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Abstract
Let By = {z € R*; > |zl < 1}, 1 < p < +oo. We study
the extreme values of the volume of the orthogonal projection of By
onto hyperplanes H C R"™. For a fixed H, we prove that the ratio
vol(PuB}})/vol(By~") is non decreasing in p € [1, +00].

1 Introduction

Computing the volume of sections or projections of convex sets is not easy,
even in specific cases. However in the last decades several authors managed to
produce workable formulas, often related to probability and to Fourier analysis,
and to determine extremal volumes of sections of certain bodies. The example
of the cube B = [—1,1]" was settled first: Hadwiger’s result in [11] implies
that the hyperplane sections through the origin have no less volume than the
canonical sections. Vaaler [22] was able to show this for sections of arbitrary
dimension. The largest hyperplane section of the cube was found by Ball [2],
an important result which lead to a negative answer to the Busemann-Petty
problem in dimensions larger than 10 (see [3] for results in larger codimension).
Denoting for 1 < k < n, H, = {z € R"; Zle z; = 0}, the best control on
hyperplane sections of the cube reads as

vol(BY N Hy) < vol(BY N H) < vol(BY N Hy),

for every vector-hyperplane H C R™. Here “vol” stands for the Lebesgue mea-
sure on the corresponding subspace.

Vaaler’s result was considerably extended by Meyer and Pajor [14], who
studied the unit balls of £ for p > 1, B} = {z € R"; >_i, |z;|? < 1}. They
showed that for any k-dimensional vector subspace E, the ratio

vol(By N E)
vol(B})

is a non-decreasing function of p > 1. Since this quantity is always equal to 1
for p = 2, this settles the question of minimal sections for p > 2 and of maximal
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sections for p < 2. These results were later extended to p € (0,1) by Caetano
[7] and the first named author [6]. Meyer and Pajor also found the extremal
hyperplane sections for p = 1. They proved that for any hyperplane H C R”

vol(BT N H,) < vol(BT N H) < vol(Bf N Hy),

and conjectured the same lower bound for p € (1,2), which was proved by
Koldobsky [12] even for p € (0,2). Let us mention related works by Webb [23]
about the sections of the regular simplex and by Oleszkiewicz and Pelczyniski
[16], concerning a complex version of Ball’s upper bound.

The study of extremal volume projections is much less advanced, even though
sections and projections are related via duality. The problem is that volume does
not behave well under duality. Hence results for sections do not transfer to pro-
jections. However in the few known cases, the results for hyperplane projections
are in perfect duality with the ones for sections. The case of the Euclidean ball
B% is trivial, the one of the cube is very simple: if H = {a}* where a € R®
satisfies >_1_, a? = 1, then denoting by Py the orthogonal projection onto H,

i=1 "1

one has vol(Py B%) = vol(B% 1) (3.7, |as;|) and therefore
vol(B%1) = vol(Pg, BZ) < vol(PgB™) < vol(Pg, B™) = \/nvol(B% ).

We refer to [8] for more details on this and projections onto lower dimensions,
and to [9] for projections of the regular simplex. The case of the unit ball of £}
is more interesting. It is well known to be related to Khinchine inequalities, see
[4]. Since all the facets of B have the same volume, and their outer normals
are corresponding to the vertices of the cube (its dual body), the usual formula
for volumes of projections of polytopes yields

vol(Pg BY') _ ]E| 22;1 5iai|
vol(BY™")  VE XL, ciail®

where ¢; are independent symmetric Bernoulli variables. Finding extremal pro-
jections reduces to computing the sharp constants in the Khinchine inequality
for these variables, which was done by Szarek [21] (see also [13] for a short
proof). The result for projections is

VOI(PHTB?) S VO](PHB?) S VO](I’H1 Bln)

The aim of the present paper is to study the extremal projections of B} for
p € (1,400). We bring the knowledge on this problem to the same level as it
is for sections. Although we do not use duality in our proof, the reader will see
that there is a continuous analogy between our methods and the ones used for
sections, but not an obvious one.

2 A Khinchine formula for volumes of projec-
tions

In this section we derive a simple formula for the volume of a hyperplane projec-
tion of the unit ball of £7. In what follows we work on the standard Euclidean

space (R, [| - [|2, (-, ).



Let K be a convex symmetric body in R"*. We denote by area(K) the surface
area of K. Let ox be the normalized surface area measure on K. One can
define another natural probability measure on 0K, the so called “cone measure”,
which we denote by pr. For any A C 0K, ux(A) is defined as follows:

_ vol([0,1]A) _ vol(ta; a€ A, 0 <t <1)
S vol(K) ’

i.e. ur(A) is the volume of the cone with base A and cusp 0, normalized by the
volume of K. It was proved in [15] that for almost every z € 0K:

dok n - vol(K) H
= V(|| - | ,
d/J/K (.’L') area(K) (” ”K)(:I") 9
where || - ||x is the Minkowski functional of K. Fix some a in the unit sphere

Sn—1. By a well known formula of Cauchy:

2vol(P, . K) = area(K) / (n(z), a)|dox (),
oK
where n(z) is the outer unit normal to 0K at z, see e.g. [20]. Hence:

_ VAl lx) (), @) dox
2V01(PaJ.K) - area(K) /BK ||V(” _ ||K)($)||2 d,U/K

(z)dpx (x)

=n: Vol(K)/ (VI 5 (@), @) |dp ()

oK
Specializing to K = B} we get that for some constant C(p,n) :

n
Z |z;|P sign(z;)a;

i=1

dusy (z).

vol(P,. BY) = C(p,n) /
OB™

P

This formula is useful since p Br has a concrete probabilistic description. Let g
be a random variable with density 1/(2T'(1 + 1/p))e~It", (t € R). If g1, ..., 9

are i.i.d. copies of g, set:
n 1/p
s=(Smr)
i=1

and consider the random vector:

7= (%%") € R™.

The following result appeared in [19], and later independently also in [18]:

Theorem 1 The random vector Z is independent of S. Moreover, for every
measurable A C OB} we have:

ppr(A) =P(Z € A).



Plugging this in the above formula for vol(P,. B}) we get:

Y, |gi|plsign(gi/S)ai|]

vol(P,. BY) = C(p,n)E [

Sp-1
EsP~! [ XL, |gilP~'sign(gi/S)ai]
= C(p’n)]ESP—l .E o
_ Cn)g

n
Egp 1 > lgilP~ sign(gi)as| ,
im1

where we have used in the last equality the independence of S and Z.
Let X be the random variable |g|P~1sign(g). For p = 1, X is a Rademacher.
It is easy to check that for p > 1 the density of X is:

p [#](2=P)/ (0=1) g7/

2(p—1)I(1/p)

Summing up, we have proved the following extension of the formula for the
volume of projections of B which appeared in the introduction:

Proposition 2 Let X,..., X,, be i.i.d. random variables with density propor-
tional to |t|—P)/(P—1) exp (—|t|p/(”’1)), p> 1. Then for everya € S™!:

VOl(PaJ_Bg) _ ]E|Z;l:1 a; X
el B

Remark: In the case 0 < p < 1, B} is no longer convex, and the Cauchy
formula fails. Although some estimates can be made, more work needs to be
done in the study of hyperplane projections of B;; when 0 <p < 1.

3 An analogue of the Meyer-Pajor theorem

The aim of this section is to establish the following

Theorem 3 Let 1 < p < q <+ and H be a hyperplane in R*. Then
VOI(PHB;L) < VOI(PHB(?) ‘
vol(Bp~') ~ vol(By ™)

We prove this fact by an induction argument, which is nicely explained in
terms of the Choquet ordering of measures. The Choquet ordering originated
from the proof of the classical Choquet representation theorem, where the main
interest focused on the study of maximal measures, see e.g. [17, 10]. It turns out
that this notion has some purely probabilistic applications. We start with some
definitions and useful facts. Since we are interested in symmetric measures, we
formulate the definition in this case only.

Definition 4 Let i and v be symmetric Radon measures on R". We say that
is smaller than v with respect to the symmetric Choquet order and write p < v,
if for every even non-negative convex function ¢ : R™ — [0, +00], one has

/cdug/ cdv.



Switching to probabilistic notation, for any two symmetric random vectors
U,V € R*, we say that U < V if for every even non-negative convex func-
tion ¢: R™ — R we have Ec(U) < E¢(V).

This ordering behaves well under products:

Lemma 5 Let u,v be symmetric Radon measures on R® such that p < v. Then
for any k > 2, the product measures compare:

pk < vk

Proof: By induction, it is enough to show the following: if u < v are symmetric
measures on R” and ) is a symmetric measure on R’ then p® A < v ® X. To
see this, consider an even non-negative convex function ¢ on R**¢ and notice
that the function

@)= [ ean)arw)

is also convex and even, because both ¢ and A are symmetric with respect to
the origin. Therefore

/ ¢ dud\ = sdyu < / sdv = / c dvd.
Rn+L R™ n Rn+E
O

To apply this lemma, we shall need to characterize the symmetric Choquet
ordering for measures on R.

Lemma 6 LetU andV be symmetric, real valued random variables with E|U| =
E|V| < oo. Then U <V if and only if for every t > 0,

E[([U]=t) - Lguiza] SE[(VI=1) - Lgvisa]-

Proof: Let ¢ : R — R be an even, non-negative, convex, twice differentiable
function. Taylor’s formula gives:

c(a) = ¢(0) + ' (0)a + /a c"(t)(a — t)dt.
0
Hence, by Fubini’s theorem:
Ec(U) = Ec(|U]) = ¢(0) + ' (0)E|U| + /000 'OE[(U| 1) - 1{|U\2t}]dt7

and similarly for V. Hence, by approximating a general non-negative even
convex function on R by a twice differentiable one, we get that U < V if and
only if for every measurable 6 : [0, 00) — [0, 00):

o0

/000 OE[(|U| =) - 1{ju>¢]dt < /0 OEE[([V] —t) - 1{v|>¢]) dt,

and this implies the required result. O

For absolutely continuous measures, the above condition could be expressed
more explicitly. For any integrable f : R — R denote f(~V(z) = — fwoo ft)de,
and if f(-1) is also integrable, set f(=2) = [f(=D](-1),



Corollary 7 Let f,g: R — R be non-negative even integrable functions which
are continuous on R\ {0} and such that:
/ F(t)dt = / g(#)dt < oo and / £F(t)dt = / t(t)dt < oo.
0 0 0 0

Then f dx < g dz if and only if f(=2) < g(=2) on Rt

Proof: One just has to notice that:

£ () = /t b / ” f(u)duds = / /{ oy Tt = /t " w) (- t)du.

O
We shall apply this by using the following convenient necessary condition:

Lemma 8 Let f,g: R — R be non-negative even integrable functions such that:
o oo oo oo
/ £t dt = / g(t) dt < oo and / £F() dt = / tg(t) dt < oo.
0 0 0 0

Assume that there are 0 < z < y < oo such that {t > 0; g(t) < f(t)} = (z,y).
Then f dx < g dz.

Proof: For every ¢t > 0 define ¢(t) = g(~2)(t) — f(=2)(t). By the construction,
limy_, ¢(t) = 0. Moreover, as explained before, f(=2(0) = [ °tf(t)dt =
g(=2(0), so that ¢(0) = 0. Now, ¢" = g — f so that by our assumption ¢’ is
increasing on [0, z], decreasing on (z,y) and increasing again on [y, 00). But,
by the definition, limy_,o ¢'(t) = 0 and ¢'(0) = [;°(f — g) = 0. Thus there
is some u > 0 such that ¢' > 0 on [0,u] and ¢' < 0 on [u,00). Finally, since
¢ equals zero at 0 and oo, first increases and then decreases, we conclude that
¢ > 0, and the previous corollary gives the result. O

The latter criterion is easily checked for exponential type densities:

Lemma 9 Let a1,as be real numbers and 1, B2,c1,¢2,d1,ds be positive real
numbers. For i = 1,2, consider the function

filt) = cit®e W% 4 e (0, +00).

If ay < as and 0 < B1 < By then either the function fi — fo is non-negative
or there exist 0 < © < y < +o0o such that fi — f2 is negative exactly on the set

(z,y).
Proof: Taking logarithms, f;(t) > f2(t) amounts to ¢(t) > 0, where for ¢t > 0
t \Be t\F1
(1) = log(e /c2) + (a1 — as) logt + (d—Q) - <d_1) .

This function clearly tends to +oo at 0 and +o0o. We study the sign of its
derivative, or rather of the more convenient function

v =00 =a—a+6(1) - (5) "



This function has a negative value at 0 and tends to +o00 at +00. Next,

tB2—1 thi—1
V'(t) = B35 — Bi—5—
d2 dl

is non-negative if and only if t%2~5 > 82d5°872d %", Since B> > Bi, this
happens exactly on an interval of the form [z, +00) for some z > 0. Hence, ¢
starts from a negative value at zero, decreases, and then increases to +o00. It is
therefore first negative and then positive. So the original function ¢ is +00 at
zero, first decreases and then increases to +oo. The conclusion follows. O

Proof of Theorem 3: We can restrict to 1 < p < ¢ < oo. For r > 1, let X(")
be the random variable with density:

———C VG P
2(r — DT(1/7) ’

and let V(") = X () /(E|X(")|). Tts density is given by

Ay It \"
mame "*XP[‘(WQ ]

where 1/r + 1/r' = 1. Using the previous lemmas, we get Y(®) < Y(9). Ten-
sorizing this inequality we get that (Yl(p )Y )) < (YI(Q),...,YTE")) where
Yl(p ).,V P are iid. copies of Y®) and similarly for q. Therefore for every
a € "1, one has

E(>r, ain'(p)‘ E ‘ Y a X

~ ) @]
E| X ®) | =k ;am <E ;a’Yi N E| X (@) |
The theorem then follows from Proposition 2. O

4 Extremal projections when p > 2

This section is devoted to the proof of the following result:

Theorem 10 Let p > 2 and H be a hyperplane of R™, then
vol(Py, By) < vol(PyB))) < vol(Pu, By).

The lower bound is a consequence of Theorem 3 applied with 2 and p. It
also follows from Meyer and Pajor’s result [14]. Indeed, for every hyperplane
H containing the origin B} N H C Py B} so vol(PgBy) > vol(By N H) >
vol(B2~'). Our argument for the upper bound will provide yet another proof
of the lower bound.

We begin with a lemma, which originates from Koldobsky’s article [12]. First
recall that an infinitely differentiable function f : (0,4+o00) — RT is said to be
completely monotonic if for every n = 0,1,2,..., (=1)"f(™ > 0. Direct differ-
entiation shows that f(t) = t~%, a > 0 is completely monotonic. A straight-
forward induction shows also that f(t) = exp(—t?) is completely monotonic



provided 0 < < 1. Similarly, the product of completely monotonic functions
is still completely monotonic. A classical theorem of Bernstein, see for example
[24], asserts that f is completely monotonic if and only if there is a non-negative
Borel measure y on RT such that u([0,00)) = f(0%) and for each z > 0

@ = [ et
0
For complete proofs of the above facts, we refer to [24].

Lemma 11 Let g: R — RT be an even integrable function such that g(\/t) is
completely monotonic. Then the function

t = log g(vt), t >0
is convex. Here §(€) = [ €**¢g(s) ds is the Fourier transform of g.

Proof: By Bernstein’s theorem, there is a non-negative measure g on Rt such
that for every ¢ > 0

sV = [ et duto)
0
So for every t € R

o(t) = / e du(a).

Taking Fourier transforms in ¢ and using Fubini’s theorem, we get:

g(u) = /0 e (4@\/? du().
s/ = [ ()" T duto),

which is log-convex by Hélder’s inequality. m|

Hence, for u > 0,

Remark: It follows from the above proof that if g(1/u) is completely monotonic
then also §(y/u) is completely monotonic.

Proof of Theorem 10: Let a be a unit vector orthogonal to H. Using the
representation
> 1 — cos
ls| = ¢ / #du,
0 U

and the notation of Proposition 2, we get that

n © 1 _Re eiuZL':l ar Xk
E Zaka = CE/ ( ) du
k=1 0

u?

[ AR,
0

w2

where we also used the symmetry of X. Let f be the density of X. For ¢t > 0,

f(W) = Cpt(2—p)/(2p—2) exp (_tp/(Zp—2)) ‘



Since, for p > 2, (2 -p)/(2p—2) < 0 and p/(2p — 2) € (0,1], we get by the
preceding remarks that f(v/t) is a product of two completely monotonic func-
tions, and is therefore completely monotonic. Lemma 11 implies that log f (V1)
is convex. So for every u > 0, the function (a;)j_; — E;.lzl log f (y/aju) is con-
vex on the simplex {a > 0; 2?21 a; = 1}. Thus, it attains its minimum at the
barycenter of the simplex and its maximum at the vertices. Since E;Zl af =1,
we get that

i (i) < T[ Ftagu) < F)FO)"* = fu).

Combining this estimate with the relation

?

01— n £
VOI(PaJ_Bg) = c;m/ H]_— du
0
we obtain that

VOI(P(I,O’___’O)J_B;L) < VOl(PaJ_BIT;') < VO](P(l/\/E’.__,l/\/ﬁ)J_B;’).

5 Thecase 1 <p<2

Theorem 12 Let 1 < p <2 and H be a hyperplane of R", then

1 n—1 (n_l)(%7% n—1 n n
max ( —, (T) vol(B? 1) < vol(Py BY) < vol(Py, BY).

The lower bound is sharp only for p =1 or 2.

Proof: The upper bound follows from Theorem 3 with ¢ = 2. The 1/4/2 lower
bound can be viewed as a consequence of it too, and of the optimal lower bound
on projections of B}
vol(PgB}) S vol(Pg BT)
vol(Bp~") = vol(BI1)

Z VOl(PHzB?) _ i

vol(BT ™) V2

There is however a shorter argument: introduce ¢q,...,€, symmetric i.i.d.
Bernoulli variables, independent from the vector (Xi,...,X,). Since the X;’s
are symmetric, the vectors (€1|X1],...,&n|Xn|) and (X1, ..., X,) have the same

law, therefore, using only the Khinchine inequality for Bernoulli laws:

vol(P,+ BT EE]EX‘E?:I asei| Xi . E. | >0 aisiBlX]
vol(Bp—) E| X, | = E| X, |

1 " 2\ 1
Zﬁ(E(;aiei)> =5

for any a € S™~1. The other part of the lower bound is proved in [5] using the
reverse Brascamp-Lieb inequality. O



The calculation of the minimal volume hyperplane projection of By, 1 <
p < 2 seems more difficult. This reflects the situation for maximal sections of
Bj in the case 2 < p < oo. Ball’s calculation of the maximal section of the
cube has not been extended so far to any p < co. Moreover, recent results of
Oleszkiewicz (private communication) show that for 2 < p < 24 and large n,
vol(B} N Hy) > vol(B} N Hy), so that the direction of the maximal hyperplane
changes with p.

A similar phenomenon occurs for hyperplane projections in the case 1 <
p < 2. As remarked in the introduction, the minimal hyperplane projection for
p = 1 is orthogonal to the direction (1,1,0,...,0). Now, by the central limit
theorem:

™ o X;
vol(Pr, BY) _ E‘ZT _

nLn(go VO](Bg_l) _n—>oo ]E|X|

2\1/2  poo )
- BX) 7 / fufe~"/2 4 _ g-r(l)r<2—1).
EX| J_o V2m m P P

On the other hand,

vol(Py, BY) E‘—leg)“ _vol(PuaBY) Ly
vol(Bp~')  EX| — wvol(B))

So that:

|(Py_B” 1/p
hmMZZ_. T 1 FQ_E_
n—oo vol(Pp, Bp) /T D

Set y =1—1/p €[0,1). The previous limit is:

21-v
=7
The function ¢ is clearly strictly log-convex, ¥(0) > 1 = ¢(1/2) and lim,_,; ¥(y) =
00. Moreover, by the complement formula (see [1])

¥(y) VT(1—y)T(1+y).

1y = 22 raarama= 2L [T
V) = S VBT =~ [ s
It follows that ¢(y) < 1for 1/4 <y < 1/2 and ¢(y) > 1 for 0 < y < 1/4. Hence
for 1 < p < 4/3 and n large enough vol(Pu, By) < vol(Pu, B}), whereas the
reverse inequality holds for 4/3 < p < 2 and large n.

It is plausible that for p < 2 close to 2, the minimal volume projection is
the one onto H,,. Indeed, for any hyperplane H and p > 2, we have shown that
vol(PgB}}) < vol(Pm, By). Since these quantities are differentiable in p and
coincide for p = 2, it follows that

=1=(1/2).

d d
d—pvol(PHBg)|p:2 < d_pVOI(PH" By)|p=2,

which gives also information for p < 2 very close to 2. If the previous inequality
were strict for some direction H, then vol(PyBy) > vol(Py, By) would hold
for p € (2 —¢,2]. It would be nice to prove the strict inequality for hyperplanes

10



which are not orthogonal to the main diagonal. Note that the same reasoning
applies for sections and that, for once, any result on projections would yield
the corresponding result for sections and vice-versa. Indeed, for any H and p,
vol(By N H) < vol(Pu By) with equality for p = 2, so their derivatives at p = 2
coincide.
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