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Abstract

We study measures on R® which are product measures for the usual
Cartesian product structure of R™ as well as for the polar decomposition
of R® induced by a convex body. For finite atomic measures and for
absolutely continuous measures with density du/dz = e~V @) where V is
locally integrable, a complete characterization is presented.

1 Introduction

A subset K C R" is called a star-shaped body if it is star-shaped with respect
to the origin, compact, has non-empty interior, and for every x # 0 there is a
unique r > 0 such that z/r € K. We denote this r by ||z|]|x (|| - [|x is the
Minkowski functional of K). Note that ||z||x is automatically continuous (If z,,
tends to x # 0, then for every subsequence z,, such that ||z,, ||k converges to
r, the compactness ensures that z/r € 0K, so that r = ||z||x by the uniqueness
assumption). Any star-shaped body K C R” induces a polar product structure
on R™ \ {0} through the identification

T
T ||$||K>W -

In this note we study the measures on R™, n > 2 which are product measures
with respect to the Cartesian coordinates, and the above polar decomposition.

In measure theoretic formulation, we will be interested in the measures g on
R™ which are product measures with respect to the product structures R = Rx
---xR = Rt -0K. Here x is the usual Cartesian product and for RC Rt, Q€
OK, the polar product is by definition R-Q = {rw; r € R and w € Q}. We
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adopt similar notation for product measures: ® will be used for Cartesian-
product measures and ® for polar-product measures. With this notation, we
say that p has a simultaneous product decomposition with respect to K if there
are measures [, . .. b o0 R such that g = g1 ® - - - ® pp, and there is a measure
7 on Rt and a measure v on 0K such that 4 = 7 ® v (in what follows, all
measures are Borel). Notation like AF or []; A; always refer to the Cartesian
product.

For probability measures one can formulate the notion of simultaneous prod-
uct decomposition as follows. A measure y on R has a simultaneous product
decomposition with respect to K if and only if there are independent real val-
ued random variables X, ..., X, such that if we denote X = (X1,...,X,) then
u(A) = P(X € A) and X/|| X ||k is independent of || X||k.

The standard Gaussian measure on R" is obviously a Cartesian product. A
consequence of its rotation invariance is that it is also a polar-product measure
for the usual polar structure induced by the Euclidean ball. Many characteriza-
tions of the Gaussian distribution have been obtained so far. The motivations
for such characterizations arise from several directions. Maxwell proved that the
Gaussian measure is the only rotation invariant product probability measure on
R3, and deduced that this is the distribution of the velocities of gas particles.
The classical Cramer and Bernstein characterizations of the Gaussian measure,
as well as the numerous related results that appeared in the literature arose
from various probabilistic and statistical motivations. We refer to the book [2]
and the reference therein for a detailed account. The more modern character-
ization due to Carlen [3] arose from the need to characterize the equality case
in a certain functional inequality.

To explain the motivation for the present paper, we begin by noting that
the Gaussian density is in fact one member of a wider family of measures with
simultaneous product decomposition, involving bodies other than the Euclidean
ball. They will be easily introduced after setting notation. The cone measure
on the boundary of K, denoted by pux is defined as:

i (4) = vol([0, 1] - A).

This measure is natural when studying the polar decomposition of the Lebesgue
measure with respect to K, i.e. for every integrable f : R* — R, one has

+oo
f(z)dx = / nrtt flrw) dpk (w)dr.
R 0 oK

For the particular case K = B} = {z € R"; ||z]|, < 1}, where [|z]|, =

1/
(Ei”:l |xi|”) p, a fundamental result of Schechtman and Zinn [7] (see also

Rachev and Riischendorff [6]), gives a concrete representation of px:

Theorem 1 Let g be a random variable with density e~ /(2T (14+1/p)), t € R.
If g1,...,9n are i.i.d. copies of g, set:

n 1/p
=1



and consider the random vector:

7= (%%‘) € R".

Then the random vector Z is independent of S. Moreover, for every measurable
A C 0By we have:

KBy (4) _
vol(By) ~ P(ZeA).

The independence of Z and S, that is the simultaneous product decomposi-
tion, turns out to be very useful for probabilistic as well as geometric purposes
([8],[5],[4],[1])- One might hope that such a statement holds true for other norms
and other densities. The aim of this note is to show that the £} norm is in fact
characterized by this property, although we will show that such an independence
result holds for other measures. Section 2 is devoted to absolutely continuous
measures. Section 3 presents a classifications for finite atomic measures, when
K is convex. As the reader will see there are more examples. Some of them,
however, are not interesting and we will discard them by suitable assumptions.
For example: a constant random variable is independent of any other. This
observation allows to produce several measures with simultaneous product de-
composition. Any random variable X with values in the half-line {z; z; > 0}
works. Its law is clearly a Cartesian product measure, and X/|| X ||k is constant
regardless of K, so it is independent of || X||x. Similarly, if X has independent
components and takes values in only one sphere r0K it has a simultaneous
product decomposition. If K is not assumed to be convex, many different ex-
amples may be produced: take two sets of positive numbers {z1,...,zxy} and
{y1,.-.,yn} and consider p1 = > d,; and ps = > Jy,. If one assumes that the
numbers y;/x; are all different then the measure p1 ® ps is supported on points
(®,y:) all having different directions. So there are several origin-star-shaped
bodies K such that g1 ® ps is supported on the boundary of K. For such K’s,
1 ® pe admits a polar decomposition.

Finally, if  has simultaneous product decomposition, and €, ..., €, € {—1,1}
then the restriction of p to {z; x;e; > 0} still has this property. This remark
allows us to restrict the study to the positive octant” (0,400)™ (and one has
to glue pieces together at the end).

2 Absolutely Continuous Measures

As in the classical characterizations of the Gaussian measure, the assumption
that the measure is absolutely continuous reduces the characterization problem
to a solution of a functional equation which holds almost everywhere (with
respect to the Lebesgue measure). Unless we add some smoothness assumptions
on the densities, the next step is to apply a smoothing procedure. Of course,
after “guessing” the family of solutions of the equations, we must come up
with a smoothing procedure which sends each member of this family to another
member of the family. The classical Cramer and Bernstein characterizations use
Fourier transform techniques (see [2]), while Carlen [3] applies the heat semi-
group. The particular form of the equation we will derive will force us to use
yet another smoothing procedure.

When p is absolutely continuous the following (easy) characterization holds:



Lemma 2 Assume that pu is an absolutely continuous measure on R™, then it
has a simultaneous product decomposition with respect to K if and only if there
are locally integrable non-negative functions fi,..., fn defined on R, g defined
on 0K (locally integrable with respect to pur) and h on (0,00) such that

[/l ¢

2@ =115 =0 () -+

Lebesgue almost everywhere.

Proof: Assume that p has a simultaneous product decomposition with respect
to K. In the above notation, write p = p1 ® --- ® g, = 7 © v. For every
measurable B C 0K:

dp
e Vdr =
n d:c(x) x

:/B(/Ooon-r"l%(rw)dr) dpk (w).

Similarly, for every measurable A C Rt

uB) = w®*-5) = [

7(4) = u(4-0K) = [

A

n- ( gﬁ(rw)duK(aO) dr.

ox A

This shows that both 7 and v are absolutely continuous. Similarly pq,..., 4,
are absolutely continuous.
Now, for every measurable A C R*, B C 0K, Cy,...Cp, CR:

dr dv
—(r) - V——(w)drdpk (w) =
) G @ (@)

_/ 1 d_T(”m” ) K(L) de
A.BTL-||.Z'||TI;,_1 dr K dur \||z||x ’

u(Clx...an):/ dﬂ
C1x...xCn ;g T3

u(a-B) = r(aw(p) = [~

and

(z;)dz.

Since the product Borel o-algebras on Rt -:0K and Rx...x R (n times) coincide,
this shows that:

du L 1 dr dv ( z )
—I\Tr) = _—\r = — €T - —_ —_— s
ar @ = Man, @ = et @ o) G \ el
Lebesgue almost everywhere. The reverse implication is even simpler. O

Fix some p > 0, by,...b, > —1 and a;,...a, > 0. Let X;,...,X, be
independent random variables, such that the density of X; is:

paz(bi+1)/p

[Pt




Note that:

bie—ai|zi|"

n
[l
i=1

b;
n

n %22;1[”
— n . . |P
= (Zaz’|$z’|p> rem Zimalnl T N 1/p
i=1 i=1 <Zj:1 aj|gjj|13)

Hence, if we denote X = (Xi,...,X,) then by Lemma 2, X/ (31, a,-|X,-|p)1/p
and (31, a;|Xi|P)"/? are independent. Moreover, if b; = ... = b, = 0 and
a1 = ... = ap, = 1 then it follows from the proof of Lemma 2 that X/||X]||,
generates the cone measure on the sphere of /7. We have therefore obtained a
generalization of Theorem 1.

The main goal of this section is to prove that the above densities are the
only way to obtain a measure with a simultaneous product decomposition with
respect to a star shaped body K C R" (and that K must then be a weighted £}
ball). In solving the functional equation of Lemma 2 we will require a smoothing
procedure. Clearly, we require a way to smooth a function such that a function
of the form c|t|/’e~**" is transformed to a function of the same form. Let ¢ :
R — R be locally integrable. For any infinitely differentiable p : (0, 00) — [0, 00)
which is compactly supported in (0, co) define:

i) = [ ot (D) de = / " eplsa)p (1) ds.

It is easy to verify that px4) is infinitely differentiable on (—o0,0) U (0, 00). Fix
some € < 1/2 and let p. : (0,00) — [0,1/(2€)] be any infinitely differentiable
function such that p(t) = 1/(2¢) when |t — 1| < € and p.(t) = 0 when |t — 1| >
€ + €2. Now, for z > 0 (and similarly when z < 0):

||

z/(1—e—e?)
(Pe %) (@) — = / ()l =

2xe /(1+e+€2)
1 T\ 2

z/(1—e—c?)
= %/ rerey |26 () » (f)‘ [ (u)ldu <

z/(1—¢) z/(1+¢€) z/(1—e—€?)
<[ Wi+ o [ [ sl [ |w<u)|du] ,

T Jo/(1+e) 26T | Jo/(14ete2) /(1-e¢)

which, by the Lebesgue density theorem, implies that lim._,q p x ¥ = 1 almost
everywhere. Since, lim,_,q fooo pe(t)dt = 1, the same holds for 8. = p/ fooo Pe.

Since for every function of the form f(t) = c|t|’e /!l the function exp(p, *
(log f)) has the same form, the above smoothing procedure allows us to prove
our main result. In what follows e(z) € {—1,1} denotes the sign of z (any
convention for the sign of zero will do).

Theorem 3 Let K C R" be a star shaped body. Assume that p is an ab-
solutely continuous probability measure on R™ which has a simultaneous prod-

uct decomposition with respect to K. Assume in addition that log (%) is lo-
cally integrable. Then there is some p > 0 and there are by,...,b, > —1 and



rya1(1),a1(=1),¢1(1),c1(=1) ..., an(1),an(—=1),cn(1),cn(—=1) > 0 such that:

K= {w eR™; ) aile(w))|al? < 7‘}:

i=1

and
n

du(z) = [[ eile(@i)lz:

i=1

bi p—ai(e(wi))|eil® dz;.

Conversely, for K and p as above, y has simultaneous product decomposition
with respect to K.

We will require the following elementary lemma:

Lemma 4 Fiz a,a’ > 0. Let f : (0,00) = R be a continuous function such
that for every x > 0,

flea)=2f(z) and  fa's) = Sf(a),

then for every z > 0, f(z) = f(1) slota (If a =1, f(z) =0 for all z).

Proof: We may assume that f is not identically zero. Then a # o' and
a,a’ # 1. Consider the set

P:{ﬂ>0; there is ¢g >0 st. f(Bz) =caf(x), for all x>0}.

It is a multiplicative subgroup of (0,00). By classical results P is either dense
in (0,00) or discrete. Assume first that it is dense. Fix some zo such that
f(zo) #0. For any 8 € P, cg = f(Bzo)/f(x0). By continuity of f and by the
density of P it follows that for every x, 8 > 0 one has

f(Bo)
£(8r) = 0 (o)

So, if for some 3, f(Bzo) = 0 then f is identically zero. Therefore, f does not
vanish. We can chose zg = 1 and setting g = f/f(1), we have that for every
z,y > 0, g(zy) = g(x)g(y). It is well known that the continuity of g ensures
that it is a power function.

To finish, let us note that P cannot be discrete. Indeed, if P is discrete, since
it contains @ and o' # a, it is of the form {T"; h € Z} for some positive T # 1.
So there are k, k' € Z \ {0} such that & = T* and o/ = T*. Our hypothesis is
that for all z > 0

2f(z) = f(az) = f(T*z) = & f(z),
@) = flala) = f(T'2) = & f(z).
For an z such that f(z) # 0 we get 2 = c% and 3 = k. Tt follows that

3k = 2k+k" This is impossible because k # 0. |
Proof of Theorem 3: Using the notation and the result of Lemma 2,

) 1_1 e =9 () sl
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For i =1,...,n denote F; = log f;. Denote also G = logg and H = logh. Let
¢ : R" — R be a compactly supported continuous function. For every ¢ > 0:

g/nW(tx)Fi(xi)dx = /R" o(tz)G (” ”K) d;v+/ o(te)H (||z||x) d=

Changing variables this translates to

Z/n dy = /R PG (ﬁ) dy + /ncp(y)H (%) dy.

Fix some € > 0. Multiplying by 8. and integrating, we get,

Z [ ewGarwty = [ o6 () ot [ e)Gemn vl

Denote ¢; = B x F; and n = B « H. By the above identity for almost every

y € R:
;qsi(yi):G(” - )+n<||y||K)

Since ¢; and n are continuous on R\ {0}, we can change G on a set of mea-
sure zero such that the latter identity holds for every y € R™ with non-zero
coordinates.

Fix some y € R" with non-zero coordinates. For every A > 0, one has

3 6i0w) =G (” - )+n<A||y||K>

Since both sides of the equation are differentiable in A, taking derivatives at
A =1 yields:

sz yi) = C(lyllx), (1)

where for simplicity, we write x;(t) = t¢;(¢) and ((¢t) = tn'(¢t). From this, we
shall deduce that (, x; are power functions. This can be proved by differentiation
along the boundary of K, under smoothness assumptions. Since we want to deal
with general star shaped bodies, we present now another reasoning.

Note that lim; ¢ x;(¢) exists. Indeed since 7 is smooth on (0,00) and || - ||x
is continuous, the above equation for y* = 3 i €5 T tei gives

hmx, = HZ%H —ZXz'(l)

J#i

Similarly, ¢ may be extended by continuity at 0. Hence, (1) holds on R”™.
Applying (1) to Ae;, gives

xi(A) = C(Al - lle(Meill ) + i



for some constant ;. Plugging this into (1) for y; > 0 we obtain an equation in
¢ only:
n
> Cwillellx) +7: = ¢(lyllx)-
i=1

Choosing y = Ayie1/|le1||x + Ayzez2/|le2||x, with A, y1,y2 > 0, we get

c(,\yl)+C(/\yz)+iw+(n—2)<(0)=€(>\Hy1”;hK+y2 e HK)

lle2||x

Differentiating in A at A = 1 and setting f(¢) = ¢{'(t), >0,

fly) + f(y2) = (Hyl + Yo HK) (2)

Il lle2(lx

For y; = yo = ¢t > 0, we obtain 2f(¢t) = f(at), with a = |

Combining this relation with (2) gives

llexllx lle2llx || &

3100+ 1) = £ (| =+ o]

lle2llx

1_ e
allex]lx
”éﬁHK Lemma 4 ensures that f(t) = f(1)t? with p = log2/loga # 0, and
with the convention that p = 0 if & =1 (in this case f(1) = 0). It follows that

() = ¢'(1)t" /p + ¢(0)

if p# 0 and ((t) = ¢(0) otherwise. Integrating again, we get an expression for
n = B¢ xlog h. Letting € tend to zero shows that there are constants a,b,c € R
such that for a.e. t > 0, h(t) = ctbe™*" (this is valid even if p = 0).

Next we find an expression of the functions f;. We start with the relation

t¢'(t) = xi(t) = C(|t] - le(esl k) +vi = ai(e®))[t” + bs,

for some constants a;(1),a;(—1),b;. Thus for t # 0, ¢'(t) = a;(e(t))|t|P1e(t) +
b;/t. Integrating (with different constants on (—oo,0) and on (0, 00)) and taking
the limit € — 0 as before we arrive at f;(t) = ¢;(e(t))|t|% e~ %/t”, for almost every
t and for some constants ¢;(1),¢;(—1). For f; to have finite integral, p has to be
non-zero. Our initial equation reads as: for a.e. ,

n
gl P _ z
T (el e = lalfee el ().

[l

For y; = t/a and y» = t > 0 we get 3 f(t) = f(ta!),

i=1
By continuity this holds on R™ \ {z; [[;-, #; = 0}. For such an z and A > 0,
the equation becomes

n

H ci(e(m;))ADi=1 big=" Xiza ai(s(2a)) sl HC
i=1

=1
T
= eX!||z||4e~ N Iolk (_ ) '
E%




This clearly implies that a||z||} = Y"1 ai(e(z;))|2i|P. Since p is a probability
measure, necessarily a,a;(1),a;(—1) > 0 and b; > —1. Thus K is determined.
The boundedness of K forces p > 0. The proof is complete. O

We now pass to the case of y being an infinite measure. In this case, every
star-shaped body gives rise to a measure with a simultaneous product decom-
position. Indeed, for every by,...,b, > —1 in R, and every star-shaped body
K, the measure du(z) = [[\—, |z;|* dz admits such a decomposition, due to the

identity:
' n |5L'z| b; "y
b"’ = I I ) ||.7: | | l‘ =t -

ll=ll

n

1]l

i=1 i=1

We can however prove that the above example is the only additional case. For
simplicity we work with measures on (0, 00)™.

Theorem 5 Let K C R" be a star shaped body. Assume that p is an absolutely
continuous measure on (0,00)™ which has a simultaneous product decomposition

with respect to K. Assume in addition that log (g—‘z‘) is locally integrable. Then

one of the following assertions holds:
1) There are p,r > 0, by,...,b, € R and ¢ > 0 and ai,...,a, # 0 all having
the same sign such that:

n
KN (0,00)" = {w € (0,00)"; D Jai| - [zif? < r} ;
i=1

and .
dp = CH (w?"e_‘“z?l{wpo}dwi) .
i=1

2) K is arbitrary and there are by,...,b, € R and ¢ > 0 such that

dp = cf[ (x?"l{m>0}dwi) .

i=1

Conversely if K and p satisfy 1) or 2) then p has a simultaneous product de-
composition with respect to K.

Proof: This result follows from the proof of Theorem 3. The writing is simpler
since we work on (0,00)". We present the modifications. If in the argument
p =0, then f;(t) = ¢;t* and we are done. If p # 0 then the argument provides
a,ai,...,a, such that whenever z; > 0

n
al|lz||% = Z a;zt.
i=1

If a = 0 then then a; = 0 for all i’s, f;(t) = c;t% and there is no constraint on
K. If a # 0 then the previous relation gives a; = al|e;||%, so the a;’s are not
zero and have same sign. Since [|z]|x = (31, & mi|”)1/p, the set K N (0,00)"
is a weighted £7-ball. By boundedness p > 0. As before f;(t) = ¢;t% e~ This
ends the proof. O




3 Atomic Measures

In this section we focus on finite atomic measures > pes @pdp, where dp is the
Dirac measure at P and S C R” is countable. For convenience, we write u(P)
for p({P}). We also restrict to convex sets K. The following result deals with
measures which are not supported on a sphere. Measures which concentrate on
a sphere, when K is convex are much easier to classify and we leave this to the
reader (one of the u;’s has to be a Dirac mass).

Theorem 6 Assume that K C R" is convex, symmetric and contains the origin
in its interior, and that u is o finite (and non-zero) atomic measure on (0,00)",
which admits a simultaneous polar and Cartesian decomposition with respect to
K:p=m® - Quy,=10v. Assume in addition that T is not a Dirac measure.
Then the following assertions hold:

a) There are Ay, ..., A, > 0 such that K N[0,00)™ = []:, [0, \s].

b) There are ¢,r,a1,...an >0,0<¢g<1and D =], {r)\iqk; ke N} such

that : N i
_f elliL 2z ifzeD
() = { 0 ifr¢ D

Conversely, if K and p satisfy a) and b) then p has a simultaneous product
decomposition with respect to K.

As a matter of illustration, we check that conditions a) and b) ensure simul-
taneous Cartesian and polar product decompositions. Let z € (0,00)". Since
the set D is a Cartesian product, it is clear that u defined in b) is a Cartesian-
product measure. Next, write £ = pw with p > 0 and w € K then

p(x) = plpw) = cpi=r® [] wiép(pw),
i=1

so we just need to check that D is a polar product set in order to show that
the latter is the product of a quantity depending only on p times a quantity
depending on w. But this is easy: if € D then for each i, one has z; = r\;¢*:.
By a), ||z|]|x = r¢™mi* € T = {r¢*; k € N} and

T ; n
= () k; —min; kj)
e ( i i

L€ Q= {()\iqhi)?:ﬁ hi >0 andHhi — 0}_

This shows that D C T - Q. The converse inclusion is easily checked. Hence p
has simultaneous product decomposition.

The rest of this section is devoted to the proof of the necessary condition in
Theorem 6. From now on we assume that g and K satisfy the assumption of
the theorem. We begin with some notation. If A is a measure on a measurable
space (€0,%), let My = {z € Q; A(z) = sup,cq A(w)}. Clearly, if X is a finite
measure then |[M,| < co. We also put

M3 = {w € M A(x) = sup )\(w)}.

wEQ\ M

When ) is countably supported we define supp()) = {w € Q; A(w) > 0}.

10



Returning to the setting of Theorem 6, we clearly have that supp(u)
supp(p1) x - - X supp(pn) = supp(7) - supp(v) and M, = M,, x---x M, =
M- M,.

The next lemma will be used for a measure other than p of the main theo-
rem. This is why the fact that 7 in the product decomposition is not Dirac is
specifically stated as an hypothesis there.

Lemma 7 Define the slope function si(x) = ”(uwil If T is not a Dirac

2n ) |2
measure, then s1 does not attain its minimum on supp(u).

Proof: Assume that p(z) > 0. Then pi(z1),...un(zn) > 0, v(z/||z||x) > 0
and 7(||z||x) > 0. Since 7 is not a Dirac measure, there is r > 0, r # ||z||x
such that 7(r) > 0. Let y = eTe®- Then u(y) = 7(r)v(z/||z||x) > 0, so that

forevery i =1,...,n, u; ( = w,) > 0. Therefore for

llzllx
r
U=\ 7—"7"7"21,22,..--,Tp |,
llzll
r r r
V= (.’L’l, T L2y T L3y —CL’n> s
lzllx ™" ll=llx llll
w(u) > 0 and p(v) > 0. But s1(u) = ”zT”Ksl(a:), s1(v) = %sl(x) and either
”w’|‘|K<lor%<l. O

Corollary 8 Under the assumptions of Theorem 6, |supp(u)| = oo and |[M,| =
1.

Proof: The first assertion is obvious, and the second assertion follows since
#|am, has a simultaneous product decomposition. Indeed p|aq, has also a finite
support, therefore s; attains its minimum on it. It follows that the radial
measure 7|, has to be a Dirac measure. O

Put M, = {r}.
Lemma 9 supp() C {z; [lz]lxc <7}

Proof: If supp(u) ¢ {z;||z||[x < r} then since 7 is a finite measure there is
R > r such that 7(R) > 0 is maximal on (r,00). For everyi =1,...,nlet M; =
maxM,, > 0. Now, v = (My,M,,...,M,) € M,, so that ||z||x = r. Put
y = %m. Clearly pu(y) = 7(R)v(z/||z||x) is maximal on the set {z; ||z||x > r}.
For every ¢ = 1,...,n define

; R
' = (MI;---7Mi—17?Mz’;Mi+17---7Mn) -

Note that for every j = 1,...,n, M; = max M, < %Mj = y; so that y; ¢

M,,. Tt follows that for every i = 1,...,n, p(z') > p(y), so that ||z'||x < r.
Now, using the convexity of K we have

n

1 i
r=|z|lg = | ——= ) =
el Hn_HEz

r i=1

<
K

11



|| i < 7 <7
1+

Tzl

which is a contradiction. O

Since 7 isn’t Dirac, there is some r' € M2. By Lemma 9, r' < r.
Lemma 10 For every i =1,...,n, inf supp(u;) = 0.

Proof: As in Lemma 7, we will study the function:
Ti

si(x) = —=——.
' ||Ej;éixjej”2

Since Lemma 9 implies in particular that supp(p) is bounded, our claim will
follow once we show that inf,cgupp(y) 5i(#) = 0. Let 0; = inf,cqupp(u) si(x) and
assume that o; > 0. For every e > 0 there is € supp(p) such that s;(z) <
(1+€)o;. From the proof of Lemma 7 it follows that for every p € supp(7) there

are u,v € supp(7) such that s;(u) = ku si(z) and s;(v) = ”mHKS (z). Hence,
min{”—mfl"—K, ”‘”}JK} > = If flzllx = r take p = r'. Otherwise, |lz]|x < 7/,
in which case take p = r. In both cases we get that r < (1 + €)r', which is a
contradiction when € is small enough. m|

In what follows we will continue to use the notation M; = max M,;, and we
will also put m; = min M,,,. Let x = (M1,..., M), £’ = (m1,...,my).

Corollary 11 For every J C {1,...,n}:

Z Mz-e,-

i€J

<r.
K

Proof: By Lemma 10 for every ¢ > 0 and 4 = 1,...,n there is z; € supp(u;)
with z; < e. Now:

Z M;e; + Zziei € supp(u),

icJ igJ

so that by Lemma 9 we get:

Z M;e; + Z Zi€;

= i¢J

K

The result follows by taking € — 0. O
Corollary 12 [[;,[0,M;] C 7K.
Lemma 13 Let J be a non-empty subset of {1,...,n}. Then:

Z Mie; + Z %’mz’ei

icJ i¢J

K

12



Proof: Denotey = %Ia:’. Since 2’ € My, ||2'||lx = r. Now, pu(y) = 7(r")v(z'/||2'|| k),
and because r' € M? and z'/||z'||[x € M, we deduce that u(y) is maximal

on the set {z;||z||x 75 r}. But since r' < r, for any j = 1,...,n one has

y; = mJ < mj =min M, so that y; ¢ M. It follows that since J # @,

! n
H (Z M;e; + Z %mm) = (H Ni(Mi)) (H /ti(yz')) > Hpi(yi) = u(y)

i€J igJ ieJ igJ i=1
so that HZieJ Miei + 3 igs TT—Imz'ei ks O

We can now prove the first part of Theorem 6:

Proposition 14 K N [0,00)" =[], [0, A:{’]

Proof: We set Q = [];,[0,M;]. Let 1 <14 < n. Since 0 < m;r'/r < M; the
point
,r.l
.Pz' = Mie,- + Z ?mjej
i

lies in the interior of the facet @ N {z; z; = M;} of . It is also a boundary
point of rK by Lemma 13. As guaranteed by Corollary 12, ) C rK, so that
any supporting hyperplane of 7K at P; is a supporting hyperplane of @) at this
point. Therefore at P; the convex set 7K admits {z; z; = M;} as a (unique)

supporting hyperplane. It follows that rK C {z; xz; < M;}. This is true for
every 1 <i < n and the proof is complete. O

We now pass to the proof of the final assertion of Theorem 6. We have
proved that there are real numbers ¢t; = r/M; > 0, i = 1...n such that for
every ¢ € [0,00)", |||k = maxi<i<n t;z;. Moreover for every x € supp(u),
|z||lxk <7 and p(r/ti,...,7/ty) >0

Lemma 15 If p,q € supp(7) and ¢ > p then %, Pl € supp(7).

Proof: Sinceu(%,...,i) >0, I/(%,...,i) > 0. Now,

o«(;;p(%,...,%)—u(t ) Hu,( )

so that for every i = 1,...,n, £ € supp(y;). Similarly, £ € supp(u;). Hence,

since p < ¢:
P q q p 1 1
0< — =, ..., — | = v|—,— ..., —
M(tl’tz’ Jtn) T(q) (qt17t27 Jtn)i

so that v ( o %, . i) > 0. Now, using again the fact that p < ¢ we have:

#<pr)_u(£i,t2 WE)
()
M M (7)

13



T(r)v (q%, %, e, %)
= > 0.

H?:z Mi (%)
p"'

This shows that rfTTl € supp(pq). Similarly, for every 4, o € supp(u;). Hence,

n
pr pr pr pr 1 1 )
o< T (E)=p (2, ., ) =7 (E) o (=,...,2).
,.1;[1”‘ <qti> ”(qtl qtn) (q) (tl tn
This shows that % € supp(7). Now, since the remark preceding Lemma 15
implies that p < r,

(m) Hu‘ (tg> - (%,%,...,%) =1(q)v (%,%,...,%) -
St et (1)l (7)o

pPq

Hence, EL € supp(p1). Similarly, for every i, &

g q g 1 1
0 B (2 (L1,
<H ( rtn) )Y (tl tn)

which shows that 21 € supp(7). O

- € supp(;), so that:

Lemma 16 For every i =1,...,n, t;supp(y;) = supp(7).

Proof: In the proof of Lemma 15 we have seen that supp(7) C t;supp(u;). We
show the other inclusion. First, note that infsupp(7) = 0. Indeed for every
€ > 0, Lemma 10 ensures the existence of z; € supp(u;) such that z; < €/t;.

Now,
n T
o< [lmten =~ (o o)« ()

i=1

So inf supp(7) < €
Take any p € supp(u;). There is some g € supp(7) such that ¢ < ¢;p. By
the proof of Lemma 15, for every j, q/t; € supp(u;), so that:

1 q
0 <ss) [Ls (L) = pes+ 3 Les | = vt | e+ 3 e )
i i i G P
so that ¢;p € supp(7). O

Lemma 17 For every i =1,...,n and for every p,q € supp(u;),
(hpq) _ mi(p)pi(a)
pi | —— | = /=2~
L

" ()

14



Proof: Note that since ¢;p € supp(7), t;p < r. Hence, using the fact that

t;jq € supp(p;) we have:

t; t;
o< () I (5) = e+ e ) -
J

] J#i

t2 1
() o (1)) -
r max{ P t»q}
r ol

J#i

Iz (pei + 2 tl.ej)
=7 (tiq) v —eZ + Z —eg = 7(tiq) chall =
J#i 7(r)

1 (1) et Stie) w5 5e)
—T@M@HLM<) O ) ()7

i (t—) 117_'5[1“] (_>

Lemma 18 Assume that A C (0,1], A # {1}, A # 0, has the property that
zy and xz/y are in A whenever z,y € A and x <y. Let f: A — (0,00) be a
function such that if z,y € A then f(xy) = f(z)f(y) and:

Zf(a)<oo

a€A

j#i J

O

Then there are oo > 0 and 0 < ¢ < 1 such that f(a) = a® and A = {¢"}2,

Proof: For any a € A\ {1} and n € N, a” € A and f(a") = f(a)". Since
Yor f(a™) < oo, f(a) < 1. Now, if a,b € A\ {1} and & < 1, & € A, so that
1>f (;)‘—,Z) = ;E“)) We have shown that for every n,m € N and a,b € A\ {1}:

n > logb n _ log f(b)
loga m = log f(a)

Hence, %g—z > llgglf((b; for every a,b € A\ {1}. By symmetry, there is @ € R

such that for every a € A, loli g (aa) = «. This proves the first assertion (a > 0
since f(a) < 1).
Put B = {—loga;a € A}. Clearly:

a,be B=a+b,la—b|l € B.

Since f(a) = a® and ), .4 f(a) < oo, for every > 0 there are only
finitely many a € A with @ > z. In other words, for every x > 0 there are
only finitely many b € B with b < z. In particular, if we let p = inf B \ {0}
then p > 0 and p € B. Now, for every n = 0,1,2,..., np € B. We claim
that B = {0,p,2p,3p,...}. Indeed, if z € B\ {0,p,2p, 3p, ...} then there is an

15



integer n such that 0 < |x — np| < p. But, |z — np| € B, and this contradicts
the definition of p. Finally, for ¢ = e7?, A = {1,q,4%,...}. m|

Remark: All the assumptions in Lemma 18 are necessary. Apart from the
trivial examples such as A = (0,1] and A = (0,1] N Q we would like to point
out the more interesting example A = {2"3™;m,n € Z and 2"3™ < 1},
f(273™) = 29m3B™ where a and 3 are distinct real numbers (of course in this
case the condition ), 4 f(a) < oo is not satisfied).

Proof of Theorem 6: Assertion a) is given by Proposition 14. To prove b)
fix some 1 < i < n and define: A = t;"supp(pi). By Lemma 16 and Lemma 9,
A = Lsupp(r) C 1(0,r] = (0,1]. Additionally, if z,y € A, z <y, then there
are p,q € supp(7), p < ¢, such that ¢ = £, y = 4. Lemma 15 implies that

T

= 1.2 ¢ Isupp(r) = A. Similarly, zy € A. Define f; : A — R by

g
Hi (ti)

Clearly for every z € A, fi(x) > 0 and since y; is a finite measure, ) , fi(a) <
0o. An application of Lemma 17 gives that for every z,y € A, fi(zy) =
fi(x) fi(y). Now, Lemma 18 implies that there are a; > 0 and 0 < ¢ < 1 such
that fi(a) = a® and A = {g"}32,. So, supp(7) = {r¢*; k € N} and by Lemma
16, one gets supp(u:) = {rq*/t:;; k € N}. Moreover, u;(rg*/t;) = pi(r/t:)g"*.
This concludes the proof of the theorem. O

<@ |8

fi(z) =

4 Concluding Remarks

In this sections we list some remarks and open problems that arise from the
results of the previous two sections.

1) There are examples when K is allowed to be unbounded (of course in this
case it is no longer a body). Indeed the “unit ball” of £} for non-positive p gives
such a decomposition with f;(t) = |t|% exp(—|t|P).

2) Theorem 3 does not cover the case of the uniform measure on B = [—-1,1]",
which clearly has simultaneously the Cartesian and the polar decomposition
with respect to K = BZ . It is the natural limit case of the examples with the
densities exp(—|t|?). Under strong conditions on the density and its support,
results can be obtained which encompass measures supported on the cube. It
would be very nice to get rid of the conditions. It seems that one of the necessary
steps would be to understand the structure of sets in R™ which are products
with respect to the Cartesian structure and for the polar structure generated
by a convex set K. This is a problem of independent interest.

3) The classification of simultaneous product measures, without additional hy-
pothesis, is a very challenging problem. Note that our results may be used.
Indeed if p has simultaneous product decomposition, then its absolutely contin-
uous part has it too. Similarly, if a singular measure has the property, then its
atomic part has it too, so Theorem 6 applies. The main obstacle seems to be
dealing with singular continuous measures.
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