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Once it is possible to translate any particular proof from one theory to another, then

the analogy has ceased to be productive for this purpose; it would cease to be at all

productive if at one point we had a meaningful and natural way of deriving both theories

from a single one . . . . Gone is the analogy: gone are the two theories, their conflicts and

their delicious reciprocal reflections, their furtive caresses, their inexplicable quarrels;

alas, all is just one theory, whose majestic beauty can no longer excite us.

— letter from André to Simone Weil, 1940

[stolen from Kent-Leininger]
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Prelude: A useful viewpoint

Modg := Homeo+(Sg)/Homeo0(Sg)

Problem: Classify elements φ ∈ Modg.

Solution (Thurston, Bers):

STEP 1. Look at action of Modg on Teichmüller space T g.
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T 1 /Mod1 = H
2 / SL(2,Z)

[Picture stolen from C. McMullen]

Reprise: Moduli space for genus g = 1
1

3
2
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Prelude: A useful viewpoint

Modg := Homeo+(Sg)/Homeo0(Sg)

Problem: Classify elements φ ∈ Modg.

Solution (Thurston, Bers):

STEP 1. Look at action of Modg on Teichmüller space T g.

Properly discontinuous
By isometries (of Teichmüller metric)

STEP 2. Pretend T g is hyperbolic space Hn.

Hn negatively curved (so dHn is convex)

Hn compactifies to a closed ball
Simple dynamics on ∂Hn

STEP 3. Two proof endings
Bers: Analyze Minset(φ)

Thurston: Apply Brouwer Fixed Point Theorem; analyze
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Prelude: The truth interferes

T g is NOT negatively curved (unless g = 1)!

Nontrivial problems

1. How to analyze Minset(φ)?

2. How to compactify T g?
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Prelude: T g vs. symmetric spaces

How close is Teichmüller space to being a symmetric space?

How much of the formal geometry of a symmetric space does
Teichmüller space have?

– J. Harer, 1988

Some pioneers: Dehn, Bers, Thurston, Harvey, Harer, Ivanov, Masur, and
many others.
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Talk Outline

Theme: Think of moduli spaceMg := T g /Modg as a locally symmetric
orbifold.

Use this philosophy to discover conjectures/theorems.

Find universal constraints on this philosophy.

Today

1. Symmetry and homogeneity

2. Reduction theory

Other aspects

Curvature (Riemannian, holomorphic, coarse)

Convex cocompact groups

Rank invariants (R-rank, Q-rank, geometric ranks)

Rank one / higher rank dichotomy

Compactifications
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Locally symmetric spaces: Examples

Finite volume hyperbolic manifolds M = Γ\Hn

Vg = SL(n,Z)\ SL(n,R)/ SO(n)

= moduli space of flat, unit volume, n-dimensional tori

Ag = Sp(2g,Z)\ Sp(2g,R)/U(g)

= moduli space of g-dimensional, principally polarized
abelian varieties

M = Γ\G/K, G semisimple, K max compact, Γ lattice.

Remarks

M1 = V2

Mg →֒ Ag (Torelli Theorem)
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Locally symmetric spaces M : First Properties

M finite volume Riemannian

Symmetry: M̃ is symmetric at every point: the flip map

γ(t) 7→ γ(−t)

is an isometry.

Homogeneity: Isom(M̃) acts transitively on M̃ .

Curvature: K(M) ≤ 0

Algebraic system: M = Γ\G/K

Algebraic formulas for differential-geometric quantities

Rigidity properties
π1(M) usually determines M (Mostow, Prasad, Margulis)
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Dictionary: First entries

Nonlinear Linear

Moduli spaceMg loc. sym. space M

Modg π1(M)

T g symmetric space M̃
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Symmetry: Royden’s Theorem
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Symmetry: Royden’s Theorem

Teichmüller metric dT

Complete Finsler metric. Induced by norm on T ∗
X(T g) = QD(X):

||φ||T :=

∫

X

|φ(z)||dz|2
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Symmetry: Royden’s Theorem

Teichmüller metric dT

Complete Finsler metric. Induced by norm on T ∗
X(T g) = QD(X):

||φ||T :=

∫

X

|φ(z)||dz|2

Vol(Mg, dT ) <∞ (Masur)

Royden’s Theorem (1971). Let g ≥ 3. Then

1. There is no point X ∈ T g at which T g is symmetric.

2. Isom(T g) = Mod±

g .
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Symmetry: Intrinsic inhomogeneity of T g
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Symmetry: Intrinsic inhomogeneity of T g

Theorem (Farb-Weinberger). For any complete, Modg-invariant
Riemannian (or even Finsler) metric on T g with Vol(Mg) <∞ :
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Symmetry: Intrinsic inhomogeneity of T g

Theorem (Farb-Weinberger). For any complete, Modg-invariant
Riemannian (or even Finsler) metric on T g with Vol(Mg) <∞ :

1. There is no point X ∈ T g at which T g is symmetric.

2. Isom(T g) is discrete and [Isom(T g) : Modg] <∞.

Corollary (Ivanov): Mg admits no locally symmetric metric.

Conjecture: [Isom(T g) : Modg] ≤ 2.

Stronger version: Theorem holds for finite covers ofMg.

Remark. Gives no info on WP metric. But Isom(T g,WP) = Mod±

g

(Masur-Wolf).
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Teichmüller geometry of moduli space
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Teichmüller geometry of moduli space

Goals (with H. Masur)

1. Understand the geometry ofMg with Teich metric.
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Teich geometry of Mg: Cone at infinity
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Teich geometry of Mg: Cone at infinity

DEFINITION. (M,d) pointed metric space.

Cone(M) := lim
n→∞

(M,
1

n
d)
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Finite volume hyperbolic manifold M
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1

10
M
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M
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1
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M
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1

1000000
M
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Teich geometry of Mg: Cone at infinity

DEFINITION. (M,d) pointed metric space.

Cone(M) := lim
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1
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Teich geometry of Mg: Cone at infinity

DEFINITION. (M,d) pointed metric space.

Cone(M) := lim
n→∞

(M,
1

n
d)

Example. Cone(M) for M finite volume hyperbolic.

Question. What is Cone(Mg)?
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Teich geometry of Mg: Almost isometric model

– p. 27/41



Teich geometry of Mg: Almost isometric model

Build metric simplicial complex Vg
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Teich geometry of Mg: Almost isometric model

Build metric simplicial complex Vg

1. Cg = complex of curves on Σg

2. Let

Vg = [
[0,∞)× Cg
{0} × Cg

]/Modg

3. Metrize the cone over each σ ⊂ Cg with sup metric.

4. Endow Vg with induced path metric.
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The 2-punctured torus case: V1,2
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Teich geometry of Mg: Almost isometric model

Theorem (Farb-Masur).

There is an injective map Ψ : Vg →Mg which is an almost isometry:
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Teich geometry of Mg: Almost isometric model

Corollary. Cone(Mg) = Vg. [Note POSITIVE CURVATURE!]

Application (Farb-Weinberger). Sharp results on (non)existence of PSC
metrics onMg.

Classical (Hattori). Cone(Γ\G/K) = Γ-quotient of top. cone on Tits
building ∆Q(G).

Key ingredient in proof: Minsky Product Regions Theorem.
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Dictionary: Reduction theory

Nonlinear Linear
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Dictionary: Reduction theory

Nonlinear Linear

simple closed curve vector

r-tuple of disjoint curves subspace of Qn

bs(Cg) = flags of tuples Tits bldng ∆Q = flgs of subspaces

d(Σg,n) = 3g − 3 + n Q-rank

stabilizer of disjoint r-tuple parabolic subgroup (stab. of flag)

stab(α) max. parabolic



∗ ∗ ∗

0 ∗ ∗

0 ∗ ∗




stab(max curve syst.) ≈ Z3g−3 min. parabolic



∗ ∗ ∗

0 ∗ ∗

0 0 ∗


 solvable

marked length inequalities Weyl chamber
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Convex cocompactness: Teich geom. and extensions

Farb-Mosher
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Convex cocompactness: Teich geom. and extensions

Farb-Mosher

1→ π1Σg → ΓG → G→ 1

Fact. ΓG is determined by ρ : G→ Out(π1Σg) ≈Modg

Idea. {
Group theory and
geometry of ΓG

}
←→

{
Geometry of the
ρ(G)-orbit in T g

}
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Convex cocompactness: Definition and examples

DEFINITION. A subgroup G < Modg is convex cocompact if some (any) orbit
G · x ⊂ T g is quasiconvex.
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Convex cocompactness: Definition and examples

DEFINITION. A subgroup G < Modg is convex cocompact if some (any) orbit
G · x ⊂ T g is quasiconvex.

Examples.

(Thurston)

G = Z is convex cocompact iff ΓG is δ-hyperbolic.

(Genericity)

For any {φ1, . . . , φr} pseudo-Anosovs, ∃N > 0 so that the group

< {φN
1 , . . . , φ

N
r } >

is convex cocompact.
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Convex cocompactness: Hyperbolic Extensions Conjecture

Conjecture. The following are equivalent:

1. ΓG is δ-hyperbolic.

2. ker(ρ) is finite and ρ(G) is convex cocompact.
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Conjecture. The following are equivalent:

1. ΓG is δ-hyperbolic.

2. ker(ρ) is finite and ρ(G) is convex cocompact.

Progress.
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Applied to prove commensurator and quasi-isometric
rigidity theorems for ΓG.
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