Moduli spaces and locally symmetric spaces

Benson Farb

University of Chicago

Once it is possible to translate any particular proof from one theory to another, then the analogy has ceased to be productive for this purpose; it would cease to be at all productive if at one point we had a meaningful and natural way of deriving both theories from a single one Gone is the analogy: gone are the two theories, their conflicts and their delicious reciprocal reflections, their furtive caresses, their inexplicable quarrels; alas, all is just one theory, whose majestic beauty can no longer excite us.
— letter from André to Simone Weil, 1940
[stolen from Kent-Leininger]

Prelude: A useful viewpoint

$\operatorname{Mod}_{g}:=\operatorname{Homeo}^{+}\left(S_{g}\right) / \operatorname{Homeo}^{0}\left(S_{g}\right)$
Problem: Classify elements $\phi \in \operatorname{Mod}_{g}$.
Solution (Thurston, Bers):
STEP 1. Look at action of Mod_{g} on Teichmüller space \mathcal{T}_{g}.

$$
\mathcal{T}_{1} / \operatorname{Mod}_{1}=\mathbf{H}^{2} / \operatorname{SL}(2, \mathbf{Z})
$$

[Picture stolen from C. McMullen]

Reprise: Moduli space for genus $g=1$

Prelude: A useful viewpoint

$\operatorname{Mod}_{g}:=\operatorname{Homeo}^{+}\left(S_{g}\right) / \operatorname{Homeo}^{0}\left(S_{g}\right)$
Problem: Classify elements $\phi \in \operatorname{Mod}_{g}$.
Solution (Thurston, Bers):
STEP 1. Look at action of Mod_{g} on Teichmüller space \mathcal{T}_{g}.

- Properly discontinuous
- By isometries (of Teichmüller metric)

Prelude: A useful viewpoint

$\operatorname{Mod}_{g}:=\operatorname{Homeo}^{+}\left(S_{g}\right) / \operatorname{Homeo}^{0}\left(S_{g}\right)$
Problem: Classify elements $\phi \in \operatorname{Mod}_{g}$.
Solution (Thurston, Bers):
STEP 1. Look at action of Mod_{g} on Teichmüller space \mathcal{T}_{g}.

- Properly discontinuous
- By isometries (of Teichmüller metric)

STEP 2. Pretend \mathcal{T}_{g} is hyperbolic space \mathbf{H}^{n}.

- \mathbf{H}^{n} negatively curved (so $d_{\mathbf{H}^{n}}$ is convex)
- \mathbf{H}^{n} compactifies to a closed ball
- Simple dynamics on $\partial \mathbf{H}^{n}$

Prelude: A useful viewpoint

$\operatorname{Mod}_{g}:=\operatorname{Homeo}^{+}\left(S_{g}\right) / \operatorname{Homeo}^{0}\left(S_{g}\right)$
Problem: Classify elements $\phi \in \operatorname{Mod}_{g}$.
Solution (Thurston, Bers):
STEP 1. Look at action of Mod_{g} on Teichmüller space \mathcal{T}_{g}.

- Properly discontinuous
- By isometries (of Teichmüller metric)

STEP 2. Pretend \mathcal{T}_{g} is hyperbolic space \mathbf{H}^{n}.

- \mathbf{H}^{n} negatively curved (so $d_{\mathbf{H}^{n}}$ is convex)
- \mathbf{H}^{n} compactifies to a closed ball
- Simple dynamics on $\partial \mathbf{H}^{n}$

STEP 3. Two proof endings

- Bers: Analyze Minset (ϕ)
- Thurston: Apply Brouwer Fixed Point Theorem; analyze

Prelude: The truth interferes

\mathcal{T}_{g} is NOT negatively curved (unless $g=1$)!

Nontrivial problems

1. How to analyze $\operatorname{Minset}(\phi)$?
2. How to compactify \mathcal{T}_{g} ?

Prelude: \mathcal{T}_{g} vs. symmetric spaces

How close is Teichmüller space to being a symmetric space?
How much of the formal geometry of a symmetric space does Teichmüller space have?

- J. Harer, 1988

Some pioneers: Dehn, Bers, Thurston, Harvey, Harer, Ivanov, Masur, and many others.

Talk Outline

Theme: Think of moduli space $\mathcal{M}_{g}:=\mathcal{T}_{g} / \operatorname{Mod}_{g}$ as a locally symmetric orbifold.

- Use this philosophy to discover conjectures/theorems.
- Find universal constraints on this philosophy.

Today

1. Symmetry and homogeneity
2. Reduction theory

Other aspects

- Curvature (Riemannian, holomorphic, coarse)
- Convex cocompact groups
- Rank invariants (R-rank, Q-rank, geometric ranks)
- Rank one / higher rank dichotomy
- Compactifications

Locally symmetric spaces: Examples

- Finite volume hyperbolic manifolds $M=\Gamma \backslash \mathbf{H}^{n}$
- $\mathcal{V}_{g}=\operatorname{SL}(n, \mathbf{Z}) \backslash \operatorname{SL}(n, \mathbf{R}) / \mathrm{SO}(n)$
$=$ moduli space of flat, unit volume, n-dimensional tori
- $\mathcal{A}_{g}=\operatorname{Sp}(2 g, \mathbf{Z}) \backslash \operatorname{Sp}(2 g, \mathbf{R}) / \mathrm{U}(g)$
$=$ moduli space of g-dimensional, principally polarized abelian varieties
- $M=\Gamma \backslash G / K, G$ semisimple, K max compact, Γ lattice.

Remarks

- $\mathcal{M}_{1}=\mathcal{V}_{2}$
- $\mathcal{M}_{g} \hookrightarrow \mathcal{A}_{g}$ (Torelli Theorem)

Locally symmetric spaces M : First Properties

- M finite volume Riemannian
- Symmetry: \widetilde{M} is symmetric at every point: the flip map

$$
\gamma(t) \mapsto \gamma(-t)
$$

is an isometry.

- Homogeneity: $\operatorname{Isom}(\widetilde{M})$ acts transitively on \widetilde{M}.
- Curvature: $K(M) \leq 0$
- Algebraic system: $M=\Gamma \backslash G / K$
- Algebraic formulas for differential-geometric quantities
- Rigidity properties
- $\pi_{1}(M)$ usually determines M (Mostow, Prasad, Margulis)

Dictionary: First entries

Nonlinear
Moduli space \mathcal{M}_{g}
Mod_{g}
\mathcal{T}_{g}

Linear
loc. sym. space M
$\pi_{1}(M)$
symmetric space \widetilde{M}

Symmetry: Royden's Theorem

Symmetry: Royden's Theorem

Teichmüller metric $d_{\mathcal{T}}$

- Complete Finsler metric. Induced by norm on $T_{X}^{*}\left(\mathcal{T}_{g}\right)=\mathrm{QD}(X)$:

$$
\|\phi\|_{\mathcal{T}}:=\int_{X}|\phi(z) \| d z|^{2}
$$

Symmetry: Royden's Theorem

Teichmüller metric $d_{\mathcal{T}}$

- Complete Finsler metric. Induced by norm on $T_{X}^{*}\left(\mathcal{T}_{g}\right)=\mathrm{QD}(X)$:

$$
\|\phi\|_{\mathcal{T}}:=\int_{X}|\phi(z) \| d z|^{2}
$$

- $\operatorname{Vol}\left(\mathcal{M}_{g}, d_{\mathcal{T}}\right)<\infty$ (Masur)

Symmetry: Royden's Theorem

Teichmüller metric $d_{\mathcal{T}}$

- Complete Finsler metric. Induced by norm on $T_{X}^{*}\left(\mathcal{T}_{g}\right)=\mathrm{QD}(X)$:

$$
\|\phi\|_{\mathcal{T}}:=\int_{X}|\phi(z) \| d z|^{2}
$$

- $\operatorname{Vol}\left(\mathcal{M}_{g}, d_{\mathcal{T}}\right)<\infty$ (Masur)

Royden's Theorem (1971). Let $g \geq 3$. Then

Symmetry: Royden's Theorem

Teichmüller metric $d_{\mathcal{T}}$

- Complete Finsler metric. Induced by norm on $T_{X}^{*}\left(\mathcal{T}_{g}\right)=\mathrm{QD}(X)$:

$$
\|\phi\|_{\mathcal{T}}:=\int_{X}|\phi(z) \| d z|^{2}
$$

- $\operatorname{Vol}\left(\mathcal{M}_{g}, d_{\mathcal{T}}\right)<\infty$ (Masur)

Royden's Theorem (1971). Let $g \geq 3$. Then

1. There is no point $X \in \mathcal{T}_{g}$ at which \mathcal{T}_{g} is symmetric.

Symmetry: Royden's Theorem

Teichmüller metric $d_{\mathcal{T}}$

- Complete Finsler metric. Induced by norm on $T_{X}^{*}\left(\mathcal{T}_{g}\right)=\mathrm{QD}(X)$:

$$
\|\phi\|_{\mathcal{T}}:=\int_{X}|\phi(z) \| d z|^{2}
$$

- $\operatorname{Vol}\left(\mathcal{M}_{g}, d_{\mathcal{T}}\right)<\infty$ (Masur)

Royden's Theorem (1971). Let $g \geq 3$. Then

1. There is no point $X \in \mathcal{T}_{g}$ at which \mathcal{T}_{g} is symmetric.
2. $\operatorname{Isom}\left(\mathcal{T}_{g}\right)=\operatorname{Mod}_{g}^{ \pm}$.

Symmetry: Intrinsic inhomogeneity of \mathcal{T}_{g}

Symmetry: Intrinsic inhomogeneity of \mathcal{I}_{g}

Theorem (Farb-Weinberger). For any complete, Mod_{g}-invariant Riemannian (or even Finsler) metric on \mathcal{T}_{g} with $\operatorname{Vol}\left(\mathcal{M}_{g}\right)<\infty$:

Symmetry: Intrinsic inhomogeneity of \mathcal{I}_{g}

Theorem (Farb-Weinberger). For any complete, Mod_{g}-invariant Riemannian (or even Finsler) metric on \mathcal{T}_{g} with $\operatorname{Vol}\left(\mathcal{M}_{g}\right)<\infty$:

1. There is no point $X \in \mathcal{T}_{g}$ at which \mathcal{T}_{g} is symmetric.

Symmetry: Intrinsic inhomogeneity of \mathcal{I}_{g}

Theorem (Farb-Weinberger). For any complete, Mod_{g}-invariant Riemannian (or even Finsler) metric on \mathcal{T}_{g} with $\operatorname{Vol}\left(\mathcal{M}_{g}\right)<\infty$:

1. There is no point $X \in \mathcal{T}_{g}$ at which \mathcal{T}_{g} is symmetric.
2. $\operatorname{Isom}\left(\mathcal{T}_{g}\right)$ is discrete and $\left[\operatorname{Isom}\left(\mathcal{T}_{g}\right): \operatorname{Mod}_{g}\right]<\infty$.

Symmetry: Intrinsic inhomogeneity of \mathcal{I}_{g}

Theorem (Farb-Weinberger). For any complete, Mod_{g}-invariant Riemannian (or even Finsler) metric on \mathcal{T}_{g} with $\operatorname{Vol}\left(\mathcal{M}_{g}\right)<\infty$:

1. There is no point $X \in \mathcal{T}_{g}$ at which \mathcal{T}_{g} is symmetric.
2. $\operatorname{Isom}\left(\mathcal{T}_{g}\right)$ is discrete and $\left[\operatorname{Isom}\left(\mathcal{T}_{g}\right): \operatorname{Mod}_{g}\right]<\infty$.

Corollary (Ivanov): \mathcal{M}_{g} admits no locally symmetric metric.

Symmetry: Intrinsic inhomogeneity of \mathcal{I}_{g}

Theorem (Farb-Weinberger). For any complete, Mod_{g}-invariant Riemannian (or even Finsler) metric on \mathcal{T}_{g} with $\operatorname{Vol}\left(\mathcal{M}_{g}\right)<\infty$:

1. There is no point $X \in \mathcal{T}_{g}$ at which \mathcal{T}_{g} is symmetric.
2. $\operatorname{Isom}\left(\mathcal{T}_{g}\right)$ is discrete and $\left[\operatorname{Isom}\left(\mathcal{T}_{g}\right): \operatorname{Mod}_{g}\right]<\infty$.

Corollary (Ivanov): \mathcal{M}_{g} admits no locally symmetric metric.
Conjecture: $\left[\operatorname{Isom}\left(\mathcal{T}_{g}\right): \operatorname{Mod}_{g}\right] \leq 2$.

Symmetry: Intrinsic inhomogeneity of \mathcal{I}_{g}

Theorem (Farb-Weinberger). For any complete, Mod_{g}-invariant Riemannian (or even Finsler) metric on \mathcal{T}_{g} with $\operatorname{Vol}\left(\mathcal{M}_{g}\right)<\infty$:

1. There is no point $X \in \mathcal{T}_{g}$ at which \mathcal{T}_{g} is symmetric.
2. $\operatorname{Isom}\left(\mathcal{T}_{g}\right)$ is discrete and $\left[\operatorname{Isom}\left(\mathcal{T}_{g}\right): \operatorname{Mod}_{g}\right]<\infty$.

Corollary (Ivanov): \mathcal{M}_{g} admits no locally symmetric metric.
Conjecture: $\left[\operatorname{Isom}\left(\mathcal{T}_{g}\right): \operatorname{Mod}_{g}\right] \leq 2$.
Stronger version: Theorem holds for finite covers of \mathcal{M}_{g}.

Symmetry: Intrinsic inhomogeneity of \mathcal{I}_{g}

Theorem (Farb-Weinberger). For any complete, Mod_{g}-invariant Riemannian (or even Finsler) metric on \mathcal{T}_{g} with $\operatorname{Vol}\left(\mathcal{M}_{g}\right)<\infty$:

1. There is no point $X \in \mathcal{T}_{g}$ at which \mathcal{T}_{g} is symmetric.
2. $\operatorname{Isom}\left(\mathcal{T}_{g}\right)$ is discrete and $\left[\operatorname{Isom}\left(\mathcal{T}_{g}\right): \operatorname{Mod}_{g}\right]<\infty$.

Corollary (Ivanov): \mathcal{M}_{g} admits no locally symmetric metric.

Conjecture: $\left[\operatorname{Isom}\left(\mathcal{T}_{g}\right): \operatorname{Mod}_{g}\right] \leq 2$.
Stronger version: Theorem holds for finite covers of \mathcal{M}_{g}.

Remark. Gives no info on WP metric. But $\operatorname{Isom}\left(\mathcal{T}_{g}, \mathrm{WP}\right)=\operatorname{Mod}_{g}^{ \pm}$ (Masur-Wolf).

Teichmüller geometry of moduli space

Teichmüller geometry of moduli space

Goals (with H. Masur)

1. Understand the geometry of \mathcal{M}_{g} with Teich metric.

Teichmüller geometry of moduli space

Goals (with H. Masur)

1. Understand the geometry of \mathcal{M}_{g} with Teich metric.
2. Build a "Reduction Theory" for $\left(\mathcal{T}_{g}, \operatorname{Mod}_{g}\right)$ (as with arithmetic groups)

Teichmüller geometry of moduli space

Goals (with H. Masur)

1. Understand the geometry of \mathcal{M}_{g} with Teich metric.
2. Build a "Reduction Theory" for $\left(\mathcal{T}_{g}, \operatorname{Mod}_{g}\right)$ (as with arithmetic groups)
3. Compactifications (à la Siegel, Borel, Ji, Macpherson, Leuzinger, etc.)

Teichmüller geometry of moduli space

Goals (with H. Masur)

1. Understand the geometry of \mathcal{M}_{g} with Teich metric.
2. Build a "Reduction Theory" for $\left(\mathcal{T}_{g}, \operatorname{Mod}_{g}\right)$ (as with arithmetic groups)
3. Compactifications (à la Siegel, Borel, Ji, Macpherson, Leuzinger, etc.)

Teich geometry of \mathcal{M}_{g} : Cone at infinity

Teich geometry of \mathcal{M}_{g} : Cone at infinity

DEFINITION. (M, d) pointed metric space.

$$
\operatorname{Cone}(M):=\lim _{n \rightarrow \infty}\left(M, \frac{1}{n} d\right)
$$

Teich geometry of \mathcal{M}_{g} : Cone at infinity

DEFINITION. (M, d) pointed metric space.

$$
\operatorname{Cone}(M):=\lim _{n \rightarrow \infty}\left(M, \frac{1}{n} d\right)
$$

Example. Cone(M) for M finite volume hyperbolic.

Finite volume hyperbolic manifold M

$\frac{1}{10} M$

$\frac{L_{⿳ 亠 丷 厂}^{1}}{}$

$\frac{1}{40} M$

K

Teich geometry of \mathcal{M}_{g} : Cone at infinity

DEFINITION. (M, d) pointed metric space.

$$
\operatorname{Cone}(M):=\lim _{n \rightarrow \infty}\left(M, \frac{1}{n} d\right)
$$

Example. Cone(M) for M finite volume hyperbolic.

Teich geometry of \mathcal{M}_{g} : Cone at infinity

DEFINITION. (M, d) pointed metric space.

$$
\text { Cone }(M):=\lim _{n \rightarrow \infty}\left(M, \frac{1}{n} d\right)
$$

Example. Cone(M) for M finite volume hyperbolic.
Question. What is Cone $\left(\mathcal{M}_{g}\right)$?

Teich geometry of \mathcal{M}_{g} : Almost isometric model

Teich geometry of \mathcal{M}_{g} : Almost isometric model

Build metric simplicial complex \mathcal{V}_{g}

Teich geometry of \mathcal{M}_{g} : Almost isometric model

Build metric simplicial complex \mathcal{V}_{g}

1. $\mathcal{C}_{g}=$ complex of curves on Σ_{g}

Teich geometry of \mathcal{M}_{g} : Almost isometric model

Build metric simplicial complex \mathcal{V}_{g}

1. $\mathcal{C}_{g}=$ complex of curves on Σ_{g}
2. Let

$$
\mathcal{V}_{g}=\left[\frac{[0, \infty) \times \mathcal{C}_{g}}{\{0\} \times \mathcal{C}_{g}}\right] / \operatorname{Mod}_{g}
$$

Teich geometry of \mathcal{M}_{g} : Almost isometric model

Build metric simplicial complex \mathcal{V}_{g}

1. $\mathcal{C}_{g}=$ complex of curves on Σ_{g}
2. Let

$$
\mathcal{V}_{g}=\left[\frac{[0, \infty) \times \mathcal{C}_{g}}{\{0\} \times \mathcal{C}_{g}}\right] / \operatorname{Mod}_{g}
$$

3. Metrize the cone over each $\sigma \subset \mathcal{C}_{g}$ with sup metric.

Teich geometry of \mathcal{M}_{g} : Almost isometric model

Build metric simplicial complex \mathcal{V}_{g}

1. $\mathcal{C}_{g}=$ complex of curves on Σ_{g}
2. Let

$$
\mathcal{V}_{g}=\left[\frac{[0, \infty) \times \mathcal{C}_{g}}{\{0\} \times \mathcal{C}_{g}}\right] / \operatorname{Mod}_{g}
$$

3. Metrize the cone over each $\sigma \subset \mathcal{C}_{g}$ with sup metric.
4. Endow \mathcal{V}_{g} with induced path metric.

The 2-punctured torus case: $\mathcal{V}_{1,2}$

Teich geometry of \mathcal{M}_{g} : Almost isometric model

Theorem (Farb-Masur).
There is an injective map $\Psi: \mathcal{V}_{g} \rightarrow \mathcal{M}_{g}$ which is an almost isometry:

Teich geometry of \mathcal{M}_{g} : Almost isometric model

Theorem (Farb-Masur).
There is an injective map $\Psi: \mathcal{V}_{g} \rightarrow \mathcal{M}_{g}$ which is an almost isometry:

There exists $D>0$ such that

1. For all $x, y \in \mathcal{V}_{g}$:

$$
d_{\mathcal{\nu}_{g}}(x, y)-D \leq d_{\mathcal{M}_{g}}(\Psi(x), \Psi(y)) \leq d_{\mathcal{\nu}_{g}}(x, y)+D
$$

2. $\operatorname{Nbhd}_{D}\left(\psi\left(\mathcal{V}_{g}\right)\right)=\mathcal{M}_{g}$

Teich geometry of \mathcal{M}_{g} : Almost isometric model

Theorem (Farb-Masur).
There is an injective map $\Psi: \mathcal{V}_{g} \rightarrow \mathcal{M}_{g}$ which is an almost isometry:

There exists $D>0$ such that

1. For all $x, y \in \mathcal{V}_{g}$:

$$
d_{\mathcal{\nu}_{g}}(x, y)-D \leq d_{\mathcal{M}_{g}}(\Psi(x), \Psi(y)) \leq d_{\mathcal{\nu}_{g}}(x, y)+D
$$

2. $\operatorname{Nbhd}_{D}\left(\psi\left(\mathcal{V}_{g}\right)\right)=\mathcal{M}_{g}$

Teich geometry of \mathcal{M}_{g} : Almost isometric model

Corollary. Cone $\left(\mathcal{M}_{g}\right)=\mathcal{V}_{g}$. [Note POSItive Curvature!]

Teich geometry of \mathcal{M}_{g} : Almost isometric model

Corollary. Cone $\left(\mathcal{M}_{g}\right)=\mathcal{V}_{g}$. [Note POSItive CURVATURE!]
Application (Farb-Weinberger). Sharp results on (non)existence of PSC metrics on \mathcal{M}_{g}.

Teich geometry of \mathcal{M}_{g} : Almost isometric model

Corollary. Cone $\left(\mathcal{M}_{g}\right)=\mathcal{V}_{g}$. [Note POSItive CURVATURE!]
Application (Farb-Weinberger). Sharp results on (non)existence of PSC metrics on \mathcal{M}_{g}.

Classical (Hattori). Cone $(\Gamma \backslash G / K)=\Gamma$-quotient of top. cone on Tits building $\Delta_{\mathbf{Q}}(G)$.

Teich geometry of \mathcal{M}_{g} : Almost isometric model

Corollary. Cone $\left(\mathcal{M}_{g}\right)=\mathcal{V}_{g}$. [Note POSITIVE CURVATURE!]
Application (Farb-Weinberger). Sharp results on (non)existence of PSC metrics on \mathcal{M}_{g}.

Classical (Hattori). Cone $(\Gamma \backslash G / K)=\Gamma$-quotient of top. cone on Tits building $\Delta_{\mathbf{Q}}(G)$.

Key ingredient in proof: Minsky Product Regions Theorem.

Dictionary: Reduction theory

Nonlinear
Linear

Dictionary: Reduction theory

Nonlinear
simple closed curve

Linear
vector

Dictionary: Reduction theory

Nonlinear
simple closed curve
r-tuple of disjoint curves

Linear

vector
subspace of \mathbf{Q}^{n}

Dictionary: Reduction theory

Nonlinear

simple closed curve
r-tuple of disjoint curves
$\mathrm{bs}\left(\mathcal{C}_{g}\right)=$ flags of tuples

Linear

vector
subspace of \mathbf{Q}^{n}
Tits bldng $\Delta_{\mathbf{Q}}=$ flgs of subspaces

Dictionary: Reduction theory

Nonlinear

simple closed curve
r-tuple of disjoint curves
$\mathrm{bs}\left(\mathcal{C}_{g}\right)=$ flags of tuples
$d\left(\Sigma_{g, n}\right)=3 g-3+n$

Linear

vector
subspace of \mathbf{Q}^{n}
Tits bldng $\Delta_{\mathbf{Q}}=$ flgs of subspaces
Q-rank

Dictionary: Reduction theory

Nonlinear

simple closed curve
r-tuple of disjoint curves
$\mathrm{bs}\left(\mathcal{C}_{g}\right)=$ flags of tuples
$d\left(\Sigma_{g, n}\right)=3 g-3+n$
stabilizer of disjoint r-tuple

Linear

vector
subspace of \mathbf{Q}^{n}
Tits bldng $\Delta_{\mathbf{Q}}=$ flgs of subspaces
Q-rank
parabolic subgroup (stab. of flag)

Dictionary: Reduction theory

Nonlinear

simple closed curve
r-tuple of disjoint curves
bs $\left(\mathcal{C}_{g}\right)=$ flags of tuples
$d\left(\Sigma_{g, n}\right)=3 g-3+n$
stabilizer of disjoint r-tuple
$\operatorname{stab}(\alpha)$

Linear

vector
subspace of \mathbf{Q}^{n}
Tits bldng $\Delta_{\mathbf{Q}}=$ flgs of subspaces
Q-rank
parabolic subgroup (stab. of flag)
max. parabolic $\left(\begin{array}{ccc}* & * & * \\ 0 & * & * \\ 0 & * & *\end{array}\right)$

Dictionary: Reduction theory

Nonlinear

simple closed curve
r-tuple of disjoint curves
$\mathrm{bs}\left(\mathcal{C}_{g}\right)=$ flags of tuples
$d\left(\Sigma_{g, n}\right)=3 g-3+n$
stabilizer of disjoint r-tuple
$\operatorname{stab}(\alpha)$
$\operatorname{stab}($ max curve syst. $) \approx \mathbf{Z}^{3 g-3}$

Linear

vector
subspace of \mathbf{Q}^{n}
Tits bldng $\Delta_{\mathbf{Q}}=$ flgs of subspaces
Q-rank
parabolic subgroup (stab. of flag)
max. parabolic $\left(\begin{array}{ccc}* & * & * \\ 0 & * & * \\ 0 & * & *\end{array}\right)$
\min. parabolic $\left(\begin{array}{ccc}* & * & * \\ 0 & * & * \\ 0 & 0 & *\end{array}\right)$ solvabl

Dictionary: Reduction theory

Nonlinear

simple closed curve
r-tuple of disjoint curves
$\mathrm{bs}\left(\mathcal{C}_{g}\right)=$ flags of tuples
$d\left(\Sigma_{g, n}\right)=3 g-3+n$
stabilizer of disjoint r-tuple
$\operatorname{stab}(\alpha)$
$\operatorname{stab}($ max curve syst. $) \approx \mathbf{Z}^{3 g-3}$
marked length inequalities

Linear

vector
subspace of \mathbf{Q}^{n}
Tits bldng $\Delta_{\mathbf{Q}}=$ flgs of subspaces
Q-rank
parabolic subgroup (stab. of flag)
max. parabolic $\left(\begin{array}{ccc}* & * & * \\ 0 & * & * \\ 0 & * & *\end{array}\right)$
\min. parabolic $\left(\begin{array}{ccc}* & * & * \\ 0 & * & * \\ 0 & 0 & *\end{array}\right)$ solvabl
Weyl chamber

Convex cocompactness: Teich geom. and extensions

Farb-Mosher

Convex cocompactness: Teich geom. and extensions

Farb-Mosher

$$
1 \rightarrow \pi_{1} \Sigma_{g} \rightarrow \Gamma_{G} \rightarrow G \rightarrow 1
$$

Convex cocompactness: Teich geom. and extensions

Farb-Mosher

$$
1 \rightarrow \pi_{1} \Sigma_{g} \rightarrow \Gamma_{G} \rightarrow G \rightarrow 1
$$

Fact. Γ_{G} is determined by $\rho: G \rightarrow \operatorname{Out}\left(\pi_{1} \Sigma_{g}\right) \approx \operatorname{Mod}_{g}$

Convex cocompactness: Teich geom. and extensions

Farb-Mosher

$$
1 \rightarrow \pi_{1} \Sigma_{g} \rightarrow \Gamma_{G} \rightarrow G \rightarrow 1
$$

Fact. Γ_{G} is determined by $\rho: G \rightarrow \operatorname{Out}\left(\pi_{1} \Sigma_{g}\right) \approx \operatorname{Mod}_{g}$

Idea.

$$
\left\{\begin{array}{c}
\text { Group theory and } \\
\text { geometry of } \Gamma_{G}
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { Geometry of the } \\
\rho(G) \text {-orbit in } \mathcal{T}_{g}
\end{array}\right\}
$$

Convex cocompactness: Definition and examples

DEFINITION. A subgroup $G<\operatorname{Mod}_{g}$ is convex cocompact if some (any) orbit $G \cdot x \subset \mathcal{T}_{g}$ is quasiconvex.

Convex cocompactness: Definition and examples

DEFINITION. A subgroup $G<\operatorname{Mod}_{g}$ is convex cocompact if some (any) orbit $G \cdot x \subset \mathcal{T}_{g}$ is quasiconvex.

Examples.

- (Thurston)
$G=\mathbf{Z}$ is convex cocompact iff Γ_{G} is δ-hyperbolic.

Convex cocompactness: Definition and examples

DEFINITION. A subgroup $G<\operatorname{Mod}_{g}$ is convex cocompact if some (any) orbit $G \cdot x \subset \mathcal{T}_{g}$ is quasiconvex.

Examples.

- (Thurston)
$G=\mathbf{Z}$ is convex cocompact iff Γ_{G} is δ-hyperbolic.
- (Genericity)

For any $\left\{\phi_{1}, \ldots, \phi_{r}\right\}$ pseudo-Anosovs, $\exists N>0$ so that the group

$$
<\left\{\phi_{1}^{N}, \ldots, \phi_{r}^{N}\right\}>
$$

is convex cocompact.

Convex cocompactness: Hyperbolic Extensions Conjecture

Conjecture. The following are equivalent:

1. Γ_{G} is δ-hyperbolic.
2. $\operatorname{ker}(\rho)$ is finite and $\rho(G)$ is convex cocompact.

Convex cocompactness: Hyperbolic Extensions Conjecture

Conjecture. The following are equivalent:

1. Γ_{G} is δ-hyperbolic.
2. $\operatorname{ker}(\rho)$ is finite and $\rho(G)$ is convex cocompact.

Progress.

- FM: True for G free
- Applied to prove commensurator and quasi-isometric rigidity theorems for Γ_{G}.

Convex cocompactness: Hyperbolic Extensions Conjecture

Conjecture. The following are equivalent:

1. Γ_{G} is δ-hyperbolic.
2. $\operatorname{ker}(\rho)$ is finite and $\rho(G)$ is convex cocompact.

Progress.

- FM: True for G free
- Applied to prove commensurator and quasi-isometric rigidity theorems for Γ_{G}.
- FM: (1) implies (2).

Convex cocompactness: Hyperbolic Extensions Conjecture

Conjecture. The following are equivalent:

1. Γ_{G} is δ-hyperbolic.
2. $\operatorname{ker}(\rho)$ is finite and $\rho(G)$ is convex cocompact.

Progress.

- FM: True for G free
- Applied to prove commensurator and quasi-isometric rigidity theorems for Γ_{G}.
- FM: (1) implies (2).
- Kent, Leinininger, Schleimer: new tools, examples.

Convex cocompactness: Hyperbolic Extensions Conjecture

Conjecture. The following are equivalent:

1. Γ_{G} is δ-hyperbolic.
2. $\operatorname{ker}(\rho)$ is finite and $\rho(G)$ is convex cocompact.

Progress.

- FM: True for G free
- Applied to prove commensurator and quasi-isometric rigidity theorems for Γ_{G}.
- FM: (1) implies (2).
- Kent, Leinininger, Schleimer: new tools, examples.
- Hamenstadt: Conjecture is true!

Convex cocompactness: Hyperbolic Extensions Conjecture

Conjecture. The following are equivalent:

1. Γ_{G} is δ-hyperbolic.
2. $\operatorname{ker}(\rho)$ is finite and $\rho(G)$ is convex cocompact.

Progress.

- FM: True for G free
- Applied to prove commensurator and quasi-isometric rigidity theorems for Γ_{G}.
- FM: (1) implies (2).
- Kent, Leinininger, Schleimer: new tools, examples.
- Hamenstadt: Conjecture is true!

Convex cocompactness: Hyperbolic Extensions Conjecture

Conjecture. The following are equivalent:

1. Γ_{G} is δ-hyperbolic.
2. $\operatorname{ker}(\rho)$ is finite and $\rho(G)$ is convex cocompact.

Progress.

- FM: True for G free
- Applied to prove commensurator and quasi-isometric rigidity theorems for Γ_{G}.
- FM: (1) implies (2).
- Kent, Leinininger, Schleimer: new tools, examples.
- Hamenstadt: Conjecture is true!

Open Question (Kapovich, Mess). Is there a bundle $\Sigma_{g} \rightarrow M^{4} \rightarrow \Sigma_{h}$ with $\pi_{1}(M) \delta$-hyperbolic? With $K(M)<0$?

Convex cocompactness: Hyperbolic Extensions Conjecture

Conjecture. The following are equivalent:

1. Γ_{G} is δ-hyperbolic.
2. $\operatorname{ker}(\rho)$ is finite and $\rho(G)$ is convex cocompact.

Progress.

- FM: True for G free
- Applied to prove commensurator and quasi-isometric rigidity theorems for Γ_{G}.
- FM: (1) implies (2).
- Kent, Leinininger, Schleimer: new tools, examples.
- Hamenstadt: Conjecture is true!

Open Question (Kapovich, Mess). Is there a bundle $\Sigma_{g} \rightarrow M^{4} \rightarrow \Sigma_{h}$ with $\pi_{1}(M) \delta$-hyperbolic? With $K(M)<0$?

