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A NOTE ON DICHOTOMIES FOR METRIC TRANSFORMS

MANOR MENDEL AND ASSAF NAOR

Abstract. We show that for every nondecreasing concave function ω : [0,∞) → [0,∞)
with ω(0) = 0, either every finite metric space embeds with distortion arbitrarily close to 1
into a metric space of the form (X,ω◦d) for some metric d on X, or there exists α = α(ω) > 0
and n0 = n0(ω) ∈ N such that for all n > n0, any embedding of {0, . . . , n} ⊆ R into a metric
space of the form (X,ω ◦ d) incurs distortion at least nα.

1. Introduction

The distortion of a bi-Lipschitz embedding f : X → Y of metric spaces (X, dX) and
(Y, dY ) is defined as

dist(f)
def
=

 sup
x,y∈X
x6=y

dY (f(x), f(y))

dX(x, y)

 ·
 sup

x,y∈X
x 6=y

dX(x, y)

dY (f(x), f(y))

 = ‖f‖Lip · ‖f−1‖Lip.

If (X, dX) admits a bi-Lipschitz embedding into (Y, dY ), then the least distortion of such an
embedding is denoted

cY (X)
def
= inf {dist(f) : f : X → Y } .

If F is a family of metric spaces then the distortion of (X, dX) in F is defined as

cF(X)
def
= inf {cY (X) : Y ∈ F} .

Let ω : [0,∞) → [0,∞) be a nondecreasing concave function with ω(0) = 0. Then
(X,ω ◦ dX) is a metric space for any metric space (X, dX), known as the ω-metric transform
of (X, dX). When ω(t) = tθ for some θ ∈ (0, 1], the metric space (X, dθX) is known as the
θ-snowflake of (X, dX). In what follows we denote the class of all finite metric spaces by MET,
and the class of all ω-metric transforms by

ω(MET)
def
= {(X,ω ◦ dX) : (X, dX) ∈ MET}.

Let Pn = {0, 1, . . . , n} ⊆ R be the (n+ 1)-point path, equipped with the metric inherited
from the real line. The main purpose of this note is to prove the following dichotomy theorem
for metric transforms:

Theorem 1. For every nondecreasing concave function ω : [0,∞) → [0,∞) with ω(0) = 0,
one of the following two dichotomic possibilities must hold true:

• either for every X ∈ MET we have cω(MET)(X) = 1,
• or there exists α = α(ω) > 0 and n0 = n0(ω) ∈ N such that for all n > n0 we have
cω(MET)(Pn) > nα.
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Theorem 1 is sharp due to the following fact:

Proposition 2. For every 0 < α < 1 there exists a nondecreasing and concave function
ω : [0,∞) → [0,∞) with ω(0) = 0 such that cω(MET)(X) 6 (|X| − 1)α for every finite metric
space X, and cω(MET)(Pn) = nα for every n ∈ N.

The metric cotype dichotomy problem. Our motivation for proving Theorem 1 is one
of the main questions left open in our investigation of metric cotype [14]. To explain it, we
recall the following theorem1 from [14, Thm. 1.6]. Given two classes of metric spaces E ,F
and an integer n ∈ N, denote

Dn(E ↪→ F)
def
= sup

X∈E
|X|6n

cF(X).

When E = MET we write

Dn(F)
def
= Dn(MET ↪→ F) = sup

X∈MET
|X|6n

cF(X).

Theorem 3 (Metric cotype dichotomy [14]). For any class of metric spaces F , one of the
following two dichotomic possibilities must hold true:

• either Dn(F) = 1 for all n ∈ N,
• or there exists α = α(F) > 0 and n0 = n0(F) ∈ N such that for all n > n0 we have

Dn(F) > (log n)α.

We call Theorem 3 a “metric cotype dichotomy” since the parameter α = α(F) is related
in [14] to a numerical invariant of the class F called the metric cotype of F ; we refer to [14]
for more details since we will not use the notion of metric cotype here.

A consequence of Theorem 3 is that if we were told that Dn(F) = (log n)o(1) then we would
immediately deduce that actually Dn(F) = 1 for all n ∈ N. The theory of metric dichotomies
studies such dichotomic behavior (if it exists) of the rate of growth of {Dn(E ↪→ F)}∞n=1.
For example, we have the following classical result of Bourgain, Milman and Wolfson [4],
corresponding to the case when E consists of all Hamming hypercubes, and F consists of a
single metric space.

Theorem 4 (Bourgain-Milman-Wolfson cube dichotomy [4]). For any metric space (X, dX)
one of the following two dichotomic possibilities must hold true:

• either for all n ∈ N we have cX ({0, 1}n, ‖ · ‖1) = 1,
• or there exists α = α(X) and c = c(X) > 0 such that for all n ∈ N we have
cX ({0, 1}n, ‖ · ‖1) > cnα.

For more information on the theory of metric dichotomies see [15, Sec. 1.1], the survey
paper [12], and the references therein. The most fundamental open question in this area
concerns the sharpness of the metric cotype dichotomy (Theorem 3), or even more generally,
the possible rates of growth of {Dn(F)}∞n=1. Bourgain’s embedding theorem [3] (combined
with Dvoretzky’s theorem [5]) says that Dn(X) . log n for every infinite dimensional Banach
space X. Linial, London and Rabinovich [8] proved that Dn(L1) � log n. This was extended

1This phenomenon was first conjectured to hold true by Arora, Lovász, Newman, Rabani, Rabinovich and
Vempala in [1].
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by Matoušek [11] to all Lp spaces p ∈ [1,∞), by showing that Dn(Lp) � 1 + 1
p

log n. The

work of Ozawa [18] and Pisier [20, 21] shows that Dn(X) �X log n for X in a class Banach
spaces satisfying certain geometric conditions; this class includes all Banach lattices with
finite Rademacher cotype. Lafforgue’s work [6] shows that Dn(X) �X log n whenever X is
a K-convex Banach space (see also [7, 16]). Additional results along these lines (when X is
not necessarily a Banach space) follow from [17].

In light of Theorem 3 and the above quoted results, we recall the following natural open
question from [14].

Question 5 (Metric cotype dichotomy problem). Does there exist a class of metrics spaces
F for which limn→∞Dn(F) = ∞ yet Dn(F) = o(log n)? If so, for which α ∈ (0, 1) there
exists a class of metric spaces F = Fα such that Dn(F) �F (log n)α? What happens if we
insist in these questions that F consists of a single Banach space X?

Theorem 1 shows that a judicious choice of metric transform ω cannot show that ω(MET)
solves the metric cotype dichotomy problem. Furthermore, Proposition 8 shows that for
every θ ∈ (0, 1] we can have Dn(X) = nθ for some metric space X. Previously it was
shown by Matoušek [9] that when d is even integer, Dn

(
`d2
)

behaves roughly like n2/d (up to
polylogarithmic multiplicative factors). It is unknown what are the possible rates of growth
of sequences such as {Dn(F)}∞n=1; the only currently known restriction, from Theorem 3, is
that such sequences cannot be larger than 1 yet behave like (log n)o(1).

2. A dichotomy theorem for line metrics

The following simple result will be used in the proof of Theorem 1. It implies that either
every metric space X contains arbitrarily large “almost geodesics”, or any embedding of the
path Pn into X incurs very large distortion. Without quantitative estimates on the rate of
growth of cX(Pn), such a result has been previously proved by Matoušek in [10] via a metric
differentiation argument.

Proposition 6. For any class of metric spaces F one of the following two dichotomic pos-
sibilities must hold true:

• for every L ⊆ R we have cF(L) = 1,
• or there exists α = α(F) > 0 and n0 = n0(F) ∈ N such that for all n > n0 we have
cF(Pn) > nα.

Proposition 6 is a simple consequence of the following lemma, taken from [15, Prop. 5.1].
The proof of this lemma in [15] is a “baby version” of the sub-multiplicativity method that is
commonly used in Banach space theory; see Pisier’s characterization of trivial Rademacher
type [19] as an early example of many such arguments. A thorough discussion of the sub-
multiplicativity method in the context of metric dichotomies in contained in [12].

Lemma 7. Fix δ ∈ (0, 1), D > 2 and t, n ∈ N satisfying n > D(4t log t)/δ. If (X, dX) is a
metric space and f : Pn → X satisfies dist(f) 6 D, then there exists φ : Pt → Pn which is a
rescaled isometry, i.e., dist(φ) = 1, such that dist(f ◦ φ) 6 1 + δ.

Proof of Proposition 6. If the first assertion of Proposition 6 fails then there exists some
δ ∈ (0, 1) and a finite L0 ⊆ R such that cF(L0) > 1 + δ. Using dilation and rounding,
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there exists t ∈ N for which cPt(L0) 6 1 + δ/3, and therefore cF(Pt) > 1 + δ/2. Define
D = nδ/(8t log t) and assume that n is large enough so that D > 2. By Lemma 7 we obtain

cF(Pn) > nδ/8t log t. �

Proposition 6 is sharp due to the following fact:

Proposition 8. For every θ ∈ (0, 1] there exists a metric space X such that for every finite
subset of the real line L ⊆ R we have cX(L) 6 (|L| − 1)θ, and cX(Pn) = nθ for all n ∈ N.

Proof. Assume first that θ < 1. The metric space X will be the snowflaked real line(
R, |x− y|1−θ

)
We first observe that any (n + 1)-point subset L ⊂ R embeds in X with distortion nθ

distortion. Indeed, write L = {y0, . . . , yn} where y0 < y1 < . . . < yn, and define z0 = 0 and
for i ∈ {1, . . . , n},

zi =
i−1∑
k=0

(yk+1 − yk)1/(1−θ).

If n > j > i > 0 then,

|zj − zi|1−θ =

(
j−1∑
k=i

(yk+1 − yk)1/(1−θ)

)1−θ

∈
[
yj − yi,

yj − yi
(j − i)θ

]
.

thus the embedding of L into X which maps yi to zi has distortion at most nθ.
The fact that cX(Pn) > nθ is simple. We briefly recall the standard computation. For a

bijection f : Pn → X we have,

n

‖f−1‖Lip

6 |f(0)−f(n)|1−θ 6

(
n−1∑
i=0

|f(i+ 1)− f(i)|

)1−θ

6
(
n‖f‖1/(1−θ)

Lip

)1−θ
= n1−θ‖f‖Lip.

Therefore dist(f) > nθ.
For θ = 1 let U be the class of all finite ultrametrics of diameter 1. Let X be the

disjoint union of the elements of U , equipped with the following metric: if x, y ∈ X then
let U1, U2 ∈ U be finite ultrametics such that x ∈ U1 and y ∈ U2. Define dX(x, y) = 1 if
U1 6= U2 and dX(x, y) = dU(x, y) if U1 = U2 = U . Then (X, dX) is an ultrametric. It is a
standard and easy fact (see for example [13, Lem. 2.4] that any embedding of Pn into an
ultrametric incurs distortion at least n. Thus cX(Pn) > n. Furthermore, it is well known
(via a Cantor set-type construction; see for example [2, Lem. 3.6]) that any (n + 1)-point
metric space embeds into some ultrametric U ∈ U with distortion at most n. Since U is
isometric to a subset of X, we have cX(Pn) = n. �

3. Proof of Theorem 1

We will deduce Theorem 1 from Proposition 6 via the following lemma.

Lemma 9. Let ω : [0,∞) → [0,∞) be a nondecreasing concave function with ω(0) = 0.
Then for every n ∈ N we have

Dn2

(
2R ↪→ ω(MET)

)
> Dn (ω(MET)) . (1)

Here 2R denotes the class of metric spaces consisting of all nonempty subsets of the real line.
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Proof. Fix an n-point metric space (X, d) and consider the subset L of the real line defined
by L = {d(x, y)}x,y∈X . Then |L| 6 n2. Therefore, if D > Dn2

(
2R ↪→ ω(MET)

)
we know that

there exists a metric ρ on L, and a scaling factor λ > 0, such that for every x, y, z, w ∈ X,

λ|d(x, y)− d(w, z)| 6 ω(ρ(d(x, y), d(w, z))) 6 Dλ|d(x, y)− d(w, z)|.
For every z ∈ X define a semi-metric ρz on X by ρz(x, y) = ρ(d(x, z), d(y, z)). Then
δ = maxz∈X ρz is also a semi-metric on X. Using the monotonicity of ω (and the triangle
inequality), for every x, y ∈ X we have

d(x, y) = max
z∈X
|d(x, z)− d(y, z)| 6 1

λ
max
z∈X

ω(ρ(d(x, z), d(y, z)))

=
1

λ
ω

(
max
z∈X

ρ(d(x, z), d(y, z))

)
=

1

λ
ω(δ(x, y)).

Similarly,

d(x, y) >
1

Dλ
ω(δ(x, y)).

Thus the identity mapping between (X, d) and (X,ω ◦δ) ∈ ω(MET) has distortion at most D.
Since D was an arbitrary number bigger than Dn2

(
2R ↪→ ω(MET)

)
, the proof is complete. �

Proof of Theorem 1. Failure of the first statement of Theorem 1 implies the existence of
n0 ∈ N such that Dn0(ω(MET)) > 1. By Lemma 9 it follows that Dn2

0

(
2R ↪→ ω(MET)

)
> 1.

Thus the first dichotomic possibility of Proposition 6 fails, forcing the conclusion that the
second dichotomic possibility of Proposition 6 holds, as required. �

4. Snowflakes

The quadratic dependence on n in (1) can be removed when ω corresponds to a snowflake,
leading to sharp bounds in this case. The appropriate variant of Lemma 9 is as follows.

Lemma 10. For every θ ∈ (0, 1) and every n ∈ N we have,

Dn

(
2R ↪→ (MET)θ

)
= Dn

(
(MET)θ

)
. (2)

Proof. We need to show that Dn

(
2R ↪→ (MET)θ

)
> Dn

(
(MET)θ

)
(the reverse inequality is

trivial). Fix an n-point metric space (X, d) and D > Dn

(
2R ↪→ (MET)θ

)
. For every z ∈ X

consider the subset of the real line given by Lz = {d(x, z)}x∈X . Since |Lz| 6 n, there exists
a metric ρz on Lz and a scaling factor λz > 0 such that for every x, y ∈ X we have

λz|d(x, z)− d(y, z)| 6 ρz(d(x, z), d(y, z))θ 6 Dλz|d(x, z)− d(y, z)|.
Define a semi-metric δ on X by

δ(x, y) = max
z∈X

ρz(d(x, z), d(y, z))

λ
1/θ
z

.

Then for all x, y ∈ X,

d(x, y) = max
z∈X
|d(x, z)− d(y, z)| ∈

[
δ(x, y)θ

D
, δ(x, y)θ

]
.

This means that (X, d) is bi-Lipschitz equivalent with distortion at most D to the θ-snowflake
of (X, δ). �
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We can now state and prove a concrete version of Proposition 2.

Corollary 11. For every θ ∈ (0, 1) and every n ∈ N we have Dn

(
(MET)θ

)
= (n− 1)1−θ.

Proof. We have seen in the proof of Proposition 8 that any n-point subset of the real line
embeds into the θ-snowflake of R with distortion at most (n− 1)1−θ, and that this bound is
attained for Pn. Now apply Lemma 10. �

Remark 12. An inspection of the proof of Lemma 10 shows that if ω : [0,∞) → [0,∞)
is increasing, concave, and ω(0) = 0, then the improvement (2) over (1) holds provided
the class of metric spaces ω(MET) is closed under dilation, i.e., if d ∈ ω(MET) and λ > 0
then also λd ∈ ω(MET). Equivalently, ω−1(λω(d)) is a metric for every λ > 0 and every
metric d. This is the same as requiring that the function t 7→ ω−1(λω(t)) is subadditive.
We do not know the possible moduli ω satisfying this requirement, but we believe that
it is quite stringent, and possibly it characterizes snowflakes. Here we note that if ω is
smooth on (0,∞) and limt→∞ ω(t) = ∞ (in addition to being increasing, concave, and
ω(0) = 0) and t 7→ ω−1(λω(t)) is concave for all λ > 0, then there exist a > 0 and
b ∈ (0, 1] such that ω(t) = atb for all t > 0. To see this, denote fλ(t) = ω−1(λω(t)).
Then f ′λ(t) = λω′(t)/ω′ (ω−1(λω(t))), and therefore the concavity of fλ is equivalent to the
requirement

∀t > 0, 0 >
f ′′λ (t)

λ
=
ω′′(t)ω′ (ω−1(λω(t)))− λ[ω′(t)]2ω′′(ω−1(λω(t)))

ω′(ω−1(λω(t)))

[ω′ (ω−1(λω(t)))]2
. (3)

Assuming the validity of (3), we know that for all λ, t > 0,

ω′′(t)ω′
(
ω−1(λω(t))

)
6
λ[ω′(t)]2ω′′ (ω−1(λω(t)))

ω′ (ω−1(λω(t)))
. (4)

Denoting s = ω−1(λω(t)), we see that since w′ > 0, inequality (4) implies that for all s, t > 0
we have,

ω(s)ω′′(s)

[ω′(s)]2
>
ω(t)ω′′(t)

[ω′(t)]2
.

Thus there exists c ∈ R such that for all t > 0 we have ω(t)ω′′(t) = c[ω′(t)]2. Equivalently,
(logω′)′ = c(logω)′. Thus for some K ∈ R we have logω′ − c logω = K, or ω′/ωc = eK . If
c 6= 1 then since ω(0) = 0, it follows that c < 1 and ω(t) = (1−c)1/(1−c)eK/(1−c)t1/(1−c). Since
ω is concave, necessarily 1/(1− c) ∈ (0, 1], as required. The case c = 1 is ruled out since the
equation ω′/ω = eK cannot be satisfied by a concave function. �

Remark 13. The shortest path metrics on certain (in some cases any) constant degree
expander graphs have been the only tool used so far to rule out intermediate behavior in the
metric cotype dichotomy problem, i.e., to exhibit that for certain classes of metric spaces
F , the sequence {Dn(F)}∞n=1 cannot have asymptotic growth to infinity of (log n)α (up to
constant factors) for some α ∈ (0, 1). A simple consequence of Corollary 11 is that expanders
are not always the “worst case” spaces for metric dichotomy problems. Indeed, if G = (V,E)
is an n-vertex constant degree expander, then c(MET)θ(G) grows like (log n)1−θ rather than the

required n1−θ. More generally (since constant degree expanders have logarithmic diameter),
if G = (V,E) is an n-vertex unweighted graph and dG is its shortest path metric, then
c(MET)θ(V, dG) = ∆1−θ, where ∆ is the diameter of G. This is true since (V, dG) contains P∆+1
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isometrically, and therefore by Proposition 8 we have c(MET)θ(V, dG) > ∆1−θ. In the reverse

direction, the identity mapping (V, dG) 7→ (V, dθG) has distortion at most ∆1−θ.
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