Cremona transformations and homeomorphisms of topological surfaces

János Kollár

The simplest Cremona transformation of projective 3-space is the involution

\[\sigma : (x_0 : x_1 : x_2 : x_3) \mapsto \left(\frac{1}{x_0} : \frac{1}{x_1} : \frac{1}{x_2} : \frac{1}{x_3} \right), \]

which is a homeomorphism outside the “coordinate tetrahedron” \((x_0x_1x_2x_3 = 0)\).

By studying the action of \(\sigma\) on real quadric surfaces, we show that \(\sigma\) and its conjugates generate a dense subgroup of \(\text{Homeo}(S^2)\), the group of homeomorphisms of the 2-sphere.

Then we show that the same holds if the 2-sphere is replaced by the torus or by any non-orientable surface and explain why there can not be similar results for orientable surfaces of genus \(\geq 2\).

(Joint work with Frédéric Mangolte.)