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Abstract

Let G be a group generated by a finite set S and equipped with the associated left-invariant word
metric dg. For a Banach space X let a3 (G) (respectively aﬁ‘((G)) be the supremum over all @ > 0 such
that there exists a Lipschitz mapping (respectively an equivariant mapping) f : G — X and ¢ > 0 such
that for all x,y € G we have ||f(x) — f(V)|| = ¢ - dg(x,y)*. In particular, the Hilbert compression expo-

nent (respectively the equivariant Hilbert compression exponent) of G is a*(G) = a; (G) (respectively
*(G) = “Z(G» We show that if X has modulus of smoothness of power type p, then /4(G) < W
Here 5*(G) is the largest 8 > 0 for which there exists a set of generators S of G and ¢ > 0 such that for
all t € N we have E[dg(W,, e)] > ¢, where {W:}2, is the canonical simple random walk on the Cayley
graph of G determined by S, starting at the identity element. This result is sharp when X = L,, general-
izes a theorem of Guentner and Kaminker [20], and answers a question posed by Tessera [37]. We also
show that if a*(G) > % then a*(GZ) > zi‘l(—g);jl This improves the previous bound due to Stalder and
Valette [36]. We deduce that if we write Z() := Z and Z+1y = Zg) L Z then o (Zy)) = ﬁ, and use
this result to answer a question posed by Tessera in [37]] on the relation between the Hilbert compression
exponent and the isoperimetric profile of the balls in G. We also show that the cyclic lamplighter groups
C, 1 C, embed into L; with uniformly bounded distortion, answering a question posed by Lee, Naor and

Peres in [26]. Finally, we use these results to show that edge Markov type need not imply Enflo type.

1 Introduction

Let G be a finitely generated grou;ﬂ Fix a finite set of generators S C G, which we will always assume
to be symmetric (i.e. s € S <= 57! € §). Let dg be the left-invariant word metric induced by S on G.
Given a Banach space X let @y (G) denote the supremum over all @ > 0 such that there exists a Lipschitz
mapping f : G — X and ¢ > 0 such that for all x,y € G we have |[f(x) — f)I = ¢ - dg(x,y)*. For
p > 1 we write azp(G) = a/;(G) and when p = 2 we write a5(G) = a*(G). The parameter a*(G) is called
the Hilbert compression exponent of G. This quasi-isometric group invariant was introduced by Guentner
and Kaminker in [20]. We refer to the papers [20, [11} 3} 14} 37, [2, [36L [13]] and the references therein for

background on this topic and several interesting applications.

Analogously to the above definition, one can consider the equivariant compression exponent a/i(G), which
is defined exactly as a(G) with the additional requirement that the embedding f : G — X is equivariant
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(see Sectionfor the definition). As above, we introduce the notation a/l#)(G) = a*L*p (G) and *(G) = a/g(G).

Clearly aﬁ((G) < ayx(G). In the Hilbertian case, when G is amenable we have a*(G) = o*(G). This was
proved by by Aharoni, Maurey and Mityagin [1]] (see also Chapter 8 in [9]) when G is Abelian, and by
Gromov for general amenable groups (see [14]).

The modulus of uniform smoothness of a Banach space X is defined for 7 > 0 as

llx + 7yl + [lx — 7yl
px(1) = SUP{ > -l xyeX [xl=Ilyl=1. (1
X is said to be uniformly smooth if lim,_ ’)XT(T) = 0. Furthermore, X is said to have modulus of smoothness

of power type p if there exists a constant K such that px(7) < K7? for all 7 > 0. It is straightforward to
check that in this case necessarily p < 2. A deep theorem of Pisier [31]] states that if X is uniformly smooth
then there exists some 1 < p < 2 such that X admits an equivalent norm which has modulus of smoothness
of power type p. For concreteness we note that L, has modulus of smoothness of power type min{p, 2}. See
Section [2| for more information on this topic.

Define 8*(G) to be the supremum over all 8 > 0 for which there exists a symmetric set of generators S of G
and ¢ > O such that for all t € N,

E[dg(W;, e)] > i, ()

where here, and in what follows, {W;}2 is the canonical simple random walk on the Cayley graph of G
determined by S, starting at the identity element e. In [4] Austin, Naor and Peres used the method of
Markov type to show that if G is amenable and X has modulus of smoothness of power type p then

@%(G) < 3)

pB*(G)
Our first result, which is proved in Section 2] establishes the same bound as (3) for the equivariant compres-
sion exponent a/ﬁ((G), even when G is not necessarily amenable.

Theorem 1.1. Let X be a Banach space which has modulus of smoothness of power type p. Then

o (G) <

1
2B G) @

Since when G is amenable o*(G) = o*(G), Theoremis a generalization of (3) when X = L;.

A theorem of Guentner and Kaminker [20] states that if o*(G) > % then G is amenable. Since for a
non-amenable group G we have 5*(G) = 1 (see [25] or [43], Proposition II.8.2 and Corollary I1.12.5),
Theorem [I.T|implies the Guentner-Kaminker theorem, while generalizing it to non-Hilbertian targets (when
the target space X is a Hilbert space our method yields a very simple new proof of the Guentner-Kaminker
theorem—see Remark [2.6). Note that both known proofs of the Guentner-Kaminker theorem, namely the
original proof in [20] and the new proof discovered by de Cornulier, Tessera and Valette in [[14]], rely crucially
on the fact that X is a Hilbert space. It follows in particular from Theorem [I.1] that for 2 < p < oo, if
afﬁ(G) > % then G is amenable. This is sharp, since in Section 2| we show that for the free group on two
generators [, for every 2 < p < oo we have af,(Fz) = % This answers a question posed by Tessera (see
Question 1.6 in [37]).



Theorem[I.T]isolates a geometric property (uniform smoothness) of the target space X which lies at the heart
of the phenomenon discovered by Guentner and Kaminker. Our proof is a modification of the martingale
method developed by Naor, Peres, Schramm and Sheffield in [28] for estimating the speed of stationary
reversible Markov chains in uniformly smooth Banach spaces. This method requires several adaptations in
the present setting since the random walk {W;}* is not stationary—we refer to Section @ for the details.

Given two groups G and H, the wreath product G ¢ H is the group of all pairs (f, x) where f : H — G has
finite support (i.e. f(z) = eg for all but finitely many z € H) and x € H, equipped with the product

(£, 08 7) = (2 f(2e(x"2), xy).

If G is generated by the set S C G and H is generated by the set T C H then G ¢ H is generated by the set
{legr,t) 1 t€ T}U{(d5,en) : s € S}. Unless otherwise stated we will always assume that G ¢ H is equipped
with the word metric associated with this canonical set of generators (although in most cases our assertions
will be independent of the choice of generators).

The behavior of the Hilbert compression exponent under wreath products was investigated in [3} (37, 136, 4]].
In particular, Stalder and Valette proved in [36]] that

. a*(G)
(GZ) 2 ————. 5
@ (Gr2) = TET ©®)
Here we obtain the following improvement of this bound:
Theorem 1.2. For every finitely generated group we have,
1 2a*(G)
G2 - = o (GUZ) > ————, 6
(@25 = @D 25 G ©
and
1
a"(G) < 5 = " (GZ) = a*(G). 7

We refer to Theorem for an analogous bound for @,(G t Z), as well as a more general estimate for
@,(G U H). In addition to improving (5), we will see below instances in which (6) is actually an equality. In
fact, we conjecture that (6) holds as an equality for every amenable group G.

Ershler [L7] (see also [34]) proved that 8*(G 1 Z) > w More generally, in Section@we show that
1+8°(G)

if H has linear growth
"GiH)={ 2z AW ’
a ) { 1 otherwise.

®)

Since if G is amenable then G ¢ Z is also amenable (see e.g. [30} 24]) it follows that for an amenable group
G,

1
GlZ) £ —————
Y

. 9
© €))

Corollary 1.3. If G is amenable and o*(G) = ﬁ then
1 _ 2a7(G)

@(G2) = 28G1Z) 2" (G)+1°
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In particular, if we define iteratively G(1y = G and G+1) = Gy L Z, then for all k > 1,

CGw = S he G 1

Corollary [I.3]follows immediately from Theorem|[I.2]and the bound (9). Additional results along these lines
are obtained in Section @; for example (see Remark D we deduce that o* (Z 0 Zz) = %

For r € N let J(r) be the smallest constant J > 0 such that for every f : G — R which vanishes outside the
ball B(e,r) = {x € G : dg(x,e) < r}, we have

1/2 1/2
[Z f(x)z] <J- [Z D) - f(x)lz] :

xeG x€G seS

Let a*(G) be the supremum over all @ > 0O for which there exists ¢ > 0 such that for all » € N we have
J(r) = cr®. Tessera proved in [37] that *(G) > a*(G) and asked if it is true that o*(G) = a*(G) for every
amenable group G (see Question 1.4 in [37]). Corollary [I.3] implies that the answer to this question is
negative. Indeed, Corollary [1.3|implies that the amenable group (Z ¢ Z) ? Z satisfies

a*((ZzZ)zZ):; yet a*((ZlZ)zZ)s%. (10)

In fact, the ratio a*(G)/a*(G) can be arbitrarily small, since if we denote Z 1y := Z and Z41) = Z) ? Z then
fork > 2,

* 1 ®

To prove (L1, and hence also its special case (I0), note that the assertion in (II]) about a*(Z)) is a conse-
quence of Corollary To prove the upper bound on a*(Z,) in (1)) we note that if G is a finitely generated

group such that the probability of return of the standard random walk {W;}7° ) satisfies
P[W; = e] < exp (-C?") (12)
for some C,y € (0,1) and all € N, then
2*(G) < lz‘y’. (13)

This implies (TT]) since Pittet and Saloff-Coste [32]] proved that for all k > 2 there exists ¢, C > 0 such that
for G = Zy) we have forall 1 > 1

k=1 2 k=l 2
exp (—Ctk+1 (log t)k+1) <P[W, =¢] <exp (—ctk+1 (log r)®T ) (14)

The bound (13) is essentially known. Indeed, assume that J(r) > cr“ for every r > 1. Following the notation
of Coulhon [12], for v > 1 let A(v) denote the largest constant A > 0 such that for all Q C G with |Q| < v,
every f : G — R which vanishes outside Q satisfies

AR <Y 1) - FoP

xeG xeG seS
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Since for r > 2 we have |B(e,r)| < |S|", it follows immediately from the definitions that J (r)? < W
Theorem 7.1 in [[12] implies that there exists a constant K > 0O such that if eX” > |S| then,

K1Y

KtY Kt
¢ dv flowl log|S| Tog[ST 2
t> = ———dr > log|S| f J(r)“dr
fm WAG) i AQST) S

KtY 2 2a+1
Io 1 S Kt’)’
2c210g|S|fg|S|r2“dr=C - l{( ) _1).
1

2a+ 1) |\log|S|
Letting 1 — oo it follows that (2a + 1)y < 1, implying (I3).

Remark 1.4. In [37] Tessera asserted that if the opposite inequality to (I2)) holds true, i.e. if we have
P[W; = e] > exp (—-K1”) for some y € (0, 1), K > 0, and every ¢ > 1, then a*(G) > 1 — . Unfortunately, this
claim is false in generalE] Indeed, if it were true, then using (I4) we would deduce that

a*(((Z AR Z) 2 Z) =a’(Zw) 2 % ,

but from (IT)) we know that a*(Z)) < % On inspection of the proof of Proposition 7.2 in [37] we see that the

argument given there actually yields the lower bound a*(G) > I_Ty (note the squares in the first equation of
the proof of Proposition 7.2 in [http://arxiv.org/abs/math/0603138v3]). Thus, the original argument
presented in [37] to establish the lower bound a*(ZZ) > % only proves that a*(Z1Z) > % Nevertheless, the
lower bound of %, which was used crucially in [4], is correct, as follows from our Theorem After the
present paper was posted and sent to Tessera, he replaced the original argument in [37] for the lower bound
a*(Zz) > % by a correct argument, along the same lines as our proof of Theorem <

In Section 4] we show that the cyclic lamplighter group C; t C,, admits a bi-Lipschitz embedding into L;
with distortion independent of n (here, and in what follows C,, denotes the cyclic group of order n). This
answers a question posed in [26] and in [5]]. In Section E] we use the notion of Hilbert space compression
to show that Z ¢ Z has edge Markov type p for any p < %, but it does not have Enflo type p for any p > 1.
We refer to Section [5] for the relevant definitions. This result shows that there is no metric analogue of the
well known Banach space phenomenon “equal norm Rademacher type p implies Rademacher p’ for every
p’ < p” (see [38]]). Finally, in Section /| we present several open problems that arise from our work.

2 Equivariant compression and random walks

In what follows we will use =< and <, > to denote, respectively, equality or the corresponding inequality up
to some positive multiplicative constant.

Let X be a Banach space. We denote the group of linear isometric automorphisms of X by Isom(X). Fix a
homomorphism 7 : G — Isom(X), i.e. an action of G on X by linear isometries. A function f : G — X is
called a 1-cocycle with respect to 7 if for every x,y € G we have f(xy) = n(x)f(y) + f(x). The space of all
1-cocycles with respect to & is denoted Z\(G, 7). Equivalently, f € Z'(G, n) if and only if v > w(x)v + f(x)
is an action of G on X by affine isometries. A function f : G — X is called a 1-cocycle if there exists a

2This remark concerns the version http://arxiv.org/abs/math/0603138v3 of [37]; after we informed the author of this
mistake, it was corrected in later versions of [37] .
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homomorphism 7 : G — Isom(X) such that f € Z!(G, 7). A mapping ¥ : G — X is called equivariant
if it is given by the orbit of a vector v € X under an affine isometric action of G on X, or equivalently
Y(x) = n(x)v + f(x) for some homomorphism 7 : G — Isom(X) and f € ZY(G, ). Note that since the
function x — m(x)v is bounded, the compression exponents of ¢ and f coincide. Therefore in order to
bound the equivariant compression exponent of G in X it suffices to study the growth rate of 1-cocycles.

Recall the definition (I]) of the modulus of uniform smoothness px(7), and that X is said to have modulus of
smoothness of power type p if there exists a constant K such that py(7) < Kt? for all T > 0. By Proposition
7 in [8]], X has modulus of smoothness of power type p if and only if there exists a constant S > 0 such that
forevery x,y € X

[l + Y17 + [lx = ylIP < 21xll” + 2P {yllP. 5)

The infimum over all S for which (I5) holds is called the p-smoothness constant of X, and is denoted S ,(X).

It was shown in [8] (see also [18]]) that S>(L,) < y/p—1for2 < p <ocoand S ,(L,) < 1forl < p <2 (the
order of magnitude of these constants was first calculated in [21]).

Our proof of Theorem|[I.1]is based on the following inequality, which is of independent interest. Its proof is
a modification of the method that was used in [28] to study the Markov type of uniformly smooth Banach
spaces.

Theorem 2.1. Let X be a Banach space with modulus of smoothness of power type p, and assume that
f:G — Xisal-cocycle. Then for every time t € N,

EfllfWoll’] < Cp(X)t - E[IlF(WDIIP],

228 ,(X)P

where C,(X) = T

Theorem shows that images of {W,;}}2, under 1-cocycles satisfy an inequality similar to the Markov type
inequality (note that f(Wy) = f(e) = f(e-e) = n(e)f(e) + f(e) = 2f(e), whence f(e) = 0). We stress that
one cannot apply Markov type directly in this case because of the lack of stationarity of the Markov chain
{f(Wp}2,- We overcome this problem by crucially using the fact that f is a 1-cocycle.

Before proving Theorem [2.1] we show how it implies Theorem [I.1]

Proof of Theorem[I.1I} Observe that (@) is trivial if ai(G) < % (since B*(G) < 1) or B*(G) = 0. So, we may
assume that o (G) > % and 8*(G) > 0. Fix % < a < a%(G) and 0 < B < B*(G). Then there exists a 1-cocycle
f 1 G — X satisfying
%,y €G = dg(x,y)" S IIf(x) - fWI S dg(x, y).
In addition we know that E [dg(W,, e)] = #°. An application of Theoremyields
E[IlfWOIP] s B [IfFWDIP] = E[lIlf (W) = f(l’] < E[d6(W,e)’] = 1. (16)
On the other hand, since pa > 1 we may use Jensen’s inequality to deduce that

E[IfW)IP] = E[IIF W) = f(l"] 2 E[d6(Wi, )] = (Eld6(Wi, )] )" 2 1. a7

Combining (16)) and (17)), and letting t — oo, implies that pa < 1, as required. i



Remark 2.2. Theorem is optimal for the class of L, spaces. Indeed let F, denote the free group on two
generators. We claim that for every p > 1,

o (Fy) = max{%,%}. (18)

Recall the elementary fact that 8*(F,) = 1 (see, e.g., [25]); thus Theorem implies that ozf,(Fg) <

max{ %, %} In the reverse direction Guentner and Kaminker [20] gave a simple construction of a map-
ping f : F» — L, satisfying [|f(x) — fOWll, = dg,(x, y)l/P for all x,y € F,. As noted in the MR review of
[20] (MR 2160829), the map f : F, — L, given by Guentner and Kaminker is not equivariant, but it can
be easily modified to be equivariant. (We are indebted to the referee for this remark.) This implies (I8)) for

1 < p <2. The case p > 2 follows from Lemma [2.3|below. <

Lemma 2.3. For every finitely generated group G and every p > 1 we have cxjﬁ(G) > afg(G).

Proof. In what follows we denote the standard orthonormal basis of ¢, by (e j)‘;.‘;l. Let y denote the standard

Gaussian measure on C. Consider the countable product Q := CNo, equipped with the product measure
u =y~ Let H denote the subspace of Ly(€, i) consisting of all linear functions. Thus, if we consider the
coordinate functions g; : Q — C given by g(z1,22,...) = z; then H is the space of all functions 4 : Q — C
of the form h = 372, a;g;, where the sequence (a;)2, C C satisfies Y72, lajf?> < oo, ie. (a3, € tr. Note
that we are using here the standard probabilistic fact (see [[13]) that Z;io a;g; converges almost everywhere,

(o)

e e oo 1/2 . .. .
and has the same distribution as (Zizl Iailz) - g1 (since {g J-}j:1 are i.i.d. standard complex Gaussian random
variables). This fact also implies that for every unitary operator U : £, — {5,

Z(Uek, €j>Zj] S Q,
=1 k=1

J

UZ =

is well defined for almost z € Q, and therefore U can be thought of as a measure preserving automorphism
U : Q — Q (we are slightly abusing notation here, but this will not create any confusion).

Fix a unitary representation 7 : G — Isom(¢,) and a cocycle f € Z!(G, r) which satisfies

x,y€G = do(x,y)* <IIf(x) = fOl2 < dg(x, y). 19)

Keeping the same abuse of notation, we denote by m(x) the map on Q associated with the unitary operator
n(x). For x € G and h € L,(Q, ) define m(x)h € L,(Q, 1) by m(x)h(z) = h(n(x)z). By the above reasoning,
since 7(x) is a measure preserving automorphism of (€, u), (x) is a linear isometry of L,(€, ), and hence
7 : G — Isom(L,(€,u)) is a homomorphism. Note that since all the elements of H have a Gaussian
distribution, all of their moments are finite. Hence H C L, (€2, u). We can therefore define ]7: G — L,(Q,u)
by f(x) = Z;il<f(x),ej)gj € H C L,(Q, ). It is immediate to check that fe Z'(G,7) and that for every

X,y € G we have ||f(x) ~ F) = llgill @0 - I1f(X) = F)llo. Hence f satisfies (T9) as well. 0

LP(Q7M)

Remark 2.4. Lemma actually establishes the following fact: there exists a measure space (€2, u) and
a subspace H C (1»1 Lp(€2, ) which is closed in Ly(€2, u) for all 1 < p < oo and such that the L, (€, 1)
norm restricted to H is proportional to the L,(€2, ) norm. For any group G, any unitary representation
n: G — Isom(H) can be extended to a homomorphism 77 : G — Isom(L,(Q,u)). The space H is widely



used in Banach space theory, and is known as the Gaussian Hilbert space. The above corollary about the
extension of group actions was previously noted in [[6] under the additional restriction that 1 < p ¢ 2Z, as a
simple corollary of an abstract extension theorem due to Hardin [22]] (alternatively this is also a corollary of
the classical Plotkin-Rudin theorem [33] [35]]). Lemma [2.3]shows that no restriction on p is necessary, while
the theorem of Hardin used in [6] does require the above restriction on p. The key point here is the use of
the particular subspace H C L,(£2, u) for which unitary operators have a simple explicit extension to a linear
isometric automorphism of L, (€, u) for any 1 < p < co. <

We shall now pass to the proof of Theorem We will use uniform smoothness via the following famous
inequality due to Pisier [31] (for the explicit constant below see Theorem 4.2 in [28]]).

Theorem 2.5 (Pisier). Fix 1 < p <2 and let {M}}!_, C X be a martingale in X. Then

kO—
X S
E [IM,, - Moll"] < 2,,"1 Z [11Myes1 = MlI”].
k=0

Proof of Theorem[2.1] By assumption f(x) € Z'(G, rr) for some homomorphism 7 : G — Isom(X). Let
{ok};., be 1.i.d. random variables uniformly distributed over S. Then for 7 > 1 W, has the same distribution
as the random product oy - - - 07y

For every t > 1 the following identity holds true:

f(Win) 1) = D (W) (7). @

=1 =1

M-

Zf (W) =

We shall prove (20) by induction on ¢. Note that every x € G satisfies 0 = f(e) = f (x‘l . x) = (x)" f(x) +
f (x‘l), ie. f(x) = —n(x)f (x‘l). This implies (20) when 7 = 1. Hence, assuming the validity of (20)) for ¢
we can use the identity 2 f(xy) = 2f(x) + 7(x)f(y) — n(xy) f (y_l) to deduce that

2f W) = 2f(Wiris)
21 (W) + 7(WD (1) = 7 (Wi f (07

I
[
Pay
=

|
=
S
-
NG

7 (W) £ (07") + 7 W ferin) = 7V f (7))

I
)
=
L
~
—_

S

|

N
=
~—~
~
—_
\q |

proving (20).

= D (W) (1) =) = Yyr(or o) () )
= D) (107 =0) = Dol ) (7))



where v := E[f(W))] € X. Note that since S is symmetric, (T]TI has the same distribution as o ;, and therefore
N, has the same distribution as M;. Moreover, (20) implies that 2f (W;) = M, — n(W;)N; — v + n(W,)v. Since
n(W;) is an isometry, we deduce that

2PE[IIf W) IP] < 477 E[IMIP] + 477 E [INAIP] + 2 - 477 |oll”
=24 BIMP] + 2 - 4P E[FWD|” < 2- 4P B IIMAP] + 2 - 4P B IFWDIP]. - (21)

Note that for every ¢ > 1,

MN

E[M,|0'0,...,0't_1]:E 77 O 1 (f(aj)—v)|0'o,...,0',_1
j=1

=M, +n(og---0)(E[f (0)] = v) = My,

Hence {M},?, is a martingale with respect to the filtration induced by {o};2,. By theorem

S -1 S -1 ;
B[IMIP) < 25— ;E Myt = Mill’) = 25— -;E[Ilf(ak) ]
S,(X)P
= 2,,1:(1 _)1 2PN B WDIP] + IVIIP) < = T( r E[IFWDIP]. (22)
Combining (1) and (22) completes the proof of Theorem 2.1] o

Remark 2.6. When the target space X is Hilbert space one can prove Theorem|[I.T]via the following simpler
argument. Using the notation in the proof of Theorem we see that for each ¢ € N the random vari-
ables W, I = o-t_l ---0']_1 and W, "Wy, = 441 - - - 072, are independent and have the same distribution as W;.

Therefore Y; = f(W,‘l) and Y, = f(W,‘lWQ,) = 71( )f(WZt) + f( ) are i.i.d., and hence satisfy

B[IF WalP] = B |« (;) £ (W20

] E (I - YalP| = B[IIYiIP = 271, Ya) + 172
= 2E [IFWIR| - 2 [ELFWol||” < 2B [IFwl?].
By induction it follows that for every k € N,
B[y )l | < 2= [IrwolP]

This implies Theorem [I.T] and hence also the Guentner-Kaminker amenability criterion in terms of equiv-
ariant compression [20], by arguing exactly as in the conclusion of the proof of Theorem[I.1] <

3 The behavior of L, compression under wreath products

Given two groups G, H let £;(H) denote the wreath product G ¢ H where the set of generators of G is taken
to be G \ {e} (i.e. any two distinct elements of G are at distance 1 from each other). With this definition it is
immediate to check (see for example the proof of Lemma 2.1 in [3]]) that

(f:0),(8. ) € Z6(Z) = dzz)((f.1),(8, ) = li = jl + max {lk| + 1= f(k) # g(k)}. (23)

The case G = C; corresponds to the classical lamplighter group on H.



Lemma 3.1. For every group G we have o*(£5(2)) = 1.

Proof. As shown by Tessera in [37]], @*(C2Z) = 1 (we provide an alternative explicit embedding exhibiting
this fact in Section 4 below). Therefore for every a € (0, 1) there is a mapping 6 : C2 ¥ Z — L, satisfying

(X, l)’ ()’, .]) € C2 7 = dCle((-x’ l)9 (y’ j))a/ < ”9()6, l) - 9(% ])”2 < dCle((-x’ l)9 (y’ J)) (24)

Let {&,},cc be i.i.d. {0, 1} valued Bernoulli random variables, defined on some probability space (€2, P). For
every f : Z — G define a random mapping &y : Z — C; by &¢(k) = £fx). We now define an embedding
F: XG(Z) - Lz(Q, Lz) by

F(f,i) = 0(gyp, ).

Fix (f,0),(g,J) € Z6(Z) and let kpmax € Z SatiSfy f(kmax) # g(kmax) and |kmax| = max {lkl 2 flk) # g(k)}'
Then

VD = Fg DB ) = |10 = 6z, DIE] 2 B [desielr. (e )]

(- 1+ max (415 g # gl)’| < [0= 1+ Kol + 17] E dian (0. (6. )

In the reverse direction note that since f(kmax) # g(kmax) With probability % we have &1t # Eglhma)-
Therefore

. . . @ N
IF (i) = F(8. DIE o,y = E[I10e7. D) = 0eg. DIB] 2 B |desz((er. . (56, )]
. 2a . o . 20
S (- 4 max W+ 15 e # eg))™| 2 [0 1+ ol + 2] 2 digar (0, (0. )
This completes the proof of Lemma 3.1} O

Remark 3.2. In [37] Tessera shows that if H has volume growth of order d then
y 1
o (Ls(H)) > 7 (25)

Note that Tessera makes this assertion for .Zr(H), where F is finite (see Section 5.1 in [37]], and specifically
Remark 5.2 there). But, it is immediate from the proof in [37] that the constant factors in Tessera’s embed-
ding do not depend on the cardinality of F, and therefore (25)) holds in full generality. Observe that (23) is
a generalization of Lemma [3.1] but we believe that the argument in Lemma [3.T| which reduces the problem
to the case G = (), is of independent interest.

The case H = Z? in (23] can be proved via the following explicit embedding. For simplicity we describe it
when G =C,. Fix0<a < % and let

{vyrg 1 yEZ2, reNU{O} g:y+[-rr)* - (0.1}, g 0]

be an orthonormal system of vectors in L. For simplicity we also write vy .o = 0. Define ¢ : C; 7> —
R2 @ L, by
o max{1 = 2r/[lx = ylle, 0}

p(f.x) =xe| >

3220 WS o2 |
yeZ2\(x} r=0 llx =yl

An elementary (though a little tedious) case analysis shows that i is Lipschitz and has compression . <

10



The following theorem, in combination with Lemma [3.1] contains Theorem as a special case (note
that (7) follows from (26) since clearly o*(G * H) < *(G)).

Theorem 3.3. Let G, H be groups and p > 1. Then

pa(G)ar (Lo (H))
pay(G) + paj(Le(H)) — 17

min {a}(G), ) (Le(H))} zé = &}(G1H)>

and

1 .
min {(G), ap(Lo(H))} < S = @(GtH) > min (@ (G), ap(Lo(H)} (26)

Proof. We shall start with some useful preliminary observations. Let (X, dx) be a metric space, p > 1, and
let Q be a set. We denote by £,(€2, X; fin) the metric space of all finitely supported functions f : Q — X,
equipped with the metric

1/p
d,(f,8) = (Z dx(f(w), g(w))”} :

wWeQ)

It is immediate to verify that for every (f, x), (g,y) € G ¢ H we have

deuu((f, %), (8,y) = deywmn((f, %), (8, ) + de, .6 (f, &) (27

Indeed, it suffices to verify the equivalence (27) when (g, y) is the identity element (e, e) of G ¢ H. In this
case simply says that in order to move from (e, ) to (f, x) one needs to visit the locations z € H where
f(2) # e, and in each of these locations one must move within G from e to the appropriate group element

f(@) eq.
Another basic fact that we will use is that for every (f, x), (g,y) € GUH,

ltze H: f@) # 8@} < deyun((f. ). (8.y)). (28)

Once more, this fact is entirely obvious: in order to move in .£5(H) from (f, x) to (g, y) once must visit all
the locations where f and g differ.

We shall now proceed to the proof of Theorem Fix a < a},(G) and b < 0/}“,(.,2”(; (H)). Then there exists a
function ¢ : G — L, such that

u,v€G = dg(u,v)* < lly(uw) =yl < deu,v). (29)
We also know that there exists a function ¢ : Z5(H) — L, which satisfies
u,v € Lo(H) = dganu,v)’ <llg) — dWllp $ d gz, v). (30)
Define a function F : GXH — L, ® {,,(H, L,; fin) by

F(f,x)=¢(f,x)@Wo f).

11



Fix (f, x),(g,y) € G *H and denote m = d ¢,m)((f, x),(g,¥)) and n = d¢,(u,6)(f,g). We know from (27)
that d,y((f, x), (g,y)) < m + n. Now,

1/p
IF(f, %) = F(g.9)llp = |llo(f, x) — p(g. I}, + Z [l (f(2) = w(g(z))llﬁ]

zeH

<000 — BVl + D @) ~ (gl 2 i+ = daun((f. 9. (8. ).

zeH

In the reverse direction we have the lower bound

I/p
IF(0 - Fell, e (mbf’ = dof 2, g(z))“f’] . (1)

zeH

If ap < 1 then ¥ cy dG(f(2), 8@ 2 (Eien do(f(2), 8(2)))™" = nP and (B1) implies that

1/ : ;
IF(f.x) = FgWllp 2 (m"7 +nP) "7 2 (m+ )™ 2 deuy((f. %), (8.3)™™ ", (32)

Assume that ap > 1. It follows from (28) that |{z ceH: f(z) # g(z)}’ < m. Thus, using Holder’s inequality,
we see that

ap 1 T
D do(f@.8@) 2 —— | > do(f@).8@) | = ——. (33)

meaep meap

z€H zeH
a _abp? _ap _ap
Note that m”? + m’},pp_l > partr , which follows by considering the cases m > nabr T and m < paheT
separately. Hence,
A ap 1/p ab
IF(f, x) = F(g, )l @2@ (mbp + 2 ) > max {m”,nw’;_l}
map-1
min{b, 42| min{b, 42|

2 (m+n) @ et < day((f, ), (g,y) 0 @il (34)
Note that when ap > 1, if b < apfi’; — then bp < 1. Therefore (32)) and (34) imply Theorem o

Remark 3.4. Theorem [3.3] in combination with Remark [3.2] and the results of Section [6| below, imply that
if G is amenable and H has quadratic growth then

a" (Gl H) = min{%,a*(G)}. (35)

Thus, in particular,

a*(CZZZZ):a*(ZzZZ):%.

To see note that by Theorem [6.1] in Section [6] we have 8*(G * H) = 1. Using (3) we deduce that
a*(GUH) < % and the inequality o (G t H) < @*(G) is obvious. The reverse inequality in (33) is a corollary
of Theorem 3.3]and Remark <
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4 Embedding the lamplighter group into L,

In this section we show that the lamplighter group on the integers, C, ¢ Z, admits a bi-Lipschitz embedding
into Ly. This fact will follow from a standard limiting argument once we establish that the lamplighter
group on the n-cycle, C; ¢ C,,, embeds into L with distortion independent of n. We present two embeddings
of C» 1 C, into L. Our first embedding is a variant of the embedding method used in [5]. In [3] there is a
detailed explanation of how such embeddings can be discovered by looking at the irreducible representations
of C, 2 C,,. The embedding below can be motivated analogously, and we refer the interested reader to [S]] for
the details. Here we just present the resulting embedding, which is very simple. Our second embedding is
motivated by direct geometric reasoning rather than the “dual” point of view in [J5]].

In what follows we slightly abuse the notation by considering elements (x,i) € C, ¢ C, as an index i € C,
and a subset x C C,. For the sake of simplicity we will denote the metric on C ¢ C,, by p. The metric dc,
will denote the canonical metric on the n-cycle C,,. It is easy to check (see Lemma 2.1 in [5]) that

(x, ), (0, 0) € CL2C = p((x, ), (0, 0) = dc,(j. k) + max (dc,(0,k) + 1). (36)

First embedding of C, * C,, into L;. We denote by a : C,, — C, the shift a(j) = j+ 1. Let us write 1
for the family of all arcs (i.e. connected subsets) of C,, of length |n/3] (of which there are n). We define an

embedding ' : C20C, — @Id @Ag 01(Cy) by

. koo itk + j) +nlep(k + j)
f(x, )= ((_l)lAﬂa @I, ) )
) =PD -

IeI Acl n?213

It is immediate to check that the metric on Cx2C,, given by || f(x, j)— f(x’, j)Il1 is C22Cp-invariant. Therefore
it suffices to show that || f(x, j) — f(@,0)|l; < p((x, ), (0,0)) for all (x, j) € C2 1 C,,.

Now,

Z Z |tk e Cy s 15(k) + 1;(k + j) = 1} N Z 1;(k) + nlc,\ (k)
3 29n/3
Iel ACI n2"/ keCy n?2"/
|Ana*(x)| odd

) 1
de, 0. ) + = ; kzc (A c1:1A Nk ()] odd)] - (1K) + nlc, (k)
€ €C,

o1
dc, 0, )+ > > (LK) +nlc,y (k). 37)
"l ke,
Ina*(x)#0

1/ Cx, ) = @, 0l

X

X

X

It suffices to prove the Lipschitz condition || f(x, j) — f(0,0)|l; < p((x, j), (@, 0)) for the generators of Cr 2 C,,
i.e. when (x, j) € {({0},0), (0, 1)}. This follows immediately from (37) since when (x, j) = (0, 1) then the
second summand in (37) is empty, and therefore ||£(0, 1) — £(0,0)|l; < 1 = p((0, 1), (0, 0)), and

1
I1£(101.0) = @0l = — > > (1) + nle,ub) < 1 5 p((10},0), ,0)).

Iel kel
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To prove the lower bound || f(x, j)— f(0,0)[l; = p((x, j), (0,0)) suppose that £ € x is a point of x at a maximal
distance from 0 in C,,. By considering only the terms in for which o*(¢) € I we see that

1
1 Ce ) = F@.OM 2 de, 0.+ — > > (Litk) + e, (k)

IeT kea~((I)

1 1
=de,0. )+ — > [0 a” D] + = 3 o (D \ 1] 2 de, 0. ) + (1 +de,0.0) 2 p((x. ). 0.0)).
Iel Iel

This completes the proof that f is bi-Lipschitz with O(1) distortion. O

Remark 4.1. Fix s € (1/2, 1) and consider the embedding f : C2 2 C, = D, ; P 4; €2(Cy) given by

Fo i = @D ED)| ciyprateon, Lk E D+ N lde,(k+ 1 ny

n/6
lel ACI n2 keC,

Arguing similarly to [3] (and the above) shows that p(u, v)* < ||f(u) — f(Wl2 < p(u,v) for all u,v € Cy 1 Cy,
where the implied constants are independent of #n. By a standard limiting argument it follows that o*(C2Z) =
1. This fact was first proved by Tessera in [37]] via a different approach. <

Second embedding of C; ¢ C,, into L;. Let J be the set of all arcs in C,,. In what follows for J € J we
let J° denote the interior of J. Let {v;4 : J € J, A C J} be disjointly supported unit vectors in L;. Define

f:Clen—>CGBL1by
. 2mij 1
fex gy = (ne’™ ) [— )y luva,WJ.
n
Jeg
As before, since the metric on C, : C,, given by ||f(x, j) — f(x', j)Il1 is C2 2 Cy-invariant, it suffices to show

that || f(x, j) = £(@,0)ll1 =< p((x, )), (0,0)) for all (x, j) € C2 2 C,,. Now,

. ~ 1
1 (e ) = £ 00l = de, 0.+ ~ > [[Wjereyvans = Logrivaol),

JeT
1 1
:d j — it Joy — o - ic Jo o .
0. )+~ D ijer) = Liogre) + D (Ler) + 1oer) . 38)
JegJ JegJ
xNJ=0 xNJ#0

We check the Lipschitz condition for the generators (0, 1) and ({0}, 0) as follows:

1
@ - r@on S 1+ e 0.0

_ 1}| = 1= p((0,1),(0,0)),

and

1
1£103,0) - £@, 0yl & e 0\

= 1 =p(({0},0),(0,0)).

Hence |1/ (x, /) = f(@,0)ll1 < p((x, ), (0,0)) for all (x, j) € C2 2 C.
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To prove the lower bound || f(x, j)— f(0,0)[l; = p((x, j), (0,0)) suppose that £ € x is a point of x at a maximal
distance from O in C,,. Then

1 1
1 e )—F .00l 2 de, 0. = > (L) + Nogset) = de, O+~ [T €T = €T A {0.j)\I° % 0)]
o
C+1D(n—-{¢
2 de, 0.+ =D < 0,) 4 de, 0.0 + 1= p((x . 0.0), (39)

Where in (39) we used the fact that the intervals {[a,b] : a €{0,...,¢}, b e{(,...,n— 1}} do not contain O
in their interior, but do contain ¢. m]

Remark 4.2. A separable metric space embeds with distortion D into L, if and only if all its finite subsets
do. Therefore our embeddings for C, 2 C,, into L; imply that C; :Z admits a bi-Lipschitz embedding into L;.
This can also be seen via the explicit embedding F(x, j) := j & (y(x, j) — (0, 0)), where

F(x, j) = Z Vikieo).xN[k,e0) + Z V(=00,k].xN(=00.k]5
k>j k<j

and {vj4 : J € {[k,00)}kez U {(—00, k]}ez, A C J} are disjointly supported unit vectors in L. <

S Edge Markov type need not imply Enflo type

A Markov chain {Z;}}° ) with transition probabilities a;; := P(Z.+1 = j | Z; = i) on the state space {1,...,n}is
stationary if m; := P(Z; = i) does not depend on t and it is reversible if m; a;; = n;jaj forevery i, j € {1,...,n}.
Given a metric space (X, dx) and p € [1, o), we say that X has Markov type p if there exists a constant K > 0
such that for every stationary reversible Markov chain {Z,};° on {1, ..., n}, every mapping f : {1,...,n} = X
and every time ¢ € N,

E[dx(f(Z), f(Z0))"] < K? tE[dx(f(Z1), f(Z0))"]. (40)

The least such K is called the Markov type p constant of X, and is denoted M ,(X). Similarly, given D > 0 we
let M;D (X) denote the least constant K satisfying with the additional restriction that dx (f(Zy), f(Z1)) <
D holds pointwise. We call leD (X) the D-bounded increment Markov type p constant of X. Finally, if
(X, dx) is an unweighted graph equipped with the shortest path metric then the edge Markov type p constant
of X, denoted M;dge(X ), is the least constant K satisfying with the additional restriction that f(Zy) f(Z;)
is an edge (pointwise).

The fact that L, has Markov type 2 with constant 1, first noted by K. Ball [7]], follows from a simple spectral
argument (see also inequality (8) in [28]]). Since for p € [1,2] the metric space (Lp, [lx — yllﬁ/ 2) embeds
isometrically into L, (see [42]), it follows that L, has Markov type p with constant 1. For p > 2 it was
shown in [28] that L, has Markov type 2 with constants O ( \/ﬁ) We refer to [28]] for a computation of the
Markov type of various additional classes of metric spaces.

A metric space (X, dx) is said to have Enflo type p if there exists a constant K such that for every n € N and
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every f : {—1,1}" = X,

E[dx(f(e), f(=&))"]
n
p
<T? Z E [dX (f(sl, &5 € Ejrls > En)s [(E1, . Ej1,—Ejy i1 - - .,sn)) ] , (4D
j=1

where the expectation is with respect to the uniform measure on {—1, 1}". In [29] it was shown that Markov
type p implies Enflo type p. We define analogously to the case of Markov type the notions of bounded
increment Enflo type and edge Enflo type.

The notions of Enflo type and Markov type were introduced as non-linear analogues of the fundamental
Banach space notion of Rademacher type. We refer to [16} (10, [7, 29, 27, 28] and the references therein for
background on this topic and many applications. In Banach space theory the notion analogous to bounded
increment Markov type is known as equal norm Rademacher type. It is well known (see [38]]) that for
Banach spaces equal norm Rademacher type 2 implies Rademacher type 2 and that for 1 < p < 2 equal
norm Rademacher type p implies Rademacher type g for every ¢ < p (but is does not generally imply
Rademacher type p). It is natural to ask whether the analogous phenomenon holds true for the above metric
analogues of Rademacher type. Here we show that this is not the case.

It follows from Theorem that @*(Z 0 2) > % Therefore for every 0 < a < % there is a mapping

F :Z Z — L, such that
X,y €L = dzz(x,y)" S IF(x) = FO)ll2 < dzz(x,y).
Fix a stationary reversible Markov chain {Z,}fio on {1,...,n} and a mapping f : {l,...,n} — Z1Z such
that dzyz (f(Zo), f(Z1)) < D holds pointwise. Using the fact that L, has Markov type 2 with constant 1 we
deduce that
E |dzz(f(Z), f(Z0))**| S B|IIF o f(Z) = F o f(Zo)l3| < tB[IIF o f(Z1) = F o f(Zo)I}3]
< 1B |dza(F(Z0). fZ0))| < DXV "1E [doz(FZ1). f(Z0))].

Thus
M;P(z2Z) s D'

. . 4
In particular Z ¥ Z has D-bounded increment Markov type p and edge Markov type p for every p < 3.

On the other hand we claim that ZZ does not have Enflo type p for any p > 1. This is seen via an argument
that was used by Arzhantseva, Guba and Sapir in [3]]. Fix n € N and define f : {—1,1}" — Z(Z by

2n
fer...oe0) = [ D, &j-and), 0}, 42)
Jj=n+1
where ¢ is the delta function supported at j. Then for every € € {1, 1}",
dzz(f(e). f(=e)) = n® 43)
and for every j e {1,...,n},
leZ (f(sl’ e 98j—19€j7 8j+15 R aan),f(sh e a‘gj—la _Sja 8j+l’ LR 78n)) = n. (44)

Therefore if Z2Z has Enflo type p, i.e. if (@) holds true, then for every n € N we have n?” < nP*!, implying
that p < 1. O
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6 A lower bound on 8*(G t H)

In this section we shall prove (§)), which is a generalization of Ershler’s work [17]. Namely, we will prove
the following theorem:

Theorem 6.1. Let G and H be finitely generated groups. If H has linear growth (or equivalently, by Gro-
mov’s theorem [[19], H has a subgroup of finite index isomorphic to Z) then B*(G U H) > w For all
other finitely generated groups H we have f*(GUH) = 1.

Assume that G is generated by a finite symmetric set S¢ C G and H is generated by a finite symmetric set
Sy € H. We also let eg, ey denote the identity elements of G and H, respectively. Given g1,g2» € G and
h € H define a mapping féf’l o H—>Gby

g1 ifx=ep,

h " e
gl’gz(x) - g2 lf X = ;.l’
e otherwise.

It is immediate to check that the set
Scu = {fog, ¢ 81,82 €Sgandh €Sy}
is symmetric and generates G ¢ H.

From now on, we will assume that the metrics on G, H and G * H are induced by S¢, Sy and Saw,
respectively. Analogously we shall denote by {WkG }k=0’ {W,f’ }k=0 and {W]f; tH }k=0 the corresponding random
walks, starting at the corresponding identity elements.

Theorem 6.2. Assume that for some 8 € [0, 1] we have
E [dG (WnG, eG)] 2 nﬂ, (45)

where the implied constant may depend on S . If H has linear growth then

E|dous (WO ecur)| 2 n7 . (46)

If H has quadratic growth then

n

E [ngH (WnGlH, EGQH)] Z W (47)
If the random walk {W,f’ }:o: 0 is transient then
E [dgus (WS, e )| 2 . (48)

The implied constants in (6), @7) and [@8) may depend on S and S .

Theorem [6.1]is a consequence of Theorem [6.2]since by Varopoulos’ celebrated result [39, 41]] (which relies
on Gromov’s growth theorem [19]]. See [24] and [43]] for a detailed discussion), the three possibilities in
Theorem [6.2] are exhaustive for infinite finitely generated groups H. In the case when the random walk on
H is transient, Theorem [6.2] was previously proved by Kaimanovich and Vershik in [24].

The following lemma will be used in the proof of Theorem [6.2]
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Lemma 6.3. Define for n € N,

\Vn if H has linear growth,
ygn) =3 1+logn if H has quadratic growth,
1 otherwise.
Then
E “{0 <k<n:WH= eH}ﬂ > ), (49)
and
n
E||Wiall 2 —. (50)
“ [0, ]” Y (n)

where W[Ig’n] = {W(';{, - WH}.

n

Proof. By atheorem of Varopoulos [40,41]] (see also [23] and Theorem 4.1 in [43]]) for every k > 0,

1 . .
P [WH _ EH] +P [W/fll _ eH] _ _‘/{m %fH has linear g.rowth, 51)
* w7  if H has quadratic growth,

and if H has super-quadratic growth then ;> | P [W,f’ = eH] < o0, Hence, if we denote

n

X, = |{0 <k<n: Wf = eH}’ = Z 1{W,f:eH}

k=0
then it follows that
n
E[X,]= ) P[W{ = en] 2 4. (52)
k=0
To prove (@9) note that
n n n—i
32)

E|X2= Y P[W =en A W =ey] <2 P|W/ = en|-B[W} = en| < 2(B[X,]) D .

i,j=0 i=0 k=0

Using Holder’s inequality we deduce that

1-5 2-2

< (B[ (= [%])7 < [ wnon=F.

2-28
28

B
yu(n) <E[X,]=E [Xn” - X,

This simplifies to E [Xff ] > Yy (n)P, which is precisely (@9).

We now pass to the proof of (50). For every k € {1,...,n} denote by Vi, ..., V the first k elements of H that
were visited by the walk {W? }jZO' Write

Y, = |{03j3n:Wj’e{vl,...,vk}}|.
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Then

k n
©2)
E[Yi] = ZE“{O <jsn:Wi= VJ}” <k ) P|W!=en| = kyn(n
j=1 r=0
Therefore for every k € N,
H E [Yx] klﬁH(n)
P||Wih | < k| <PYi2n < . :
Hence we can choose k =< - [O,n]’ > k] > % implying (50). i

Proof of Theorem[6.2] We may assume that n > 4. Let Oy : G U H — H be the natural projection, i.e.
Ou(f,x) = x. Also, for every x € H let O, : G H — G be the projection O (f,y) = f(x).

Fix n € N. For every h € H denote
T, = ’{0 <ks<n: QW)= h}|

The set of generators S g,y was constructed so that the random walk on G ¢ H can be informally described
as follows: at each step the “H coordinate” is multiplied by a random element & € S . The “G coordinate”
is multiplied by a random element g € S at the original H coordinate of the walker, and also by a random
element go € S (which is independent of g;) at the new H coordinate of the walker. This immediately
implies that the projection {QH (WG‘H )}k 0 has the same distribution as {WH }k o Moreover, conditioned
on {T}}ner and on Qg (WE‘H), ifhe H\ {eH, Ou (W,?'H)} then the element QG (W,?'H) € G has the same
distribution as W’?T,,' Ifhe {eH, On (Wf H )} and ey # Qp (W,? H ) then Q. (W,?’H ) has the same distribution

as Wmax{ZT/, 1op andif ey = Qp (WnG IH) then Q. (W,IG tH ) has the same distribution as WZGTh'

These observations imply, using {#3), that for every h € H we have ]E[dc (QG (WG’H ) eg)] > E[Tf ]

Writing A, == {h WH A h¢ wH

0.0~ 1]} we see that

ln/2] @ Ln/2]
B[rf]> ) pan E[THA] T Y BAn)  vun/2F = Blhe Wi, |wnn/2F.
=0

=0
Hence,
B|down (W™, ecn)) = DB do (06 (W) ec)] 2 D E[T]
heH heH
(80)
2 Yn (”W];P[h € Wi o] = v -E[[WG 0] = @'
This is precisely the assertion of Theorem[6.2] O

Remark 6.4. In [13] de Cornulier, Stalder and Valette show that if G is a finite group, then for every p > 1
we have afﬁ(G UFy) > % where F, denotes the free group on n > 2 generators. Note that in combination

with Lemma this implies that we actually have a/#(G LFy) > max{ } This bound is sharp due to
Theorem and the fact that 5*(G ¢ F,) = 1. We prove here the followmg stronger result, which was
motivated by a question of A. Vallette (personal communication.) <
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Proposition 6.5. Let X be a Banach space with modulus of smoothness of power type p and suppose that G
is a nontrivial group, and H is a group whose volume growth is at least quadratic. Then (G tH) < %. In

particular o,(G t F>) = max {117’ %}

Proof. Ttis enough to deal with the case G = C. If H is amenable then by Theorem[6.1|we have 8*(C H) =
1, so that the required result follows from the result of [4]] and the fact that X has Markov type p [28]. If H
is nonamenable then it has exponential growth (see [30]). Thus y = lim,_. |B(eq, MY > 1, where B(x, r)
denotes the ball of radius r centered at x in the word metric on H (note that the existence of the limit follows
from submultiplicativity). Fix § € (0, 1) such that  := “Ifg:y > 1 and let ky € N be such that for all £ > kg
we have [(1 — 6)7]]‘ <|B(eg,k)| < [(1 + 6))/]". For k > kg let {x{, ..., xy} be a maximal subset of B(ey, 2k)
such that the balls {B(x;, k/ 2)}?; , are disjoint. Maximality implies that the balls {B(x;, k)}?i | cover B(ep, 2k),

so that

N

| Bxi k)
i=1

[(1 +6)yl*N > N|B(en, k)| > > |B(ew, 2k)| = [(1 - 6)y1*,

which simplifies to give the lower bound N > n*. Thus k < log N.

Fix a € [0, 1] and assume that F : C, ' H — X satisfies

x,y € CrH = dcan(x,y)* SIIF(x) = FOI S deyn(x, ).

Our goal is to prove that @ < 117 For every € = (g1,...,&n) € {—1,1}" define ¥, : H — C, by ¢.(x;) = %,

and Y.(x) = 0if x ¢ {x1,...,xy}. Let f: {=1,1}¥ — C» U H be given by f(€) = (¥, ep). It is easy to check
that for all &, &’ € {—1, 1}V we have

k
Slle = &'lli < dc,m(f(e), f(e)) < 4klle — &'ll1.

(Indeed, to verify the right-hand inequality, let i1, ..., i, denote the m = |l¢ — &’||;/2 indices where € and
g’ differ. Consider the path from f(¢) to f(¢’) in C; ¢ H obtained by moving the lamplighter along the
shortest path in H from ey to x;,, switching the lamp there, then moving the lamplighter to x;,, switching
the lamp there, etc., and finally after switching the lamp at x;,, returning the lamplighter to ey.) Metric
spaces with Markov type p also have Enflo type p [29], i.e. they satisfy (41). Thus we can apply the Enflo
type inequality (#1) to the mapping F o f : {—1,1}¥ — X and deduce that (Nk)*” < Nk”. Consequently,
N < NkP < N(log N)?. Since the last inequality holds for arbitrarily large N, we infer that ap < 1. O

7 Discussion and further questions

In this section we discuss some natural questions that arise from the results obtained in this paper. We start
with the following potential converse to (3)):

Question 7.1. Is it true that for every finitely generated amenable group G,

1
28(G)

a"(G) = ?
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If true, Question [/.1} in combination with Corollary would imply a positive solution to the following
question:

Question 7.2. Is it true that for every finitely generated amenable group G,

2a%(G)

G’*(GIZ) = m

Additionally, since 5*(G) < 1, a positive solution to Question [/.1| would imply a positive solution to the
following question:

Question 7.3. Is it true that for every finitely generated amenable group G,

a"(G) = ?

| =

Using (27), and arguing analogously to Lemma [3.1| while using the L; embedding of C; ?Z in Section[d] we
have the following fact:

Lemma 7.4. If a finitely generated group G admits a bi-Lipschitz embedding into Ly then so does G U Z.
Question 7.5. Is it true that for every finitely generated amenable group G we have a((G) = 17

Since the metric space (Ll, [|lx — ylll) embeds isometrically into L, (see [42]]), a positive solution to Ques-
tion [7.5|would imply a positive solution to Question

Our repertoire of groups G for which we know the exact value of a*(G) is currently very limited. In partic-
ular, we do not know the answer to the following question:

Question 7.6. Does there exist a finitely generated amenable group G for which a*(G) is irrational? Does
there exist a finitely generated amenable group G for which % <a*(G)<1?

In [44] Yu proved that for every finitely generated hyperbolic group G there exists a large p > 2 for which
aﬁ(G) > % In view of Theoremit is natural to ask:

Question 7.7. Is it true that for every finitely generated hyperbolic group G there exists some p > 1 for
o H 1

which @,(G) =z 57

We do not know the value of cx’;(Z 1Z) for 1 < p < 2. The following lemma contains some bounds for this

number:

Lemma 7.8. Foreveryl < p <2,

+1 4
Sa;(ZzZ)Smin{p }

s~ 53
2 3p (33)

P
2p -1
Proof. The lower bound in (53)) is an immediate corollary of Theorem Since B*(Z 1 Z) > 3, the upper
bound a/;(Z Z) < ip follows immediately from the results of [4] (or alternatively Theorem , using the
fact that L,,, 1 < p < 2, has Markov type p. The remaining upper bound is an application of the fact that L,
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1 < p < 2, has Enflo type p, which is similar to an argument in [3]]. Indeed, fix a mapping F' : Z?Z — L,
such that
X,y €ZNZL = dzz(x,y)* SIF(X) = FOlp S dzz(x,y).

Let f : {—1,1}" — ZZ be as in (@2)). Plugging the bounds in (@3) and (4) into the Enflo type p inequal-
ity (@) for the mapping F o f : {—1,1}" — L,, we see that for all n € N we have n*’® < n”*!, implying that
p+1

QSW. O

Question 7.9. Evaluate «/,(Z2Z) for 1 < p < 2.

We end with the following question which arises naturally from the discussion in Section [}

Question 7.10. Does there exist a finitely generated group G which has edge Markov type 2 but does not
have Enflo type p for any p > 1?

We do not even know whether there exists a finitely generated group G which has edge Markov type 2 but
does not have Markov type 2. Note that the results of Sectionimply thatif 1 < p < % then the metric space

ez
this metric is not a graph metric.

(Z Z,d”! 2) has bounded increment Markov type 2, but does not have Enflo type g for any g > %. However,
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