrete* subgroup of O(2, 1);
 - ▶ L is injective. (Fried-Goldman 1983).
- Thus the associated complete hyperbolic surface.

 $\Sigma:=H^2/\mathbb{L}(\Gamma)$

is homotopy-equivalent to $M = \mathbb{E}^{2,1}/\Gamma$.

Σ is not compact (Mess 1990).

 Thus Γ must be a free group and Milnor's construction is the only way to construct examples.

Suppose that $\Gamma \subset \text{Aff}(\mathbb{R}^3)$ acts properly and is not polycyclic.

- Let $\Gamma \xrightarrow{\mathbb{L}} GL(3, \mathbb{R})$ be the linear holonomy homomorphism. Then:
 - $L(\Gamma)$ is (conjugate to) a *discrete* subgroup of O(2, 1);
 - L is injective. (Fried-Goldman 1983).
- Thus the associated complete hyperbolic surface.

 $\Sigma:=H^2/\mathbb{L}(\Gamma)$

is homotopy-equivalent to $M = \mathbb{E}^{2,1}/\Gamma$.

Σ is not compact (Mess 1990).

 Thus Γ must be a free group and Milnor's construction is the only way to construct examples.

Suppose that $\Gamma \subset \text{Aff}(\mathbb{R}^3)$ acts properly and is not polycyclic.

- Let $\Gamma \xrightarrow{\mathbb{L}} GL(3, \mathbb{R})$ be the linear holonomy homomorphism. Then:
 - $L(\Gamma)$ is (conjugate to) a *discrete* subgroup of O(2, 1);
 - ▶ L is injective. (Fried-Goldman 1983).
- Thus the associated complete hyperbolic surface.

 $\Sigma:=H^2/\mathbb{L}(\Gamma)$

is homotopy-equivalent to $M=\mathbb{E}^{2,1}/\Gamma.$

Σ is not compact (Mess 1990).

 Thus Γ must be a free group and Milnor's construction is the only way to construct examples.

Suppose that $\Gamma \subset \text{Aff}(\mathbb{R}^3)$ acts properly and is not polycyclic.

- Let $\Gamma \xrightarrow{\mathbb{L}} GL(3, \mathbb{R})$ be the linear holonomy homomorphism. Then:
 - $L(\Gamma)$ is (conjugate to) a *discrete* subgroup of O(2, 1);
 - ▶ L is injective. (Fried-Goldman 1983).
- Thus the associated complete hyperbolic surface.

 $\Sigma:=H^2/\mathbb{L}(\Gamma)$

is homotopy-equivalent to $M = \mathbb{E}^{2,1}/\Gamma$.

Σ is not compact (Mess 1990).

 Thus Γ must be a free group and Milnor's construction is the only way to construct examples.

・ロト ・ 日 ・ ・ ヨ ・ ・

Suppose that $\Gamma \subset \text{Aff}(\mathbb{R}^3)$ acts properly and is not polycyclic.

- Let $\Gamma \xrightarrow{\mathbb{L}} GL(3, \mathbb{R})$ be the linear holonomy homomorphism. Then:
 - $L(\Gamma)$ is (conjugate to) a *discrete* subgroup of O(2, 1);
 - ▶ L is injective. (Fried-Goldman 1983).
- Thus the associated complete hyperbolic surface.

$$\Sigma := H^2/\mathbb{L}(\Gamma)$$

is homotopy-equivalent to $M = \mathbb{E}^{2,1}/\Gamma$.

Σ is not compact (Mess 1990).

 Thus Γ must be a free group and Milnor's construction is the only way to construct examples.

メロト スピア メヨア・

Suppose that $\Gamma \subset \text{Aff}(\mathbb{R}^3)$ acts properly and is not polycyclic.

- Let $\Gamma \xrightarrow{\mathbb{L}} GL(3, \mathbb{R})$ be the linear holonomy homomorphism. Then:
 - $L(\Gamma)$ is (conjugate to) a *discrete* subgroup of O(2, 1);
 - ▶ L is injective. (Fried-Goldman 1983).
- Thus the associated complete hyperbolic surface.

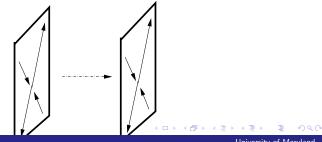
$$\Sigma := H^2/\mathbb{L}(\Gamma)$$

is homotopy-equivalent to $M = \mathbb{E}^{2,1}/\Gamma$.

- Σ is not compact (Mess 1990).
- Thus Γ must be a free group and Milnor's construction is the only way to construct examples.

Cyclic groups

- Most elements $\gamma \in \Gamma$ are *boosts*, affine deformations of
- Each such element leaves invariant a unique (spacelike) line,

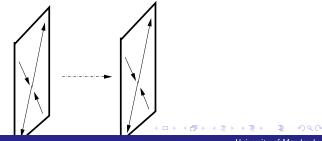


William M. Goldman

University of Maryland

Cyclic groups

- Most elements γ ∈ Γ are *boosts*, affine deformations of hyperbolic elements of O(2, 1). A fundamental domain is the *slab* bounded by two parallel planes.
- Each such element leaves invariant a unique (spacelike) line, whose image in E^{2,1}/Γ is a *closed geodesic*. Just as for hyperbolic surfaces, most loops are freely homotopic to closed geodesics.

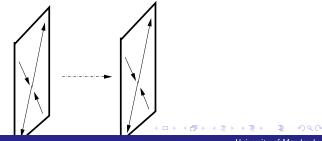


William M. Goldman

University of Maryland

Cyclic groups

- Most elements γ ∈ Γ are *boosts*, affine deformations of hyperbolic elements of O(2, 1). A fundamental domain is the *slab* bounded by two parallel planes.
- Each such element leaves invariant a unique (spacelike) line, whose image in E^{2,1}/Γ is a *closed geodesic*. Just as for hyperbolic surfaces, most loops are freely homotopic to closed geodesics.

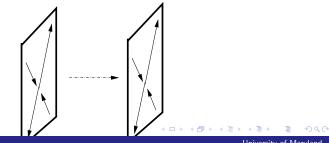


William M. Goldman

University of Maryland

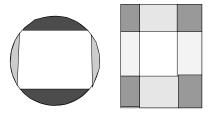
Cyclic groups

- Most elements $\gamma \in \Gamma$ are *boosts*, affine deformations of hyperbolic elements of O(2, 1). A fundamental domain is the slab bounded by two parallel planes.
- Each such element leaves invariant a unique (spacelike) line, whose image in $\mathbb{E}^{2,1}/\Gamma$ is a *closed geodesic*. Just as for hyperbolic surfaces, most loops are freely homotopic to closed geodesics.



William M. Goldman

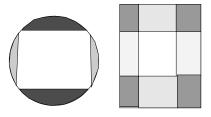
University of Maryland



- ▶ In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint \Rightarrow parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

William M. Goldman

University of Maryland

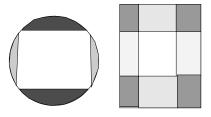


• In H², the half-spaces A_i^{\pm} are disjoint;

- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint \Rightarrow parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

William M. Goldman

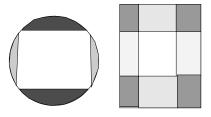
University of Maryland



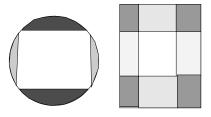
- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- ▶ In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

William M. Goldman

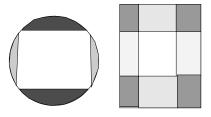
University of Maryland



- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- ► In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

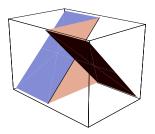


- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- ► In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!



- In H², the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- ► In affine space, half-spaces disjoint ⇒ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!

 Crooked Planes: Flexible polyhedral surfaces bound fundamental polyhedra for free affine groups.



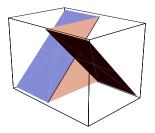
Two null half-planes connected by lines inside light-cone.

William M. Goldman

University of Maryland

< □ > < A > >

 Crooked Planes: Flexible polyhedral surfaces bound fundamental polyhedra for free affine groups.

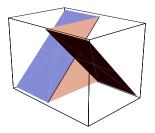


Two null half-planes connected by lines inside light-cone.

William M. Goldman

University of Maryland

 Crooked Planes: Flexible polyhedral surfaces bound fundamental polyhedra for free affine groups.

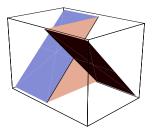


Two null half-planes connected by lines inside light-cone.

William M. Goldman

University of Maryland

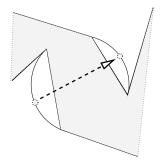
 Crooked Planes: Flexible polyhedral surfaces bound fundamental polyhedra for free affine groups.



Two null half-planes connected by lines inside light-cone.

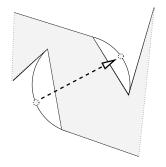
William M. Goldman

University of Maryland



- Start with a *hyperbolic slab* in H².
- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes

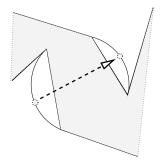
William M. Goldman



Start with a *hyperbolic slab* in H².

- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes

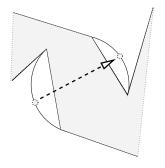
William M. Goldman



• Start with a hyperbolic slab in H^2 .

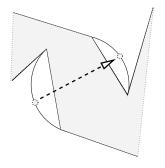
- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes

William M. Goldman



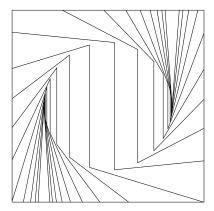
- Start with a hyperbolic slab in H².
- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes

William M. Goldman



- Start with a hyperbolic slab in H².
- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes.

Images of crooked planes under a linear cyclic group

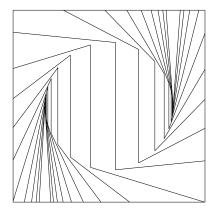


The resulting tesselation for a linear boost.

William M. Goldman

Complete affine 3-manifolds and hyperbolic surfaces

Images of crooked planes under a linear cyclic group

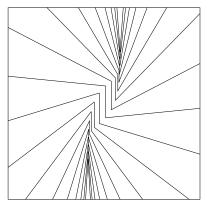


University of Maryland

The resulting tesselation for a linear boost.

William M. Goldman

Images of crooked planes under an affine deformation

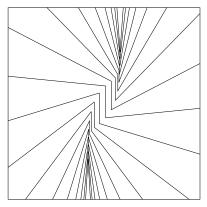


Adding translations frees up the action
 — which is now proper on all of E^{2,1}.

William M. Goldman

University of Maryland

Images of crooked planes under an affine deformation



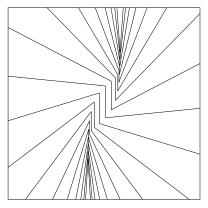
Adding translations frees up the action

• — which is now proper on all of $\mathbb{E}^{2,1}$.

William M. Goldman

University of Maryland

Images of crooked planes under an affine deformation

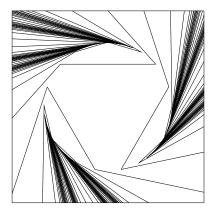


- Adding translations frees up the action
- — which is now proper on *all* of $\mathbb{E}^{2,1}$.

William M. Goldman

University of Maryland

Linear action of Schottky group

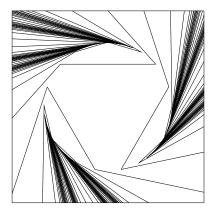


Crooked polyhedra tile H^2 for subgroup of O(2, 1)

William M. Goldman

University of Maryland

Linear action of Schottky group

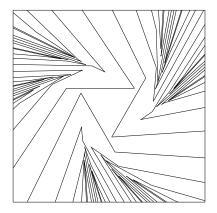


Crooked polyhedra tile H^2 for subgroup of O(2, 1).

William M. Goldman

Complete affine 3-manifolds and hyperbolic surfaces

Affine action of Schottky group

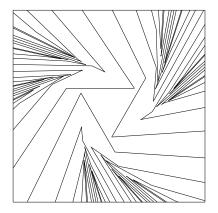


Carefully chosen affine deformation acts properly on \mathbb{E}^2

William M. Goldman

Complete affine 3-manifolds and hyperbolic surfaces

Affine action of Schottky group



Carefully chosen affine deformation acts properly on $\mathbb{E}^{2,1}$.

William M. Goldman

Complete affine 3-manifolds and hyperbolic surfaces

- Mess's theorem is the only obstruction for the existence of a proper affine deformation:
- (Drumm) Let Σ be a noncompact complete hyperbolic surface. Then its holonomy group admits a proper affine deformation and M³ is a solid handlebody.
- Proof: Extend Schottky fundamental domains for Σ to crooked fundamental domains on ℝ^{2,1}.
- Characterize all proper affine deformations of a non-cocompact Fuchsian group

< /₽> < ∋>

- Mess's theorem is the only obstruction for the existence of a proper affine deformation:
- (Drumm) Let Σ be a noncompact complete hyperbolic surface. Then its holonomy group admits a proper affine deformation and M³ is a solid handlebody.
- Proof: Extend Schottky fundamental domains for Σ to crooked fundamental domains on E^{2,1}.
- Characterize all proper affine deformations of a non-cocompact Fuchsian group

< /₽> < ∋>

- Mess's theorem is the only obstruction for the existence of a proper affine deformation:
- (Drumm) Let Σ be a noncompact complete hyperbolic surface. Then its holonomy group admits a proper affine deformation and M³ is a solid handlebody.
- ► Proof: Extend Schottky fundamental domains for Σ to crooked fundamental domains on ℝ^{2,1}.
- Characterize all proper affine deformations of a non-cocompact Fuchsian group

A (1) > A (1) > A

- Mess's theorem is the only obstruction for the existence of a proper affine deformation:
- (Drumm) Let Σ be a noncompact complete hyperbolic surface. Then its holonomy group admits a proper affine deformation and M³ is a solid handlebody.
- Proof: Extend Schottky fundamental domains for Σ to crooked fundamental domains on E^{2,1}.
- Characterize all proper affine deformations of a non-cocompact Fuchsian group

A (1) > A (1) > A

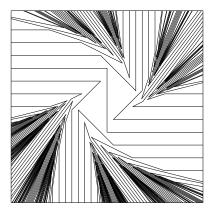
- Mess's theorem is the only obstruction for the existence of a proper affine deformation:
- (Drumm) Let Σ be a noncompact complete hyperbolic surface. Then its holonomy group admits a proper affine deformation and M³ is a solid handlebody.
- Proof: Extend Schottky fundamental domains for Σ to crooked fundamental domains on E^{2,1}.
- Characterize all proper affine deformations of a non-cocompact Fuchsian group

A (1) > A (2) >

- Mess's theorem is the only obstruction for the existence of a proper affine deformation:
- (Drumm) Let Σ be a noncompact complete hyperbolic surface. Then its holonomy group admits a proper affine deformation and M³ is a solid handlebody.
- Proof: Extend Schottky fundamental domains for Σ to crooked fundamental domains on ℝ^{2,1}.
- Characterize all proper affine deformations of a non-cocompact Fuchsian group

A (1) > A (1) > A

Affine action of modular group

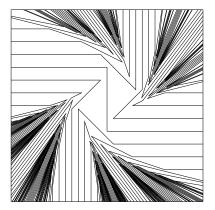


Proper affine deformations exist even for *lattices* in O(2,1) (Drumm).

William M. Goldman

Complete affine 3-manifolds and hyperbolic surfaces

Affine action of modular group



Proper affine deformations exist even for *lattices* in O(2,1) (Drumm).

William M. Goldman

Complete affine 3-manifolds and hyperbolic surfaces

Margulis's invariant

 \forall affine deformation $\Gamma \xrightarrow{\rho}$ lsom $(\mathbb{E}^{2,1})^0$, \exists fixed eigenvector x^0_{γ} for $\mathbb{L}(\gamma)$ such that

 $\begin{array}{c} \Gamma \xrightarrow{\alpha_u} \mathbb{R} \\ \gamma \longmapsto \langle u(\gamma), \mathsf{x}^{\mathsf{0}}_{\gamma} \rangle \end{array}$

satisfies:

- α_u is a class function on Γ ;
- $\blacktriangleright \alpha_u(\gamma^n) = |n| \alpha_u(\gamma);$
- When ρ acts properly, |α_u(γ)| is the Lorentzian length of the closed geodesic in M³ corresponding to γ;
- ▶ If ρ acts properly, either $\alpha_u(\gamma) > 0$ $\forall \gamma \neq 1$ or $\alpha_u(\gamma) < 0$ $\forall \gamma \neq 1$.

Margulis's invariant

 \forall affine deformation $\Gamma \xrightarrow{\rho}$ lsom $(\mathbb{E}^{2,1})^0$, \exists fixed eigenvector x^0_{γ} for $\mathbb{L}(\gamma)$ such that

 $\begin{array}{c} \mathsf{\Gamma} \xrightarrow{\alpha_u} \mathbb{R} \\ \gamma \longmapsto \langle u(\gamma), \mathsf{x}^{\mathsf{0}}_{\gamma} \rangle \end{array}$

satisfies:

- α_u is a class function on Γ ;
- $\blacktriangleright \alpha_u(\gamma^n) = |n| \alpha_u(\gamma);$
- When ρ acts properly, |α_u(γ)| is the Lorentzian length of the closed geodesic in M³ corresponding to γ;
- ▶ If ρ acts properly, either $\alpha_u(\gamma) > 0$ $\forall \gamma \neq 1$ or $\alpha_u(\gamma) < 0$ $\forall \gamma \neq 1$.

A D > A B > A B > A

Margulis's invariant

 \forall affine deformation $\Gamma \xrightarrow{\rho}$ lsom $(\mathbb{E}^{2,1})^0$, \exists fixed eigenvector x^0_{γ} for $\mathbb{L}(\gamma)$ such that

 $\begin{array}{c} \mathsf{\Gamma} \xrightarrow{\alpha_u} \mathbb{R} \\ \gamma \longmapsto \langle u(\gamma), \mathsf{x}^{\mathsf{0}}_{\gamma} \rangle \end{array}$

satisfies:

- α_u is a class function on Γ;
- $\blacktriangleright \alpha_u(\gamma^n) = |n|\alpha_u(\gamma);$
- When ρ acts properly, |α_u(γ)| is the Lorentzian length of the closed geodesic in M³ corresponding to γ;
- ▶ If ρ acts properly, either $\alpha_u(\gamma) > 0$ $\forall \gamma \neq 1$ or $\alpha_u(\gamma) < 0$ $\forall \gamma \neq 1$.

A D > A B > A B > A

Margulis's invariant

 \forall affine deformation $\Gamma \xrightarrow{\rho}$ lsom $(\mathbb{E}^{2,1})^0$, \exists fixed eigenvector x^0_{γ} for $\mathbb{L}(\gamma)$ such that

 $\begin{array}{c} \mathsf{\Gamma} \xrightarrow{\alpha_u} \mathbb{R} \\ \gamma \longmapsto \langle u(\gamma), \mathsf{x}^{\mathsf{0}}_{\gamma} \rangle \end{array}$

satisfies:

- α_u is a class function on Γ ;
- $\alpha_u(\gamma^n) = |n| \alpha_u(\gamma);$
- When ρ acts properly, |α_u(γ)| is the Lorentzian length of the closed geodesic in M³ corresponding to γ;
- If ρ acts properly, either α_u(γ) > 0 ∀γ ≠ 1 or α_u(γ) < 0 ∀γ ≠ 1.

イロト イヨト イヨト イ

Margulis's invariant

 \forall affine deformation $\Gamma \xrightarrow{\rho}$ lsom $(\mathbb{E}^{2,1})^0$, \exists fixed eigenvector x^0_{γ} for $\mathbb{L}(\gamma)$ such that

 $\begin{array}{c} \mathsf{\Gamma} \xrightarrow{\alpha_u} \mathbb{R} \\ \gamma \longmapsto \langle u(\gamma), \mathsf{x}^{\mathsf{0}}_{\gamma} \rangle \end{array}$

satisfies:

- α_u is a class function on Γ ;
- $\alpha_u(\gamma^n) = |n| \alpha_u(\gamma);$
- When ρ acts properly, |α_u(γ)| is the Lorentzian length of the closed geodesic in M³ corresponding to γ;
- ▶ If ρ acts properly, either $\alpha_u(\gamma) > 0$ $\forall \gamma \neq 1$ or $\alpha_u(\gamma) < 0$ $\forall \gamma \neq 1$.

Margulis's invariant

 \forall affine deformation $\Gamma \xrightarrow{\rho}$ lsom $(\mathbb{E}^{2,1})^0$, \exists fixed eigenvector x^0_{γ} for $\mathbb{L}(\gamma)$ such that

 $\begin{array}{c} \mathsf{\Gamma} \xrightarrow{\alpha_u} \mathbb{R} \\ \gamma \longmapsto \langle u(\gamma), \mathsf{x}^{\mathsf{0}}_{\gamma} \rangle \end{array}$

satisfies:

- α_u is a class function on Γ ;
- $\alpha_u(\gamma^n) = |n| \alpha_u(\gamma);$
- When ρ acts properly, |α_u(γ)| is the Lorentzian length of the closed geodesic in M³ corresponding to γ;
- ▶ If ρ acts properly, either $\alpha_u(\gamma) > 0$ $\forall \gamma \neq 1$ or $\alpha_u(\gamma) < 0$ $\forall \gamma \neq 1$.

Complete affine 3-manifolds and hyperbolic surfaces

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Start with a Fuchsian group Γ₀ ⊂ O(2,1). An affine deformation is a representation ρ = ρ_u with image Γ = Γ_u

determined by its translational part

 $u \in Z^1(\Gamma_0, \mathbb{R}^{2,1}).$

- Conjugating ρ by a translation \iff adding a coboundary to u.
- ► Translational conjugacy classes of affine deformations of Γ_0 form the vector space $H^{(\Gamma_0, \mathbb{R}^{2,1})}$.

Start with a Fuchsian group Γ₀ ⊂ O(2, 1). An affine deformation is a representation ρ = ρ_u with image Γ = Γ_u

$$\underset{0 \leftarrow 0}{\operatorname{lsom}(\mathbb{R}^{2,1})} \overset{\rho}{\underset{\rho}{\xrightarrow{\rho}}} \overset{\pi}{\underset{\rho}{\xrightarrow{\gamma}}} \bigvee_{\mathbb{L}} U$$

determined by its translational part

 $u \in Z^1(\Gamma_0, \mathbb{R}^{2,1}).$

Conjugating ρ by a translation ⇔ adding a coboundary to u.
 Translational conjugacy classes of affine deformations of Γ₀ form the vector space H(Γ₀, ℝ^{2,1}).

Start with a Fuchsian group Γ₀ ⊂ O(2, 1). An affine deformation is a representation ρ = ρ_u with image Γ = Γ_u

$$\underset{0 \leftarrow 0}{\operatorname{lsom}(\mathbb{R}^{2,1})} \overset{\rho}{\underset{\rho}{\xrightarrow{\rho}}} \overset{\tau}{\underset{\rho}{\xrightarrow{\rho}}} \bigvee_{\mathbb{L}} U$$

determined by its translational part

$$u \in Z^1(\Gamma_0, \mathbb{R}^{2,1}).$$

• Conjugating ρ by a translation \iff adding a coboundary to u.

► Translational conjugacy classes of affine deformations of Γ_0 form the vector space $H^{(\Gamma_0, \mathbb{R}^{2,1})}$.

William M. Goldman

Start with a Fuchsian group Γ₀ ⊂ O(2, 1). An affine deformation is a representation ρ = ρ_u with image Γ = Γ_u

$$\underset{0 \leftarrow 0}{\operatorname{lsom}(\mathbb{R}^{2,1})} \overset{\rho}{\underset{\rho}{\xrightarrow{\rho}}} \overset{\pi}{\underset{\rho}{\xrightarrow{\rho}}} \bigvee_{\mathbb{L}} U$$

determined by its translational part

$$u \in Z^1(\Gamma_0, \mathbb{R}^{2,1}).$$

- Conjugating ρ by a translation \iff adding a coboundary to u.
- Translational conjugacy classes of affine deformations of Γ₀ form the vector space H⁽Γ₀, ℝ^{2,1}).

- [u] corresponds to an *infinitesimal deformation* Σ_t of the hyperbolic structure on Σ.
- Margulis's invariant $\alpha_u(\gamma)$ represents the derivative

$$\left. \frac{d}{dt} \right|_{t=0} \ell_{\Sigma_t}(\gamma)$$

where $\ell_{\Sigma_t}(\gamma)$ is the length of the closed geodesic on Σ_t corresponding to γ .

- ► Γ_u is proper \implies all closed geodesics lengthen (or shorten) under the deformation Σ_t .
- ► The converse is true ⇐⇒ Σ is homeomorphic to a three-holed sphere, one-holed Klein bottle or two-holed projective plane. (Charette-Drumm-Goldman-Jones)

- [u] corresponds to an *infinitesimal deformation* Σ_t of the hyperbolic structure on Σ.
- Margulis's invariant $\alpha_u(\gamma)$ represents the derivative

$$\left. \frac{d}{dt} \right|_{t=0} \ell_{\Sigma_t}(\gamma)$$

where $\ell_{\Sigma_t}(\gamma)$ is the length of the closed geodesic on Σ_t corresponding to γ .

- ► Γ_u is proper \implies all closed geodesics lengthen (or shorten) under the deformation Σ_t .
- ► The converse is true ⇐⇒ Σ is homeomorphic to a three-holed sphere, one-holed Klein bottle or two-holed projective plane. (Charette-Drumm-Goldman-Jones)

- [u] corresponds to an *infinitesimal deformation* Σ_t of the hyperbolic structure on Σ.
- Margulis's invariant $\alpha_u(\gamma)$ represents the derivative

$$\left.\frac{d}{dt}\right|_{t=0}\ell_{\Sigma_t}(\gamma)$$

where $\ell_{\Sigma_t}(\gamma)$ is the length of the closed geodesic on Σ_t corresponding to γ .

- ► Γ_u is proper \implies all closed geodesics lengthen (or shorten) under the deformation Σ_t .
- ► The converse is true ⇐⇒ Σ is homeomorphic to a three-holed sphere, one-holed Klein bottle or two-holed projective plane. (Charette-Drumm-Goldman-Jones)

・ロト ・ 日 ・ ・ 回 ト ・

- [u] corresponds to an *infinitesimal deformation* Σ_t of the hyperbolic structure on Σ.
- Margulis's invariant $\alpha_u(\gamma)$ represents the derivative

$$\left. \frac{d}{dt} \right|_{t=0} \ell_{\Sigma_t}(\gamma)$$

where $\ell_{\Sigma_t}(\gamma)$ is the length of the closed geodesic on Σ_t corresponding to γ .

- Γ_u is proper ⇒ all closed geodesics lengthen (or shorten) under the deformation Σ_t.
- ► The converse is true ⇐⇒ Σ is homeomorphic to a three-holed sphere, one-holed Klein bottle or two-holed projective plane. (Charette-Drumm-Goldman-Jones)

- [u] corresponds to an *infinitesimal deformation* Σ_t of the hyperbolic structure on Σ.
- Margulis's invariant $\alpha_u(\gamma)$ represents the derivative

$$\left.\frac{d}{dt}\right|_{t=0}\ell_{\Sigma_t}(\gamma)$$

where $\ell_{\Sigma_t}(\gamma)$ is the length of the closed geodesic on Σ_t corresponding to γ .

- ► Γ_u is proper \implies all closed geodesics lengthen (or shorten) under the deformation Σ_t .
- ► The converse is true ⇐⇒ Σ is homeomorphic to a three-holed sphere, one-holed Klein bottle or two-holed projective plane. (Charette-Drumm-Goldman-Jones)

Complete affine 3-manifolds and hyperbolic surfaces

University of Maryland

For each $\gamma \in \Gamma_0$, the functional

$$\begin{aligned} H^1(\Gamma_0, \mathbb{R}^{2,1}) &\xrightarrow{\alpha^{\gamma}} \mathbb{R} \\ [u] &\longmapsto \alpha_u(\gamma) \end{aligned}$$

detects the rate of lengthening of γ under the deformation corresponding to [u].

- ▶ If $\alpha^{\gamma}(u) > 0 \ \forall \gamma \subset \partial \Sigma$, then a crooked fundamental domain exists and Γ_u is proper.
- M^3 is a solid handlebody of genus two.
- If each component of $\partial \Sigma$ lengthens, then *every curve* lengthens.

Image: A match a ma

► For each $\gamma \in \Gamma_0$, the functional

$$\begin{array}{c} H^1(\Gamma_0, \mathbb{R}^{2,1}) \xrightarrow{\alpha^{\gamma}} \mathbb{R} \\ [u] \longmapsto \alpha_u(\gamma) \end{array}$$

detects the rate of lengthening of γ under the deformation corresponding to [u].

- If α^γ(u) > 0 ∀γ ⊂ ∂Σ, then a crooked fundamental domain exists and Γ_u is proper.
- M^3 is a solid handlebody of genus two.
- If each component of $\partial \Sigma$ lengthens, then *every curve* lengthens.

For each $\gamma \in \Gamma_0$, the functional

$$\begin{aligned} H^1(\Gamma_0, \mathbb{R}^{2,1}) &\xrightarrow{\alpha^{\gamma}} \mathbb{R} \\ [u] &\longmapsto \alpha_u(\gamma) \end{aligned}$$

detects the rate of lengthening of γ under the deformation corresponding to [u].

- If α^γ(u) > 0 ∀γ ⊂ ∂Σ, then a crooked fundamental domain exists and Γ_u is proper.
- M^3 is a solid handlebody of genus two.
- If each component of $\partial \Sigma$ lengthens, then *every curve* lengthens.

For each $\gamma \in \Gamma_0$, the functional

$$\begin{aligned} H^1(\Gamma_0, \mathbb{R}^{2,1}) &\xrightarrow{\alpha^{\gamma}} \mathbb{R} \\ [u] &\longmapsto \alpha_u(\gamma) \end{aligned}$$

detects the rate of lengthening of γ under the deformation corresponding to [u].

- If α^γ(u) > 0 ∀γ ⊂ ∂Σ, then a crooked fundamental domain exists and Γ_u is proper.
- M^3 is a solid handlebody of genus two.
- If each component of $\partial \Sigma$ lengthens, then *every curve* lengthens.

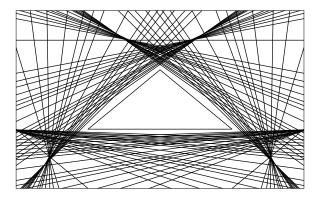
For each $\gamma \in \Gamma_0$, the functional

$$\begin{aligned} H^1(\Gamma_0, \mathbb{R}^{2,1}) &\xrightarrow{\alpha^{\gamma}} \mathbb{R} \\ [u] &\longmapsto \alpha_u(\gamma) \end{aligned}$$

detects the rate of lengthening of γ under the deformation corresponding to [u].

- If α^γ(u) > 0 ∀γ ⊂ ∂Σ, then a crooked fundamental domain exists and Γ_u is proper.
- M^3 is a solid handlebody of genus two.
- If each component of ∂Σ lengthens, then every curve lengthens.

Lines defined by the linear functionals α^{γ}

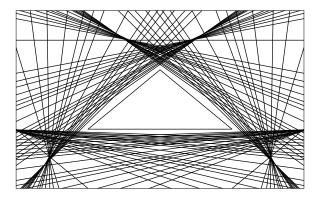


The triangle is bounded by the lines corresponding to $\gamma \subset \partial \Sigma$. Its interior parametrizes proper affine deformations.

William M. Goldman

University of Maryland

Lines defined by the linear functionals α^γ



The triangle is bounded by the lines corresponding to $\gamma \subset \partial \Sigma$. Its interior parametrizes proper affine deformations.

William M. Goldman

University of Maryland

- α_u extends from a class function on Γ_0 to a function defined on the convex set $\mathcal{C}(\Sigma)$ of geodesic currents on Σ :
- ► (Goldman-Labourie-Margulis) ∃ continuous biaffine map

$$\mathcal{C}(\Sigma) \times H^1(\Gamma_0, \mathbb{R}^{2,1}) \xrightarrow{\Psi} \mathbb{R}.$$

▶ If $\gamma \in \Gamma_0$, and μ is the corresponding geodesic current, then

$$\Psi(\mu, [u]) = \frac{\alpha_{[u]}(\gamma)}{\ell_{\Sigma}(\gamma)}$$

where $\ell_{\Sigma}(\gamma)$ is the length of the closed geodesic on Σ corresponding to γ .

► $\Gamma_{[u]}$ acts properly on $\mathbb{E}^{2,1} \iff \Psi(\mu, [u]) \neq 0$ for all $\mu \in \mathcal{C}(\Sigma)$.

William M. Goldman

University of Maryland

- α_u extends from a class function on Γ₀ to a function defined on the convex set C(Σ) of geodesic currents on Σ:
- ► (Goldman-Labourie-Margulis) ∃ continuous biaffine map

$$\mathcal{C}(\Sigma) \times H^1(\Gamma_0, \mathbb{R}^{2,1}) \xrightarrow{\Psi} \mathbb{R}.$$

▶ If $\gamma \in \Gamma_0$, and μ is the corresponding geodesic current, then

$$\Psi(\mu, [u]) = \frac{\alpha_{[u]}(\gamma)}{\ell_{\Sigma}(\gamma)}$$

where $\ell_{\Sigma}(\gamma)$ is the length of the closed geodesic on Σ corresponding to γ .

► $\Gamma_{[u]}$ acts properly on $\mathbb{E}^{2,1} \iff \Psi(\mu, [u]) \neq 0$ for all $\mu \in \mathcal{C}(\Sigma)$.

William M. Goldman

University of Maryland

- α_u extends from a class function on Γ₀ to a function defined on the convex set C(Σ) of geodesic currents on Σ:
- ► (Goldman-Labourie-Margulis) ∃ continuous biaffine map

$$\mathcal{C}(\Sigma) \times H^1(\Gamma_0, \mathbb{R}^{2,1}) \xrightarrow{\Psi} \mathbb{R}.$$

▶ If $\gamma \in \Gamma_0$, and μ is the corresponding geodesic current, then

$$\Psi(\mu, [u]) = \frac{\alpha_{[u]}(\gamma)}{\ell_{\Sigma}(\gamma)}$$

where $\ell_{\Sigma}(\gamma)$ is the length of the closed geodesic on Σ corresponding to γ .

► $\Gamma_{[u]}$ acts properly on $\mathbb{E}^{2,1} \iff \Psi(\mu, [u]) \neq 0$ for all $\mu \in \mathcal{C}(\Sigma)$.

William M. Goldman

University of Maryland

- α_u extends from a class function on Γ₀ to a function defined on the convex set C(Σ) of geodesic currents on Σ:
- ► (Goldman-Labourie-Margulis) ∃ continuous biaffine map

$$\mathcal{C}(\Sigma) \times H^1(\Gamma_0, \mathbb{R}^{2,1}) \xrightarrow{\Psi} \mathbb{R}.$$

▶ If $\gamma \in \Gamma_0$, and μ is the corresponding geodesic current, then

$$\Psi(\mu, [u]) = \frac{\alpha_{[u]}(\gamma)}{\ell_{\Sigma}(\gamma)}$$

where $\ell_{\Sigma}(\gamma)$ is the length of the closed geodesic on Σ corresponding to γ .

► $\Gamma_{[u]}$ acts properly on $\mathbb{E}^{2,1} \iff \Psi(\mu, [u]) \neq 0$ for all $\mu \in \mathcal{C}(\Sigma)$.

William M. Goldman

University of Maryland

► The set of proper affine deformations of Γ₀ is the open convex cone in H¹(Γ₀, ℝ^{2,1}) defined by the functionals

$$[u] \stackrel{\alpha^{\mu}}{\longmapsto} \Psi(\mu, [u])$$

for $\mu \in \mathcal{C}(\Sigma)$.

- Sufficient to test measured geodesic laminations μ. (Thurston "Minimal stretch maps...")
- Proper affine deformations correspond to infinitesimal deformations of Σ which *lengthen* all measured geodesic laminations.

Image: A image: A

► The set of proper affine deformations of Γ₀ is the open convex cone in H¹(Γ₀, ℝ^{2,1}) defined by the functionals

$$[u] \stackrel{\alpha^{\mu}}{\longmapsto} \Psi(\mu, [u])$$

for $\mu \in \mathcal{C}(\Sigma)$.

- Sufficient to test measured geodesic laminations μ. (Thurston "Minimal stretch maps...")
- Proper affine deformations correspond to infinitesimal deformations of Σ which *lengthen* all measured geodesic laminations.

The set of proper affine deformations of Γ₀ is the open convex cone in H¹(Γ₀, ℝ^{2,1}) defined by the functionals

$$[u] \stackrel{\alpha^{\mu}}{\longmapsto} \Psi(\mu, [u])$$

for $\mu \in \mathcal{C}(\Sigma)$.

- Sufficient to test measured geodesic laminations μ. (Thurston "Minimal stretch maps...")
- Proper affine deformations correspond to infinitesimal deformations of Σ which *lengthen* all measured geodesic laminations.

Image: A match a ma

The set of proper affine deformations of Γ₀ is the open convex cone in H¹(Γ₀, ℝ^{2,1}) defined by the functionals

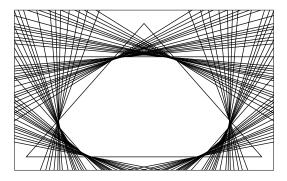
$$[u] \stackrel{\alpha^{\mu}}{\longmapsto} \Psi(\mu, [u])$$

for $\mu \in \mathcal{C}(\Sigma)$.

- Sufficient to test measured geodesic laminations μ. (Thurston "Minimal stretch maps...")
- Proper affine deformations correspond to infinitesimal deformations of Σ which *lengthen* all measured geodesic laminations.

Image: A match a ma

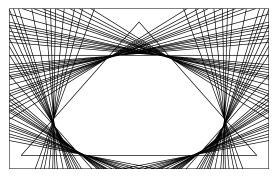
Linear functionals α^{γ} when Σ is a one-holed torus



The properness region is bounded by infinitely many intervals, each corresponding to a simple nonseparating loop on Σ . Boundary points lie on intervals or are points of strict convexity (irrational laminations) (Goldman-Margulis-Minsky).

William M. Goldman

Linear functionals α^{γ} when Σ is a one-holed torus



The properness region is bounded by infinitely many intervals, each corresponding to a simple nonseparating loop on Σ . Boundary points lie on intervals or are points of strict convexity (irrational laminations) (Goldman-Margulis-Minsky).

William M. Goldman