Moduli spaces and locally symmetric spaces

Benson Farb

University of Chicago

Once it is possible to translate any particular proof from one theory to another, then the analogy has ceased to be productive for this purpose; it would cease to be at all productive if at one point we had a meaningful and natural way of deriving both theories from a single one Gone is the analogy: gone are the two theories, their conflicts and their delicious reciprocal reflections, their furtive caresses, their inexplicable quarrels; alas, all is just one theory, whose majestic beauty can no longer excite us.

— letter from André to Simone Weil, 1940

[stolen from Kent-Leininger]

 $\operatorname{Mod}_g := \operatorname{Homeo}^+(S_g) / \operatorname{Homeo}^0(S_g)$

```
Problem: Classify elements \phi \in Mod_g.
```

```
Solution (Thurston, Bers):
```

 $\mathcal{T}_1 / \operatorname{Mod}_1 = \mathbf{H}^2 / \operatorname{SL}(2, \mathbf{Z})$

[Picture stolen from C. McMullen]

Reprise: Moduli space for genus g = 1

 $\operatorname{Mod}_g := \operatorname{Homeo}^+(S_g) / \operatorname{Homeo}^0(S_g)$

```
Problem: Classify elements \phi \in Mod_g.
```

```
Solution (Thurston, Bers):
```

- Properly discontinuous
- By isometries (of Teichmüller metric)

 $\operatorname{Mod}_g := \operatorname{Homeo}^+(S_g) / \operatorname{Homeo}^0(S_g)$

```
Problem: Classify elements \phi \in Mod_g.
```

```
Solution (Thurston, Bers):
```

- Properly discontinuous
- By isometries (of Teichmüller metric)
- **STEP 2.** Pretend T_g is hyperbolic space \mathbf{H}^n .
 - \mathbf{H}^n negatively curved (so $d_{\mathbf{H}^n}$ is convex)
 - \mathbf{H}^n compactifies to a closed ball
 - Simple dynamics on $\partial \mathbf{H}^n$

 $\operatorname{Mod}_g := \operatorname{Homeo}^+(S_g) / \operatorname{Homeo}^0(S_g)$

```
Problem: Classify elements \phi \in Mod_g.
```

```
Solution (Thurston, Bers):
```

- Properly discontinuous
- By isometries (of Teichmüller metric)
- **STEP 2.** Pretend T_g is hyperbolic space \mathbf{H}^n .
 - \mathbf{H}^n negatively curved (so $d_{\mathbf{H}^n}$ is convex)
 - \mathbf{H}^n compactifies to a closed ball
 - Simple dynamics on $\partial \mathbf{H}^n$
- **STEP 3.** Two proof endings
 - Bers: Analyze $Minset(\phi)$
 - Thurston: Apply Brouwer Fixed Point Theorem; analyze

 \mathcal{T}_g is **NOT** negatively curved (unless g = 1)!

Nontrivial problems

- 1. How to analyze $Minset(\phi)$?
- 2. How to compactify T_g ?

How close is Teichmüller space to being a symmetric space?

How much of the formal geometry of a symmetric space does Teichmüller space have?

– J. Harer, 1988

Some pioneers: Dehn, Bers, Thurston, Harvey, Harer, Ivanov, Masur, and many others.

- Theme: Think of moduli space $\mathcal{M}_g := \mathcal{T}_g / \operatorname{Mod}_g$ as a locally symmetric orbifold.
 - Use this philosophy to discover conjectures/theorems.
 - Find universal constraints on this philosophy.

Today

- 1. Symmetry and homogeneity
- 2. Reduction theory

Other aspects

- Curvature (Riemannian, holomorphic, coarse)
- Convex cocompact groups
- Rank invariants (R-rank, Q-rank, geometric ranks)
- Rank one / higher rank dichotomy
- Compactifications

Locally symmetric spaces: Examples

- Finite volume hyperbolic manifolds $M = \Gamma \setminus \mathbf{H}^n$
- $\mathcal{V}_g = \operatorname{SL}(n, \mathbf{Z}) \backslash \operatorname{SL}(n, \mathbf{R}) / \operatorname{SO}(n)$

= moduli space of flat, unit volume, *n*-dimensional tori

- = moduli space of g-dimensional, principally polarized abelian varieties
- $M = \Gamma \setminus G/K$, G semisimple, K max compact, Γ lattice.

Remarks

- $\mathbf{\mathcal{M}}_g \hookrightarrow \mathcal{A}_g \text{ (Torelli Theorem)}$

- M finite volume Riemannian
- **Symmetry:** \widetilde{M} is symmetric at every point: the flip map

$$\gamma(t)\mapsto\gamma(-t)$$

is an isometry.

- **•** Homogeneity: $\operatorname{Isom}(\widetilde{M})$ acts transitively on \widetilde{M} .
- Curvature: $K(M) \leq 0$
- Algebraic system: $M = \Gamma \backslash G / K$
 - Algebraic formulas for differential-geometric quantities
- Rigidity properties
 - $\pi_1(M)$ usually determines M (Mostow, Prasad, Margulis)

Dictionary: First entries

Nonlinear

Moduli space \mathcal{M}_g

 Mod_g

 ${\mathcal T}_g$

<u>Linear</u>

loc. sym. space M

 $\pi_1(M)$

symmetric space \widetilde{M}

Somplete Finsler metric. Induced by norm on $T^*_X(T_g) = QD(X)$:

$$||\phi||_{\mathcal{T}} := \int_X |\phi(z)||dz|^2$$

Somplete Finsler metric. Induced by norm on $T^*_X(T_g) = QD(X)$:

$$||\phi||_{\mathcal{T}} := \int_X |\phi(z)||dz|^2$$

● $Vol(\mathcal{M}_g, d_T) < \infty$ (Masur)

Somplete Finsler metric. Induced by norm on $T^*_X(T_g) = QD(X)$:

$$||\phi||_{\mathcal{T}} := \int_X |\phi(z)||dz|^2$$

●
$$Vol(\mathcal{M}_g, d_T) < \infty$$
 (Masur)

Royden's Theorem (1971). Let $g \ge 3$. Then

Somplete Finsler metric. Induced by norm on $T^*_X(T_g) = QD(X)$:

$$||\phi||_{\mathcal{T}} := \int_X |\phi(z)||dz|^2$$

●
$$Vol(\mathcal{M}_g, d_T) < \infty$$
 (Masur)

Royden's Theorem (1971). Let $g \ge 3$. Then

1. There is no point $X \in \mathcal{T}_g$ at which \mathcal{T}_g is symmetric.

Somplete Finsler metric. Induced by norm on $T^*_X(T_g) = QD(X)$:

$$||\phi||_{\mathcal{T}} := \int_X |\phi(z)||dz|^2$$

●
$$Vol(\mathcal{M}_g, d_T) < \infty$$
 (Masur)

Royden's Theorem (1971). Let $g \ge 3$. Then

1. There is no point $X \in \mathcal{T}_g$ at which \mathcal{T}_g is symmetric.

2. Isom
$$(\mathcal{T}_g) = \operatorname{Mod}_g^{\pm}$$

Symmetry: Intrinsic inhomogeneity of ${\mathcal T}_g$

Symmetry: Intrinsic inhomogeneity of T_g

Theorem (Farb-Weinberger). For any complete, Mod_g -invariant Riemannian (or even Finsler) metric on \mathcal{T}_g with $Vol(\mathcal{M}_g) < \infty$:

1. There is no point $X \in \mathcal{T}_g$ at which \mathcal{T}_g is symmetric.

- 1. There is no point $X \in \mathcal{T}_g$ at which \mathcal{T}_g is symmetric.
- 2. $\operatorname{Isom}(\mathcal{T}_g)$ is discrete and $[\operatorname{Isom}(\mathcal{T}_g) : \operatorname{Mod}_g] < \infty$.

- 1. There is no point $X \in \mathcal{T}_g$ at which \mathcal{T}_g is symmetric.
- 2. $\operatorname{Isom}(\mathcal{T}_g)$ is discrete and $[\operatorname{Isom}(\mathcal{T}_g) : \operatorname{Mod}_g] < \infty$.

Corollary (Ivanov): M_g admits no locally symmetric metric.

- 1. There is no point $X \in \mathcal{T}_g$ at which \mathcal{T}_g is symmetric.
- 2. $\operatorname{Isom}(\mathcal{T}_g)$ is discrete and $[\operatorname{Isom}(\mathcal{T}_g) : \operatorname{Mod}_g] < \infty$.

Corollary (Ivanov): M_g admits no locally symmetric metric.

Conjecture: $[\operatorname{Isom}(\mathcal{T}_g) : \operatorname{Mod}_g] \leq 2.$

- 1. There is no point $X \in \mathcal{T}_g$ at which \mathcal{T}_g is symmetric.
- 2. $\operatorname{Isom}(\mathcal{T}_g)$ is discrete and $[\operatorname{Isom}(\mathcal{T}_g) : \operatorname{Mod}_g] < \infty$.

Corollary (Ivanov): M_g admits no locally symmetric metric.

Conjecture: $[\operatorname{Isom}(\mathcal{T}_g) : \operatorname{Mod}_g] \leq 2.$

Stronger version: Theorem holds for finite covers of \mathcal{M}_{g} .

- 1. There is no point $X \in \mathcal{T}_g$ at which \mathcal{T}_g is symmetric.
- 2. $\operatorname{Isom}(\mathcal{T}_g)$ is discrete and $[\operatorname{Isom}(\mathcal{T}_g) : \operatorname{Mod}_g] < \infty$.

Corollary (Ivanov): M_g admits no locally symmetric metric.

```
Conjecture: [\operatorname{Isom}(\mathcal{T}_g) : \operatorname{Mod}_g] \leq 2.
```

Stronger version: Theorem holds for finite covers of \mathcal{M}_{g} .

Remark. Gives no info on WP metric. But $Isom(\mathcal{T}_g, WP) = Mod_g^{\pm}$ (Masur-Wolf).

Teichmüller geometry of moduli space

Goals (with H. Masur)

1. Understand the geometry of \mathcal{M}_g with Teich metric.

Goals (with H. Masur)

- 1. Understand the geometry of \mathcal{M}_g with Teich metric.
- 2. Build a "Reduction Theory" for $(\mathcal{T}_g, \operatorname{Mod}_g)$ (as with arithmetic groups)

Goals (with H. Masur)

- 1. Understand the geometry of \mathcal{M}_g with Teich metric.
- 2. Build a "Reduction Theory" for $(\mathcal{T}_g, \operatorname{Mod}_g)$ (as with arithmetic groups)
- 3. Compactifications (à la Siegel, Borel, Ji, Macpherson, Leuzinger, etc.)

Goals (with H. Masur)

- 1. Understand the geometry of \mathcal{M}_g with Teich metric.
- 2. Build a "Reduction Theory" for $(\mathcal{T}_g, \operatorname{Mod}_g)$ (as with arithmetic groups)
- 3. Compactifications (à la Siegel, Borel, Ji, Macpherson, Leuzinger, etc.)

Teich geometry of \mathcal{M}_g : Cone at infinity

DEFINITION. (M, d) pointed metric space.

$$\operatorname{Cone}(M) := \lim_{n \to \infty} (M, \frac{1}{n}d)$$

Teich geometry of \mathcal{M}_g : Cone at infinity

DEFINITION. (M, d) pointed metric space.

$$\operatorname{Cone}(M) := \lim_{n \to \infty} (M, \frac{1}{n}d)$$

Example. Cone(M) for M finite volume hyperbolic.

Finite volume hyperbolic manifold M

 $\frac{1}{10}M$

 \bigcirc
$\frac{1}{20}M$

 $\frac{1}{40}M$

Teich geometry of \mathcal{M}_g : Cone at infinity

DEFINITION. (M, d) pointed metric space.

$$\operatorname{Cone}(M) := \lim_{n \to \infty} (M, \frac{1}{n}d)$$

Example. Cone(M) for M finite volume hyperbolic.

Teich geometry of \mathcal{M}_g : Cone at infinity

DEFINITION. (M, d) pointed metric space.

$$\operatorname{Cone}(M) := \lim_{n \to \infty} (M, \frac{1}{n}d)$$

Example. Cone(M) for M finite volume hyperbolic.

Question. What is $Cone(\mathcal{M}_g)$?

Build metric simplicial complex \mathcal{V}_g

Build metric simplicial complex \mathcal{V}_g

1. $C_g = \text{complex of curves on } \Sigma_g$

Build metric simplicial complex \mathcal{V}_g

1.
$$C_g = \text{complex of curves on } \Sigma_g$$

2. Let

$$\mathcal{V}_g = \left[\frac{[0,\infty) \times \mathcal{C}_g}{\{0\} \times \mathcal{C}_g}\right] / \operatorname{Mod}_g$$

Build metric simplicial complex \mathcal{V}_g

1.
$$C_g = \text{complex of curves on } \Sigma_g$$

2. Let

$$\mathcal{V}_g = \left[\frac{[0,\infty) \times \mathcal{C}_g}{\{0\} \times \mathcal{C}_g}\right] / \operatorname{Mod}_g$$

3. Metrize the cone over each $\sigma \subset C_g$ with sup metric.

Build metric simplicial complex \mathcal{V}_g

1.
$$C_g = \text{complex of curves on } \Sigma_g$$

2. Let

$$\mathcal{V}_g = \left[\frac{[0,\infty) \times \mathcal{C}_g}{\{0\} \times \mathcal{C}_g}\right] / \operatorname{Mod}_g$$

- 3. Metrize the cone over each $\sigma \subset C_g$ with sup metric.
- 4. Endow \mathcal{V}_g with induced path metric.

The 2-punctured torus case: $\mathcal{V}_{1,2}$

Theorem (Farb-Masur).

There is an injective map $\Psi: \mathcal{V}_g \to \mathcal{M}_g$ which is an *almost isometry*:

Theorem (Farb-Masur).

There is an injective map $\Psi: \mathcal{V}_g \to \mathcal{M}_g$ which is an *almost isometry*:

There exists D > 0 such that

1. For all
$$x, y \in \mathcal{V}_g$$
:

$$d_{\mathcal{V}_g}(x,y) - D \le d_{\mathcal{M}_g}(\Psi(x),\Psi(y)) \le d_{\mathcal{V}_g}(x,y) + D$$

2. Nbhd_D $(\psi(\mathcal{V}_g)) = \mathcal{M}_g$

Theorem (Farb-Masur).

There is an injective map $\Psi: \mathcal{V}_g \to \mathcal{M}_g$ which is an *almost isometry*:

There exists D > 0 such that

1. For all
$$x, y \in \mathcal{V}_g$$
:

$$d_{\mathcal{V}_g}(x,y) - D \le d_{\mathcal{M}_g}(\Psi(x),\Psi(y)) \le d_{\mathcal{V}_g}(x,y) + D$$

2. Nbhd_D $(\psi(\mathcal{V}_g)) = \mathcal{M}_g$

Corollary. $Cone(\mathcal{M}_g) = \mathcal{V}_g$. [Note POSITIVE CURVATURE!]

Corollary. Cone(\mathcal{M}_g) = \mathcal{V}_g . [Note POSITIVE CURVATURE!]

Application (Farb-Weinberger). Sharp results on (non) existence of PSC metrics on M_g .

Corollary. Cone(\mathcal{M}_g) = \mathcal{V}_g . [Note POSITIVE CURVATURE!]

Application (Farb-Weinberger). Sharp results on (non) existence of PSC metrics on M_g .

Classical (Hattori). Cone $(\Gamma \setminus G/K) = \Gamma$ -quotient of top. cone on Tits building $\Delta_{\mathbf{Q}}(G)$.

Corollary. Cone(\mathcal{M}_g) = \mathcal{V}_g . [Note POSITIVE CURVATURE!]

Application (Farb-Weinberger). Sharp results on (non) existence of PSC metrics on M_g .

Classical (Hattori). $Cone(\Gamma \setminus G/K) = \Gamma$ -quotient of top. cone on Tits building $\Delta_{\mathbf{Q}}(G)$.

Key ingredient in proof: Minsky Product Regions Theorem.

Nonlinear

<u>Linear</u>

Ν	on	linear

Linear

simple closed curve

vector

Nonlinear

simple closed curve

r-tuple of disjoint curves

<u>Linear</u>

vector subspace of \mathbf{Q}^n

Nonlinear

simple closed curve *r*-tuple of disjoint curves $bs(C_g) = flags of tuples$

Linear

vector

subspace of \mathbf{Q}^n

Tits bldng $\Delta_{\boldsymbol{Q}} = \text{flgs of subspaces}$

<u>Nonlinear</u>	<u>Linear</u>
simple closed curve	vector
r-tuple of disjoint curves	subspace of \mathbf{Q}^n
$bs(\mathcal{C}_g) = flags of tuples$	Tits bldng $\Delta_{\mathbf{Q}} = flgs of subspaces$
$d(\Sigma_{g,n}) = 3g - 3 + n$	Q-rank

Nonlinear

simple closed curve *r*-tuple of disjoint curves $bs(C_g) = flags of tuples$ $d(\Sigma_{g,n}) = 3g - 3 + n$ stabilizer of disjoint *r*-tuple

Linear

vector subspace of \mathbf{Q}^n Tits bldng $\Delta_{\mathbf{Q}} =$ flgs of subspaces Q-rank parabolic subgroup (stab. of flag)

Nonlinear

simple closed curve *r*-tuple of disjoint curves $bs(C_g) = flags of tuples$ $d(\Sigma_{g,n}) = 3g - 3 + n$ stabilizer of disjoint *r*-tuple

 $\operatorname{stab}(\alpha)$

Linear

vector subspace of \mathbf{Q}^n Tits bldng $\Delta_{\mathbf{Q}} =$ flgs of subspaces \mathbf{Q} -rank parabolic subgroup (stab. of flag) max. parabolic $\begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$

Nonlinear	<u>Linear</u>
simple closed curve	vector
r-tuple of disjoint curves	subspace of \mathbf{Q}^n
$bs(\mathcal{C}_g) = flags of tuples$	Tits bldng $\Delta_{\mathbf{Q}} = flgs of subspaces$
$d(\Sigma_{g,n}) = 3g - 3 + n$	Q-rank
stabilizer of disjoint r -tuple	parabolic subgroup (stab. of flag)
$\mathrm{stab}(lpha)$	max. parabolic $\begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$
$\mathrm{stab}(\max \text{ curve syst.}) \approx \mathbf{Z}^{3g-3}$	min. parabolic $\begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix}$ solvab

Nonlinear	<u>Linear</u>
simple closed curve	vector
r-tuple of disjoint curves	subspace of \mathbf{Q}^n
$bs(\mathcal{C}_g) = flags of tuples$	Tits bldng $\Delta_{\mathbf{Q}} = flgs of subspaces$
$d(\Sigma_{g,n}) = 3g - 3 + n$	Q-rank
stabilizer of disjoint r -tuple	parabolic subgroup (stab. of flag)
$\operatorname{stab}(\alpha)$	max. parabolic $\begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$
$\mathrm{stab}(\mathrm{max}\ \mathrm{curve}\ \mathrm{syst.}) pprox \mathbf{Z}^{3g-3}$	min. parabolic $\begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix}$ solvable
marked length inequalities	Weyl chamber

Farb-Mosher

Farb-Mosher

$$1 \to \pi_1 \Sigma_g \to \Gamma_G \to G \to 1$$

Farb-Mosher

$$1 \to \pi_1 \Sigma_g \to \Gamma_G \to G \to 1$$

Fact. Γ_G is determined by $\rho: G \to \operatorname{Out}(\pi_1 \Sigma_g) \approx \operatorname{Mod}_g$

Farb-Mosher

$$1 \to \pi_1 \Sigma_g \to \Gamma_G \to G \to 1$$

Fact. Γ_G is determined by $\rho: G \to \operatorname{Out}(\pi_1 \Sigma_g) \approx \operatorname{Mod}_g$

Idea.

$$\left\{\begin{array}{l} \text{Group theory and} \\ \text{geometry of } \Gamma_G \end{array}\right\} \longleftrightarrow \left\{\begin{array}{l} \text{Geometry of the} \\ \rho(G)\text{-orbit in } \mathcal{T}_g \end{array}\right\}$$

Convex cocompactness: Definition and examples

DEFINITION. A subgroup $G < Mod_g$ is *convex cocompact* if some (any) orbit $G \cdot x \subset T_g$ is quasiconvex.

Convex cocompactness: Definition and examples

DEFINITION. A subgroup $G < Mod_g$ is *convex cocompact* if some (any) orbit $G \cdot x \subset T_g$ is quasiconvex.

Examples.

 $G = \mathbf{Z}$ is convex cocompact iff Γ_G is δ -hyperbolic.

Convex cocompactness: Definition and examples

DEFINITION. A subgroup $G < Mod_g$ is *convex cocompact* if some (any) orbit $G \cdot x \subset T_g$ is quasiconvex.

Examples.

(Thurston)

 $G = \mathbf{Z}$ is convex cocompact iff Γ_G is δ -hyperbolic.

(Genericity)

For any $\{\phi_1, \ldots, \phi_r\}$ pseudo-Anosovs, $\exists N > 0$ so that the group

$$<\{\phi_1^N,\ldots,\phi_r^N\}>$$

is convex cocompact.

Conjecture. The following are equivalent:

- 1. Γ_G is δ -hyperbolic.
- 2. $\ker(\rho)$ is finite and $\rho(G)$ is convex cocompact.
- 1. Γ_G is δ -hyperbolic.
- 2. $\ker(\rho)$ is finite and $\rho(G)$ is convex cocompact.

- **FM:** True for *G* free
 - Applied to prove commensurator and quasi-isometric rigidity theorems for Γ_G .

- 1. Γ_G is δ -hyperbolic.
- 2. $\ker(\rho)$ is finite and $\rho(G)$ is convex cocompact.

- **FM:** True for *G* free
 - Applied to prove commensurator and quasi-isometric rigidity theorems for Γ_G .
- FM: (1) implies (2).

- 1. Γ_G is δ -hyperbolic.
- 2. $\ker(\rho)$ is finite and $\rho(G)$ is convex cocompact.

- **FM:** True for *G* free
 - Applied to prove commensurator and quasi-isometric rigidity theorems for Γ_G .
- FM: (1) implies (2).
- Kent, Leinininger, Schleimer: new tools, examples.

- 1. Γ_G is δ -hyperbolic.
- 2. $\ker(\rho)$ is finite and $\rho(G)$ is convex cocompact.

- **FM:** True for *G* free
 - Applied to prove commensurator and quasi-isometric rigidity theorems for Γ_G .
- FM: (1) implies (2).
- Kent, Leinininger, Schleimer: new tools, examples.
- Hamenstadt: Conjecture is true!

- 1. Γ_G is δ -hyperbolic.
- 2. $\ker(\rho)$ is finite and $\rho(G)$ is convex cocompact.

- **FM:** True for *G* free
 - Applied to prove commensurator and quasi-isometric rigidity theorems for Γ_G .
- FM: (1) implies (2).
- Kent, Leinininger, Schleimer: new tools, examples.
- Hamenstadt: Conjecture is true!

- 1. Γ_G is δ -hyperbolic.
- 2. $\ker(\rho)$ is finite and $\rho(G)$ is convex cocompact.

Progress.

- **FM:** True for *G* free
 - Applied to prove commensurator and quasi-isometric rigidity theorems for Γ_G .
- FM: (1) implies (2).
- Kent, Leinininger, Schleimer: new tools, examples.
- Hamenstadt: Conjecture is true!

Open Question (Kapovich, Mess). Is there a bundle $\Sigma_g \to M^4 \to \Sigma_h$ with $\pi_1(M) \delta$ -hyperbolic? With K(M) < 0?

- 1. Γ_G is δ -hyperbolic.
- 2. $\ker(\rho)$ is finite and $\rho(G)$ is convex cocompact.

Progress.

- **FM:** True for *G* free
 - Applied to prove commensurator and quasi-isometric rigidity theorems for Γ_G .
- FM: (1) implies (2).
- Kent, Leinininger, Schleimer: new tools, examples.
- Hamenstadt: Conjecture is true!

Open Question (Kapovich, Mess). Is there a bundle $\Sigma_g \to M^4 \to \Sigma_h$ with $\pi_1(M) \delta$ -hyperbolic? With K(M) < 0?